1
|
Liu F, Liang Q, Li L, Gong Y, Li M, Feng L, Chen A, Ye Y, Lan Z, Li Y, Ou JS, Lu L, Yan J. Thrombospondin-1 binds to integrin β3 to inhibit vascular calcification through suppression of NF-κB pathway. J Pathol 2025; 266:109-123. [PMID: 40084742 DOI: 10.1002/path.6417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 01/01/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
Vascular calcification is an important risk factor related to all-cause mortality of cardiovascular events in patients with chronic kidney disease (CKD). Vascular extracellular matrix (ECM) proteins have been demonstrated to regulate vascular calcification. ECM protein thrombospondin 1 (THBS1/TSP-1) plays a critical role in the regulation of vascular diseases. However, whether THBS1 is involved in vascular calcification in CKD patients remains unclear. In this study, RNA sequencing datasets from the Gene Expression Omnibus (GEO) database GSE146638 showed that THBS1 was upregulated in the aortas of CKD rats. Enzyme-linked immunosorbent assay (elisa) revealed that serum THBS1 levels were increased in CKD patients with thoracic calcification. Western blotting and immunofluorescence analysis showed that THBS1 expression was increased in calcified vascular smooth muscle cells (VSMCs) and arteries. THBS1 knockdown exacerbated rat VSMC calcification induced by high phosphorus and calcium, as shown by Alizarin red staining and calcium content assays. Conversely, THBS1 overexpression attenuated VSMC calcification and abdominal aortic calcification in rats with CKD. Moreover, addition of recombinant THBS1 protein inhibited calcification of VSMCS and human arterial rings. Smooth muscle cell-specific knockout of THBS1 mice treated with vitamin D3 displayed aggravated aortic calcification. Mechanistically, the protein-protein interaction database STRING (http://string-db.org/) analysis and coimmunoprecipitation assays revealed THBS1 bound to integrin β3. Reduction of integrin β3 levels abrogated the protective effect of THBS1 on vascular calcification. RNA-seq analysis revealed that THBS1 overexpression modulated the nuclear factor-kappa B (NF-κB) signaling pathway. Of note, the inhibitory effect of THBS1 overexpression on the NF-κB signal was abolished by knockdown of integrin β3. In conclusion, THBS1 interacts with integrin β3 to inhibit vascular calcification through suppression of NF-κB signal, suggesting a promising therapeutic target for vascular calcification in CKD. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Thrombospondin 1/metabolism
- Thrombospondin 1/genetics
- Animals
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/genetics
- Vascular Calcification/prevention & control
- Humans
- NF-kappa B/metabolism
- Signal Transduction
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Integrin beta3/metabolism
- Integrin beta3/genetics
- Male
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats
- Mice
- Rats, Sprague-Dawley
- Disease Models, Animal
- Cells, Cultured
- Mice, Inbred C57BL
- Female
- Middle Aged
Collapse
Affiliation(s)
- Fang Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, PR China
| | - Li Li
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, PR China
| | - Yuan Gong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| | - Mingxi Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, PR China
| | - Liyun Feng
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| | - Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| | - Jing-Song Ou
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Lihe Lu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, PR China
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| |
Collapse
|
2
|
Kavakli E, Gul N, Begentas OC, Kiris E. Astrocytes in Primary Familial Brain Calcification (PFBC): Emphasis on the Importance of Induced Pluripotent Stem Cell-Derived Human Astrocyte Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:19-38. [PMID: 39841380 DOI: 10.1007/5584_2024_840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Primary familial brain calcification (PFBC) is a rare, progressive central nervous system (CNS) disorder without a cure, and the current treatment methodologies primarily aim to relieve neurological and psychiatric symptoms of the patients. The disease is characterized by abnormal bilateral calcifications in the brain, however, our mechanistic understanding of the biology of the disease is still limited. Determining the roles of the specific cell types and molecular mechanisms involved in the pathophysiological processes of the disease is of great importance for the development of novel and effective treatment methodologies. There is a growing interest in the involvement of astrocytes in PFBC, as recent studies have suggested that astrocytes play a central role in the disease and that functional defects in these cells are critical for the development and progression of the disease. This review aims to discuss recent findings on the roles of astrocytes in PFBC pathophysiology, with a focus on known expression and roles of PFBC genes in astrocytes. Additionally, we discuss the importance of human astrocytes for PFBC disease modeling, and astrocytes as a potential therapeutic target in PFBC. Utilization of species-specific and physiologically relevant PFBC model systems can open new avenues for basic research, drug development, and regenerative medicine.
Collapse
Affiliation(s)
- Ebru Kavakli
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Nazli Gul
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Onur Can Begentas
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Erkan Kiris
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye.
| |
Collapse
|
3
|
Yoshino Y, Hasegawa T, Sugita S, Tomatsu E, Murao N, Hiratsuka I, Sekiguchi-Ueda S, Shibata M, Matsumoto T, Amizuka N, Seino Y, Takayanagi T, Sugimura Y, Suzuki A. Phosphate overload via the type III Na-dependent Pi transporter represses aortic wall elastic fiber formation. FUJITA MEDICAL JOURNAL 2024; 10:87-93. [PMID: 39494438 PMCID: PMC11528329 DOI: 10.20407/fmj.2023-004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/20/2024] [Indexed: 11/05/2024]
Abstract
Objectives Phosphate (Pi) induces differentiation of arterial smooth muscle cells to the osteoblastic phenotype by inducing the type III Na-dependent Pi transporter Pit-1/solute carrier family member 1. This induction can contribute to arterial calcification, but precisely how Pi stress acts on the vascular wall remains unclear. We investigated the role of extracellular Pi in inducing microstructural changes in the arterial wall. Methods Aortae of Pit-1-overexpressing transgenic (TG) rats and their wild-type (WT) littermates were obtained at 8 weeks after birth. The thoracic descending aorta from WT and TG rats was used for the measurement of wall thickness and uniaxial tensile testing. Structural and ultrastructural analyses were performed using light microscopy and transmission electron microscopy. Gene expression of connective tissue components in the aorta was quantified by quantitative real-time polymerase chain reaction. Results Aortic wall thickness in TG rats was the same as that in WT rats. Uniaxial tensile testing showed that the circumferential breaking stress in TG rats was significantly lower than that in WT rats (p<0.05), although the longitudinal breaking stress, breaking strain, and elastic moduli in both directions in TG rats were unchanged. Transmission electron microscopy analysis of the aorta from TG rats showed damaged formation of elastic fibers in the aortic wall. Fibrillin-1 gene expression levels in the aorta were significantly lower in TG rats than in WT rats (p<0.05). Conclusions Pi overload acting via the arterial wall Pit-1 transporter weakens circumferential strength by causing elastic fiber malformation, probably via decreased fibrillin-1 expression.
Collapse
Affiliation(s)
- Yasumasa Yoshino
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Division of Oral Health Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shukei Sugita
- Biomechanics Laboratory, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - Eisuke Tomatsu
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Naoya Murao
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Izumi Hiratsuka
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Sahoko Sekiguchi-Ueda
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Megumi Shibata
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Takeo Matsumoto
- Department of Mechanical Systems and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Division of Oral Health Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Takeshi Takayanagi
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
4
|
Liang X, Li Y, Wang P, Liu H. Key regulators of vascular calcification in chronic kidney disease: Hyperphosphatemia, BMP2, and RUNX2. PeerJ 2024; 12:e18063. [PMID: 39308809 PMCID: PMC11416758 DOI: 10.7717/peerj.18063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Vascular calcification is quite common in patients with end-stage chronic kidney disease and is a major trigger for cardiovascular complications in these patients. These complications significantly impact the survival rate and long-term prognosis of individuals with chronic kidney disease. Numerous studies have demonstrated that the development of vascular calcification involves various pathophysiological mechanisms, with the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) being of utmost importance. High phosphate levels, bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (RUNX2) play crucial roles in the osteogenic transdifferentiation process of VSMCs. This article primarily reviews the molecular mechanisms by which high phosphate, BMP2, and RUNX2 regulate vascular calcification secondary to chronic kidney disease, and discusses the complex interactions among these factors and their impact on the progression of vascular calcification. The insights provided here aim to offer new perspectives for future research on the phenotypic switching and osteogenic transdifferentiation of VSMCs, as well as to aid in optimizing clinical treatment strategies for this condition, bearing significant clinical and scientific implications.
