1
|
Zhu W, Wang D, Li P, Deng H, Deng Z. Advances in Wastewater-Based Epidemiology for Pandemic Surveillance: Methodological Frameworks and Future Perspectives. Microorganisms 2025; 13:1169. [PMID: 40431340 DOI: 10.3390/microorganisms13051169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/18/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Wastewater-based epidemiology (WBE) has emerged as a transformative approach for community-level health monitoring, particularly during the COVID-19 pandemic. This review critically examines the methodological framework of WBE systems through the following three core components: (1) sampling strategies that address spatial-temporal variability in wastewater systems, (2) comparative performance of different platforms in pathogen detection, and (3) predictive modeling integrating machine learning approaches. We systematically analyze how these components collectively overcome the limitations of conventional surveillance methods through early outbreak detection, asymptomatic case identification, and population-level trend monitoring. While highlighting technical breakthroughs in viral concentration methods and variant tracking through sequencing, the review also identifies persistent challenges, including data standardization, cost-effectiveness concerns in resource-limited settings, and ethical considerations in public health surveillance. Drawing insights from global implementation cases, we propose recommendations for optimizing each operational phase and discuss emerging applications beyond pandemic response. This review highlights WBE as an indispensable tool for modern public health, whose methodological refinements and cross-disciplinary integration are critical for transforming pandemic surveillance from reactive containment to proactive population health management.
Collapse
Affiliation(s)
- Weihe Zhu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Hebei Key Laboratory for Emerging Contaminants Control and Risk Management, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | | | - Pengsong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Hebei Key Laboratory for Emerging Contaminants Control and Risk Management, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | | | | |
Collapse
|
2
|
Lois M, Polo D, Pérez del Molino ML, Coira A, Aguilera A, Romalde JL. Monitoring the Emergence of SARS-CoV-2 VOCs in Wastewater and Clinical Samples-A One-Year Study in Santiago de Compostela (Spain). Viruses 2025; 17:489. [PMID: 40284932 PMCID: PMC12030845 DOI: 10.3390/v17040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Wastewater surveillance has become a valuable tool to monitor the emergence of SARS-CoV-2 variants of concern (VOCs) at the community level. In this study, we aimed to evaluate the presence of Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1617.2), and Omicron (B.1.1.529) VOCs in samples from the inlet of a wastewater treatment plant (WWTP) as well as from two different sewer interceptors (SI-1 and SI-2) from the urban sewage system in Santiago de Compostela (Galicia, NW of Spain) throughout 2021 and January 2022. For this purpose, detection and quantification of the four VOCs was performed using four duplex SARS-CoV-2 allelic discrimination RT-qPCR assays, targeting the S-gene. An N1 RT-qPCR gene assay was used as a reference for the presence of SARS-CoV-2 RNA in wastewater samples. All VOCs were detected in wastewater samples. Alpha, Beta, Delta, and Omicron VOCs were detected in 45.7%, 7.5%, 66.7%, and 72.7% of all samples, respectively. Alpha VOC was dominant during the first part of the study, whereas Delta and Omicron detection peaks were observed in May-June and December 2021, respectively. Some differences were observed among the results obtained for the two city sectors studied, which could be explained by the differences in the characteristics of the population between them. Wastewater-based epidemiology allowed us to track the early circulation and emergence of SARS-CoV-2 variants at a local level, and our results are temporally concordant with clinical data and epidemiological findings reported by the health authorities.
Collapse
Affiliation(s)
- Marta Lois
- CRETUS, Departament de Microbiología y Parasitología, CIBUS-Faculty de Biología, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (D.P.)
| | - David Polo
- CRETUS, Departament de Microbiología y Parasitología, CIBUS-Faculty de Biología, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (D.P.)
| | - María Luisa Pérez del Molino
- Servicio de Microbiología, Hospital Clínico University de Santiago, 15706 Santiago de Compostela, Spain; (M.L.P.d.M.); (A.C.); (A.A.)
| | - Amparo Coira
- Servicio de Microbiología, Hospital Clínico University de Santiago, 15706 Santiago de Compostela, Spain; (M.L.P.d.M.); (A.C.); (A.A.)
| | - Antonio Aguilera
- Servicio de Microbiología, Hospital Clínico University de Santiago, 15706 Santiago de Compostela, Spain; (M.L.P.d.M.); (A.C.); (A.A.)
| | - Jesús L. Romalde
- CRETUS, Departament de Microbiología y Parasitología, CIBUS-Faculty de Biología, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (D.P.)
| |
Collapse
|
3
|
Kabir MP, Mercier É, Eid W, Plaza-Diaz J, D'Aoust PM, Landgraff C, Goodridge L, Lawal OU, Wan S, Hegazy N, Nguyen T, Wong C, Thakali O, Pisharody L, Stephenson S, Graber TE, Delatolla R. Diagnostic performance of allele-specific RT-qPCR and genomic sequencing in wastewater-based surveillance of SARS-CoV-2. ECO-ENVIRONMENT & HEALTH 2025; 4:100135. [PMID: 40226805 PMCID: PMC11992540 DOI: 10.1016/j.eehl.2025.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 04/07/2025]
Abstract
Clinical genomic surveillance is regarded as the gold standard for monitoring SARS-CoV-2 variants globally. However, as the pandemic wanes, reduced testing poses a risk to effectively tracking the trajectory of these variants within populations. Wastewater-based genomic surveillance that estimates variant frequency based on its defining set of alleles derived from clinical genomic surveillance has been successfully implemented. This method has its challenges, and allele-specific (AS) RT-qPCR or RT-dPCR may instead be used as a complementary method for estimating variant prevalence. Demonstrating equivalent performance of these methods is a prerequisite for their continued application in current and future pandemics. Here, we compared single-allele frequency using AS-RT-qPCR, to single-allele or haplotype frequency estimations derived from amplicon-based sequencing to estimate variant prevalence in wastewater during emergent and prevalent periods of Delta, Omicron, and two sub-lineages of Omicron. We found that all three methods of frequency estimation were concordant and contained sufficient information to describe the trajectory of variant prevalence. We further confirmed the accuracy of these methods by quantifying the diagnostic performance through Youden's index. The Youden's index of AS-RT-qPCR was reduced during the low prevalence period of a particular variant while the same allele in sequencing was negatively influenced due to insufficient read depth. Youden's index of haplotype-based calls was negatively influenced when alleles were common between variants. Coupling AS-RT-qPCR with sequencing can overcome the shortcomings of either platform and provide a comprehensive picture to the stakeholders for public health responses.
