1
|
Shaoqun T, Xi Y, Wei W, Yaru L, Shaoqing L, Zhen Q, Yanlin Y, Qian S, Zhongyuan X. Neutrophil extracellular traps-related genes contribute to sepsis-associated acute kidney injury. BMC Nephrol 2025; 26:235. [PMID: 40369453 PMCID: PMC12077042 DOI: 10.1186/s12882-025-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) and oxidative stress (OS) may be involved in sepsis-associated acute kidney injury (SA-AKI). The aim of this study was to identify potential regulators which modulate NETs and OS in SA-AKI, and to find potential therapeutic agents. METHODS AND MATERIALS SA-AKI-related datasets GSE255281 and GSE225192 were downloaded from Gene Expression Omnibus. Molecular subtypes associated with NETs were identified by unsupervised clustering. The OS-related genes were obtained by weighted gene co-expression network analysis. Differentially expressed genes were screened by "limma" package in R. Least absolute shrinkage and selection operator algorithm was applied to identify the hub genes. Additionally, the biological functions of the hub genes were analyzed with single sample gene set enrichment analysis. NetworkAnalyst database was searched to screen the drugs targeting the hub targets. qRT-PCR was used to analyze the expression of key genes in the peripheral blood mononuclear cells (PBMCs) of the patients with SA-AKI and healthy controls. HK-2 cells and human umbilical vein endothelial cells (HUVECs) were induced by lipopolysaccharide (LPS) to construct a SA-AKI model, and the effects of estradiol and (+)-JQ1 on HK-2 cells and HUVECs were evaluated by CCK-8 assays, flow cytometry and OS indices. RESULTS Based on NETs-related genes, SA-AKI samples could be divide into two subgroups, and the differentially expressed genes between two subgroups were associated with OS. In silico analyses identified 13 hub targets. The expression of ECT2 and CHRDL1 in PBMCs of SA-AKI patients was significantly lower than that in control group, and the expressions of PTAFR, CSF3 and FOS were significantly higher. Estradiol and (+)-JQ1, which targeted more of the hub targets with good binding affinity, could increase the viability of HK-2 cells and HUVECs induced by LPS and inhibit apoptosis and OS. CONCLUSION Formation of NETs, contributes to OS and pathogenesis of SA-AKI. Estradiol and (+)-JQ1, targeting multiple regulators in the formation of NETs, may be potential therapeutic agents for the treatment of SA-AKI. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Tang Shaoqun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Yu Xi
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Wang Wei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Luo Yaru
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Lei Shaoqing
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Qiu Zhen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Yang Yanlin
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Sun Qian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Xia Zhongyuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| |
Collapse
|
2
|
Pan X, Luo J, Zhu R, Peng J, Jin Y, Zhang L, Pei J. Transcriptomics-based identification of biomarkers associated with mast cell activation during ischemia-reperfusion injury in kidney transplantation. Transpl Immunol 2025; 90:102224. [PMID: 40147738 DOI: 10.1016/j.trim.2025.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) in kidney transplantation can delay graft function recovery and increase the risk of rejection. Mast cell activation releases various bioactive mediators that exacerbate renal IRI. Assessing mast cell activation may be crucial for managing IRI after kidney transplantation. METHODS We analyzed the dataset GSE43974 from the Gene Expression Omnibus (GEO) to evaluate immune cell infiltration during the IRI phase of kidney transplantation using the CIBERSORT algorithm. Weighted gene co-expression network analysis (WGCNA) was performed to identify genes most strongly correlated with mast cell activation. Hub genes were identified using protein-protein interaction (PPI) network analysis and machine learning algorithms. Model accuracy for identifying hub genes was assessed using receiver operating characteristic (ROC) curve calibration. Clinical utility was evaluated through decision curve analysis (DCA). Correlation analysis was conducted to explore associations between the selected hub genes and immune cell infiltration. Additionally, a hub gene-miRNA regulatory network was constructed. RESULTS Mast cell activation exhibited the most significant variation among graft-infiltrating immune cells during IRI. WGCNA identified 115 genes closely associated with mast cell activation, from which three hub genes-JUN, MYC, and ALDH2-were selected using a PPI network and machine learning approach. A diagnostic model based on these three genes demonstrated high accuracy, as validated by the Hosmer-Lemeshow test (P = 0.980) and an area under the ROC curve (AUC) of 1. DCA indicated that these hub genes had strong clinical decision-making relevance, while correlation analysis confirmed their associations with multiple immune cell types. Finally, a hub gene-miRNA network provided a theoretical framework for the regulatory mechanisms of the three genes. CONCLUSION JUN, MYC, and ALDH2 may serve as biomarkers of mast cell activation during IRI in kidney transplantation. Further studies are warranted to explore their potential in mitigating IRI.