Collapse
Affiliation(s)
- Xinhua Liang
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Zhanjiang, Guangdong Province, China
| | - Yankun Li
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Zhanjiang, Guangdong Province, China
| | - Peng Wang
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Zhanjiang, Guangdong, China
| | - Huafeng Liu
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Wang X, Wang Z, He J. Similarities and Differences of Vascular Calcification in Diabetes and Chronic Kidney Disease. Diabetes Metab Syndr Obes 2024; 17:165-192. [PMID: 38222032 PMCID: PMC10788067 DOI: 10.2147/dmso.s438618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Presently, the mechanism of occurrence and development of vascular calcification (VC) is not fully understood; a range of evidence suggests a positive association between diabetes mellitus (DM) and VC. Furthermore, the increasing burden of central vascular disease in patients with chronic kidney disease (CKD) may be due, at least in part, to VC. In this review, we will review recent advances in the mechanisms of VC in the context of CKD and diabetes. The study further unveiled that VC is induced through the stimulation of pro-inflammatory factors, which in turn impairs endothelial function and triggers similar mechanisms in both disease contexts. Notably, hyperglycemia was identified as the distinctive mechanism driving calcification in DM. Conversely, in CKD, calcification is facilitated by mechanisms including mineral metabolism imbalance and the presence of uremic toxins. Additionally, we underscore the significance of investigating vascular alterations and newly identified molecular pathways as potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiabo Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| |
Collapse
|
6
|
刘 颖, 马 良, 付 平. [Ketone Body Metabolism and Renal Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1091-1096. [PMID: 38162055 PMCID: PMC10752776 DOI: 10.12182/20231160202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 01/03/2024]
Abstract
A ketogenic diet limits energy supply from glucose and stimulates lipolysis, lipid oxidation, and ketogenesis, resulting in elevated levels of ketone bodies in the bloodstream. Ketone bodies are synthesized in the mitochondrial matrix of liver cells and β-hydroxybutyric acid (BHB) is the most abundant type of ketone body. Herein, we reviewed published findings on the metabolism of ketone bodies and the role of BHB in renal diseases. Through blood circulation, ketone bodies reach metabolically active tissues and provides an alternative source of energy. BHB, being a signaling molecule, mediates various types of cellular signal transduction and participates in the development and progression of many diseases. BHB also has protective and therapeutic effects on a variety of renal diseases. BHB improves the prognosis of renal diseases, such as diabetic kidney disease, chronic kidney disease, acute kidney injury, and polycystic kidney disease, through its antioxidant, anti-inflammatory, and stress response mechanisms. Previous studies have focused on the role of ketone bodies in regulating inflammation and oxidative stress in immune cells. Investigations into the effect of elevated levels of ketone bodies on the metabolism of renal podocytes and tubular cells remain inconclusive. Further research is needed to investigate the effect of BHB on podocyte damage and podocyte senescence in renal diseases.
Collapse
Affiliation(s)
- 颖 刘
- 四川大学华西医院 肾脏内科 (成都 610041)Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 肾脏病研究所 (成都 610041)Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 良 马
- 四川大学华西医院 肾脏内科 (成都 610041)Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 肾脏病研究所 (成都 610041)Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 平 付
- 四川大学华西医院 肾脏内科 (成都 610041)Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 肾脏病研究所 (成都 610041)Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Xiao L, Clarke K, Hurley MM. Fibroblast Growth Factor 23 Neutralizing Antibody Ameliorates Abnormal Renal Phosphate Handling in Sickle Cell Disease Mice. Endocrinology 2023; 164:bqad173. [PMID: 37972265 PMCID: PMC11032245 DOI: 10.1210/endocr/bqad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
We assessed the involvement of fibroblast growth factor 23 (FGF23) in phosphaturia in sickle cell disease (SCD) mice. Control and SCD mice were treated with FGF23 neutralizing antibody (FGF23Ab) for 24 hours. Serum ferritin was significantly increased in SCD mice and was significantly reduced in female but not male SCD mice by FGF23Ab. FGF23Ab significantly reduced increased erythropoietin in SCD kidneys. Serum intact FGF23 was significantly increased in SCD female mice and was markedly increased in SCD male mice; however, FGF23Ab significantly reduced serum intact FGF23 in both genotypes and sexes. Serum carboxy-terminal-fragment FGF23 (cFGF23) was significantly reduced in SCD IgG male mice and was markedly but not significantly reduced in SCD IgG female mice. FGF23Ab significantly increased cFGF23 in both sexes and genotypes. Serum 1,25-dihydroxyvitamin D3 was significantly increased in SCD IgG and was further significantly increased by FGF23Ab in both sexes and genotypes. Significantly increased blood urea nitrogen in SCD was not reduced by FGF23Ab. The urine phosphate (Pi)/creatinine ratio was significantly increased in SCD in both sexes and was significantly reduced by FGF23Ab. Increased SCD kidney damage marker kidney injury molecule 1 was rescued, but sclerotic glomeruli, increased macrophages, and lymphocytes were not rescued by short-term FGF23Ab. FGF23Ab significantly reduced increased phospho-fibroblast growth factor receptor 1, αKlotho, phosphorylated extracellular signal-regulated kinase, phosphorylated serum/glucocorticoid-regulated kinase 1, phosphorylated sodium-hydrogen exchanger regulatory factor-1, phosphorylated janus kinase 3, and phosphorylated transducer and activator of transcription-3 in SCD kidneys. The type II sodium Pi cotransporter (NPT2a) and sodium-dependent Pi transporter PiT-2 proteins were significantly reduced in SCD kidneys and were increased by FGF23Ab. We conclude that increased FGF23/FGF receptor 1/αKlotho signaling promotes Pi wasting in SCD by downregulating NPT2a and PIT2 via modulation of multiple signaling pathways that could be rescued by FGF23Ab.
Collapse
Affiliation(s)
- Liping Xiao
- Department of Medicine, Division of Endocrinology and Metabolism, UConn Health School of Medicine, Farmington, CT, 06030, USA
| | - Kai Clarke
- Department of Medicine, Division of Endocrinology and Metabolism, UConn Health School of Medicine, Farmington, CT, 06030, USA
| | - Marja M Hurley
- Department of Medicine, Division of Endocrinology and Metabolism, UConn Health School of Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
8
|
Kessler JR, Bluemn TS, DeCero SA, Dutta P, Thatcher K, Mahnke DK, Knas MC, Kazik HB, Menon V, Lincoln J. Exploring molecular profiles of calcification in aortic vascular smooth muscle cells and aortic valvular interstitial cells. J Mol Cell Cardiol 2023; 183:1-13. [PMID: 37579636 PMCID: PMC10592135 DOI: 10.1016/j.yjmcc.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Cardiovascular calcification can occur in vascular and valvular structures and is commonly associated with calcium deposition and tissue mineralization leading to stiffness and dysfunction. Patients with chronic kidney disease and associated hyperphosphatemia have an elevated risk for coronary artery calcification (CAC) and calcific aortic valve disease (CAVD). However, there is mounting evidence to suggest that the susceptibility and pathobiology of calcification in these two cardiovascular structures may be different, yet clinically they are similarly treated. To better understand diversity in molecular and cellular processes that underlie hyperphosphatemia-induced calcification in vascular and valvular structures, we exposed aortic vascular smooth muscle cells (AVSMCs) and aortic valve interstitial cells (AVICs) to high (2.5 mM) phosphate (Ph) conditions in vitro, and examined cell-specific responses. To further identify hyperphosphatemic-specific responses, parallel studies were performed using osteogenic media (OM) as an alternative calcific stimulus. Consistent with clinical observations made by others, we show that AVSMCs are more susceptible to calcification than AVICs. In addition, bulk RNA-sequencing reveals that AVSMCs and AVICs activate robust ossification-programs in response to high phosphate or OM treatments, however, the signaling pathways, cellular processes and osteogenic-associated markers involved are cell- and treatment-specific. For example, compared to VSMCs, VIC-mediated calcification involves biological processes related to osteo-chondro differentiation and down regulation of 'actin cytoskeleton'-related genes, that are not observed in VSMCs. Furthermore, hyperphosphatemic-induced calcification in AVICs and AVSMCs is independent of P13K signaling, which plays a role in OM-treated cells. Together, this study provides a wealth of information suggesting that the pathogenesis of cardiovascular calcifications is significantly more diverse than previously appreciated.