Collapse
Affiliation(s)
- Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Élisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Julio Plaza-Diaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Patrick M. D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Chrystal Landgraff
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Opeyemi U. Lawal
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Tram Nguyen
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Chandler Wong
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Tyson E. Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Lee J, Xiang K, Au E, Sarabi S, Acosta N, Bhatnagar S, Van Doorn J, Bertazzon S, Conly JM, Rennert-May E, Pitout JDD, Lee BE, Pang X, O'Grady C, Frankowski K, Hubert CRJ, Parkins MD. Longitudinal monitoring of sewershed resistomes in socioeconomically diverse urban neighborhoods. COMMUNICATIONS MEDICINE 2025; 5:7. [PMID: 39775111 PMCID: PMC11707339 DOI: 10.1038/s43856-024-00729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Understanding factors associated with antimicrobial resistance (AMR) distribution across populations is a necessary step in planning mitigation measures. While associations between AMR and socioeconomic-status (SES), including employment and education have been increasingly recognized in low- and middle-income settings, connections are less clear in high-income countries where SES remains an important influence on other health outcomes. METHODS We explored the relationship between SES and AMR in Calgary, Canada using spatially-resolved wastewater-based surveillance of resistomes detected by metagenomics across eight socio-economically diverse urban neighborhoods. Resistomes were established by shotgun-sequencing of wastewater pellets, and qPCR of targeted-AMR genes. SES status was established using 2021 Canadian census data. Conducting this comparison during the height of COVID-related international travel restrictions (Dec. 2020-Oct. 2021) allowed the hypotheses linking SES and AMR to be assessed with limited confounding. These were compared with sewage metagenomes from 244 cities around the world, linked with Human Development Index (HDI). RESULTS Wastewater metagenomes from Calgary's socioeconomically diverse neighborhoods exhibit highly similar resistomes, with no quantitative differences (p > 0.05), low Bray-Curtis dissimilarity, and no significant correlations with SES. By comparison, dissimilarity is observed between globally-sourced resistomes (p < 0.05), underscoring the homogeneity of resistomes in Calgary's sub-populations. The analysis of globally-sourced resistomes alongside Calgary's resistome further reveals lower AMR burden in Calgary relative to other cities around the world. This is particularly pronounced for the most clinically-relevant AMR genes (e.g., beta-lactamases, macrolide-lincosamide-streptogramin). CONCLUSIONS This work showcases the effectiveness of inclusive and comprehensive wastewater-based surveillance for exploring the interplay between SES and AMR.
Collapse
Affiliation(s)
- Jangwoo Lee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Kevin Xiang
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Emily Au
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Shahrzad Sarabi
- Department of Geography, University of Calgary, Calgary, Canada
| | - Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Srijak Bhatnagar
- Department of Biological Sciences, University of Calgary, Calgary, Canada
- Faculty of Science and Technology, Athabasca University, Athabasca, Alberta, Canada
| | - Jennifer Van Doorn
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | | | - John M Conly
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Department of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
| | - Elissa Rennert-May
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Department of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, Canada
| | - Johann D D Pitout
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
| | - Bonita E Lee
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Women & Children's Health Research Institute; Li Ka Shing Institute of Virology, Edmonton, Alberta, Canada
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Precision Laboratories, Public Health Laboratory, Alberta Health Services, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Christine O'Grady
- Advancing Canadian Water Assets, University of Calgary, Calgary, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Canada
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
- Department of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada.
- O'Brien Institute for Public Health, University of Calgary, Calgary, Canada.
- Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, Canada.
| |
Collapse
|
5
|
Rajput V, Pramanik R, Nannaware K, Malik V, Matra S, Kumar S, Joshi S, Kadam P, Bhalerao U, Tupekar M, Deshpande D, Shah P, Sangewar P, Gogate N, Boargaonkar R, Patil D, Kale S, Bhalerao A, Jain N, Shashidhara LS, Kamble S, Dastager S, Karmodiya K, Dharne M. Wastewater surveillance in post-omicron silent phase uncovers silent waves and cryptic transmission of SARS-CoV-2 variants; a yearlong study in Western India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176833. [PMID: 39396788 DOI: 10.1016/j.scitotenv.2024.176833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Due to reduced clinical testing and evolving monitoring challenges, tracking the emergence and evolution of SARS-CoV-2 variants has become increasingly complex. To address this gap, we investigated the utility of wastewater-based epidemiology (WBE) as a complementary tool for SARS-CoV-2 variant surveillance in sewage treatment plants (STPs) across Pune, India. We analyzed 1128 wastewater samples collected between May 2022 and May 2023, using Illumina and nanopore sequencing techniques for robust detection and variant characterization. The study revealed critical findings, including "silent waves" with elevated viral load despite minimal clinical cases, suggesting potential cryptic transmission. These silent waves aligned with the dominance of Omicron BA.2 in June-July 2022 and emergence of the recombinant XBB clade in December 2022. Importantly, sequencing detected XBB lineages 130-253 days before their initial clinical identification, demonstrating its significant advantage in early variant detection. Furthermore, wastewater analysis revealed a higher degree of lineage diversity compared to clinical data, indicating its ability to capture a broader spectrum of circulating variants. The BA.2.86.X was identified 103 days prior to its clinical detection in Pune, highlighting WBE's remarkable lead time. Surprisingly, BF.7.X and BQ.X fragments were also detected in wastewater but not yet reported clinically. These findings demonstrate the remarkable value of WBE as an early warning tool for SARS-CoV-2 variants ahead of time. By revealing silent waves, enabling early variant detection, and capturing a broader viral spectrum, WBE effort could empower public health officials to make informed decisions and implement effective strategies to mitigate future waves, especially in contexts with declining clinical testing.
Collapse
Affiliation(s)
- Vinay Rajput
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Rinka Pramanik
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Kiran Nannaware
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, Maharashtra, India
| | - Vinita Malik
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, Maharashtra, India
| | - Sejal Matra
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, Maharashtra, India
| | - Shubham Kumar
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, Maharashtra, India
| | - Sai Joshi
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, Maharashtra, India
| | - Pradnya Kadam
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 41108, Maharashtra, India
| | - Unnati Bhalerao
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 41108, Maharashtra, India
| | - Manisha Tupekar
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 41108, Maharashtra, India
| | - Dipti Deshpande
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 41108, Maharashtra, India
| | - Priyanki Shah
- The Pune Knowledge Cluster (PKC), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
| | - Poornima Sangewar
- The Pune Knowledge Cluster (PKC), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
| | - Niharika Gogate
- The Pune Knowledge Cluster (PKC), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
| | | | - Dhawal Patil
- Ecosan Services Foundation (ESF), Pune 411030, Maharashtra, India
| | - Saurabh Kale
- Ecosan Services Foundation (ESF), Pune 411030, Maharashtra, India
| | - Asim Bhalerao
- Fluid Robotics Private Limited (FRPL), Pune 411052, Maharashtra, India
| | - Nidhi Jain
- Fluid Robotics Private Limited (FRPL), Pune 411052, Maharashtra, India
| | - L S Shashidhara
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 41108, Maharashtra, India; The Pune Knowledge Cluster (PKC), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India; National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research Bellary Road, Bangalore 560065, Karnataka, India
| | - Sanjay Kamble
- Chemical Engineering and Process Development (CEPD) Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Syed Dastager
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 41108, Maharashtra, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
6
|
Girón‐Guzmán I, Sánchez G, Pérez‐Cataluña A. Tracking epidemic viruses in wastewaters. Microb Biotechnol 2024; 17:e70020. [PMID: 39382399 PMCID: PMC11462645 DOI: 10.1111/1751-7915.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Classical epidemiology relies on incidence, mortality rates, and clinical data from individual testing, which can be challenging for many countries. Therefore, innovative, flexible, cost-effective, and scalable surveillance techniques are needed. Wastewater-based epidemiology (WBE) has emerged as a highly powerful tool in this regard. WBE analyses substances excreted in human fluids and faeces that enter the sewer system. This approach provides insights into community health status and lifestyle habits. WBE serves as an early warning system for viral surveillance, detecting the emergence of new pathogens, changes in incidence rates, identifying future trends, studying outbreaks, and informing the performance of action plans. While WBE has long been used to study different viruses such as poliovirus and norovirus, its implementation has surged due to the pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2. This has led to the establishment of wastewater surveillance programmes at international, national, and community levels, many of which remain operational. Furthermore, WBE is increasingly applied to study other pathogens, including antibiotic resistance bacteria, parasites, fungi, and emerging viruses, with new methodologies being developed. Consequently, the primary focus now is on creating international frameworks to enhance states' preparedness against future health risks. However, there remains considerable work to be done, particularly in integrating the principles of One Health into epidemiological surveillance to acknowledge the interconnectedness of humans, animals, and the environment in pathogen transmission. Thus, a broader approach to analysing the three pillars of One Health must be developed, transitioning from WBE to wastewater and environmental surveillance, and establishing this approach as a routine practice in public health.