Collapse
Affiliation(s)
- Xingyu Pan
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Jin Luo
- Department of Pediatric Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Rong Zhu
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Jinpu Peng
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yuhan Jin
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Li Zhang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China.
| | - Jun Pei
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| |
Collapse
|
3
|
Meng XM, Wang L, Nikolic-Paterson DJ, Lan HY. Innate immune cells in acute and chronic kidney disease. Nat Rev Nephrol 2025:10.1038/s41581-025-00958-x. [PMID: 40263532 DOI: 10.1038/s41581-025-00958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are inter-related clinical and pathophysiological disorders. Cells of the innate immune system, such as granulocytes and macrophages, can induce AKI through the secretion of pro-inflammatory mediators such as cytokines, chemokines and enzymes, and the release of extracellular traps. In addition, macrophages and dendritic cells can drive the progression of CKD through a wide range of pro-inflammatory and pro-fibrotic mechanisms, and by regulation of the adaptive immune response. However, innate immune cells can also promote kidney repair after acute injury. These actions highlight the multifaceted nature of the way by which innate immune cells respond to signals within the kidney microenvironment, including interaction with the complement and coagulation cascades, cells of the adaptive immune system, intrinsic renal cells and infiltrating mesenchymal cells. The factors and mechanisms that underpin the ability of innate immune cells to contribute to renal injury or repair and to drive the progression of CKD are of great interest for understanding disease processes and for developing new therapeutic approaches to limit AKI and the AKI-to-CKD transition.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre and Monash University Centre for Inflammatory Diseases, Melbourne, Victoria, Australia
| | - Hui-Yao Lan
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
- Departments of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong, and Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.
| |
Collapse
|
4
|
Tan J, Du J, Liu J, Zhao W, Liu Y. Prognostic effect of neutrophil percentage-to-albumin ratio (NPAR) on all-cause and cardiovascular mortality in diabetic kidney disease (DKD): NHANES 1999-2018. Diabetol Metab Syndr 2025; 17:105. [PMID: 40148888 PMCID: PMC11951754 DOI: 10.1186/s13098-025-01674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND This study aimed to evaluate the associations between neutrophil percentage-to-albumin ratio (NPAR) and both all-cause and cardiovascular mortality in diabetic kidney disease (DKD) patients. METHODS The data for this study were sourced from the National Health and Nutrition Examination Survey (NHANES) 1999-2018. Weighted logistic regression, Cox proportional hazards model, and Fine-Gray competing risk model were used to assess the association between NPAR and both all-cause and cardiovascular mortality in DKD patients. RESULTS A total of 2,699 participants were enrolled in this study. Cox regression analysis revealed that elevated NPAR levels were associated with a higher risk of all-cause mortality in all participants (HR: 2.17, 95%CI: 1.83-2.58). Meanwhile, a significant difference in cardiovascular mortality was observed in males (HR: 1.83, 95%CI: 1.42-2.38) but not in females. Finally, the adjusted Fine-Gray model identified NPAR as an independent predictor of cardiovascular mortality in males (SHR: 1.86 95%CI: 1.28-2.72) but not in females. CONCLUSIONS In a nationally representative sample of DKD participants in the US, a significant association was detected between elevated NPAR and increased all-cause and cardiovascular mortality. In addition, gender differences in the relationship between NPAR and both all-cause and cardiovascular mortality were also observed.
