1
|
Kojom Foko LP, Moun A, Singh V. Addressing low-density malaria infections in India and other endemic part of the world-the opportune time? Crit Rev Microbiol 2025; 51:229-245. [PMID: 38632931 DOI: 10.1080/1040841x.2024.2339267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Shifting from high- to low-malaria transmission accompanies a higher proportion of asymptomatic low-density malaria infections (LDMI). Currently, several endemic countries, such as India, are experiencing this shift as it is striving to eliminate malaria. LDMI is a complex concept for which there are several important questions yet unanswered on its natural history, infectiousness, epidemiology, and pathological and clinical impact. India is on the right path to eliminating malaria, but it is facing the LDMI problem. A brief discussion on the concept and definitions of LDMI is beforehand presented. Also, an exhaustive review and critical analysis of the existing literature on LDMI in malaria-endemic areas, including India, are included in this review. Finally, we opine that addressing LDMI in India is ethically and pragmatically achievable, and a pool of sine qua non conditions is required to efficiently and sustainably eliminate malaria.
Collapse
Affiliation(s)
- Loick P Kojom Foko
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Amit Moun
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Vineeta Singh
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
2
|
Abossie A, Getachew H, Demissew A, Habtamu K, Tsegaye A, Zhong D, Wang X, Degefa T, Lee MC, Zhou G, King CL, Kazura JW, Yewhalaw D, Yan G. Profiling vivax malaria incidence, residual transmission, and risk factors using reactive case detection in low transmission settings of Ethiopia. Malar J 2024; 23:362. [PMID: 39609814 PMCID: PMC11605926 DOI: 10.1186/s12936-024-05171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Identification of local Plasmodium vivax transmission foci and its hidden reservoirs are crucial to eliminating residual vivax malaria transmission. This study assessed whether reactive case detection (RCD) could better identify P. vivax cases and infection incidences in Arjo-Didessa, Southwestern Ethiopia. METHODS A RCD survey was conducted from November 2019 to October 2021 in Arjo-Didessa and the surrounding vicinity in southwestern Ethiopia. RCD was performed at 0, 30, and 60 days following reports of P. vivax infections by health facilities to detect further cases and potential transmission networks. Household members of the index case and neighbours living within 200 m of the index household were screened for P. vivax. Households 200-500 m away are considered controls and were also screened for P. vivax. Plasmodium vivax was detected by microscopy, rapid diagnostic testing (RDT), and quantitative polymerase chain reaction (qPCR). Risk factors associated with vivax malaria were analysed using generalized estimating equations (GEE). RESULTS A total of 3303 blood samples were collected from the index (n = 427), neighbouring (n = 1626), and control (n = 1240) household in the three rounds of follow-up visits for malaria infection, the overall positivity rate of P. vivax malaria was 1.6% (95% CI 1.2-2.2%), 1.9% (95% CI 1.5-2.4), and 3.9% (95% CI 3.2-4.6%) by microscopy, RDT, and qPCR, respectively. Microscopy and RDT detected 41.5% (54 of 130) and 49.1% (64 of 130) of the qPCR-confirmed P. vivax cases, respectively. Of qPCR-positive samples, 77.7% of the total P. vivax infections circulated in the index and neighbouring households, while control households accounted for 23.3% of the infections. Of the P. vivax infections detected 81.0% (95% CI 72.9-87.1%) were asymptomatic. In this study, P. vivax infection incidence was higher in index case households (53.8 cases per 1000 person-months) and (44.0 cases per 1000 person-months) in neighbouring households compared to the control households (25.1 cases per 1000 person-months) with statistical difference (p = 0.02). In index case households, children < 5 years and school-age children were at higher risk of P. vivax infection (AOR: 6.3, 95% CI: 2.24-18.02, p = 0.001 and AOR: 2.7, 95% CI: 1.10-6.64, p = 0.029). CONCLUSIONS This study found clustering of asymptomatic and sub-microscopic P. vivax infections in the index case household and their neighbours using RCD and molecular methods. Children under 5 years and of school age were more likely to have P. vivax infection in index households. Thus, tailored RCD approaches and targeted interventions for interrupting residual P. vivax transmission networks are needed to eliminate P. vivax malaria in low transmission settings.
Collapse
Affiliation(s)
- Ashenafi Abossie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia.
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia.
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia.
| | - Hallelujah Getachew
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Technology, Arba Minch College of Health Sciences, Arba Minch, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Assalif Demissew
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Kassahun Habtamu
- Menelik II College of Health Sciences, Addis Ababa, Ethiopia
- College of Natural Sciences, Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Arega Tsegaye
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- College of Natural Science, Department of Biology, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Christopher L King
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA
| | - James W Kazura
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
3
|
Popkin-Hall ZR, Niaré K, Crudale R, Simkin A, Fola AA, Sanchez JF, Pannebaker DL, Giesbrecht DJ, Kim IE, Aydemir Ö, Bailey JA, Valdivia HO, Juliano JJ. High-throughput genotyping of Plasmodium vivax in the Peruvian Amazon via molecular inversion probes. Nat Commun 2024; 15:10219. [PMID: 39587110 PMCID: PMC11589703 DOI: 10.1038/s41467-024-54731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024] Open
Abstract
Plasmodium vivax transmission occurs throughout the tropics and is an emerging threat in areas of Plasmodium falciparum decline, causing relapse infections that complicate treatment and control. Targeted sequencing for P. falciparum has been widely deployed to detect population structure and the geographic spread of antimalarial and diagnostic resistance. However, there are fewer such tools for P. vivax. Leveraging global variation data, we designed four molecular inversion probe (MIP) genotyping panels targeting geographically differentiating SNPs, neutral SNPs, putative antimalarial resistance genes, and vaccine candidate genes. We deployed these MIP panels on 866 infections from the Peruvian Amazon and identified transmission networks with clonality (IBD[identity by descent]>0.99), copy number variation in Pvdbp and multiple Pvrbps, mutations in antimalarial resistance orthologs, and balancing selection in 13 vaccine candidate genes. Our MIP panels are the broadest genotyping panel currently available and are poised for successful deployment in other regions of P. vivax transmission.