Collapse
Affiliation(s)
- Inés Girón‐Guzmán
- Environmental Virology and Food Sefety Lab (VISAFELab), Institute of Agrochemistry and Food Technology, IATA‐CSICPaternaValenciaSpain
| | - Gloria Sánchez
- Environmental Virology and Food Sefety Lab (VISAFELab), Institute of Agrochemistry and Food Technology, IATA‐CSICPaternaValenciaSpain
| | - Alba Pérez‐Cataluña
- Environmental Virology and Food Sefety Lab (VISAFELab), Institute of Agrochemistry and Food Technology, IATA‐CSICPaternaValenciaSpain
| |
Collapse
|
7
|
Othman I, Bisseux M, Helmi A, Hamdi R, Nahdi I, Slama I, Mastouri M, Bailly JL, Aouni M. Tracking SARS-CoV-2 and its variants in wastewater in Tunisia. JOURNAL OF WATER AND HEALTH 2024; 22:1347-1356. [PMID: 39212274 DOI: 10.2166/wh.2024.377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Wastewater-based genomic surveillance can improve community prevalence estimates and identify emerging variants of pathogens. Wastewater influents and treated effluents from six wastewater treatment plants (WWTPs) in Tunisia were analyzed between December 2021 and July 2022. Wastewater samples were analyzed with reverse transcription solid digital PCR (RT-sdPCR) and whole-genome sequencing to determine the amount of SARS-CoV-2 RNA and assign SARS-CoV-2 lineages. The virus variants detected in wastewater samples were compared with COVID-19 prevalence data. The quantitative results in wastewater influents revealed that viral RNA concentrations at the treatment plants corroborate with locally reported clinical cases and show an increase before the increment of clinically diagnosed new COVID-19 cases between April and July 2022. Delta and Omicron variants were identified in the Tunisian wastewater. Interestingly, the presence of variant BA.5 was detected in samples prior to its inclusion as a variant of concern (VOC) by the Tunisian National Health Authorities. SARS-CoV-2 was detected in wastewater effluents, indicating that the wastewater treatment techniques used in the majority of Tunisian WWTPs are inefficient in removing the virus traces. This study reports the first identification of SARS-CoV-2 VOCs in Tunisian wastewater samples.
Collapse
Affiliation(s)
- Ines Othman
- Faculty of Pharmacy, University of Monastir, LR99-ES27, Monastir, Tunisia E-mail:
| | - Maxime Bisseux
- CHU Clermont-Ferrand, 3IHP, Virology Laboratory, National Reference Centre for Enteroviruses and Parechoviruses-Associated Laboratory, F-63003 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS 6023-LMGE, EPIE, F-63001 Clermont-Ferrand, France
| | - Amna Helmi
- Directorate of Milieu Hygiene and Environmental Protection at the Health Ministry, Tunis, Tunisia
| | - Rawand Hamdi
- Faculty of Pharmacy, University of Monastir, LR99-ES27, Monastir, Tunisia
| | - Imen Nahdi
- African Biotechnology Society - ABS Advanced, Tunis, Tunisia
| | - Ichrak Slama
- Faculty of Pharmacy, University of Monastir, LR99-ES27, Monastir, Tunisia
| | - Maha Mastouri
- Faculty of Pharmacy, University of Monastir, LR99-ES27, Monastir, Tunisia; Laboratory of Microbiology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Jean Luc Bailly
- CHU Clermont-Ferrand, 3IHP, Virology Laboratory, National Reference Centre for Enteroviruses and Parechoviruses-Associated Laboratory, F-63003 Clermont-Ferrand, France
| | - Mahjoub Aouni
- Faculty of Pharmacy, University of Monastir, LR99-ES27, Monastir, Tunisia
| |
Collapse
|
8
|
Wurtzer S, Duvivier M, Accrombessi H, Levert M, Richard E, Moulin L. Assessing RNA integrity by digital RT-PCR: Influence of extraction, storage, and matrices. Biol Methods Protoc 2024; 9:bpae053. [PMID: 39450241 PMCID: PMC11500190 DOI: 10.1093/biomethods/bpae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 10/26/2024] Open
Abstract
The development of high-throughput sequencing has greatly improved our knowledge of microbial diversity in aquatic environments and its evolution in highly diverse ecosystems. Relevant microbial diversity description based on high-throughput sequencing relies on the good quality of the nucleic acid recovered. Indeed, long genetic fragments are more informative for identifying mutation combinations that characterize variants or species in complex samples. This study describes a new analytical method based on digital Polymerase Chain Reaction (PCR) partitioning technology for assessing the fragmentation of nucleic acid and more specifically viral RNA. This method allows us to overcome limits associated with hydrolysis probe-based assay by focusing on the distance between different amplicons, and not, as usual, on the size of amplicons. RNA integrity can thus be determined as a new fragmentation index, the so-called Fragment size 50. The application of this method has provided information on issues that are inherent in environmental analyses, such as the storage impact of raw samples or extracted RNA, extraction methods, and the nature of the sample on the integrity of viral RNA. Finally, the estimation of fragment size by digital PCR (dPCR) showed a very strong similarity with the fragment size sequenced using Oxford Nanopore Technology. In addition to enabling objective improvements in analytical methods, this approach could become a systematic quality control prior to any long-read sequencing, avoiding insufficiently productive sequencing runs or biases in the representativeness of sequenced fragments.