Collapse
Affiliation(s)
- Juntao Tan
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Jinglong Du
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Jiaxiu Liu
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Wenlong Zhao
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Yanbing Liu
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
de Souza S, Laumet S, Hua H, Inyang KE, Sim J, Folger JK, Moeser AJ, Laumet G. Mast cell-derived chymases are essential for the resolution of inflammatory pain in mice. Pain 2025:00006396-990000000-00843. [PMID: 40035664 DOI: 10.1097/j.pain.0000000000003565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/02/2024] [Indexed: 03/06/2025]
Abstract
ABSTRACT Immune cells play a critical role in the transition from acute to chronic pain. However, the role of mast cells in pain remains underinvestigated. Here, we demonstrated that the resolution of inflammatory pain is markedly delayed in mast cell-deficient mice. In response to complete Freund adjuvant, mast cell-deficient mice showed greater levels of nitric oxide, leukocyte infiltration, and altered cytokine/chemokine profile in inflamed skin in both sexes. In wild-type mice, the number of mast cell and mast cell-derived chymases, chymase 1 (CMA1) and mast cell protease 4 (MCPT4), increased in the inflamed skin. Inhibiting chymase enzymatic activity delayed the resolution of inflammatory pain. Consistently, local pharmacological administration of recombinant CMA1 and MCPT4 promoted the resolution of pain hypersensitivity and attenuated the upregulation of cytokines and chemokines under inflammation. We identified CCL9 as a target of MCPT4. Inhibition of CCL9 promoted recruitment of CD206+ myeloid cells and alleviated inflammatory pain. Our work reveals a new role of mast cell-derived chymases in preventing the transition from acute to chronic pain and suggests new therapeutic avenues for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Sabrina de Souza
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Sophie Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Hannah Hua
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Kufreobong E Inyang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Jaewon Sim
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Mi, United States
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
6
|
Lee K, Jang HR, Rabb H. Lymphocytes and innate immune cells in acute kidney injury and repair. Nat Rev Nephrol 2024; 20:789-805. [PMID: 39095505 DOI: 10.1038/s41581-024-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Acute kidney injury (AKI) is a common and serious disease entity that affects native kidneys and allografts but for which no specific treatments exist. Complex intrarenal inflammatory processes driven by lymphocytes and innate immune cells have key roles in the development and progression of AKI. Many studies have focused on prevention of early injury in AKI. However, most patients with AKI present after injury is already established. Increasing research is therefore focusing on mechanisms of renal repair following AKI and prevention of progression from AKI to chronic kidney disease. CD4+ and CD8+ T cells, B cells and neutrophils are probably involved in the development and progression of AKI, whereas regulatory T cells, double-negative T cells and type 2 innate lymphoid cells have protective roles. Several immune cells, such as macrophages and natural killer T cells, can have both deleterious and protective effects, depending on their subtype and/or the stage of AKI. The immune system not only participates in injury and repair processes during AKI but also has a role in mediating AKI-induced distant organ dysfunction. Targeted manipulation of immune cells is a promising therapeutic strategy to improve AKI outcomes.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hamid Rabb
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Yang Y, Gao Y, Liu Y, Tan G. Letter to Editor: 'The predictive role of hematological inflammatory markers on the prognosis of kidney injury'. Int J Surg 2024; 110:6014-6015. [PMID: 38814283 PMCID: PMC11392086 DOI: 10.1097/js9.0000000000001736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Yanfei Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University
| | - Yongquan Gao
- Department of Urinary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Yuhang Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University
| | - Guang Tan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University
| |
Collapse
|
8
|
de Souza S, Laumet S, Inyang KE, Hua H, Sim J, Folger JK, Moeser AJ, Laumet G. Mast cell-derived chymases are essential for the resolution of inflammatory pain in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606617. [PMID: 39211156 PMCID: PMC11361099 DOI: 10.1101/2024.08.05.606617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Immune cells play a critical role in the transition from acute to chronic pain. However, the role of mast cells in pain remains under-investigated. Here, we demonstrated that the resolution of inflammatory pain is markedly delayed in mast-cell-deficient mice. In response to Complete Freund Adjuvant (CFA), mast-cell-deficient mice showed greater levels of nitric oxide and altered cytokine/chemokine profile in inflamed skin in both sexes. In Wild-Type (WT) mice, the number of mast cell and mast cell-derived chymases; chymase 1 (CMA1) and mast cell protease 4 (MCPT4) increased in the inflamed skin. Inhibiting chymase enzymatic activity delayed the resolution of inflammatory pain. Consistently, local pharmacological administration of recombinant CMA1 and MCPT4 promoted the resolution of pain hypersensitivity and attenuated the upregulation of cytokines and chemokines under inflammation. We identified CCL9 as a target of MCPT4. Inhibition of CCL9 promoted recruitment of CD206 + myeloid cells and alleviated inflammatory pain. Our work reveals a new role of mast cell-derived chymases in preventing the transition from acute to chronic pain and suggests new therapeutic avenues for the treatment of inflammatory pain. Summary Mast cell-derived chymases play an unexpected role in the resolution of inflammatory pain and regulate the immune response. Graphical abstract
Collapse
|
9
|
Ruiz-Lara G, Costa-Silva TA, Muso-Cachumba JJ, Cevallos Espinel J, Fontes MG, Garcia-Maya M, Rahman KM, Rangel-Yagui CDO, Monteiro G. Nonclinical Evaluation of Single-Mutant E. coli Asparaginases Obtained by Double-Mutant Deconvolution: Improving Toxicological, Immune and Inflammatory Responses. Int J Mol Sci 2024; 25:6008. [PMID: 38892196 PMCID: PMC11172649 DOI: 10.3390/ijms25116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Acute lymphoblastic leukaemia is currently treated with bacterial L-asparaginase; however, its side effects raise the need for the development of improved and efficient novel enzymes. Previously, we obtained low anti-asparaginase antibody production and high serum enzyme half-life in mice treated with the P40S/S206C mutant; however, its specific activity was significantly reduced. Thus, our aim was to test single mutants, S206C and P40S, through in vitro and in vivo assays. Our results showed that the drop in specific activity was caused by P40S substitution. In addition, our single mutants were highly stable in biological environment simulation, unlike the double-mutant P40S/S206C. The in vitro cell viability assay demonstrated that mutant enzymes have a higher cytotoxic effect than WT on T-cell-derived ALL and on some solid cancer cell lines. The in vivo assays were performed in mice to identify toxicological effects, to evoke immunological responses and to study the enzymes' pharmacokinetics. From these tests, none of the enzymes was toxic; however, S206C elicited lower physiological changes and immune/allergenic responses. In relation to the pharmacokinetic profile, S206C exhibited twofold higher activity than WT and P40S two hours after injection. In conclusion, we present bioengineered E. coli asparaginases with high specific enzyme activity and fewer side effects.