Collapse
Affiliation(s)
- Julie R Kessler
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Theresa S Bluemn
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Samuel A DeCero
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Punashi Dutta
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Kaitlyn Thatcher
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Donna K Mahnke
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Makenna C Knas
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Hail B Kazik
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Vinal Menon
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Joy Lincoln
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
9
|
Yamada S, Nakano T. Role of Chronic Kidney Disease (CKD)-Mineral and Bone Disorder (MBD) in the Pathogenesis of Cardiovascular Disease in CKD. J Atheroscler Thromb 2023; 30:835-850. [PMID: 37258233 PMCID: PMC10406631 DOI: 10.5551/jat.rv22006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD). Multiple factors account for the increased incidence of cardiovascular morbidity and mortality in patients with CKD. Traditional risk factors for atherosclerosis and arteriosclerosis, including age, hypertension, dyslipidemia, diabetes mellitus, and smoking, are also risk factors for CKD. Non-traditional risk factors specific for CKD are also involved in CVD pathogenesis in patients with CKD. Recently, CKD-mineral and bone disorder (CKD-MBD) has emerged as a key player in CVD pathogenesis in the context of CKD. CKD-MBD manifests as hypocalcemia and hyperphosphatemia in the later stages of CKD; however, it initially develops much earlier in disease course. The initial step in CKD-MBD involves decreased phosphate excretion in the urine, followed by increased circulating concentrations of fibroblast growth factor 23 (FGF23) and parathyroid hormone (PTH), which increase urinary phosphate excretion. Simultaneously, the serum calcitriol concentration decreases as a result of FGF23 elevation. Importantly, FGF23 and PTH cause left ventricular hypertrophy, arrhythmia, and cardiovascular calcification. More recently, calciprotein particles, which are nanoparticles composed of calcium, phosphate, and fetuin-A, among other components, have been reported to cause inflammation, cardiovascular calcification, and other clinically relevant outcomes. CKD-MBD has become one of the critical therapeutic targets for the prevention of cardiovascular events and is another link between cardiology and nephrology. In this review, we describe the role of CKD-MBD in the pathogenesis of cardiovascular disorders and present the current treatment strategies for CKD-MBD.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Centers for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Implications of Senescent Cell Burden and NRF2 Pathway in Uremic Calcification: A Translational Study. Cells 2023; 12:cells12040643. [PMID: 36831311 PMCID: PMC9954542 DOI: 10.3390/cells12040643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Increased senescent cell burden and dysregulation of the nuclear factor erythroid 2-related factor 2 (NRF2) pathway have been associated with numerous age-related pathologies; however, their role in promoting vascular calcification (VC) in chronic kidney disease (CKD) has yet to be determined. We investigated whether senescence and NRF2 pathways may serve as drivers of uremia-induced VC using three complementary approaches: a novel model of induced VC in 5/6-nephrectomized rats supplemented with high phosphate and vitamin D; epigastric arteries from CKD patients with established medial calcification; and vascular smooth muscle cells (VSMCs) incubated with uremic serum. Expression of p16Ink4a and p21Cip1, as well as γ-H2A-positive cells, confirmed increased senescent cell burden at the site of calcium deposits in aortic sections in rats, and was similarly observed in calcified epigastric arteries from CKD patients through increased p16Ink4a expression. However, uremic serum-induced VSMC calcification was not accompanied by senescence. Expression of NRF2 and downstream genes, Nqo1 and Sod1, was associated with calcification in uremic rats, while no difference was observed between calcified and non-calcified EAs. Conversely, in vitro uremic serum-driven VC was associated with depleted NRF2 expression. Together, our data strengthen the importance of senescence and NRF2 pathways as potential therapeutic options to combat VC in CKD.
Collapse
|
11
|
The Pathology of Primary Familial Brain Calcification: Implications for Treatment. Neurosci Bull 2022; 39:659-674. [PMID: 36469195 PMCID: PMC10073384 DOI: 10.1007/s12264-022-00980-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/10/2022] [Indexed: 12/08/2022] Open
Abstract
AbstractPrimary familial brain calcification (PFBC) is an inherited neurodegenerative disorder mainly characterized by progressive calcium deposition bilaterally in the brain, accompanied by various symptoms, such as dystonia, ataxia, parkinsonism, dementia, depression, headaches, and epilepsy. Currently, the etiology of PFBC is largely unknown, and no specific prevention or treatment is available. During the past 10 years, six causative genes (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified in PFBC. In this review, considering mechanistic studies of these genes at the cellular level and in animals, we summarize the pathogenesis and potential preventive and therapeutic strategies for PFBC patients. Our systematic analysis suggests a classification for PFBC genetic etiology based on several characteristics, provides a summary of the known composition of brain calcification, and identifies some potential therapeutic targets for PFBC.
Collapse
|
12
|
Lan Z, Chen A, Li L, Ye Y, Liang Q, Dong Q, Wang S, Fu M, Li Y, Liu X, Zhu Z, Ou JS, Qiu X, Lu L, Yan J. Downregulation of HDAC9 by the ketone metabolite β-hydroxybutyrate suppresses vascular calcification. J Pathol 2022; 258:213-226. [PMID: 35894849 DOI: 10.1002/path.5992] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 11/07/2022]
Abstract
Vascular calcification is an actively regulated process resembling bone formation and contributes to the cardiovascular morbidity and mortality of chronic kidney disease (CKD). However, effective therapy for vascular calcification is still lacking. The ketone body β-hydroxybutyrate (BHB) has been demonstrated to have health-promoting effects including anti-inflammation and cardiovascular protective effects. However, whether BHB protects against vascular calcification in CKD remains unclear. In this study, Alizarin Red staining and calcium content assay showed that BHB reduced calcification of vascular smooth muscle cells (VSMCs) and arterial rings. Of note, compared with CKD patients without thoracic calcification, serum BHB levels were lower in CKD patients with thoracic calcification. Supplementation with 1,3-butanediol (1,3-B), the precursor of BHB, attenuated aortic calcification in CKD rats and VitD3-overloaded mice. Furthermore, RNA-Seq analysis revealed that BHB downregulated HDAC9, which was further confirmed by RT-qPCR and western blot analysis. Both pharmacological inhibition and knockdown of HDAC9 attenuated calcification of human VSMCs, while overexpression of HDAC9 exacerbated calcification of VSMCs and aortic rings, indicating that HDAC9 promotes vascular calcification under CKD conditions. Of note, BHB treatment antagonized HDAC9-induced vascular calcification. In addition, HDAC9 overexpression activated NF-κB signaling pathway and inhibition of NF-κB attenuated HDAC9-induced VSMC calcification, suggesting that HDAC9 promotes vascular calcification via activation of NF-κB. In conclusion, our study demonstrates that BHB supplementation inhibits vascular calcification in CKD via modulation of the HDAC9-dependent NF-κB signaling pathway. Moreover, we unveil a crucial mechanistic role of HDAC9 in vascular calcification under CKD conditions, thus nutritional intervention or pharmacological approaches to enhance BHB levels could act as promising therapeutic strategies to target HDAC9 for the treatment of vascular calcification in CKD. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Li Li
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, PR China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, PR China
| | - Qianqian Dong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Siyi Wang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Mingwei Fu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Xiaoyu Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Zhenyu Zhu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Jing-Song Ou
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Lihe Lu
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, PR China
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| |
Collapse
|
13
|
Rroji M, Figurek A, Viggiano D, Capasso G, Spasovski G. Phosphate in the Context of Cognitive Impairment and Other Neurological Disorders Occurrence in Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23137362. [PMID: 35806367 PMCID: PMC9266940 DOI: 10.3390/ijms23137362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
The nervous system and the kidneys are linked under physiological states to maintain normal body homeostasis. In chronic kidney disease (CKD), damaged kidneys can impair the central nervous system, including cerebrovascular disease and cognitive impairment (CI). Recently, kidney disease has been proposed as a new modifiable risk factor for dementia. It is reported that uremic toxins may have direct neurotoxic (astrocyte activation and neuronal death) and/or indirect action through vascular effects (cerebral endothelial dysfunction, calcification, and inflammation). This review summarizes the evidence from research investigating the pathophysiological effects of phosphate toxicity in the nervous system, raising the question of whether the control of hyperphosphatemia in CKD would lower patients’ risk of developing cognitive impairment and dementia.
Collapse
Affiliation(s)
- Merita Rroji
- Department of Nephrology, Faculty of Medicine, University of Medicine Tirana, 1001 Tirana, Albania
- Correspondence:
| | - Andreja Figurek
- Department of Internal Medicine, Medical Faculty, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Davide Viggiano
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.V.); (G.C.)
- BioGeM, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.V.); (G.C.)
- BioGeM, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Goce Spasovski
- University Clinic for Nephrology, Medical Faculty, University St. Cyril and Methodius, 1000 Skopje, North Macedonia;
| |
Collapse
|
14
|
Arase H, Yamada S, Torisu K, Tokumoto M, Taniguchi M, Tsuruya K, Nakano T, Kitazono T. Protective Roles of Xenotropic and Polytropic Retrovirus Receptor 1 (XPR1) in Uremic Vascular Calcification. Calcif Tissue Int 2022; 110:685-697. [PMID: 35112184 DOI: 10.1007/s00223-022-00947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/08/2022] [Indexed: 11/02/2022]
Abstract
Cellular phosphate transporters play critical roles in the pathogenesis of vascular calcification (VC) in chronic kidney disease (CKD). However, the mechanistic link between VC and xenotropic and polytropic receptor 1 (XPR1), a newly identified phosphate exporter, remains unknown. We developed a new mouse model with rapidly progressive uremic VC in C57BL/6 mice and examined the roles of XPR1. The combination of surgical heminephrectomy and 8 weeks of feeding a customized warfarin and adenine-based diet induced extensive aortic VC in almost all mice. The XPR1 mRNA level in the aorta of CKD mice was significantly lower than those in control mice as early as week 2, when there was no apparent VC, which progressively declined thereafter. Dietary phosphate restriction increased XPR1 mRNA expression in the aorta but reduced aortic VC in CKD mice. In cultured vascular smooth muscle cells (VSMCs), a calcifying medium supplemented with high phosphate and calcium did not affect XPR1 mRNA expression. The XPR1 mRNA expression in cultured VCMCs was also unaffected by administration of indoxyl sulfate or calcitriol deficiency but was decreased by 1-34 parathyroid hormone or fibroblast growth factor 23 supplementation. Furthermore, XPR1 deletion in the cultured VSMCs exacerbated calcification of the extracellular matrix as well as the osteogenic phenotypic switch under the condition of calcifying medium. Our data suggest that XPR1 plays protective roles in the pathogenesis of VC and its decrease in the aorta may contribute to the progression of VC in CKD.