Collapse
Affiliation(s)
- Zachary R Popkin-Hall
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA.
| | - Karamoko Niaré
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Rebecca Crudale
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Alfred Simkin
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Abebe A Fola
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Juan F Sanchez
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - Danielle L Pannebaker
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - David J Giesbrecht
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Isaac E Kim
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Özkan Aydemir
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Hugo O Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - Jonathan J Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
- Division of Infectious Diseases, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum of Genetics and Molecular Biology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Rodrigues PT, Johansen IC, Ladeia WA, Esquivel FD, Corder RM, Tonini J, Calil PR, Fernandes ARJ, Fontoura PS, Cavasini CE, Vinetz JM, Castro MC, Ferreira MU. Lower Microscopy Sensitivity with Decreasing Malaria Prevalence in the Urban Amazon Region, Brazil, 2018-2021. Emerg Infect Dis 2024; 30:1884-1894. [PMID: 39174028 PMCID: PMC11346994 DOI: 10.3201/eid3009.240378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Malaria is increasingly diagnosed in urban centers across the Amazon Basin. In this study, we combined repeated prevalence surveys over a 4-year period of a household-based random sample of 2,774 persons with parasite genotyping to investigate the epidemiology of malaria in Mâncio Lima, the main urban transmission hotspot in Amazonian Brazil. We found that most malarial infections were asymptomatic and undetected by point-of-care microscopy. Our findings indicate that as malaria transmission decreases, the detection threshold of microscopy rises, resulting in more missed infections despite similar parasite densities estimated by molecular methods. We identified genetically highly diverse populations of Plasmodium vivax and P. falciparum in the region; occasional shared lineages between urban and rural residents suggest cross-boundary propagation. The prevalence of low-density and asymptomatic infections poses a significant challenge for routine surveillance and the effectiveness of malaria control and elimination strategies in urbanized areas with readily accessible laboratory facilities.
Collapse
|
5
|
Cabrera-Sosa L, Nolasco O, Kattenberg JH, Fernandez-Miñope C, Valdivia HO, Barazorda K, Arévalo de Los Rios S, Rodriguez-Ferrucci H, Vinetz JM, Rosanas-Urgell A, Van Geertruyden JP, Gamboa D, Delgado-Ratto C. Genomic surveillance of malaria parasites in an indigenous community in the Peruvian Amazon. Sci Rep 2024; 14:16291. [PMID: 39009685 PMCID: PMC11250820 DOI: 10.1038/s41598-024-66925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024] Open
Abstract
Hard-to-reach communities represent Peru's main challenge for malaria elimination, but information about transmission in these areas is scarce. Here, we assessed Plasmodium vivax (Pv) and P. falciparum (Pf) transmission dynamics, resistance markers, and Pf hrp2/3 deletions in Nueva Jerusalén (NJ), a remote, indigenous community in the Peruvian Amazon with high population mobility. We collected samples from November 2019 to May 2020 by active (ACD) and passive case detection (PCD) in NJ. Parasites were identified with microscopy and PCR. Then, we analyzed a representative set of positive-PCR samples (Pv = 68, Pf = 58) using highly-multiplexed deep sequencing assays (AmpliSeq) and compared NJ parasites with ones from other remote Peruvian areas using population genetics indexes. The ACD intervention did not reduce malaria cases in the short term, and persistent malaria transmission was observed (at least one Pv infection was detected in 96% of the study days). In Nueva Jerusalen, the Pv population had modest genetic diversity (He = 0.27). Pf population had lower diversity (He = 0.08) and presented temporal clustering, one of these clusters linked to an outbreak in February 2020. Moreover, Pv and Pf parasites from NJ exhibited variable levels of differentiation (Pv Fst = 0.07-0.52 and Pf Fst = 0.11-0.58) with parasites from other remote areas. No artemisin resistance mutations but chloroquine (57%) and sulfadoxine-pyrimethamine (35-67%) were detected in NJ's Pf parasites. Moreover, pfhrp2/3 gene deletions were common (32-50% of parasites with one or both genes deleted). The persistent Pv transmission and the detection of a Pf outbreak with parasites genetically distinct from the local ones highlight the need for tailored interventions focusing on mobility patterns and imported infections in remote areas to eliminate malaria in the Peruvian Amazon.