Collapse
Affiliation(s)
- Sebastien Wurtzer
- Research & Development Department, Eau de Paris. DRDQE, FR-9400, France
| | - Mathilde Duvivier
- Research & Development Department, Eau de Paris. DRDQE, FR-9400, France
| | | | - Morgane Levert
- Research & Development Department, Eau de Paris. DRDQE, FR-9400, France
- Paris Sorbonne Universite, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005, Paris, France
| | - Elise Richard
- Research & Development Department, Eau de Paris. DRDQE, FR-9400, France
| | - Laurent Moulin
- Research & Development Department, Eau de Paris. DRDQE, FR-9400, France
- Obepine SIG, Paris, FR-75000, France
| |
Collapse
|
9
|
Folkes M, Castro-Gutierrez V, Lundy L, Bajón-Fernández Y, Soares A, Jeffrey P, Hassard F. Campus source to sink wastewater surveillance of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100240. [PMID: 38774836 PMCID: PMC11106825 DOI: 10.1016/j.crmicr.2024.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
Wastewater-based surveillance (WBS) offers an aggregate, and cost-effective approach for tracking infectious disease outbreak prevalence within communities, that provides data on community health complementary to individual clinical testing. This study reports on a 16-month WBS initiative on a university campus in England, UK, assessing the presence of SARS-CoV-2 in sewers from large buildings, downstream sewer locations, raw wastewater, partially treated and treated effluents. Key findings include the detection of the Alpha (B.1.1.7) variant in wastewater, with 70 % of confirmed campus cases correlating with positive wastewater samples. Notably, ammonium nitrogen (NH4-N) levels showed a positive correlation (ρ = 0.543, p < 0.01) with virus levels at the large building scale, a relationship not observed at the sewer or wastewater treatment works (WWTW) levels due to dilution. The WWTW was compliant to wastewater standards, but the secondary treatment processes were not efficient for virus removal as SARS-CoV-2 was consistently detected in treated discharges. Tools developed through WBS can also be used to enhance traditional environmental monitoring of aquatic systems. This study provides a detailed source-to-sink evaluation, emphasizing the critical need for the widespread application and improvement of WBS. It showcases WBS utility and reinforces the ongoing challenges posed by viruses to receiving water quality.
Collapse
Affiliation(s)
- M. Folkes
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - V.M. Castro-Gutierrez
- Center for Research on Environmental Pollution (CICA), Universidad de Costa Rica, Montes de Oca, 11501, Costa Rica
| | - L. Lundy
- Department of Natural Sciences, Middlesex University, NW4 4BT, UK
| | - Y. Bajón-Fernández
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - A. Soares
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - P. Jeffrey
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - F. Hassard
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
10
|
Sutcliffe SG, Kraemer SA, Ellmen I, Knapp JJ, Overton AK, Nash D, Nissimov JI, Charles TC, Dreifuss D, Topolsky I, Baykal PI, Fuhrmann L, Jablonski KP, Beerenwinkel N, Levy JI, Olabode AS, Becker DG, Gugan G, Brintnell E, Poon AF, Valieris R, Drummond RD, Defelicibus A, Dias-Neto E, Rosales RA, Tojal da Silva I, Orfanou A, Psomopoulos F, Pechlivanis N, Pipes L, Chen Z, Baaijens JA, Baym M, Shapiro BJ. Tracking SARS-CoV-2 variants of concern in wastewater: an assessment of nine computational tools using simulated genomic data. Microb Genom 2024; 10:001249. [PMID: 38785221 PMCID: PMC11165662 DOI: 10.1099/mgen.0.001249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Wastewater-based surveillance (WBS) is an important epidemiological and public health tool for tracking pathogens across the scale of a building, neighbourhood, city, or region. WBS gained widespread adoption globally during the SARS-CoV-2 pandemic for estimating community infection levels by qPCR. Sequencing pathogen genes or genomes from wastewater adds information about pathogen genetic diversity, which can be used to identify viral lineages (including variants of concern) that are circulating in a local population. Capturing the genetic diversity by WBS sequencing is not trivial, as wastewater samples often contain a diverse mixture of viral lineages with real mutations and sequencing errors, which must be deconvoluted computationally from short sequencing reads. In this study we assess nine different computational tools that have recently been developed to address this challenge. We simulated 100 wastewater sequence samples consisting of SARS-CoV-2 BA.1, BA.2, and Delta lineages, in various mixtures, as well as a Delta-Omicron recombinant and a synthetic 'novel' lineage. Most tools performed well in identifying the true lineages present and estimating their relative abundances and were generally robust to variation in sequencing depth and read length. While many tools identified lineages present down to 1 % frequency, results were more reliable above a 5 % threshold. The presence of an unknown synthetic lineage, which represents an unclassified SARS-CoV-2 lineage, increases the error in relative abundance estimates of other lineages, but the magnitude of this effect was small for most tools. The tools also varied in how they labelled novel synthetic lineages and recombinants. While our simulated dataset represents just one of many possible use cases for these methods, we hope it helps users understand potential sources of error or bias in wastewater sequencing analysis and to appreciate the commonalities and differences across methods.
Collapse
Affiliation(s)
- Steven G. Sutcliffe
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Susanne A. Kraemer
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Environment and Climate Change Canada, Montreal, QC, Canada
| | - Isaac Ellmen
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | | | - Delaney Nash
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | | | - David Dreifuss
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, BS, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, VD, Switzerland
| | - Ivan Topolsky
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, BS, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, VD, Switzerland
| | - Pelin I. Baykal
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, BS, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, VD, Switzerland
| | - Lara Fuhrmann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, BS, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, VD, Switzerland
| | - Kim P. Jablonski
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, BS, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, VD, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, BS, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, VD, Switzerland
| | - Joshua I. Levy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Abayomi S. Olabode
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Devan G. Becker
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Gopi Gugan
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Erin Brintnell
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Art F.Y. Poon
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Renan Valieris
- Computational Biology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | | | | | | | | | | | - Aspasia Orfanou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001, Thessaloníki, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001, Thessaloníki, Greece
| | - Nikolaos Pechlivanis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001, Thessaloníki, Greece
| | - Lenore Pipes
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Zihao Chen
- School of Mathematical Sciences, Peking University, Beijing, BJ, PR China
| | - Jasmijn A. Baaijens
- Delft University of Technology, Delft, ZH, Netherlands
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Michael Baym
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - B. Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Lipponen A, Kolehmainen A, Oikarinen S, Hokajärvi AM, Lehto KM, Heikinheimo A, Halkilahti J, Juutinen A, Luomala O, Smura T, Liitsola K, Blomqvist S, Savolainen-Kopra C, Pitkänen T. Detection of SARS-COV-2 variants and their proportions in wastewater samples using next-generation sequencing in Finland. Sci Rep 2024; 14:7751. [PMID: 38565591 PMCID: PMC10987589 DOI: 10.1038/s41598-024-58113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants may have different characteristics, e.g., in transmission, mortality, and the effectiveness of vaccines, indicating the importance of variant detection at the population level. Wastewater-based surveillance of SARS-CoV-2 RNA fragments has been shown to be an effective way to monitor the COVID-19 pandemic at the population level. Wastewater is a complex sample matrix affected by environmental factors and PCR inhibitors, causing insufficient coverage in sequencing, for example. Subsequently, results where part of the genome does not have sufficient coverage are not uncommon. To identify variants and their proportions in wastewater over time, we utilized next-generation sequencing with the ARTIC Network's primer set and bioinformatics pipeline to evaluate the presence of variants in partial genome data. Based on the wastewater data from November 2021 to February 2022, the Delta variant was dominant until mid-December in Helsinki, Finland's capital, and thereafter in late December 2022 Omicron became the most common variant. At the same time, the Omicron variant of SARS-CoV-2 outcompeted the previous Delta variant in Finland in new COVID-19 cases. The SARS-CoV-2 variant findings from wastewater are in agreement with the variant information obtained from the patient samples when visually comparing trends in the sewerage network area. This indicates that the sequencing of wastewater is an effective way to monitor temporal and spatial trends of SARS-CoV-2 variants at the population level.