Collapse
Affiliation(s)
- Hokuto Arase
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Kumiko Torisu
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Masanori Tokumoto
- Department of Internal Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-Ku, Fukuoka, 8140193, Japan
| | - Masatomo Taniguchi
- Fukuoka Renal Clinic, 4-6-20 Watanabe-Dori, Chuo-Ku, Fukuoka, 8100004, Japan
| | - Kazuhiko Tsuruya
- Department of Nephrology, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 6348521, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan.
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| |
Collapse
|
15
|
Sakai K, Ishida C, Hayashi K, Tsuji N, Kannon T, Hosomichi K, Takei N, Kakita A, Tajima A, Yamada M. Familial idiopathic basal ganglia calcification with a heterozygous missense variant (c.902C>T/p.P307L) in SLC20A2 showing widespread cerebrovascular lesions. Neuropathology 2022; 42:126-133. [PMID: 35026865 DOI: 10.1111/neup.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
We describe a postmortem case of familial idiopathic basal ganglia calcification (FIBGC) in a 72-year-old Japanese man. The patient showed progressive cognitive impairment with a seven-year clinical course and calcification of the basal ganglia, thalami, and cerebellar dentate nuclei. A novel heterozygous missense variant in SLC20A2 (c.920C>T/p.P307L), a type III sodium-dependent phosphate transporter (PiT-2), was subsequently identified, in addition to typical neuropathological findings of FIBGC, such as capillary calcification of the occipital gray matter, confluent calcification of the basal ganglia and cerebellar white matter, widespread occurrence of vasculopathic changes, cerebrovascular lesions, and vascular smooth muscle cell depletion. Immunohistochemistry for PiT-2 protein revealed no apparent staining in endothelial cells in the basal ganglia and insular cortex; however, the immunoreactivity in endothelial cells of the cerebellum was preserved. Moreover, Western blot analysis identified preserved PiT-2 immunoreactivity signals in the frontal cortex and cerebellum. The variant identified in the present patient could be associated with development of FIBGC and is known to be located at the large intracytoplasmic part of the PiT-2 protein, which has potential phosphorylation sites with importance in the regulation of inorganic phosphate transport activity. The present case is an important example to prove that FIGBC could stem from a missense variant in the large intracytoplasmic loop of the PiT-2 protein. Abnormal clearance of inorganic phosphate in the brain could be related to the development of vascular smooth muscle damage, the formation of cerebrovascular lesions, and subsequent brain calcification in patients with FIBGC with SLC20A2 variants.
Collapse
Affiliation(s)
- Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Chiho Ishida
- Department of Neurology, National Hospital Organization Iou National Hospital, Kanazawa, Japan
| | - Koji Hayashi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Neurology, National Hospital Organization Iou National Hospital, Kanazawa, Japan
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Naotaka Tsuji
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Nobuyuki Takei
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
16
|
Nguyen NT, Nguyen TT, Park KS. Oxidative Stress Related to Plasmalemmal and Mitochondrial Phosphate Transporters in Vascular Calcification. Antioxidants (Basel) 2022; 11:antiox11030494. [PMID: 35326144 PMCID: PMC8944874 DOI: 10.3390/antiox11030494] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
Inorganic phosphate (Pi) is essential for maintaining cellular function but excess of Pi leads to serious complications, including vascular calcification. Accumulating evidence suggests that oxidative stress contributes to the pathogenic progression of calcific changes. However, the molecular mechanism underlying Pi-induced reactive oxygen species (ROS) generation and its detrimental consequences remain unclear. Type III Na+-dependent Pi cotransporter, PiT-1/-2, play a significant role in Pi uptake of vascular smooth muscle cells. Pi influx via PiT-1/-2 increases the abundance of PiT-1/-2 and depolarization-activated Ca2+ entry due to its electrogenic properties, which may lead to Ca2+ and Pi overload and oxidative stress. At least four mitochondrial Pi transporters are suggested, among which the phosphate carrier (PiC) is known to be mainly involved in mitochondrial Pi uptake. Pi transport via PiC may induce hyperpolarization and superoxide generation, which may lead to mitochondrial dysfunction and endoplasmic reticulum stress, together with generation of cytosolic ROS. Increase in net influx of Ca2+ and Pi and their accumulation in the cytosol and mitochondrial matrix synergistically increases oxidative stress and osteogenic differentiation, which could be prevented by suppressing either Ca2+ or Pi overload. Therapeutic strategies targeting plasmalemmal and mitochondrial Pi transports can protect against Pi-induced oxidative stress and vascular calcification.
Collapse
Affiliation(s)
- Nhung Thi Nguyen
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
- Medical Doctor Program, College of Health Sciences, VinUniversity, Hanoi 12406, Vietnam
| | - Tuyet Thi Nguyen
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
- Internal Medicine Residency Program, College of Health Sciences, VinUniversity, Hanoi 12406, Vietnam
- Correspondence: (T.T.N.); (K.-S.P.); Tel.: +84-247-108-9779 (T.T.N.); +82-33-741-0294 (K.-S.P.)
| | - Kyu-Sang Park
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
- Correspondence: (T.T.N.); (K.-S.P.); Tel.: +84-247-108-9779 (T.T.N.); +82-33-741-0294 (K.-S.P.)
| |
Collapse
|
17
|
Kulesza T, Typiak M, Rachubik P, Audzeyenka I, Rogacka D, Angielski S, Saleem MA, Piwkowska A. Hyperglycemic environment disrupts phosphate transporter function and promotes calcification processes in podocytes and isolated glomeruli. J Cell Physiol 2022; 237:2478-2491. [PMID: 35150131 DOI: 10.1002/jcp.30700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 11/10/2022]
Abstract
Soft tissue calcification is a pathological phenomenon that often occurs in end-stage chronic kidney disease (CKD), which is caused by diabetic nephropathy, among other factors. Hyperphosphatemia present during course of CKD contributes to impairments in kidney function, particularly damages in the glomerular filtration barrier (GFB). Essential elements of the GFB include glomerular epithelial cells, called podocytes. In the present study, we found that human immortalized podocytes express messenger RNA and protein of phosphate transporters, including NaPi 2c (SLC34A3), Pit 1 (SLC20A1), and Pit 2 (SLC20A2), which are sodium-dependent and mediate intracellular phosphate (Pi) transport, and XPR1, which is responsible for extracellular Pi transport. We found that cells that were grown in a medium with a high glucose (HG) concentration (30 mM) expressed less Pit 1 and Pit 2 protein than podocytes that were cultured in a standard glucose medium (11 mM). We found that exposure of the analyzed transporters in the cell membrane of the podocyte is altered by HG conditions. We also found that the activity of tissue nonspecific alkaline phosphatase increased in HG, causing a rise in Pi generation. Additionally, HG led to a reduction of the amount of ectonucleotide pyrophosphatase/phosphodiesterase 1 in the cell membrane of podocytes. The extracellular concentration of pyrophosphate also decreased under HG conditions. These data suggest that a hyperglycemic environment enhances the production of Pi in podocytes and its retention in the extracellular space, which may induce glomerular calcification.
Collapse
Affiliation(s)
- Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.,Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.,Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.,Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | | | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.,Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
18
|
Hu MC, Moe OW. Phosphate and Cellular Senescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:55-72. [PMID: 35288873 PMCID: PMC10513121 DOI: 10.1007/978-3-030-91623-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cellular senescence is one type of permeant arrest of cell growth and one of increasingly recognized contributor to aging and age-associated disease. High phosphate and low Klotho individually and synergistically lead to age-related degeneration in multiple organs. Substantial evidence supports the causality of high phosphate in cellular senescence, and potential contribution to human aging, cancer, cardiovascular, kidney, neurodegenerative, and musculoskeletal diseases. Phosphate can induce cellular senescence both by direct phosphotoxicity, and indirectly through downregulation of Klotho and upregulation of plasminogen activator inhibitor-1. Restriction of dietary phosphate intake and blockage of intestinal absorption of phosphate help suppress cellular senescence. Supplementation of Klotho protein, cellular senescence inhibitor, and removal of senescent cells with senolytic agents are potential novel strategies to attenuate phosphate-induced cellular senescence, retard aging, and ameliorate age-associated, and phosphate-induced disorders.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
Leifheit-Nestler M, Vogt I, Haffner D, Richter B. Phosphate Is a Cardiovascular Toxin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:107-134. [DOI: 10.1007/978-3-030-91623-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Gutiérrez OM. Recent Advances in the Role of Diet in Bone and Mineral Disorders in Chronic Kidney Disease. Curr Osteoporos Rep 2021; 19:574-579. [PMID: 34729692 PMCID: PMC8720074 DOI: 10.1007/s11914-021-00710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW Chronic kidney disease mineral and bone disease (CKD-MBD) is a common complication of kidney disease and is strongly influenced by diet. The purpose of this manuscript is to review recent advances in the role of diet in CKD-MBD over the last 5 years. RECENT FINDINGS Many of the recent studies examining the role of diet in CKD-MBD have focused on the adverse effects of high phosphorus consumption on bone health and metabolism. In general, the studies have shown that high phosphorus consumption worsens markers of bone and mineral metabolism but that eating a diet with a calcium to phosphorus ratio closer to 1:1 can attenuate some of these effects. Recent studies also showed that dietary counseling is efficacious for improving markers of CKD-MBD. High consumption of phosphorus aggravates CKD-MBD. Dietary counseling may ameliorate these effects, for example, by consuming diets with higher calcium to phosphorus ratios.