Collapse
Affiliation(s)
- Grace Ruiz-Lara
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | - Tales A. Costa-Silva
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil;
| | - Jorge Javier Muso-Cachumba
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | | | - Marina Gabriel Fontes
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | - Mitla Garcia-Maya
- Randall Division of Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK;
| | | | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | - Gisele Monteiro
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| |
Collapse
|
10
|
Wang S, Hu D, Li YQ, Lei Q, Liu L, He X, Han M, Pei G, Zeng R, Xu G. High Renal Mast Cell Density Is Associated with Poor Prognosis in Patients with Immunoglobulin A Nephropathy. Am J Nephrol 2023; 54:106-116. [PMID: 37245508 PMCID: PMC10777718 DOI: 10.1159/000531243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023]
Abstract
INTRODUCTION This observational cohort study evaluated the prognostic value of mast cells in the pathogenesis and progression of IgA nephropathy. METHODS A total of 76 adult IgAN patients were enrolled into this study from Jan 2007 and June 2010. Immunohistochemistry and immunofluorescence were used to identify tryptase-positive mast cells in renal biopsy samples. Patients were classified into Tryptasehigh and Tryptaselow groups. Depending on an average of 96-month follow-up, the predictive value of tryptase-positive mast cells in IgAN progression was analyzed. RESULTS Tryptase-positive mast cells were found frequently in IgAN kidneys while rarely observed in normal kidneys. We also found IgAN patients in Tryptasehigh group presented both severe clinical and pathological renal manifestations. Furthermore, Tryptasehigh group contained more interstitial macrophages and lymphocytes infiltration than Tryptaselow group. Higher tryptase-positive cells density is associated with poor prognosis in patients with IgAN. CONCLUSIONS High renal mast cells density is associated with severe renal lesions and poor prognosis in patients with Immunoglobulin A nephropathy. High renal mast cells density might be used as a predictor of poor prognosis in patients with IgAN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Bernard JK, Marakovits C, Smith LG, Francis H. Mast Cell and Innate Immune Cell Communication in Cholestatic Liver Disease. Semin Liver Dis 2023; 43:226-233. [PMID: 37268012 DOI: 10.1055/a-2104-9034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mast cells (MCs) contribute to the pathogenesis of cholestatic liver diseases (primary sclerosing cholangitis [PSC] and primary biliary cholangitis [PBC]). PSC and PBC are immune-mediated, chronic inflammatory diseases, characterized by bile duct inflammation and stricturing, advancing to hepatobiliary cirrhosis. MCs are tissue resident immune cells that may promote hepatic injury, inflammation, and fibrosis formation by either direct or indirect interactions with other innate immune cells (neutrophils, macrophages/Kupffer cells, dendritic cells, natural killer, and innate lymphoid cells). The activation of these innate immune cells, usually through the degranulation of MCs, promotes antigen uptake and presentation to adaptive immune cells, exacerbating liver injury. In conclusion, dysregulation of MC-innate immune cell communications during liver injury and inflammation can lead to chronic liver injury and cancer.