Collapse
Affiliation(s)
- Luis Cabrera-Sosa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Oscar Nolasco
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Johanna H Kattenberg
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Carlos Fernandez-Miñope
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Hugo O Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - Keare Barazorda
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | | | - Hugo Rodriguez-Ferrucci
- Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana, Iquitos, Loreto, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jean-Pierre Van Geertruyden
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
6
|
Popkin-Hall ZR, Niaré K, Crudale R, Simkin A, Fola AA, Sanchez JF, Pannebaker DL, Giesbrecht DJ, Kim IE, Aydemir Ö, Bailey JA, Valdivia HO, Juliano JJ. High-Throughput Genotyping of Plasmodium vivax in the Peruvian Amazon via Molecular Inversion Probes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.27.24309599. [PMID: 38978652 PMCID: PMC11230302 DOI: 10.1101/2024.06.27.24309599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Plasmodium vivax transmission occurs throughout the tropics and is an emerging threat in areas of Plasmodium falciparum decline, causing relapse infections that complicate treatment and control. Targeted sequencing for P. falciparum has been widely deployed to detect population structure and the geographic spread of antimalarial and diagnostic resistance. However, there are fewer such tools for P. vivax . Leveraging global variation data, we designed four molecular inversion probe (MIP) genotyping panels targeting geographically differentiating SNPs, neutral SNPs, putative antimalarial resistance genes, and vaccine candidate genes. We deployed these MIP panels on 866 infections from the Peruvian Amazon and identified transmission networks with clonality (IBD>0.99), copy number variation in Pvdbp and multiple Pvrbps , fixation of putative antimalarial resistance, and balancing selection in 13 vaccine candidate genes. Our MIP panels are the broadest genotyping panel currently available and are poised for successful deployment in other regions of P. vivax transmission.
Collapse
|
7
|
Mehra S, Taylor PG, McCaw JM, Flegg JA. A hybrid transmission model for Plasmodium vivax accounting for superinfection, immunity and the hypnozoite reservoir. J Math Biol 2024; 89:7. [PMID: 38772937 PMCID: PMC11108905 DOI: 10.1007/s00285-024-02088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/12/2023] [Accepted: 03/25/2024] [Indexed: 05/23/2024]
Abstract
Malaria is a vector-borne disease that exacts a grave toll in the Global South. The epidemiology of Plasmodium vivax, the most geographically expansive agent of human malaria, is characterised by the accrual of a reservoir of dormant parasites known as hypnozoites. Relapses, arising from hypnozoite activation events, comprise the majority of the blood-stage infection burden, with implications for the acquisition of immunity and the distribution of superinfection. Here, we construct a novel model for the transmission of P. vivax that concurrently accounts for the accrual of the hypnozoite reservoir, (blood-stage) superinfection and the acquisition of immunity. We begin by using an infinite-server queueing network model to characterise the within-host dynamics as a function of mosquito-to-human transmission intensity, extending our previous model to capture a discretised immunity level. To model transmission-blocking and antidisease immunity, we allow for geometric decay in the respective probabilities of successful human-to-mosquito transmission and symptomatic blood-stage infection as a function of this immunity level. Under a hybrid approximation-whereby probabilistic within-host distributions are cast as expected population-level proportions-we couple host and vector dynamics to recover a deterministic compartmental model in line with Ross-Macdonald theory. We then perform a steady-state analysis for this compartmental model, informed by the (analytic) distributions derived at the within-host level. To characterise transient dynamics, we derive a reduced system of integrodifferential equations, likewise informed by our within-host queueing network, allowing us to recover population-level distributions for various quantities of epidemiological interest. In capturing the interplay between hypnozoite accrual, superinfection and acquired immunity-and providing, to the best of our knowledge, the most complete population-level distributions for a range of epidemiological values-our model provides insights into important, but poorly understood, epidemiological features of P. vivax.
Collapse
Affiliation(s)
- Somya Mehra
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia.
| | - Peter G Taylor
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - James M McCaw
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Parkville, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| |
Collapse
|
8
|
Bickersmith SA, Saavedra MP, Prussing C, Lange RE, Morales JA, Alava F, Vinetz JM, Gamboa D, Moreno M, Conn JE. Effect of spatiotemporal variables on abundance, biting activity and parity of Nyssorhynchus darlingi (Diptera: Culicidae) in peri-Iquitos, Peru. Malar J 2024; 23:112. [PMID: 38641572 PMCID: PMC11031940 DOI: 10.1186/s12936-024-04940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND In malaria endemic regions of the Peruvian Amazon, rainfall together with river level and breeding site availability drive fluctuating vector mosquito abundance and human malaria cases, leading to temporal heterogeneity. The main variables influencing spatial transmission include location of communities, mosquito behaviour, land use/land cover, and human ecology/behaviour. The main objective was to evaluate seasonal and microgeographic biting behaviour of the malaria vector Nyssorhynchus (or Anopheles) darlingi in Amazonian Peru and to investigate effects of seasonality on malaria transmission. METHODS We captured mosquitoes from 18:00 to 06:00 h using Human Landing Catch in two riverine (Lupuna, Santa Emilia) and two highway (El Triunfo, Nuevo Horizonte) communities indoors and outdoors from 8 houses per community, during the dry and rainy seasons from February 2016 to January 2017. We then estimated parity rate, daily survival and age of a portion of each collection of Ny. darlingi. All collected specimens of Ny. darlingi were tested for the presence of Plasmodium vivax or Plasmodium falciparum sporozoites using real-time PCR targeting the small subunit of the 18S rRNA. RESULTS Abundance of Ny. darlingi varied across village, season, and biting behaviour (indoor vs outdoor), and was highly significant between rainy and dry seasons (p < 0.0001). Biting patterns differed, although not significantly, and persisted regardless of season, with peaks in highway communities at ~ 20:00 h in contrast to biting throughout the night (i.e., 18:00-06:00) in riverine communities. Of 3721 Ny. darlingi tested for Plasmodium, 23 (0.62%) were infected. We detected Plasmodium-infected Ny. darlingi in both community types and most (20/23) were captured outdoors during the rainy season; 17/23 before midnight. Seventeen Ny. darlingi were infected with P. vivax, and 6 with P. falciparum. No infected Ny. darlingi were captured during the dry season. Significantly higher rates of parity were detected in Ny. darlingi during the rainy season (average 64.69%) versus the dry season (average 36.91%) and by community, Lupuna, a riverine village, had the highest proportion of parous to nulliparous females during the rainy season. CONCLUSIONS These data add a seasonal dimension to malaria transmission in peri-Iquitos, providing more evidence that, at least locally, the greatest risk of malaria transmission is outdoors during the rainy season mainly before midnight, irrespective of whether the community was located adjacent to the highway or along the river.