Collapse
Affiliation(s)
- Orlando M Gutiérrez
- Division of Nephrology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, THT 647, 1720 2nd AVE S, Birmingham, AL, 35294-0006, USA.
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, THT 647, 1720 2nd AVE S, Birmingham, AL, 35294-0006, USA.
| |
Collapse
|
21
|
Lanzer P, Hannan FM, Lanzer JD, Janzen J, Raggi P, Furniss D, Schuchardt M, Thakker R, Fok PW, Saez-Rodriguez J, Millan A, Sato Y, Ferraresi R, Virmani R, St Hilaire C. Medial Arterial Calcification: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 78:1145-1165. [PMID: 34503684 PMCID: PMC8439554 DOI: 10.1016/j.jacc.2021.06.049] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 01/07/2023]
Abstract
Medial arterial calcification (MAC) is a chronic systemic vascular disorder distinct from atherosclerosis that is frequently but not always associated with diabetes mellitus, chronic kidney disease, and aging. MAC is also a part of more complex phenotypes in numerous less common diseases. The hallmarks of MAC include disseminated and progressive precipitation of calcium phosphate within the medial layer, a prolonged and clinically silent course, and compromise of hemodynamics associated with chronic limb-threatening ischemia. MAC increases the risk of complications during vascular interventions and mitigates their outcomes. With the exception of rare monogenetic defects affecting adenosine triphosphate metabolism, MAC pathogenesis remains unknown, and causal therapy is not available. Implementation of genetics and omics-based approaches in research recognizing the critical importance of calcium phosphate thermodynamics holds promise to unravel MAC molecular pathogenesis and to provide guidance for therapy. The current state of knowledge concerning MAC is reviewed, and future perspectives are outlined.
Collapse
Affiliation(s)
- Peter Lanzer
- Middle German Heart Center-Bitterfeld, Bitterfeld-Wolfen Health Care Center, Bitterfeld, Germany.
| | - Fadil M Hannan
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Jan D Lanzer
- Institute for Computational Biomedicine, Bioquant, Faculty of Medicine, Heidelberg University, Heidelberg, Germany; Department of Internal Medicine II, Heidelberg University Hospital, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Heidelberg, Germany
| | | | - Paolo Raggi
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dominic Furniss
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Mirjam Schuchardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Rajesh Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Pak-Wing Fok
- Department of Mathematical Sciences, University of Delaware, Newark, Delaware, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Angel Millan
- Institute of Materials Science, University of Zaragoza, Zaragoza, Spain
| | - Yu Sato
- CVPath Institute, Gaithersburg, Maryland, USA
| | | | | | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Li M, Zhu Y, Jaiswal SK, Liu NF. Mitochondria Homeostasis and Vascular Medial Calcification. Calcif Tissue Int 2021; 109:113-120. [PMID: 33660037 DOI: 10.1007/s00223-021-00828-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/18/2021] [Indexed: 12/25/2022]
Abstract
Vascular calcification occurs highly prevalent, which commonly predicts adverse cardiovascular events. The pathogenesis of calcification, a complicated and multifactorial process, is incompletely characterized. Accumulating evidence shows that mitochondrial dysfunction may ultimately be more detrimental in the vascular smooth muscle cells (VSMCs) calcification. This review summarizes the role of mitochondrial dysfunction and metabolic reprogramming in vascular calcification, and indicates that metabolic regulation may be a therapeutic target in vascular calcification.
Collapse
Affiliation(s)
- Min Li
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yi Zhu
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Sandip Kumar Jaiswal
- Department of Neurology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Nai-Feng Liu
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
23
|
Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 2021; 135:201-227. [PMID: 33416083 PMCID: PMC7796315 DOI: 10.1042/cs20190895] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.
Collapse
|
24
|
Chronic Kidney Disease-Induced Arterial Media Calcification in Rats Prevented by Tissue Non-Specific Alkaline Phosphatase Substrate Supplementation Rather Than Inhibition of the Enzyme. Pharmaceutics 2021; 13:pharmaceutics13081138. [PMID: 34452102 PMCID: PMC8399849 DOI: 10.3390/pharmaceutics13081138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022] Open
Abstract
Patients with chronic kidney disease (CKD) suffer from arterial media calcification and a disturbed bone metabolism. Tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes the calcification inhibitor pyrophosphate (PPi) into inorganic phosphate (Pi) and thereby stimulates arterial media calcification as well as physiological bone mineralization. This study investigates whether the TNAP inhibitor SBI-425, PPi or the combination of both inhibit arterial media calcification in an 0.75% adenine rat model of CKD. Treatments started with the induction of CKD, including (i) rats with normal renal function (control diet) treated with vehicle and CKD rats treated with either (ii) vehicle, (iii) 10 mg/kg/day SBI-425, (iv) 120 µmol/kg/day PPi and (v) 120 µmol/kg/day PPi and 10 mg/kg/day SBI-425. All CKD groups developed a stable chronic renal failure reflected by hyperphosphatemia, hypocalcemia and high serum creatinine levels. CKD induced arterial media calcification and bone metabolic defects. All treatments, except for SBI-425 alone, blocked CKD-related arterial media calcification. More important, SBI-425 alone and in combination with PPi increased osteoid area pointing to a less efficient bone mineralization. Clearly, potential side effects on bone mineralization will need to be assessed in any clinical trial aimed at modifying the Pi/PPi ratio in CKD patients who already suffer from a compromised bone status.
Collapse
|
25
|
Dube P, DeRiso A, Patel M, Battepati D, Khatib-Shahidi B, Sharma H, Gupta R, Malhotra D, Dworkin L, Haller S, Kennedy D. Vascular Calcification in Chronic Kidney Disease: Diversity in the Vessel Wall. Biomedicines 2021; 9:biomedicines9040404. [PMID: 33917965 PMCID: PMC8068383 DOI: 10.3390/biomedicines9040404] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
Vascular calcification (VC) is one of the major causes of cardiovascular morbidity and mortality in patients with chronic kidney disease (CKD). VC is a complex process expressing similarity to bone metabolism in onset and progression. VC in CKD is promoted by various factors not limited to hyperphosphatemia, Ca/Pi imbalance, uremic toxins, chronic inflammation, oxidative stress, and activation of multiple signaling pathways in different cell types, including vascular smooth muscle cells (VSMCs), macrophages, and endothelial cells. In the current review, we provide an in-depth analysis of the various kinds of VC, the clinical significance and available therapies, significant contributions from multiple cell types, and the associated cellular and molecular mechanisms for the VC process in the setting of CKD. Thus, we seek to highlight the key factors and cell types driving the pathology of VC in CKD in order to assist in the identification of preventative, diagnostic, and therapeutic strategies for patients burdened with this disease.
Collapse
|
26
|
Carrillo-López N, Martínez-Arias L, Fernández-Villabrille S, Ruiz-Torres MP, Dusso A, Cannata-Andía JB, Naves-Díaz M, Panizo S. Role of the RANK/RANKL/OPG and Wnt/β-Catenin Systems in CKD Bone and Cardiovascular Disorders. Calcif Tissue Int 2021; 108:439-451. [PMID: 33586001 DOI: 10.1007/s00223-020-00803-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/19/2020] [Indexed: 12/23/2022]
Abstract
In the course of chronic kidney disease (CKD), alterations in the bone-vascular axis augment the risk of bone loss, fractures, vascular and soft tissue calcification, left ventricular hypertrophy, renal and myocardial fibrosis, which markedly increase morbidity and mortality rates. A major challenge to improve skeletal and cardiovascular outcomes in CKD patients requires a better understanding of the increasing complex interactions among the main modulators of the bone-vascular axis. Serum parathyroid hormone (PTH), phosphorus (P), calcium (Ca), fibroblast growth factor 23 (FGF23), calcidiol, calcitriol and Klotho are involved in this axis interact with RANK/RANKL/OPG system and the Wnt/β-catenin pathway. The RANK/RANKL/OPG system controls bone remodeling by inducing osteoblast synthesis of RANKL and downregulating OPG production and it is also implicated in vascular calcification. The complexity of this system has recently increased due the discovery of LGR4, a novel RANKL receptor involved in bone formation, but possibly also in vascular calcification. The Wnt/β-catenin pathway plays a key role in bone formation: when this pathway is activated, bone is formed, but when it is inhibited, bone formation is stopped. In the progression of CKD, a downregulation of the Wnt/β-catenin pathway has been described which occurs mainly through the not coincident elevations of sclerostin, Dickkopf1 (Dkk1) and the secreted Frizzled Related Proteins (sFRPs). This review analyzes the interactions of PTH, P, Ca, FGF23, calcidiol, calcitriol and Klotho with the RANKL/RANKL/OPG system and the Wnt/β-catenin, pathway and their implications in bone and cardiovascular disorders in CKD.