Collapse
Grants
- IK6BX005226 Hickam Endowed Chair, Gastroenterology, Medicine, Indiana University, the Indiana University Health - Indiana University School of Medicine Strategic Research Initiative
- 1I01BX003031 Hickam Endowed Chair, Gastroenterology, Medicine, Indiana University, the Indiana University Health - Indiana University School of Medicine Strategic Research Initiative
- DK108959 United States Department of Veteran's Affairs, Biomedical Laboratory Research and Development Service
- DK119421 United States Department of Veteran's Affairs, Biomedical Laboratory Research and Development Service
Collapse
Affiliation(s)
- Jessica K Bernard
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Corinn Marakovits
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Leah G Smith
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
12
|
Zhou X, Hu Y, Liu L, Liu L, Chen H, Huang D, Ju M, Luan C, Chen K, Zhang J. IL-33-mediated activation of mast cells is involved in the progression of imiquimod-induced psoriasis-like dermatitis. Cell Commun Signal 2023; 21:52. [PMID: 36894987 PMCID: PMC9996901 DOI: 10.1186/s12964-023-01075-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/11/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory dermatosis with an unclear pathogenesis. Mast cells (MCs) can serve as a bridge between innate and adaptive immunity and are involved in the regulation of the inflammatory state and immune homeostasis in diseases. MCs constitutively express interleukin-33 receptor T1/ST2 (IL-33R). IL-33 is a potent MCs activator that is actively secreted by keratinocytes in psoriasis. However, the regulatory role of MCs in psoriasis remains uncertain. Therefore, we hypothesised that IL-33 could promote MC activation to regulate psoriasis development. METHODS We performed experiments on wild-type (WT) and MC-deficient (Kit Wsh/Wsh) mice, established psoriasis-like mouse models using imiquimod (IMQ), and performed RNA sequencing and transcriptomic analysis of skin lesions. Exogenous administration was performed using recombinant IL-33. Validation and evaluation were performed using PSI scoring, immunofluorescence, immunohistochemistry, and qPCR. RESULTS We observed an upregulation in the number and activation of MCs in patients with psoriasis and in IMQ-induced psoriasis-like dermatitis. Deficiency of MCs ameliorates IMQ-induced psoriatic dermatitis at an early stage. IL-33 is increased and co-localized with MCs in the dermis of psoriasis-like lesions using immunofluorescence. Compared to WT mice, IMQ-induced KitWsh/Wsh mice demonstrated a delayed response to exogenous IL-33. CONCLUSIONS MCs are activated by IL-33 in the early stages of psoriasis and exacerbate psoriasis-associated skin inflammation. The regulation of MC homeostasis may be a potential therapeutic strategy for psoriasis. Video Abstract.
Collapse
Affiliation(s)
- Xuyue Zhou
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Yu Hu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Lingxi Liu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Lihao Liu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Hongying Chen
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Dan Huang
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Mei Ju
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Chao Luan
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China.
| | - Kun Chen
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China.
| | - Jiaan Zhang
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
13
|
Murdaca G, Allegra A, Tonacci A, Musolino C, Ricciardi L, Gangemi S. Mast Cells and Vitamin D Status: A Clinical and Biological Link in the Onset of Allergy and Bone Diseases. Biomedicines 2022; 10:1877. [PMID: 36009422 PMCID: PMC9405764 DOI: 10.3390/biomedicines10081877] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/12/2022] Open
Abstract
The immune system is made up by an extremely composite group of cells, whose regulated and harmonious activity is fundamental to maintain health. The mast cells are an essential effector of inflammatory response which is characterized by a massive release of mediators accumulated in cytoplasmic secretory granules. However, beyond the effects on immune response, mast cells can modify bone metabolism and are capable of intervening in the genesis of pathologies such as osteoporosis and osteopenia. Vitamin D is recognized to induce changes in bone metabolism, but it is also able to influence immune response, suppressing mast cell activation and IgE synthesis from B cells and increasing the number of dendritic cells and IL-10-generating regulatory T cells. Vitamin D deficit has been reported to worsen sensitization and allergic manifestations in several different experimental models. However, in clinical situations, contradictory findings have been described concerning the correlation between allergy and vitamin D deficit. The aim of this review was to analyze the close relationships between mast cells and vitamin D, which contribute, through the activation of different molecular or cellular activation pathways, to the determination of bone pathologies and the onset of allergic diseases.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy;
| | - Luisa Ricciardi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (L.R.); (S.G.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (L.R.); (S.G.)
| |
Collapse
|
14
|
Zhang N, Schumacher A, Fink B, Bauer M, Zenclussen AC, Meyer N. Insights into Early-Pregnancy Mechanisms: Mast Cells and Chymase CMA1 Shape the Phenotype and Modulate the Functionality of Human Trophoblast Cells, Vascular Smooth-Muscle Cells and Endothelial Cells. Cells 2022; 11:cells11071158. [PMID: 35406722 PMCID: PMC8997408 DOI: 10.3390/cells11071158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Spiral-artery (SA) remodeling is a fundamental process during pregnancy that involves the action of cells of the initial vessel, such as vascular smooth-muscle cells (VSMCs) and endothelial cells, but also maternal immune cells and fetal extravillous trophoblast cells (EVTs). Mast cells (MCs), and specifically chymase-expressing cells, have been identified as key to a sufficient SA-remodeling process in vivo. However, the mechanisms are still unclear. The purpose of this study is to evaluate the effects of the MC line HMC-1 and recombinant human chymase (rhuCMA1) on human primary uterine vascular smooth-muscle cells (HUtSMCs), a human trophoblast cell line (HTR8/SV-neo), and human umbilical-vein endothelial cells (HUVEC) in vitro. Both HMC-1 and rhuCMA1 stimulated migration, proliferation, and changed protein expression in HUtSMCs. HMC-1 increased proliferation, migration, and changed gene expression of HTR8/SVneo cells, while rhuCMA treatment led to increased migration and decreased expression of tissue inhibitors of matrix metalloproteinases. Additionally, rhuCMA1 enhanced endothelial-cell-tube formation. Collectively, we identified possible mechanisms by which MCs/rhuCMA1 promote SA remodeling. Our findings are relevant to the understanding of this crucial step in pregnancy and thus of the dysregulated pathways that can lead to pregnancy complications such as fetal growth restriction and preeclampsia.