Collapse
Affiliation(s)
| | - Marlon P Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, USA
| | - Rachel E Lange
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, USA
| | - Juliana A Morales
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Freddy Alava
- Gerencia Regional de Salud de Loreto (GERESA), Iquitos, Peru
| | - Joseph M Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, USA.
| |
Collapse
|
9
|
Kattenberg JH, Monsieurs P, De Meyer J, De Meulenaere K, Sauve E, de Oliveira TC, Ferreira MU, Gamboa D, Rosanas‐Urgell A. Population genomic evidence of structured and connected Plasmodium vivax populations under host selection in Latin America. Ecol Evol 2024; 14:e11103. [PMID: 38529021 PMCID: PMC10961478 DOI: 10.1002/ece3.11103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Pathogen genomic epidemiology has the potential to provide a deep understanding of population dynamics, facilitating strategic planning of interventions, monitoring their impact, and enabling timely responses, and thereby supporting control and elimination efforts of parasitic tropical diseases. Plasmodium vivax, responsible for most malaria cases outside Africa, shows high genetic diversity at the population level, driven by factors like sub-patent infections, a hidden reservoir of hypnozoites, and early transmission to mosquitoes. While Latin America has made significant progress in controlling Plasmodium falciparum, it faces challenges with residual P. vivax. To characterize genetic diversity and population structure and dynamics, we have analyzed the largest collection of P. vivax genomes to date, including 1474 high-quality genomes from 31 countries across Asia, Africa, Oceania, and America. While P. vivax shows high genetic diversity globally, Latin American isolates form a distinctive population, which is further divided into sub-populations and occasional clonal pockets. Genetic diversity within the continent was associated with the intensity of transmission. Population differentiation exists between Central America and the North Coast of South America, vs. the Amazon Basin, with significant gene flow within the Amazon Basin, but limited connectivity between the Northwest Coast and the Amazon Basin. Shared genomic regions in these parasite populations indicate adaptive evolution, particularly in genes related to DNA replication, RNA processing, invasion, and motility - crucial for the parasite's survival in diverse environments. Understanding these population-level adaptations is crucial for effective control efforts, offering insights into potential mechanisms behind drug resistance, immune evasion, and transmission dynamics.
Collapse
Affiliation(s)
| | - Pieter Monsieurs
- Malariology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
| | - Julie De Meyer
- Malariology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
- Present address:
Integrated Molecular Plant physiology Research (IMPRES) and Plants and Ecosystems (PLECO), Department of BiologyUniversity of AntwerpAntwerpBelgium
| | | | - Erin Sauve
- Malariology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
| | - Thaís C. de Oliveira
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical MedicineNova University of LisbonLisbonPortugal
| | - Dionicia Gamboa
- Instituto de Medicina Tropical “Alexander von Humboldt”Universidad Peruana Cayetano HerediaLimaPeru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e IngenieríaUniversidad Peruana Cayetano HerediaLimaPeru
| | | |
Collapse
|
10
|
Champagne C, Gerhards M, Lana JT, Le Menach A, Pothin E. Quantifying the impact of interventions against Plasmodium vivax: A model for country-specific use. Epidemics 2024; 46:100747. [PMID: 38330786 PMCID: PMC10944169 DOI: 10.1016/j.epidem.2024.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
In order to evaluate the impact of various intervention strategies on Plasmodium vivax dynamics in low endemicity settings without significant seasonal pattern, we introduce a simple mathematical model that can be easily adapted to reported case numbers similar to that collected by surveillance systems in various countries. The model includes case management, vector control, mass drug administration and reactive case detection interventions and is implemented in both deterministic and stochastic frameworks. It is available as an R package to enable users to calibrate and simulate it with their own data. Although we only illustrate its use on fictitious data, by simulating and comparing the impact of various intervention combinations on malaria risk and burden, this model could be a useful tool for strategic planning, implementation and resource mobilization.