Collapse
Affiliation(s)
- Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland.
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Aleksi Kolehmainen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anna-Maria Hokajärvi
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Microbiology Unit, Laboratory and Research Division, Finnish Food Authority, Helsinki, Finland
| | - Jani Halkilahti
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aapo Juutinen
- Infectious Disease Control and Vaccinations Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Oskari Luomala
- Infectious Disease Control and Vaccinations Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Teemu Smura
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Liitsola
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Soile Blomqvist
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Carita Savolainen-Kopra
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tarja Pitkänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Perry WB, Chrispim MC, Barbosa MRF, de Souza Lauretto M, Razzolini MTP, Nardocci AC, Jones O, Jones DL, Weightman A, Sato MIZ, Montagner C, Durance I. Cross-continental comparative experiences of wastewater surveillance and a vision for the 21st century. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170842. [PMID: 38340868 DOI: 10.1016/j.scitotenv.2024.170842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The COVID-19 pandemic has brought the epidemiological value of monitoring wastewater into sharp focus. The challenges of implementing and optimising wastewater monitoring vary significantly from one region to another, often due to the array of different wastewater systems around the globe, as well as the availability of resources to undertake the required analyses (e.g. laboratory infrastructure and expertise). Here we reflect on the local and shared challenges of implementing a SARS-CoV-2 monitoring programme in two geographically and socio-economically distinct regions, São Paulo state (Brazil) and Wales (UK), focusing on design, laboratory methods and data analysis, and identifying potential guiding principles for wastewater surveillance fit for the 21st century. Our results highlight the historical nature of region-specific challenges to the implementation of wastewater surveillance, including previous experience of using wastewater surveillance, stakeholders involved, and nature of wastewater infrastructure. Building on those challenges, we then highlight what an ideal programme would look like if restrictions such as resource were not a constraint. Finally, we demonstrate the value of bringing multidisciplinary skills and international networks together for effective wastewater surveillance.
Collapse
Affiliation(s)
| | - Mariana Cardoso Chrispim
- Environmental and Biosciences Department, School of Business, Innovation and Sustainability, Halmstad University, Kristian IV:s väg 3, 30118 Halmstad, Sweden
| | - Mikaela Renata Funada Barbosa
- Environmental Analysis Department, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo CEP 05459-900, Brazil; NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Marcelo de Souza Lauretto
- NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil; School of Arts, Sciences and Humanities, University of Sao Paulo, Rua Arlindo Bettio, 1000, São Paulo CEP 03828-000, Brazil
| | - Maria Tereza Pepe Razzolini
- NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil; School of Public Health, University of Sao Paulo, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Adelaide Cassia Nardocci
- NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil; School of Public Health, University of Sao Paulo, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Owen Jones
- School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK
| | - Davey L Jones
- Environment Centre Wales, Bangor University, Bangor LL57 2UW, UK; Food Futures Institute, Murdoch University, Murdoch WA 6105, Australia
| | | | - Maria Inês Zanoli Sato
- Environmental Analysis Department, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo CEP 05459-900, Brazil; NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Cassiana Montagner
- Environmental Chemistry Laboratory, Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083970, Brazil
| | - Isabelle Durance
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
13
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Champredon D, Becker D, Peterson SW, Mejia E, Hizon N, Schertzer A, Djebli M, Oloye FF, Xie Y, Asadi M, Cantin J, Pu X, Osunla CA, Brinkmann M, McPhedran KN, Servos MR, Giesy JP, Mangat C. Emergence and spread of SARS-CoV-2 variants of concern in Canada: a retrospective analysis from clinical and wastewater data. BMC Infect Dis 2024; 24:139. [PMID: 38287244 PMCID: PMC10823614 DOI: 10.1186/s12879-024-08997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND The spread of SARS-CoV-2 has been studied at unprecedented levels worldwide. In jurisdictions where molecular analysis was performed on large scales, the emergence and competition of numerous SARS-CoV-2lineages have been observed in near real-time. Lineage identification, traditionally performed from clinical samples, can also be determined by sampling wastewater from sewersheds serving populations of interest. Variants of concern (VOCs) and SARS-CoV-2 lineages associated with increased transmissibility and/or severity are of particular interest. METHOD Here, we consider clinical and wastewater data sources to assess the emergence and spread of VOCs in Canada retrospectively. RESULTS We show that, overall, wastewater-based VOC identification provides similar insights to the surveillance based on clinical samples. Based on clinical data, we observed synchrony in VOC introduction as well as similar emergence speeds across most Canadian provinces despite the large geographical size of the country and differences in provincial public health measures. CONCLUSION In particular, it took approximately four months for VOC Alpha and Delta to contribute to half of the incidence. In contrast, VOC Omicron achieved the same contribution in less than one month. This study provides significant benchmarks to enhance planning for future VOCs, and to some extent for future pandemics caused by other pathogens, by quantifying the rate of SARS-CoV-2 VOCs invasion in Canada.
Collapse
Affiliation(s)
- David Champredon
- Public Health Agency of Canada, National Microbiology Laboratory, Public Health Risk Sciences Division, Guelph, ON, Canada.
| | - Devan Becker
- Public Health Agency of Canada, National Microbiology Laboratory, Public Health Risk Sciences Division, Guelph, ON, Canada
| | - Shelley W Peterson
- Public Health Agency of Canada, National Microbiology Laboratory, One Health Division, Winnipeg, MB, Canada
| | - Edgard Mejia
- Public Health Agency of Canada, National Microbiology Laboratory, One Health Division, Winnipeg, MB, Canada
| | - Nikho Hizon
- Public Health Agency of Canada, National Microbiology Laboratory, One Health Division, Winnipeg, MB, Canada
| | - Andrea Schertzer
- Public Health Agency of Canada, Centre for Immunization and Respiratory Infectious Diseases, Ottawa, ON, Canada
| | - Mohamed Djebli
- Public Health Agency of Canada, Centre for Immunization and Respiratory Infectious Diseases, Ottawa, ON, Canada
| | - Femi F Oloye
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, United States.
| | - Yuwei Xie
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mohsen Asadi
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jenna Cantin
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xia Pu
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Charles A Osunla
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Markus Brinkmann
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry N McPhedran
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - John P Giesy
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Environmental Sciences, Baylor University, Waco, TX, USA.
- Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| | - Chand Mangat
- Public Health Agency of Canada, National Microbiology Laboratory, One Health Division, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
16
|
Rajput V, Pramanik R, Malik V, Yadav R, Samson R, Kadam P, Bhalerao U, Tupekar M, Deshpande D, Shah P, Shashidhara LS, Boargaonkar R, Patil D, Kale S, Bhalerao A, Jain N, Kamble S, Dastager S, Karmodiya K, Dharne M. Genomic surveillance reveals early detection and transition of delta to omicron lineages of SARS-CoV-2 variants in wastewater treatment plants of Pune, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118976-118988. [PMID: 37922087 DOI: 10.1007/s11356-023-30709-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2023]
Abstract
The COVID-19 pandemic has emphasized the urgency for rapid public health surveillance methods to detect and monitor the transmission of infectious diseases. The wastewater-based epidemiology (WBE) has emerged as a promising tool for proactive analysis and quantification of infectious pathogens within a population before clinical cases emerge. In the present study, we aimed to assess the trend and dynamics of SARS-CoV-2 variants using a longitudinal approach. Our objective included early detection and monitoring of these variants to enhance our understanding of their prevalence and potential impact. To achieve our goals, we conducted real-time quantitative polymerase chain reaction (RT-qPCR) and Illumina sequencing on 442 wastewater (WW) samples collected from 10 sewage treatment plants (STPs) in Pune city, India, spanning from November 2021 to April 2022. Our comprehensive analysis identified 426 distinct lineages representing 17 highly transmissible variants of SARS-CoV-2. Notably, fragments of Omicron variant were detected in WW samples prior to its first clinical detection in Botswana. Furthermore, we observed highly contagious sub-lineages of the Omicron variant, including BA.1 (~28%), BA.1.X (1.0-72%), BA.2 (1.0-18%), BA.2.X (1.0-97.4%) BA.2.12 (0.8-0.25%), BA.2.38 (0.8-1.0%), BA.2.75 (0.01-0.02%), BA.3 (0.09-6.3%), BA.4 (0.24-0.29%), and XBB (0.01-21.83%), with varying prevalence rates. Overall, the present study demonstrated the practicality of WBE in the early detection of SARS-CoV-2 variants, which could help track future outbreaks of SARS-CoV-2. Such approaches could be implicated in monitoring infectious agents before they appear in clinical cases.
Collapse
Affiliation(s)
- Vinay Rajput
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Rinka Pramanik
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vinita Malik
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, Maharashtra, 411008, India
| | - Rakeshkumar Yadav
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Pradnya Kadam
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 41108, India
| | - Unnati Bhalerao
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 41108, India
| | - Manisha Tupekar
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 41108, India
| | - Dipti Deshpande
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 41108, India
| | - Priyanki Shah
- The Pune Knowledge Cluster (PKC), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
| | - L S Shashidhara
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 41108, India
- The Pune Knowledge Cluster (PKC), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
| | | | - Dhawal Patil
- Ecosan Services Foundation (ESF), Pune, Maharashtra, 411030, India
| | - Saurabh Kale
- Ecosan Services Foundation (ESF), Pune, Maharashtra, 411030, India
| | - Asim Bhalerao
- Fluid Robotics Private Limited (FRPL), Pune, Maharashtra, 411052, India
| | - Nidhi Jain
- Fluid Robotics Private Limited (FRPL), Pune, Maharashtra, 411052, India
| | - Sanjay Kamble
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
| | - Syed Dastager
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 41108, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, Maharashtra, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
17
|
Oghuan J, Chavarria C, Vanderwal SR, Gitter A, Ojaruega AA, Monserrat C, Bauer CX, Brown EL, Cregeen SJ, Deegan J, Hanson BM, Tisza M, Ocaranza HI, Balliew J, Maresso AW, Rios J, Boerwinkle E, Mena KD, Wu F. Wastewater analysis of Mpox virus in a city with low prevalence of Mpox disease: an environmental surveillance study. LANCET REGIONAL HEALTH. AMERICAS 2023; 28:100639. [PMID: 38076410 PMCID: PMC10701415 DOI: 10.1016/j.lana.2023.100639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 02/18/2024]
Abstract
Background Tracking infectious diseases at the community level is challenging due to asymptomatic infections and the logistical complexities of mass surveillance. Wastewater surveillance has emerged as a valuable tool for monitoring infectious disease agents including SARS-CoV-2 and Mpox virus. However, detecting the Mpox virus in wastewater is particularly challenging due to its relatively low prevalence in the community. In this study, we aim to characterize three molecular assays for detecting and tracking the Mpox virus in wastewater from El Paso, Texas, during February and March 2023. Methods In this study, a combined approach utilizing three real-time PCR assays targeting the C22L, F3L, and F8L genes and sequencing was employed to detect and track the Mpox virus in wastewater samples. The samples were collected from four sewersheds in the City of El Paso, Texas, during February and March 2023. Wastewater data was compared with reported clinical case data in the city. Findings Mpox virus DNA was detected in wastewater from all the four sewersheds, whereas only one Mpox case was reported during the sampling period. Positive signals were still observed in multiple sewersheds after the Mpox case was identified. Higher viral concentrations were found in the pellet than in the supernatant of wastewater. Notably, an increasing trend in viral concentration was observed approximately 1-2 weeks before the reporting of the Mpox case. Further sequencing and epidemiological analysis provided supporting evidence for unreported Mpox infections in the city. Interpretation Our analysis suggests that the Mpox cases in the community is underestimated. The findings emphasize the value of wastewater surveillance as a public health tool for monitoring infectious diseases even in low-prevalence areas, and the need for heightened vigilance to mitigate the spread of Mpox disease for safeguarding global health. Funding Center of Infectious Diseases at UTHealth, the University of Texas System, and the Texas Epidemic Public Health Institute. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of these funding organizations.
Collapse
Affiliation(s)
- Jeremiah Oghuan
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Carlos Chavarria
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Scout R. Vanderwal
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Anna Gitter
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
| | - Akpevwe Amanda Ojaruega
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Carlos Monserrat
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Cici X. Bauer
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
- Center of Spatial-temporal Modeling of Applications in Population Sciences, Houston, TX, USA
| | - Eric L. Brown
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Sara Javornik Cregeen
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer Deegan
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
- School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Blake M. Hanson
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
| | - Michael Tisza
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Anthony W. Maresso
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
- TAILOR Labs, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Janelle Rios
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
- School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
| | - Kristina D. Mena
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
| | - Fuqing Wu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
| |
Collapse
|
18
|
Schmiege D, Kraiselburd I, Haselhoff T, Thomas A, Doerr A, Gosch J, Schoth J, Teichgräber B, Moebus S, Meyer F. Analyzing community wastewater in sub-sewersheds for the small-scale detection of SARS-CoV-2 variants in a German metropolitan area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165458. [PMID: 37454854 DOI: 10.1016/j.scitotenv.2023.165458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Wastewater surveillance of SARS-CoV-2 proved useful, including for identifying the local appearance of newly identified virus variants. Previous studies focused on wastewater treatment plants (WWTP) with sewersheds of several hundred thousand people or at single building level, representing only a small number of people. Both approaches may prove inadequate for small-scale intra-urban inferences for early detection of emerging or novel virus variants. Our study aims (i) to analyze SARS-CoV-2 single nucleotide variants (SNVs) in wastewater of sub-sewersheds and WWTP using whole genome sequencing in order to (ii) investigate the potential of small-scale detection of novel known SARS-CoV-2 variants of concern (VOC) within a metropolitan wastewater system. We selected three sub-sewershed sampling sites, based on estimated population- and built environment-related indicators, and the inlet of the receiving WWTP in the Ruhr region, Germany. Untreated wastewater was sampled weekly between October and December 2021, with a total of 22 samples collected. SARS-CoV-2 RNA was analyzed by RT-qPCR and whole genome sequencing. For all samples, genome sequences were obtained, while only 13 samples were positive for RT-qPCR. We identified multiple specific SARS-CoV-2 SNVs in the wastewater samples of the sub-sewersheds and the WWTP. Identified SNVs reflected the dominance of VOC Delta at the time of sampling. Interestingly, we could identify an Omicron-specific SNV in one sub-sewershed. A concurrent wastewater study sampling the same WWTP detected the VOC Omicron one week later. Our observations suggest that the small-scale approach may prove particularly useful for the detection and description of spatially confined emerging or existing virus variants circulating in populations. Future studies applying small-scale sampling strategies taking into account the specific features of the wastewater system will be useful to analyze temporal and spatial variance in more detail.