Collapse
Affiliation(s)
- Natalia Carrillo-López
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Sara Fernández-Villabrille
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - María Piedad Ruiz-Torres
- Department of System Biology, Universidad de Alcalá, Retic REDinREN-ISCIII, Alcalá de Henares, Spain
| | - Adriana Dusso
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Jorge B Cannata-Andía
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain.
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Sara Panizo
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain.
| | | |
Collapse
|
27
|
Kulesza T, Piwkowska A. The impact of type III sodium-dependent phosphate transporters (Pit 1 and Pit 2) on podocyte and kidney function. J Cell Physiol 2021; 236:7176-7185. [PMID: 33738792 DOI: 10.1002/jcp.30368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 01/07/2023]
Abstract
The sodium-dependent phosphate transporters Pit 1 and Pit 2 belong to the solute carrier 20 (SLC20) family of membrane proteins. They are ubiquitously distributed in the human body. Their crucial function is the intracellular transport of inorganic phosphate (Pi) in the form of H2 PO4 - . They are one of the main elements in maintaining physiological phosphate homeostasis. Recent data have emerged that indicate novel roles of Pit 1 and Pit 2 proteins besides the well-known function of Pi transporters. These membrane proteins are believed to be precise phosphate sensors that mediate Pi-dependent intracellular signaling. They are also involved in insulin signaling and influence cellular insulin sensitivity. In diseases that are associated with hyperphosphatemia, such as diabetes and chronic kidney disease (CKD), disturbances in the function of Pit 1 and Pit 2 are observed. Phosphate transporters from the SLC20 family participate in the calcification of soft tissues, mainly blood vessels, during the course of CKD. The glomerulus and podocytes therein can also be a target of pathological calcification that damages these structures. A few studies have demonstrated the development of Pi-dependent podocyte injury that is mediated by Pit 1 and Pit 2. This paper discusses the role of Pit 1 and Pit 2 proteins in podocyte function, mainly in the context of the development of pathological calcification that disrupts permeability of the renal filtration barrier. We also describe the mechanisms that may contribute to podocyte damage by Pit 1 and Pit 2.
Collapse
Affiliation(s)
- Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| |
Collapse
|
28
|
Lu F, Kang ZL, Wei LP, Li YP. Effect of sodium bicarbonate on gel properties and protein conformation of phosphorus-free chicken meat batters. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Zhang Q, He Z, Liu Z, Gong L. Integrated plasma and liver gas chromatography mass spectrometry and liquid chromatography mass spectrometry metabolomics to reveal physiological functions of sodium taurocholate cotransporting polypeptide (NTCP) with an Ntcp knockout mouse model. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1165:122531. [DOI: 10.1016/j.jchromb.2021.122531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/10/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
|
30
|
Abstract
Phosphorus plays a vital role in diverse biological processes including intracellular signaling, membrane integrity, and skeletal biomineralization; therefore, the regulation of phosphorus homeostasis is essential to the well-being of the organism. Cells and whole organisms respond to changes in inorganic phosphorus (Pi) concentrations in their environment by adjusting Pi uptake and altering biochemical processes in cells (local effects) and distant organs (endocrine effects). Unicellular organisms, such as bacteria and yeast, express specific Pi-binding proteins on the plasma membrane that respond to changes in ambient Pi availability and transduce intracellular signals that regulate the expression of genes involved in cellular Pi uptake. Multicellular organisms, including humans, respond at a cellular level to adapt to changes in extracellular Pi concentrations and also have endocrine pathways which integrate signals from various organs (e.g., intestine, kidneys, parathyroid glands, bone) to regulate serum Pi concentrations and whole-body phosphorus balance. In mammals, alterations in the concentrations of extracellular Pi modulate type III sodium-phosphate cotransporter activity on the plasma membrane, and trigger changes in cellular function. In addition, elevated extracellular Pi induces activation of fibroblast growth factor receptor, Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) and Akt pathways, which modulate gene expression in various mammalian cell types. Excessive Pi exposure, especially in patients with chronic kidney disease, leads to endothelial dysfunction, accelerated vascular calcification, and impaired insulin secretion.
Collapse
Affiliation(s)
- Kittrawee Kritmetapak
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Division of Nephrology and Hypertension, Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55902, USA
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55902, USA.
- Nephrology Research, Medical Sciences 1-120, 200 First Street Southwest, Rochester, MN, 55902, USA.
| |
Collapse
|
31
|
Hildebrand S, Cunningham J. Is there a role for bisphosphonates in vascular calcification in chronic kidney disease? Bone 2021; 142:115751. [PMID: 33188959 DOI: 10.1016/j.bone.2020.115751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023]
Abstract
Theoretically bisphosphonates could accelerate or retard vascular calcification. In subjects with low GFR, the position is further confounded by a combination of uncertain pharmacokinetics (GI absorption is poor and inconsistent at all levels of renal function and the effect of low GFR generally is to increase bioavailability) and a highly variable skeletal substrate with extremes of turnover that increase unpredictably further. Although bisphosphonates reduce bone formation by 70-90% in subjects with normal GFR and reduce the ability of bone to buffer exogenous calcium fluxes, in bisphosphonate treated postmenopausal women accelerated vascular calcification has not been documented. The kidneys assist with this buffering, but the capacity to modulate calcium excretion declines as GFR falls, increasing the risk of hypercalcaemia in the event of high calcium influx. In the ESRD patient, decreased buffering capacity substantially increases the risk of transient hypercalcaemia, especially in the setting of dialysis, and as such may promote vascular calcification which is highly prevalent in the CKD population. Low bone turnover may thus be less of a vascular problem in patients with preserved renal function and a bigger problem when the GFR is low. In patients with stage 4 and 5 CKD, adynamic bone disease associates with the severity and progression of arterial calcification, including coronary artery calcification, and further suppression of bone turnover by a bisphosphonate might exacerbate an already high predisposition to vascular calcification. No convincing signal of harm has emerged from clinical studies thus far. For example 51 individuals with CKD stage 3-4 treated with either alendronate 70 mg per week or placebo for 18 months showed no difference in the rate of vascular calcifications. Conversely an observational study of women with stage 3-4 CKD with pre-existing cardiovascular disease found an increased risk of mortality with a hazard ratio of 1.22 (1.04-1.42) in those given bisphosphonates. Direct suppression of vascular calcification by bisphosphonates is probably confined to etidronate - treatment of soft tissue calcification was a recognized indication for this drug and etidronate markedly reduced progression of vascular calcification in CKD patients. Bisphosphonates are analogues of pyrophosphate, a potent calcification inhibitor in bone and soft tissue. Thus the efficacy of etidronate as treatment for soft tissue calcification brought with it a problematic tendency to cause osteomalacia. In contrast, conventional doses of nitrogen-containing bisphosphonates fail to yield circulating concentrations sufficient to exert direct anti-calcifying effects, at least in patients with good renal function and studies using alendronate and ibandronate have yielded inconsistent vascular outcomes.
Collapse
Affiliation(s)
- S Hildebrand
- Centre for Nephrology, Royal Free Hospital, London, UK.
| | - J Cunningham
- Centre for Nephrology, Royal Free Hospital, London, UK
| |
Collapse
|
32
|
Maique J, Flores B, Shi M, Shepard S, Zhou Z, Yan S, Moe OW, Hu MC. High Phosphate Induces and Klotho Attenuates Kidney Epithelial Senescence and Fibrosis. Front Pharmacol 2020; 11:1273. [PMID: 32973510 PMCID: PMC7468469 DOI: 10.3389/fphar.2020.01273] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence is an irreversible cell growth arrest and is associated with aging and age-related diseases. High plasma phosphate (Pi) and deficiency of Klotho contribute to aging and kidney fibrosis, a pathological feature in the aging kidney and chronic kidney disease. This study examined the interactive role of Pi and Klotho in kidney senescence and fibrosis. Homozygous Klotho hypomorphic mice had high plasma Pi, undetectable Klotho in plasma and kidney, high senescence with massive collagen accumulation in kidney tubules, and fibrin deposits in peritubular capillaries. To examine the Pi effect on kidney senescence, a high (2%) Pi diet was given to wild-type mice. One week of high dietary Pi mildly increased plasma Pi, and upregulated kidney p16/p21 expression, but did not significantly decrease Klotho. Two weeks of high Pi intake led to increase in plasminogen activator inhibitor (PAI)-1, and decrease in kidney Klotho, but still without detectable increase in kidney fibrosis. More prolonged dietary Pi for 12 weeks exacerbated kidney senescence and fibrosis; more so in heterozygous Klotho hypomorphic mice compared to wild-type mice, and in mice with chronic kidney disease (CKD) on high Pi diet compared to CKD mice fed a normal Pi diet. In cultured kidney tubular cells, high Pi directly induced cellular senescence, injury and epithelial-mesenchymal transition, and enhanced H2O2-induced cellular senescence and injury, which were abrogated by Klotho. Fucoidan, a bioactive molecule with multiple biologic functions including senescence inhibition, blunted Pi-induced cellular senescence, oxidation, injury, epithelial-mesenchymal transition, and senescence-associated secretary phenotype. In conclusion, high Pi activates senescence through distinct but interconnected mechanisms: upregulating p16/p21 (early), and elevating plasminogen activator inhibitor-1 and downregulating Klotho (late). Klotho may be a promising agent to attenuate senescence and ameliorate age-associated, and Pi-induced kidney degeneration such as kidney fibrosis.