Collapse
Affiliation(s)
- C Champagne
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - M Gerhards
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - J T Lana
- Clinton Health Access Initiative, Boston, USA
| | - A Le Menach
- Clinton Health Access Initiative, Boston, USA
| | - E Pothin
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Clinton Health Access Initiative, Boston, USA
| |
Collapse
|
11
|
Cabrera-Sosa L, Nolasco O, Kattenberg JH, Fernandez-Miñope C, Valdivia HO, Barazorda K, Rios SADL, Rodriguez-Ferrucci H, Vinetz JM, Rosanas-Urgell A, Geertruyden JPV, Gamboa D, Delgado-Ratto C. Genomic surveillance of malaria parasites in an indigenous community in the Peruvian Amazon. RESEARCH SQUARE 2024:rs.3.rs-3979991. [PMID: 38464169 PMCID: PMC10925399 DOI: 10.21203/rs.3.rs-3979991/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hard-to-reach communities represent Peru's main challenge for malaria elimination, but information about transmission in these areas is scarce. Here, we assessed Plasmodium vivax (Pv) and P. falciparum (Pf) transmission dynamics, resistance markers, and Pf hrp2/3 deletions in Nueva Jerusalén (NJ), a remote, indigenous community in the Peruvian Amazon with high population mobility. We collected samples from November 2019 to May 2020 by active (ACD) and passive case detection (PCD) in NJ. Parasites were identified with microscopy and PCR. Then, we analyzed a representative set of positive-PCR samples (Pv = 68, Pf = 58) using highly-multiplexed deep sequencing assays (AmpliSeq) and compared NJ parasites with ones from other remote Peruvian areas using population genetics indexes. The ACD intervention did not reduce malaria cases in the short term, and persistent malaria transmission was observed (at least one Pv infection was detected in 96% of the study days). In Nueva Jerusalen, the Pv population had modest genetic diversity (He = 0.27). Pf population had lower diversity (He = 0.08) and presented temporal clustering, one of these clusters linked to an outbreak in February 2020. Moreover, Pv and Pf parasites from NJ exhibited variable levels of differentiation (Pv Fst = -0.52 & Pf Fst = 0.11-0.58) with parasites from other remote areas. No artemisin resistance mutations but chloroquine (57%) and sulfadoxine-pyrimethamine (35-67%) were detected in NJ's Pf parasites. Moreover, pfhrp2/3 gene deletions were common (32-50% of parasites with one or both genes deleted). The persistent Pv transmission and the detection of a Pf outbreak with parasites genetically distinct from the local ones highlight the need for tailored interventions focusing on mobility patterns and imported infections in remote areas to eliminate malaria in the Peruvian Amazon.
Collapse
Affiliation(s)
- Luis Cabrera-Sosa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia
| | - Oscar Nolasco
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia
| | | | - Carlos Fernandez-Miñope
- Malaria Research group (MaRch), Global Health Institute, Family Medicine and Population Health department, Faculty of Medicine, University of Antwerp
| | - Hugo O Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH)
| | - Keare Barazorda
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH)
| | | | | | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine
| | | | - Jean-Pierre Van Geertruyden
- Malaria Research group (MaRch), Global Health Institute, Family Medicine and Population Health department, Faculty of Medicine, University of Antwerp
| | - Dionicia Gamboa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia
| | - Christopher Delgado-Ratto
- Malaria Research group (MaRch), Global Health Institute, Family Medicine and Population Health department, Faculty of Medicine, University of Antwerp
| |
Collapse
|
12
|
Amaral LC, Salazar YEAR, de Alvarenga DAM, de Pina-Costa A, Nunes AJD, de Souza Junior JC, Gonçalves GHP, Hirano ZMB, Moreira SB, Pissinatti A, Daniel-Ribeiro CT, de Sousa TN, Alves de Brito CF. Detection of Plasmodium simium gametocytes in non-human primates from the Brazilian Atlantic Forest. Malar J 2023; 22:170. [PMID: 37268984 DOI: 10.1186/s12936-023-04601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Plasmodium species of non-human primates (NHP) are of great interest because they can naturally infect humans. Plasmodium simium, a parasite restricted to the Brazilian Atlantic Forest, was recently shown to cause a zoonotic outbreak in the state of Rio de Janeiro. The potential of NHP to act as reservoirs of Plasmodium infection presents a challenge for malaria elimination, as NHP will contribute to the persistence of the parasite. The aim of the current study was to identify and quantify gametocytes in NHP naturally-infected by P. simium. METHODS Whole blood samples from 35 NHP were used in quantitative reverse transcription PCR (RT-qPCR) assays targeting 18S rRNA, Pss25 and Pss48/45 malaria parasite transcripts. Absolute quantification was performed in positive samples for 18S rRNA and Pss25 targets. Linear regression was used to compare the quantification cycle (Cq) and the Spearman's rank correlation coefficient was used to assess the correlation between the copy numbers of 18S rRNA and Pss25 transcripts. The number of gametocytes/µL was calculated by applying a conversion factor of 4.17 Pss25 transcript copies per gametocyte. RESULTS Overall, 87.5% of the 26 samples, previously diagnosed as P. simium, were positive for 18S rRNA transcript amplification, of which 13 samples (62%) were positive for Pss25 transcript amplification and 7 samples (54%) were also positive for Pss48/45 transcript. A strong positive correlation was identified between the Cq of the 18S rRNA and Pss25 and between the Pss25 and Pss48/45 transcripts. The 18S rRNA and Pss25 transcripts had an average of 1665.88 and 3.07 copies/µL, respectively. A positive correlation was observed between the copy number of Pss25 and 18S rRNA transcripts. Almost all gametocyte carriers exhibited low numbers of gametocytes (< 1/µL), with only one howler monkey having 5.8 gametocytes/µL. CONCLUSIONS For the first time, a molecular detection of P. simium gametocytes in the blood of naturally-infected brown howler monkeys (Alouatta guariba clamitans) was reported here, providing evidence that they are likely to be infectious and transmit P. simium infection, and, therefore, may act as a reservoir of malaria infection for humans in the Brazilian Atlantic Forest.