Collapse
Affiliation(s)
- Dennis Schmiege
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130 Essen, Germany.
| | - Ivana Kraiselburd
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Timo Haselhoff
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130 Essen, Germany
| | - Alexander Thomas
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Adrian Doerr
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Jule Gosch
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Jens Schoth
- Emschergenossenschaft/Lippeverband, Kronprinzenstraße 24, 45128 Essen, Germany
| | | | - Susanne Moebus
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130 Essen, Germany
| | - Folker Meyer
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| |
Collapse
|
19
|
Poydenot F, Lebreton A, Haiech J, Andreotti B. At the crossroads of epidemiology and biology: Bridging the gap between SARS-CoV-2 viral strain properties and epidemic wave characteristics. Biochimie 2023; 213:54-65. [PMID: 36931337 PMCID: PMC10017177 DOI: 10.1016/j.biochi.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/08/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The COVID-19 pandemic has given rise to numerous articles from different scientific fields (epidemiology, virology, immunology, airflow physics …) without any effort to link these different insights. In this review, we aim to establish relationships between epidemiological data and the characteristics of the virus strain responsible for the epidemic wave concerned. We have carried out this study on the Wuhan, Alpha, Delta and Omicron strains allowing us to illustrate the evolution of the relationships we have highlighted according to these different viral strains. We addressed the following questions. 1) How can the mean infectious dose (one quantum, by definition in epidemiology) be measured and expressed as an amount of viral RNA molecules (in genome units, GU) or as a number of replicative viral particles (in plaque-forming units, PFU)? 2) How many infectious quanta are exhaled by an infected person per unit of time? 3) How many infectious quanta are exhaled, on average, integrated over the whole contagious period? 4) How do these quantities relate to the epidemic reproduction rate R as measured in epidemiology, and to the viral load, as measured by molecular biological methods? 5) How has the infectious dose evolved with the different strains of SARS-CoV-2? We make use of state-of-the-art modelling, reviewed and explained in the appendix of the article (Supplemental Information, SI), to answer these questions using data from the literature in both epidemiology and virology. We have considered the modification of these relationships according to the vaccination status of the population.
Collapse
Affiliation(s)
- Florian Poydenot
- Laboratoire de Physique de l'Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université de Paris, 75005, Paris, France
| | - Alice Lebreton
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France; INRAE, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Jacques Haiech
- CNRS UMR7242 BSC ESBS, 300 Bd Sébastien Brant, CS 10413, 67412, Illkirch cedex, France.
| | - Bruno Andreotti
- Laboratoire de Physique de l'Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université de Paris, 75005, Paris, France
| |
Collapse
|
20
|
Bowes D, Darling A, Driver EM, Kaya D, Maal-Bared R, Lee LM, Goodman K, Adhikari S, Aggarwal S, Bivins A, Bohrerova Z, Cohen A, Duvallet C, Elnimeiry RA, Hutchison JM, Kapoor V, Keenum I, Ling F, Sills D, Tiwari A, Vikesland P, Ziels R, Mansfeldt C. Structured Ethical Review for Wastewater-Based Testing in Support of Public Health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12969-12980. [PMID: 37611169 PMCID: PMC10484207 DOI: 10.1021/acs.est.3c04529] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Wastewater-based testing (WBT) for SARS-CoV-2 has rapidly expanded over the past three years due to its ability to provide a comprehensive measurement of disease prevalence independent of clinical testing. The development and simultaneous application of WBT measured biomarkers for research activities and for the pursuit of public health goals, both areas with well-established ethical frameworks. Currently, WBT practitioners do not employ a standardized ethical review process, introducing the potential for adverse outcomes for WBT professionals and community members. To address this deficiency, an interdisciplinary workshop developed a framework for a structured ethical review of WBT. The workshop employed a consensus approach to create this framework as a set of 11 questions derived from primarily public health guidance. This study retrospectively applied these questions to SARS-CoV-2 monitoring programs covering the emergent phase of the pandemic (3/2020-2/2022 (n = 53)). Of note, 43% of answers highlight a lack of reported information to assess. Therefore, a systematic framework would at a minimum structure the communication of ethical considerations for applications of WBT. Consistent application of an ethical review will also assist in developing a practice of updating approaches and techniques to reflect the concerns held by both those practicing and those being monitored by WBT supported programs.
Collapse
Affiliation(s)
- Devin
A. Bowes
- Biodesign
Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85287, United States
- Center on
Forced Displacement, Boston University, 111 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Amanda Darling
- Department
of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, 415 Durham Hall; Blacksburg, Virginia 24061, United States
| | - Erin M. Driver
- Biodesign
Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85287, United States
| | - Devrim Kaya
- School of
Chemical, Biological, and Environmental Engineering, Oregon State University, 105 26th St, Corvallis, Oregon 97331, United States
- School of
Public Health, San Diego State University, San Diego and Imperial Valley, California 92182, United States
| | - Rasha Maal-Bared
- Quality
Assurance and Environment, EPCOR Water Services Inc., EPCOR Tower, 2000−10423 101
Street NW, Edmonton, Alberta T5H 0E7, Canada
| | - Lisa M. Lee
- Department
of Population Health Sciences and Division of Scholarly Integrity
and Research Compliance, Virginia Tech, 300 Turner St. NW, Suite 4120 (0497), Blacksburg, Virginia 24061, United States
| | - Kenneth Goodman
- Institute
for Bioethics and Health Policy, Miller School of Medicine, University of Miami, Miami, Florida 33101, United States
| | - Sangeet Adhikari
- Biodesign
Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85287, United States
| | - Srijan Aggarwal
- Department
of Civil, Geological, and Environmental Engineering, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, Alaska 99775, United States
| | - Aaron Bivins
- Department
of Civil & Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Zuzana Bohrerova
- The Ohio
State University, Department of Civil, Environmental
and Geodetic Engineering, 2070 Neil Avenue, 470 Hitchcock Hall, Columbus, Ohio 43210, United States
| | - Alasdair Cohen
- Department
of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, 415 Durham Hall; Blacksburg, Virginia 24061, United States
- Department
of Population Health Sciences, Virginia
Tech, 205 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Claire Duvallet
- Biobot
Analytics, Inc., 501
Massachusetts Avenue; Cambridge, Massachusetts 02139, United States
| | - Rasha A. Elnimeiry
- Public
Health Outbreak Coordination, Informatics, Surveillance (PHOCIS) Office—Surveillance
Section, Division of Disease Control and Health Statistics, Washington State Department of Health, 111 Israel Rd SE, Tumwater, Washington 98501, United States
| | - Justin M. Hutchison
- Department
of Civil, Environmental, and Architectural Engineering, University of Kansas, 1530 W 15th St, Lawrence, Kansas 66045, United States
| | - Vikram Kapoor
- School
of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, United States
| | - Ishi Keenum
- Complex
Microbial Systems Group, National Institute
of Standards and Technology, 100 Bureau Dr, Gaithersburg, Maryland 20899, United States
| | - Fangqiong Ling
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Deborah Sills