Collapse
Affiliation(s)
- Jenny Maique
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Brianna Flores
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sierra Shepard
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Zhiyong Zhou
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shirely Yan
- Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
33
|
Tsai JY, Chu CH, Lin MG, Chou YH, Hong RY, Yen CY, Hsiao CD, Sun YJ. Structure of the sodium-dependent phosphate transporter reveals insights into human solute carrier SLC20. SCIENCE ADVANCES 2020; 6:eabb4024. [PMID: 32821837 PMCID: PMC7413737 DOI: 10.1126/sciadv.abb4024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/26/2020] [Indexed: 05/14/2023]
Abstract
Inorganic phosphate (Pi) is a fundamental and essential element for nucleotide biosynthesis, energy supply, and cellular signaling in living organisms. Human phosphate transporter (hPiT) dysfunction causes numerous diseases, but the molecular mechanism underlying transporters remains elusive. We report the structure of the sodium-dependent phosphate transporter from Thermotoga maritima (TmPiT) in complex with sodium and phosphate (TmPiT-Na/Pi) at 2.3-angstrom resolution. We reveal that one phosphate and two sodium ions (Pi-2Na) are located at the core of TmPiT and that the third sodium ion (Nafore) is located near the inner membrane boundary. We propose an elevator-like mechanism for sodium and phosphate transport by TmPiT, with the TmPiT-Na/Pi complex adopting an inward occluded conformation. We found that disease-related hPiT variants carry mutations in the corresponding sodium- and phosphate-binding residues identified in TmPiT. Our three-dimensional structure of TmPiT provides a framework for understanding PiT dysfunction and for future structure-based drug design.
Collapse
Affiliation(s)
- Jia-Yin Tsai
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.)
| | - Chen-Hsi Chu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.)
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan (R.O.C.)
| | - Ying-Hsuan Chou
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.)
| | - Ruei-Yi Hong
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.)
| | - Cheng-Yi Yen
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.)
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan (R.O.C.)
- Corresponding author. (C.-D.H.); (Y.-J.S.)
| | - Yuh-Ju Sun
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.)
- Corresponding author. (C.-D.H.); (Y.-J.S.)
| |
Collapse
|
34
|
X-ray Micro-Computed Tomography: An Emerging Technology to Analyze Vascular Calcification in Animal Models. Int J Mol Sci 2020; 21:ijms21124538. [PMID: 32630604 PMCID: PMC7352990 DOI: 10.3390/ijms21124538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification describes the formation of mineralized tissue within the blood vessel wall, and it is highly associated with increased cardiovascular morbidity and mortality in patients with chronic kidney disease, diabetes, and atherosclerosis. In this article, we briefly review different rodent models used to study vascular calcification in vivo, and critically assess the strengths and weaknesses of the current techniques used to analyze and quantify calcification in these models, namely 2-D histology and the o-cresolphthalein assay. In light of this, we examine X-ray micro-computed tomography (µCT) as an emerging complementary tool for the analysis of vascular calcification in animal models. We demonstrate that this non-destructive technique allows us to simultaneously quantify and localize calcification in an intact vessel in 3-D, and we consider recent advances in µCT sample preparation techniques. This review also discusses the potential to combine 3-D µCT analyses with subsequent 2-D histological, immunohistochemical, and proteomic approaches in correlative microscopy workflows to obtain rich, multifaceted information on calcification volume, calcification load, and signaling mechanisms from within the same arterial segment. In conclusion we briefly discuss the potential use of µCT to visualize and measure vascular calcification in vivo in real-time.
Collapse
|
35
|
Zununi Vahed S, Mostafavi S, Hosseiniyan Khatibi SM, Shoja MM, Ardalan M. Vascular Calcification: An Important Understanding in Nephrology. Vasc Health Risk Manag 2020; 16:167-180. [PMID: 32494148 PMCID: PMC7229867 DOI: 10.2147/vhrm.s242685] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular calcification (VC) is a life-threatening state in chronic kidney disease (CKD). High cardiovascular mortality and morbidity of CKD cases may root from medial VC promoted by hyperphosphatemia. Vascular calcification is an active, highly regulated, and complex biological process that is mediated by genetics, epigenetics, dysregulated form of matrix mineral metabolism, hormones, and the activation of cellular signaling pathways. Moreover, gut microbiome as a source of uremic toxins (eg, phosphate, advanced glycation end products and indoxyl-sulfate) can be regarded as a potential contributor to VC in CKD. Here, an update on different cellular and molecular processes involved in VC in CKD is discussed to elucidate the probable therapeutic pathways in the future.
Collapse
Affiliation(s)
| | - Soroush Mostafavi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammadali M Shoja
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | | |
Collapse
|
36
|
Dong Q, Chen Y, Liu W, Liu X, Chen A, Yang X, Li Y, Wang S, Fu M, Ou JS, Lu L, Yan J. 25-Hydroxycholesterol promotes vascular calcification via activation of endoplasmic reticulum stress. Eur J Pharmacol 2020; 880:173165. [PMID: 32423869 DOI: 10.1016/j.ejphar.2020.173165] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Vascular calcification is a highly regulated process similar to osteogenesis involving phenotypic change of vascular smooth muscle cells (VSMCs). 25-Hydroxycholesterol (25-HC), one of oxysterols synthesized by the enzyme cholesterol 25-hydroxylase, has been shown to promote bovine calcifying vascular cells (CVC) calcification. However, whether and how 25-HC regulates vascular calcification are not completely understood. In this study, in vitro and ex vivo models of vascular calcification were used to determine whether 25-HC regulates vascular calcification. Alizarin red staining and calcium content assay showed that 25-HC treatment promoted calcification of rat and human VSMCs in a dose-dependent manner. Similarly, ex vivo study further confirmed that 25-HC accelerated calcification of rat aortic rings. In addition, western blot analysis showed that 25-HC significantly up-regulated the expression of endoplasmic reticulum stress (ERS) signaling molecules including ATF4 and CHOP in VSMCs and flow cytometry analysis revealed that 25-HC increased apoptosis of VSMCs. Moreover, knockdown of CHOP by siRNA blocked 25-HC-induced mineral deposition in VSMCs. Collectively, this study for the first time demonstrates that 25-HC promotes vascular calcification via ATF4/CHOP signaling using in vitro and ex vivo models, suggesting that ERS is involved in the regulation of 25-HC-induced vascular calcification.
Collapse
MESH Headings
- Activating Transcription Factor 4/metabolism
- Animals
- Aorta, Thoracic/cytology
- Apoptosis/drug effects
- Calcium/metabolism
- Cells, Cultured
- Endoplasmic Reticulum Stress/drug effects
- Humans
- Hydroxycholesterols/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- RNA, Small Interfering/genetics
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Transcription Factor CHOP/genetics
- Vascular Calcification/chemically induced
- Vascular Calcification/metabolism
Collapse
Affiliation(s)
- Qianqian Dong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Yanting Chen
- Department of Pathophysiolgy, Zhongshan School of Medicine, Sun Yat-Sen University, China
| | - Wantao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Xiaoyu Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Xiulin Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Siyi Wang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Mingwei Fu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-Sen University, China
| | - Lihe Lu
- Department of Pathophysiolgy, Zhongshan School of Medicine, Sun Yat-Sen University, China.
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China.
| |
Collapse
|
37
|
Magnesium and calciprotein particles in vascular calcification: the good cop and the bad cop. Curr Opin Nephrol Hypertens 2020; 28:368-374. [PMID: 31045659 DOI: 10.1097/mnh.0000000000000509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Vascular calcification is a major contributor to increased cardiovascular mortality in chronic kidney disease (CKD). Recently, calciprotein particles (CPP) were identified to drive the calcification process. CPP may explain the effects of high phosphate on vascular calcification. Magnesium is a promising novel therapeutic approach to halt vascular calcification, because it inhibits CPP maturation and is associated with reduced cardiovascular mortality in CKD. We aim to examine the current evidence for the role of CPP in the calcification process and to explain how magnesium prevents calcification. RECENT FINDINGS A recent meta-analysis concluded that reducing high phosphate levels in CKD patients does not associate with lowering cardiovascular mortality. Inhibition of CPP formation prevents phosphate-induced calcification in vitro. Consequently, delaying CPP formation and maturation may be a clinical approach to reduce calcification. Magnesium inhibits CPP maturation and vascular calcification. Clinical pilot studies suggest that magnesium is a promising intervention strategy against calcification in CKD patients. SUMMARY CPP induce vascular calcification and are modulated by serum phosphate and magnesium concentrations. Magnesium is a strong inhibitor of CPP maturation and therefore, a promising therapeutic approach to reduce vascular calcification in CKD. Currently, several studies are being performed to determine the clinical outcomes of magnesium supplementation in CKD.