Collapse
Affiliation(s)
- Lara Cotta Amaral
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | | | - Denise Anete Madureira de Alvarenga
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Anielle de Pina-Costa
- Laboratório de Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Departamento de Doenças Infecciosas e Parasitárias, Escola de Enfermagem Aurora de Afonso Costa, Universidade Federal Fluminense, Niterói, Brazil
| | - Ana Júlia Dutra Nunes
- Programa de Conservação do Bugio Ruivo, Joinville, Brazil
- Centro de Pesquisas Biológicas de Indaial, Indaial, Brazil
- Universidade Regional de Blumenau - FURB, Blumenau, Brazil
| | - Júlio Cesar de Souza Junior
- Centro de Pesquisas Biológicas de Indaial, Indaial, Brazil
- Universidade Regional de Blumenau - FURB, Blumenau, Brazil
| | | | - Zelinda Maria Braga Hirano
- Centro de Pesquisas Biológicas de Indaial, Indaial, Brazil
- Universidade Regional de Blumenau - FURB, Blumenau, Brazil
| | | | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro/INEA, Guapimirim, Brazil
- Centro Universitário Serra dos Órgãos, Teresópolis, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Taís Nóbrega de Sousa
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Cristiana Ferreira Alves de Brito
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil.
| |
Collapse
|
13
|
Barros LB, Calil PR, Rodrigues PT, Tonini J, Fontoura PS, Sato PM, Cardoso MA, Russo MWDAA, Cavasini CE, Fernandes ARDJ, Ferreira MU. Clinically silent Plasmodium vivax infections in native Amazonians of northwestern Brazil: acquired immunity or low parasite virulence? Mem Inst Oswaldo Cruz 2022; 117:e220175. [PMID: 36542002 PMCID: PMC9756956 DOI: 10.1590/0074-02760220175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Malaria remains common among native Amazonians, challenging Brazil's elimination efforts. OBJECTIVES We examined the epidemiology of malaria in riverine populations of the country's main hotspot - the upper Juruá Valley in Acre state, close to the Brazil-Peru border, where Plasmodium vivax accounts for > 80% of cases. METHODS Participants (n = 262) from 10 villages along the Azul River were screened for malaria parasites by microscopy and genus-specific, cytochrome b (cytb) gene-based polymerase chain reaction. Positive samples were further tested with quantitative TaqMan assays targeting P. vivax- and P. falciparum-specific cytb domains. We used multiple logistic regression analysis to identify independent correlates of P. vivax infection. FINDINGS Microscopy detected only one P. vivax and two P. falciparum infections. TaqMan assays detected 33 P. vivax infections (prevalence, 11.1%), 78.1% of which asymptomatic, with a median parasitaemia of 34/mL. Increasing age, male sex and use of insecticide-treated bed nets were significant predictors of elevated P. vivax malaria risk. Children and adults were similarly likely to remain asymptomatic once infected. MAIN CONCLUSIONS Our findings are at odds with the hypothesis of age-related clinical immunity in native Amazonians. The low virulence of local parasites is suggested as an alternative explanation for subclinical infections in isolated populations.
Collapse
Affiliation(s)
- Luiza Barbosa Barros
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | - Priscila Rodrigues Calil
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | - Priscila Thihara Rodrigues
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | - Juliana Tonini
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | - Pablo Secato Fontoura
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | - Priscila Moraes Sato
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Nutrição, São Paulo, SP, Brasil
| | - Marly Augusto Cardoso
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Nutrição, São Paulo, SP, Brasil
| | | | - Carlos Eduardo Cavasini
- Faculdade de Medicina de São José do Rio Preto, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, São José do Rio Preto, SP, Brasil
| | | | - Marcelo Urbano Ferreira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil,Universidade Nova de Lisboa, Instituto de Higiene e Medicina Tropical, Lisboa, Portugal,+ Corresponding author: /
| |
Collapse
|
14
|
Habtamu K, Petros B, Yan G. Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication. Trop Dis Travel Med Vaccines 2022; 8:27. [PMID: 36522671 PMCID: PMC9753897 DOI: 10.1186/s40794-022-00185-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Initiatives to eradicate malaria have a good impact on P. falciparum malaria worldwide. P. vivax, however, still presents significant difficulties. This is due to its unique biological traits, which, in comparison to P. falciparum, pose serious challenges for malaria elimination approaches. P. vivax's numerous distinctive characteristics and its ability to live for weeks to years in liver cells in its hypnozoite form, which may elude the human immune system and blood-stage therapy and offer protection during mosquito-free seasons. Many malaria patients are not fully treated because of contraindications to primaquine use in pregnant and nursing women and are still vulnerable to P. vivax relapses, although there are medications that could radical cure P. vivax. Additionally, due to CYP2D6's highly variable genetic polymorphism, the pharmacokinetics of primaquine may be impacted. Due to their inability to metabolize PQ, some CYP2D6 polymorphism alleles can cause patients to not respond to treatment. Tafenoquine offers a radical treatment in a single dose that overcomes the potentially serious problem of poor adherence to daily primaquine. Despite this benefit, hemolysis of the early erythrocytes continues in individuals with G6PD deficiency until all susceptible cells have been eliminated. Field techniques such as microscopy or rapid diagnostic tests (RDTs) miss the large number of submicroscopic and/or asymptomatic infections brought on by reticulocyte tropism and the low parasitemia levels that accompany it. Moreover, P. vivax gametocytes grow more quickly and are much more prevalent in the bloodstream. P. vivax populations also have a great deal of genetic variation throughout their genome, which ensures evolutionary fitness and boosts adaptation potential. Furthermore, P. vivax fully develops in the mosquito faster than P. falciparum. These characteristics contribute to parasite reservoirs in the human population and facilitate faster transmission. Overall, no genuine chance of eradication is predicted in the next few years unless new tools for lowering malaria transmission are developed (i.e., malaria elimination and eradication). The challenging characteristics of P. vivax that impede the elimination and eradication of malaria are thus discussed in this article.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Menelik II Medical & Health Science College, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
15
|
Torres K, Ferreira MU, Castro MC, Escalante AA, Conn JE, Villasis E, da Silva Araujo M, Almeida G, Rodrigues PT, Corder RM, Fernandes ARJ, Calil PR, Ladeia WA, Garcia-Castillo SS, Gomez J, do Valle Antonelli LR, Gazzinelli RT, Golenbock DT, Llanos-Cuentas A, Gamboa D, Vinetz JM. Malaria Resilience in South America: Epidemiology, Vector Biology, and Immunology Insights from the Amazonian International Center of Excellence in Malaria Research Network in Peru and Brazil. Am J Trop Med Hyg 2022; 107:168-181. [PMID: 36228921 PMCID: PMC9662219 DOI: 10.4269/ajtmh.22-0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
The 1990s saw the rapid reemergence of malaria in Amazonia, where it remains an important public health priority in South America. The Amazonian International Center of Excellence in Malaria Research (ICEMR) was designed to take a multidisciplinary approach toward identifying novel malaria control and elimination strategies. Based on geographically and epidemiologically distinct sites in the Northeastern Peruvian and Western Brazilian Amazon regions, synergistic projects integrate malaria epidemiology, vector biology, and immunology. The Amazonian ICEMR's overarching goal is to understand how human behavior and other sociodemographic features of human reservoirs of transmission-predominantly asymptomatically parasitemic people-interact with the major Amazonian malaria vector, Nyssorhynchus (formerly Anopheles) darlingi, and with human immune responses to maintain malaria resilience and continued endemicity in a hypoendemic setting. Here, we will review Amazonian ICEMR's achievements on the synergies among malaria epidemiology, Plasmodium-vector interactions, and immune response, and how those provide a roadmap for further research, and, most importantly, point toward how to achieve malaria control and elimination in the Americas.