Collapse
Affiliation(s)
- Ningjuan Zhang
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
| | - Anne Schumacher
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
| | - Beate Fink
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
| | - Mario Bauer
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
| | - Nicole Meyer
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-235-1542
| |
Collapse
|
15
|
Céspedes N, Donnelly EL, Lowder C, Hansten G, Wagers D, Briggs AM, Schauer J, Haapanen L, Åbrink M, Van de Water J, Luckhart S. Mast Cell Chymase/Mcpt4 Suppresses the Host Immune Response to Plasmodium yoelii, Limits Malaria-Associated Disruption of Intestinal Barrier Integrity and Reduces Parasite Transmission to Anopheles stephensi. Front Immunol 2022; 13:801120. [PMID: 35154114 PMCID: PMC8829543 DOI: 10.3389/fimmu.2022.801120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
An increase in mast cells (MCs) and MCs mediators has been observed in malaria-associated bacteremia, however, the role of these granulocytes in malarial immunity is poorly understood. Herein, we studied the role of mouse MC protease (Mcpt) 4, an ortholog of human MC chymase, in malaria-induced bacteremia using Mcpt4 knockout (Mcpt4-/-) mice and Mcpt4+/+ C57BL/6J controls, and the non-lethal mouse parasite Plasmodium yoelii yoelii 17XNL. Significantly lower parasitemia was observed in Mcpt4-/- mice compared with Mcpt4+/+ controls by day 10 post infection (PI). Although bacterial 16S DNA levels in blood were not different between groups, increased intestinal permeability to FITC-dextran and altered ileal adherens junction E-cadherin were observed in Mcpt4-/- mice. Relative to infected Mcpt4+/+ mice, ileal MC accumulation in Mcpt4-/- mice occurred two days earlier and IgE levels were higher by days 8-10 PI. Increased levels of circulating myeloperoxidase were observed at 6 and 10 days PI in Mcpt4+/+ but not Mcpt4-/- mice, affirming a role for neutrophil activation that was not predictive of parasitemia or bacterial 16S copies in blood. In contrast, early increased plasma levels of TNF-α, IL-12p40 and IL-3 were observed in Mcpt4-/- mice, while levels of IL-2, IL-10 and MIP1β (CCL4) were increased over the same period in Mcpt4+/+ mice, suggesting that the host response to infection was skewed toward a type-1 immune response in Mcpt4-/- mice and type-2 response in Mcpt4+/+ mice. Spearman analysis revealed an early (day 4 PI) correlation of Mcpt4-/- parasitemia with TNF-α and IFN-γ, inflammatory cytokines known for their roles in pathogen clearance, a pattern that was observed in Mcpt4+/+ mice much later (day 10 PI). Transmission success of P. y. yoelii 17XNL to Anopheles stephensi was significantly higher from infected Mcpt4-/- mice compared with infected Mcpt4+/+ mice, suggesting that Mcpt4 also impacts transmissibility of sexual stage parasites. Together, these results suggest that early MCs activation and release of Mcpt4 suppresses the host immune response to P. y. yoelii 17XNL, perhaps via degradation of TNF-α and promotion of a type-2 immune response that concordantly protects epithelial barrier integrity, while limiting the systemic response to bacteremia and parasite transmissibility.