Collapse
|
38
|
Vogt I, Haffner D, Leifheit-Nestler M. FGF23 and Phosphate-Cardiovascular Toxins in CKD. Toxins (Basel) 2019; 11:E647. [PMID: 31698866 PMCID: PMC6891626 DOI: 10.3390/toxins11110647] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Elevated levels of fibroblast growth factor 23 (FGF23) and phosphate are highly associated with increased cardiovascular disease and mortality in patients suffering from chronic kidney disease (CKD). As the kidney function declines, serum phosphate levels rise and subsequently induce the secretion of the phosphaturic hormone FGF23. In early stages of CKD, FGF23 prevents the increase of serum phosphate levels and thereby attenuates phosphate-induced vascular calcification, whereas in end-stage kidney disease, FGF23 fails to maintain phosphate homeostasis. Both hyperphosphatemia and elevated FGF23 levels promote the development of hypertension, vascular calcification, and left ventricular hypertrophy by distinct mechanisms. Therefore, FGF23 and phosphate are considered promising therapeutic targets to improve the cardiovascular outcome in CKD patients. Previous therapeutic strategies are based on dietary and pharmacological reduction of serum phosphate, and consequently FGF23 levels. However, clinical trials proving the effects on the cardiovascular outcome are lacking. Recent publications provide evidence for new promising therapeutic interventions, such as magnesium supplementation and direct targeting of phosphate and FGF receptors to prevent toxicity of FGF23 and hyperphosphatemia in CKD patients.
Collapse
Affiliation(s)
| | | | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases Hannover Medical School, 30625 Hannover, Germany; (I.V.); (D.H.)
| |
Collapse
|
39
|
Liu H, Huang LH, Sun XY, Ouyang JM. High-phosphorus environment promotes calcification of A7R5 cells induced by hydroxyapatite nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110228. [PMID: 31761154 DOI: 10.1016/j.msec.2019.110228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
Abstract
This study simulated the high-phosphorus (Pi) environment in patients with chronic kidney disease. Nano-hydroxyapatite (HAP) crystals were used to damage rat aortic smooth muscle cells (A7R5) pre-damaged with different concentrations of Pi solution to compare the differences in HAP-induced calcification in A7R5 cells before and after injury by high-Pi condition. After the A7R5 cells were damaged by high-Pi environment, the following were observed. HAP resulted in declined cell viability and lysosomal integrity, release of lactate dehydrogenase, and increased reactive oxygen species production. The ability of high-Pi damaged cells to internalize HAP crystals declined; crystal adhesion and calcium deposition on the cell surface and alkaline phosphatase activities increased. Osteopontin expression and level of Runt-related transcription factor 2 were increased, and HAP-induced osteogenic transformation was enhanced. High-Pi condition promoted the adhesion of A7R5 cells to nano-HAP crystals and inhibited HAP endocytosis, increasing the risk of calcification.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Ling-Hong Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
40
|
Demer LL, Tintut Y. Interactive and Multifactorial Mechanisms of Calcific Vascular and Valvular Disease. Trends Endocrinol Metab 2019; 30:646-657. [PMID: 31279666 PMCID: PMC6708492 DOI: 10.1016/j.tem.2019.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Calcific vascular and valvular disease (CVVD) is widespread and has major health consequences. Although coronary artery calcification has long been associated with hyperlipidemia and increased mortality, recent evidence suggests that its progression is increased in association with cholesterol-lowering HMG-CoA reductase inhibitors ('statins') and long-term, high-intensity exercise. A nationwide trial showed no cardiovascular benefit of vitamin D supplements. Controversy remains as to whether calcium deposits in plaque promote or prevent plaque rupture. CVVD appears to occur through mechanisms similar to those of intramembranous, endochondral, and osteophytic skeletal bone formation. New evidence implicates autotaxin, endothelial-mesenchymal transformation, and microRNA and long non-coding RNA (lncRNA) as novel regulatory factors. New therapeutic options are being developed.
Collapse
Affiliation(s)
- Linda L Demer
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1679, USA; Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA 90095-1600, USA.
| | - Yin Tintut
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1679, USA; Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Orthopaedic Surgery, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to review the current literature related to the role of inorganic phosphate in the pathogenesis of hypertension. RECENT FINDINGS An increasing number of publications have revealed a detrimental role of inorganic phosphate, which is commonly used as a flavor enhancer or preservative in the processed food, in promoting hypertension in otherwise healthy individuals. Animal experimental data indicate that dietary phosphate excess engages multiple mechanisms that promote hypertension, including overactivation of the sympathetic nervous system, increased vascular stiffness, impaired endothelium-dependent vasodilation, as well as increased renal sodium absorption or renal injury. These effects may be explained by direct effects of high extracellular phosphate levels or increase in phosphaturic hormones such as fibroblast growth factor 23, or downregulation of klotho, a transmembrane protein expressed in multiple organs which possess antiaging property. SUMMARY Dietary phosphate, particularly inorganic phosphate, is an emerging risk factor for hypertension which is ubiquitous in the western diet. Large randomized clinical trials are needed to determine if lowering dietary phosphate content constitutes an effective nonpharmacologic intervention for prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Han-Kyul Kim
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Masaki Mizuno
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, TX
| | - Wanpen Vongpatanasin
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
- Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
42
|
Voelkl J, Lang F, Eckardt KU, Amann K, Kuro-O M, Pasch A, Pieske B, Alesutan I. Signaling pathways involved in vascular smooth muscle cell calcification during hyperphosphatemia. Cell Mol Life Sci 2019; 76:2077-2091. [PMID: 30887097 PMCID: PMC6502780 DOI: 10.1007/s00018-019-03054-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
Medial vascular calcification has emerged as a putative key factor contributing to the excessive cardiovascular mortality of patients with chronic kidney disease (CKD). Hyperphosphatemia is considered a decisive determinant of vascular calcification in CKD. A critical role in initiation and progression of vascular calcification during elevated phosphate conditions is attributed to vascular smooth muscle cells (VSMCs), which are able to change their phenotype into osteo-/chondroblasts-like cells. These transdifferentiated VSMCs actively promote calcification in the medial layer of the arteries by producing a local pro-calcifying environment as well as nidus sites for precipitation of calcium and phosphate and growth of calcium phosphate crystals. Elevated extracellular phosphate induces osteo-/chondrogenic transdifferentiation of VSMCs through complex intracellular signaling pathways, which are still incompletely understood. The present review addresses critical intracellular pathways controlling osteo-/chondrogenic transdifferentiation of VSMCs and, thus, vascular calcification during hyperphosphatemia. Elucidating these pathways holds a significant promise to open novel therapeutic opportunities counteracting the progression of vascular calcification in CKD.
Collapse
MESH Headings
- Animals
- Calcium Phosphates/chemistry
- Calcium Phosphates/metabolism
- Cell Transdifferentiation
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Gene Expression Regulation
- Humans
- Hyperphosphatemia/complications
- Hyperphosphatemia/genetics
- Hyperphosphatemia/metabolism
- Hyperphosphatemia/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Osteoblasts/metabolism
- Osteoblasts/pathology
- RANK Ligand/genetics
- RANK Ligand/metabolism
- Receptor Activator of Nuclear Factor-kappa B/genetics
- Receptor Activator of Nuclear Factor-kappa B/metabolism
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Vascular Calcification/complications
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany.
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany.
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Wilhelmstr. 56, 72076, Tübingen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany
| | - Kerstin Amann
- Department of Nephropathology, Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Makoto Kuro-O
- Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Andreas Pasch
- Calciscon AG, Aarbergstrasse 5, 2560, Nidau-Biel, Switzerland
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178, Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178, Berlin, Germany
| |
Collapse
|
43
|
Schlieper G. Impact of cellular phosphate handling on vascular calcification. Kidney Int 2019; 94:655-656. [PMID: 30243309 DOI: 10.1016/j.kint.2018.06.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
Cardiovascular calcification is still a major burden for patients with chronic kidney disease (CKD). The pathomechanism of vascular calcification is complex, involving numerous processes. In this issue, Yamada et al. describe a protective role of Pit-2 within this context by using PiT-2 heterozygous mice with CKD fed a high-phosphate diet. The mechanisms still need to be elucidated. Pit-2 could become a potential therapeutic target.
Collapse
Affiliation(s)
- Georg Schlieper
- Divisions of Nephrology and Immunology, Uniklinik RWTH Aachen, Aachen, Germany; Center for Nephrology, Hypertension, and Metabolic Diseases, Hannover, Germany.
| |
Collapse
|