Collapse
Affiliation(s)
- Katherine Torres
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marcia C. Castro
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Ananias A. Escalante
- Department of Biology and Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, New York
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Elizabeth Villasis
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Gregorio Almeida
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Rodrigo M. Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Anderson R. J. Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Priscila R. Calil
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Winni A. Ladeia
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Stefano S. Garcia-Castillo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joaquin Gomez
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Ricardo T. Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Douglas T. Golenbock
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Alejandro Llanos-Cuentas
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
- Address correspondence to Joseph M. Vinetz, Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, 25 York St., Winchester 403D, PO Box 802022, New Haven, CT 06520. E-mail:
| |
Collapse
|
16
|
Villasis E, Garcia Castillo SS, Guzman M, Torres J, Gomez J, Garro K, Cordova AM, Reategui C, Abanto C, Vinetz J, Gamboa D, Torres K. Epidemiological characteristics of P. vivax asymptomatic infections in the Peruvian Amazon. Front Cell Infect Microbiol 2022; 12:901423. [PMID: 36118037 PMCID: PMC9471197 DOI: 10.3389/fcimb.2022.901423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Herein, we tested the hypothesis that Asymptomatic P. vivax (Pv) infected individuals (Asym) feature different epidemiological, clinical and biochemical characteristics, as well as hematological parameters, potentially predictive of clinical immunity in comparison to symptomatic Pv infected individuals (Sym). Methodology Between 2018 - 2021, we conducted 11 population screenings (PS, Day 0 (D0)) in 13 different riverine communities around Iquitos city, in the Peruvian Amazon, to identify Pv Sym and Asym individuals. A group of these individuals agreed to participate in a nested case - control study to evaluate biochemical and hematological parameters. Pv Asym individuals did not present common malaria symptoms (fever, headache, and chills), had a positive/negative microscopy result, a positive qPCR result, reported no history of antimalarial treatment during the last month, and were followed-up weekly until Day 21 (D21). Control individuals, had a negative malaria microscopy and qPCR result, no history of antimalarial treatment or malaria infections during the last three years, and no history of comorbidities or chronic infections. Results From the 2159 individuals screened during PS, data revealed a low but heterogeneous Pv prevalence across the communities (11.4%), where most infections were Asym (66.7%) and submicroscopic (82.9%). A total of 29 Asym, 49 Sym, and 30 control individuals participated in the nested case - control study (n=78). Ten of the individuals that were initially Asym at D0, experienced malaria symptoms during follow up and therefore, were included in the Sym group. 29 individuals remained Asym throughout all follow-ups. High levels of eosinophils were found in Asym individuals in comparison to Sym and controls. Conclusion For the first-time, key epidemiological, hematological, and biochemical features are reported from Pv Asym infections from the Peruvian Amazon. These results should be considered for the design and reshaping of malaria control measures as the country moves toward malaria elimination.