Collapse
Affiliation(s)
- Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Erinn L. Donnelly
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Casey Lowder
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Gretchen Hansten
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Delaney Wagers
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Anna M. Briggs
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Joseph Schauer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Lori Haapanen
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Magnus Åbrink
- Section of Immunology, Department of Biomedical Sciences & Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
16
|
Vibhushan S, Bratti M, Montero-Hernández JE, El Ghoneimi A, Benhamou M, Charles N, Daugas E, Blank U. Mast Cell Chymase and Kidney Disease. Int J Mol Sci 2020; 22:E302. [PMID: 33396702 PMCID: PMC7795820 DOI: 10.3390/ijms22010302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022] Open
Abstract
A sizable part (~2%) of the human genome encodes for proteases. They are involved in many physiological processes, such as development, reproduction and inflammation, but also play a role in pathology. Mast cells (MC) contain a variety of MC specific proteases, the expression of which may differ between various MC subtypes. Amongst these proteases, chymase represents up to 25% of the total proteins in the MC and is released from cytoplasmic granules upon activation. Once secreted, it cleaves the targets in the local tissue environment, but may also act in lymph nodes infiltrated by MC, or systemically, when reaching the circulation during an inflammatory response. MC have been recognized as important components in the development of kidney disease. Based on this observation, MC chymase has gained interest following the discovery that it contributes to the angiotensin-converting enzyme's independent generation of angiotensin II, an important inflammatory mediator in the development of kidney disease. Hence, progress regarding its role has been made based on studies using inhibitors but also on mice deficient in MC protease 4 (mMCP-4), the functional murine counterpart of human chymase. In this review, we discuss the role and actions of chymase in kidney disease. While initially believed to contribute to pathogenesis, the accumulated data favor a more subtle view, indicating that chymase may also have beneficial actions.
Collapse
Affiliation(s)
- Shamila Vibhushan
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Juan Eduardo Montero-Hernández
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Alaa El Ghoneimi
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
- Department of Pediatric Surgery and Urology, Hôpital Universitaire Robert Debré, Assistance Publique—Hôpitaux de Paris (APHP), F-75019 Paris, France
| | - Marc Benhamou
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Nicolas Charles
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Eric Daugas
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
- Service de Néphrologie, Groupe Hospitalier Universitaire Bichat-Claude Bernard, Assistance Publique—Hôpitaux de Paris (APHP), F-75019 Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| |
Collapse
|
17
|
Abstract
Physical trauma can affect any individual and is globally accountable for more than one in every ten deaths. Although direct severe kidney trauma is relatively infrequent, extrarenal tissue trauma frequently results in the development of acute kidney injury (AKI). Various causes, including haemorrhagic shock, rhabdomyolysis, use of nephrotoxic drugs and infectious complications, can trigger and exacerbate trauma-related AKI (TRAKI), particularly in the presence of pre-existing or trauma-specific risk factors. Injured, hypoxic and ischaemic tissues expose the organism to damage-associated and pathogen-associated molecular patterns, and oxidative stress, all of which initiate a complex immunopathophysiological response that results in macrocirculatory and microcirculatory disturbances in the kidney, and functional impairment. The simultaneous activation of components of innate immunity, including leukocytes, coagulation factors and complement proteins, drives kidney inflammation, glomerular and tubular damage, and breakdown of the blood-urine barrier. This immune response is also an integral part of the intense post-trauma crosstalk between the kidneys, the nervous system and other organs, which aggravates multi-organ dysfunction. Necessary lifesaving procedures used in trauma management might have ambivalent effects as they stabilize injured tissue and organs while simultaneously exacerbating kidney injury. Consequently, only a small number of pathophysiological and immunomodulatory therapeutic targets for TRAKI prevention have been proposed and evaluated.
Collapse
|
18
|
Svanberg S, Li Z, Öhlund P, Roy A, Åbrink M. Mast Cells Limit Ear Swelling Independently of the Chymase Mouse Mast Cell Protease 4 in an MC903-Induced Atopic Dermatitis-Like Mouse Model. Int J Mol Sci 2020; 21:ijms21176311. [PMID: 32878208 PMCID: PMC7503626 DOI: 10.3390/ijms21176311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Atopic dermatitis (AD) is a complex, often lifelong allergic disease with severe pruritus affecting around 10% of both humans and dogs. To investigate the role of mast cells (MCs) and MC-specific proteases on the immunopathogenesis of AD, a vitamin D3-analog (MC903) was used to induce clinical AD-like symptoms in c-kit-dependent MC-deficient Wsh−/− and the MC protease-deficient mMCP-4−/−, mMCP-6−/−, and CPA3−/− mouse strains. MC903-treatment on the ear lobe increased clinical scores and ear-thickening, along with increased MC and granulocyte infiltration and activity, as well as increased levels of interleukin 33 (IL-33) locally and thymic stromal lymphopoietin (TSLP) both locally and systemically. The MC-deficient Wsh−/− mice showed significantly increased clinical score and ear thickening albeit having lower ear tissue levels of IL-33 and TSLP as well as lower serum levels of TSLP as compared to the WT mice. In contrast, although having significantly increased IL-33 ear tissue levels the chymase-deficient mMCP-4−/− mice showed similar clinical score, ear thickening, and TSLP levels in ear tissue and serum as the WT mice, whereas mMCP-6 and CPA3 -deficient mice showed a slightly reduced ear thickening and granulocyte infiltration. Our results suggest that MCs promote and control the level of MC903-induced AD-like inflammation.