Collapse
Affiliation(s)
- Elizabeth Villasis
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- *Correspondence: Elizabeth Villasis,
| | - Stefano S. Garcia Castillo
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mitchel Guzman
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR Amazonia y Enfermedades Emergentes, Universidad Peruana Cayetano Heredia, Iquitos, Peru
| | - Julian Torres
- Laboratorio ICEMR Amazonia y Enfermedades Emergentes, Universidad Peruana Cayetano Heredia, Iquitos, Peru
| | - Joaquin Gomez
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katherine Garro
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ana Maria Cordova
- Laboratorio ICEMR Amazonia y Enfermedades Emergentes, Universidad Peruana Cayetano Heredia, Iquitos, Peru
| | - Carolina Reategui
- Laboratorio ICEMR Amazonia y Enfermedades Emergentes, Universidad Peruana Cayetano Heredia, Iquitos, Peru
| | - Caroline Abanto
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph Vinetz
- Laboratorio ICEMR−Amazonia y Enfermedades Infecciosas Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katherine Torres
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
17
|
Zimmerman RH, Galardo AKR, Lounibos LP, Galardo C, Bahar AK, van Santen E. Vectorial capacities for malaria in eastern Amazonian Brazil depend on village, vector species, season, and parasite species. Malar J 2022; 21:237. [PMID: 35974410 PMCID: PMC9382821 DOI: 10.1186/s12936-022-04255-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The vector species in the Amazon River Basin are regionally and locally diverse, which makes it imperative to understand and compare their roles in malaria transmission to help select appropriate methods of intervention and evaluation. The major aim of this study was to measure the vectorial capacity of five Anopheles species in three neighbouring villages, for two Plasmodium parasite species affecting humans. METHODS From 32 consecutive months of sampling in three villages, 1.5-7.0 km apart, on the Matapi River, Amapá State, Brazil, vectorial capacities (C) were estimated as time series for An. darlingi, An. marajoara, An. nuneztovari, An. triannulatus, and An. intermedius. Monthly parity measurements for each vector species were used to estimate daily survivorship and compared to estimates of survivorship from mark-release-recapture experiments. Gonotrophic cycle lengths were estimated through a time-series analysis of parity data, and durations of sporogony at study site temperatures for the two malaria parasite species were estimated from previous literature. RESULTS The absolute abundances of five vector species were strongly tracked by the spatial variation in C among villages. Temporally, C varied between wet and dry seasons, with An. darlingi, An. marajoara and An. triannulatus exhibiting higher C in the dry season from August to December, and An. nuneztovari its highest C early in the rainy season in January and February. Anopheles intermedius exhibited higher C in the rainy season from April to June than in the dry season. Significant differences in overall survival for each independent variable, and a significant difference in C between wet and dry seasons, among villages, and among vector species for both Plasmodium falciparum and Plasmodium vivax. A generalized linear mixed model (GLMM) analysis by village showed significant effects of vector species on C in only one village, but significant effects of parasite species in all three. Although the GLMM analysis detected no significant parasite x vector species interaction effects on C, effects on C of spline regressions of C dynamics x vector species interactions were significant in all villages. CONCLUSIONS These detailed analyses of entomological and parasitological variables revealed hidden complexities of malaria epidemiology at local scales in neighbouring riverine villages of the Amazon Region.
Collapse
Affiliation(s)
- Robert H. Zimmerman
- Florida Medical Entomology Laboratory, University of Florida/IFAS, 200 9th Street SE, Vero Beach, FL 32962 USA
| | - Allan K. R. Galardo
- Laboratório de Entomologia Médica, Instituto de Pesquisas Científicas E Tecnológicas Do Estado de Amapá-IEPA, Campus do IEPA da Fazendinha-CEP, Macapá, 68912-250 Brazil
| | - L Philip Lounibos
- Florida Medical Entomology Laboratory, University of Florida/IFAS, 200 9th Street SE, Vero Beach, FL 32962 USA
| | - Clicia Galardo
- Laboratório de Entomologia Médica, Instituto de Pesquisas Científicas E Tecnológicas Do Estado de Amapá-IEPA, Campus do IEPA da Fazendinha-CEP, Macapá, 68912-250 Brazil
| | | | - Edzard van Santen
- Agronomy Department and Statistical Consulting Unit, University of Florida/IFAS, Gainesville, FL 32611 USA
| |
Collapse
|
18
|
Llanos-Cuentas A, Manrrique P, Rosas-Aguirre A, Herrera S, Hsiang MS. Tafenoquine for the treatment of Plasmodium vivax malaria. Expert Opin Pharmacother 2022; 23:759-768. [PMID: 35379070 DOI: 10.1080/14656566.2022.2058394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Plasmodium vivax malaria causes significant disease burden worldwide, especially in Latin America, Southeast Asia, and Oceania. P. vivax is characterized by the production of liver hypnozoites that cause clinical relapses upon periodic activation. Primaquine, an 8-aminoquinoline drug, has been the standard of care for decades to treat liver-stage P. vivax malaria; however, it requires long treatment regimens (one to two weeks) that lead to poor adherence and thus clinical relapses. Tafenoquine (TFQ), a newly available and efficacious single-dose 8-aminoquinoline, aims to address this challenge. Safe administration is possible when paired with the use of glucose-6-phosphate dehydrogenase (G6PD) diagnostics to prevent 8-aminoquinoline-induced hemolysis in patients with underlying G6PD deficiency (G6PDd). AREAS COVERED In this review, the authors present the recent literature regarding the pharmacology, efficacy, safety, and tolerability of TFQ and highlight regional differences in these areas. The authors also discuss the potential for TFQ, complemented with primaquine PQ and effective screening for G6PDd, to improve P. vivax clinical management and facilitate targeted mass drug administration in communities to decrease transmission. EXPERT OPINION Clinical studies show therapeutic efficacy of TFQ as well as a good performance in terms of safety and tolerability. Additional research regarding the effectiveness and safety TFQ in malaria elimination strategies such as targeted or mass drug administration are needed.
Collapse
Affiliation(s)
| | - Paulo Manrrique
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, PA, USA
| | - Angel Rosas-Aguirre
- Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sonia Herrera
- Department of Epidemiology, Division of Infectious Diseases and Global Health, Department of Pediatrics, Division of Pediatric Infectious Diseases, University of California San Francisco, San Francisco, CA, United States
| | - Michelle S Hsiang
- Department of Epidemiology, Division of Infectious Diseases and Global Health, Department of Pediatrics, Division of Pediatric Infectious Diseases, University of California San Francisco, San Francisco, CA, United States.,Department of Epidemiology and Biostatistics, University of California San Francisco (UCSF), San Francisco, CA, USA.,Department of PediatricsUniversity of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|