Collapse
Affiliation(s)
- Sofie Svanberg
- Evidensia Djurkliniken Öjebyn, Öjagatan 81, 94331 Öjebyn, Sweden;
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
| | - Zhiqiang Li
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
- Department of Immunology, School of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, China
| | - Pontus Öhlund
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden;
| | - Magnus Åbrink
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
- Correspondence: ; Tel.: +46-70-673-6569
| |
Collapse
|
19
|
Abstract
Cirrhosis is a multisystemic disease wherein inflammatory responses originating from advanced liver disease and its sequelae affect distant compartments. Patients with cirrhosis are susceptible to bacterial infections, which may precipitate acute decompensation and acute-on-chronic liver failure, both of which are associated with high short-term mortality. Innate immune cells are an essential first line of defence against pathogens. Activation of liver macrophages (Kupffer cells) and resident mastocytes generate proinflammatory and vaso-permeating mediators that induce accumulation of neutrophils, lymphocytes, eosinophils and monocytes in the liver, and promote tissue damage. During cirrhosis progression, damage- and pathogen-associated molecular patterns activate immune cells and promote development of systemic inflammatory responses which may involve different tissues and compartments. The antibacterial function of circulating neutrophils and monocytes is gradually and severely impaired as cirrhosis worsens, contributing to disease progression. The mechanisms underlying impaired antimicrobial responses are complex and incompletely understood. This review focuses on the continuous and distinct perturbations arising in innate immune cells during cirrhosis, including their impact on disease progression, as well as reviewing potential therapeutic targets.
Collapse
|
20
|
Pejler G. Novel Insight into the in vivo Function of Mast Cell Chymase: Lessons from Knockouts and Inhibitors. J Innate Immun 2020; 12:357-372. [PMID: 32498069 DOI: 10.1159/000506985] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Mast cells are now recognized as key players in diverse pathologies, but the mechanisms by which they contribute in such settings are only partially understood. Mast cells are packed with secretory granules, and when they undergo degranulation in response to activation the contents of the granules are expelled to the extracellular milieu. Chymases, neutral serine proteases, are the major constituents of the mast cell granules and are hence released in large amounts upon mast cell activation. Following their release, chymases can cleave one or several of a myriad of potential substrates, and the cleavage of many of these could potentially have a profound impact on the respective pathology. Indeed, chymases have recently been implicated in several pathological contexts, in particular through studies using chymase inhibitors and by the use of chymase-deficient animals. In many cases, chymase has been shown to account for mast cell-dependent detrimental effects in the respective conditions and is therefore emerging as a promising drug target. On the other hand, chymase has been shown to have protective roles in other pathological settings. More unexpectedly, chymase has also been shown to control certain homeostatic processes. Here, these findings are reviewed.
Collapse
Affiliation(s)
- Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, .,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden,
| |
Collapse
|
21
|
Effect of Shenfu Injection on Porcine Renal Function after Cardiopulmonary Resuscitation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3789268. [PMID: 32382285 PMCID: PMC7193270 DOI: 10.1155/2020/3789268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/04/2020] [Indexed: 11/17/2022]
Abstract
Objective To comprehensively evaluate the protective effect of Shenfu injection (SFI) on renal ischaemia/reperfusion injury (IRI) after cardiopulmonary resuscitation (CPR) through neutrophil gelatinase-associated lipocalin (NGAL) and to explore effective monitoring of early renal injuries after CPR. Methods Thirty healthy minipigs were randomly divided into 3 groups: sham operation (SO) (n = 6), control (n = 12), and SFI (n = 12). The SO group underwent only catheterization, whereas the control and SFI groups were subjected to program-controlled electrical stimulation to establish a cardiac arrest (CA) model due to ventricular fibrillation. After CPR, the return of spontaneous circulation was achieved. Each animal in the SFI group was intravenously injected with SFI after resuscitation. Haemodynamic parameters were monitored at baseline and 2, 6, 12, and 24 hr after CPR. At each time point, venous blood samples were collected for NGAL, creatinine, and ATPase screening. Results After CA, the MAP, CPP, and CO of the animals in the control and SFI groups decreased significantly. However, at 6 hr after CPR, the MAP, CPP, and CO of the animals in the SFI group began to recover gradually; the differences between the control and SFI groups were significant (P < 0.005). The renal damage immediately after CPR appeared to be significant in the pathological examinations. However, the degree of renal injury in the SFI group improved significantly, and the apoptosis index was also notably reduced. The blood and urine NGAL levels were clearly elevated after CPR. The greatest increase in NGAL was found in the control group, which was significantly different from that of the SFI group (P < 0.001). SFI can significantly increase the ATPase activity of kidney tissues after CPR and improve abnormal caspase-3 protein expression. Conclusion SFI can effectively prevent acute kidney injuries caused by CPR through improving energy metabolism and inhibiting apoptosis.
Collapse
|