- Department
of Civil and Environmental Engineering, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Ananda Tiwari
- Department
of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöberginkatu 2,
P.O. Box 66, FI 00014 Helsinki, Finland
- Expert
Microbiology Unit, Finnish Institute for
Health and Welfare, FI 70600 Kuopio, Finland
| | - Peter Vikesland
- Department
of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, 415 Durham Hall; Blacksburg, Virginia 24061, United States
| | - Ryan Ziels
- Department
of Civil Engineering, The University of
British Columbia, 6250
Applied Science Ln #2002, Vancouver, BC V6T 1Z4, Canada
| | - Cresten Mansfeldt
- Department
of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, UCB 428, Boulder, Colorado 80309, United States
- Environmental
Engineering Program, University of Colorado
Boulder, UCB 607, Boulder, Colorado 80309, United States
| |
Collapse
|
21
|
Dunn FB, Silverman AI. Sunlight photolysis of SARS-CoV-2 N1 gene target in the water environment: considerations for the environmental surveillance of wastewater-impacted surface waters. JOURNAL OF WATER AND HEALTH 2023; 21:1228-1241. [PMID: 37756191 PMCID: wh_2023_091 DOI: 10.2166/wh.2023.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Wastewater surveillance of SARS-CoV-2 has been used around the world to supplement clinical testing data for situational awareness of COVID-19 disease trends. Many regions of the world lack centralized wastewater collection and treatment infrastructure, which presents additional considerations for wastewater surveillance of SARS-CoV-2, including environmental decay of the RT-qPCR gene targets used for quantification of SARS-CoV-2 virions. Given the role of sunlight in the environmental decay of RNA, we evaluated sunlight photolysis kinetics of the N1 gene target in heat-inactivated SARS-CoV-2 with a solar simulator under laboratory conditions. Insignificant photolysis of the N1 target was observed in a photosensitizer-free matrix. Conversely, significant decay of the N1 target was observed in wastewater at a shallow depth (<1 cm). Given that sunlight irradiance is affected by several environmental factors, first-order decay rate models were used to evaluate the effect of water column depth, time of the year, and latitude on decay kinetics. Decay rate constants were found to decrease significantly with greater depth of the well-mixed water column, at high latitudes, and in the winter. Therefore, sunlight-mediated decay of the N1 gene target is likely to be minimal, and is unlikely to confound results from wastewater-based epidemiology programs utilizing wastewater-impacted surface waters.
Collapse
Affiliation(s)
- Fiona B Dunn
- Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA E-mail:
| | - Andrea I Silverman
- Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
22
|
Zheng P, Zhou C, Ding Y, Liu B, Lu L, Zhu F, Duan S. Nanopore sequencing technology and its applications. MedComm (Beijing) 2023; 4:e316. [PMID: 37441463 PMCID: PMC10333861 DOI: 10.1002/mco2.316] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
Since the development of Sanger sequencing in 1977, sequencing technology has played a pivotal role in molecular biology research by enabling the interpretation of biological genetic codes. Today, nanopore sequencing is one of the leading third-generation sequencing technologies. With its long reads, portability, and low cost, nanopore sequencing is widely used in various scientific fields including epidemic prevention and control, disease diagnosis, and animal and plant breeding. Despite initial concerns about high error rates, continuous innovation in sequencing platforms and algorithm analysis technology has effectively addressed its accuracy. During the coronavirus disease (COVID-19) pandemic, nanopore sequencing played a critical role in detecting the severe acute respiratory syndrome coronavirus-2 virus genome and containing the pandemic. However, a lack of understanding of this technology may limit its popularization and application. Nanopore sequencing is poised to become the mainstream choice for preventing and controlling COVID-19 and future epidemics while creating value in other fields such as oncology and botany. This work introduces the contributions of nanopore sequencing during the COVID-19 pandemic to promote public understanding and its use in emerging outbreaks worldwide. We discuss its application in microbial detection, cancer genomes, and plant genomes and summarize strategies to improve its accuracy.
Collapse
Affiliation(s)
- Peijie Zheng
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Chuntao Zhou
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Yuemin Ding
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
- Institute of Translational Medicine, School of MedicineZhejiang University City CollegeHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineZhejiang University City CollegeHangzhouChina
| | - Bin Liu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Liuyi Lu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Feng Zhu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Shiwei Duan
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
- Institute of Translational Medicine, School of MedicineZhejiang University City CollegeHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineZhejiang University City CollegeHangzhouChina
| |
Collapse
|
23
|
Bowes DA, Darling A, Driver EM, Kaya D, Maal-Bared R, Lee LM, Goodman K, Adhikari S, Aggarwal S, Bivins A, Bohrerova Z, Cohen A, Duvallet C, Elnimeiry RA, Hutchison JM, Kapoor V, Keenum I, Ling F, Sills D, Tiwari A, Vikesland P, Ziels R, Mansfeldt C. Structured Ethical Review for Wastewater-Based Testing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.12.23291231. [PMID: 37398480 PMCID: PMC10312843 DOI: 10.1101/2023.06.12.23291231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Wastewater-based testing (WBT) for SARS-CoV-2 has rapidly expanded over the past three years due to its ability to provide a comprehensive measurement of disease prevalence independent of clinical testing. The development and simultaneous application of the field blurred the boundary between measuring biomarkers for research activities and for pursuit of public health goals, both areas with well-established ethical frameworks. Currently, WBT practitioners do not employ a standardized ethical review process (or associated data management safeguards), introducing the potential for adverse outcomes for WBT professionals and community members. To address this deficiency, an interdisciplinary group developed a framework for a structured ethical review of WBT. The workshop employed a consensus approach to create this framework as a set of 11-questions derived from primarily public health guidance because of the common exemption of wastewater samples to human subject research considerations. This study retrospectively applied the set of questions to peer- reviewed published reports on SARS-CoV-2 monitoring campaigns covering the emergent phase of the pandemic from March 2020 to February 2022 (n=53). Overall, 43% of the responses to the questions were unable to be assessed because of lack of reported information. It is therefore hypothesized that a systematic framework would at a minimum improve the communication of key ethical considerations for the application of WBT. Consistent application of a standardized ethical review will also assist in developing an engaged practice of critically applying and updating approaches and techniques to reflect the concerns held by both those practicing and being monitored by WBT supported campaigns. Abstract Figure Synopsis Development of a structured ethical review facilitates retrospective analysis of published studies and drafted scenarios in the context of wastewater-based testing.
Collapse
Affiliation(s)
- Devin A. Bowes
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287
- Center on Forced Displacement, Boston University, 111 Cummington Mall, Boston, MA, 02215
| | - Amanda Darling
- Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street; 415 Durham Hall; Blacksburg, VA 24061
| | - Erin M. Driver
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 26th St, Corvallis, Oregon 97331
- School of Public Health, San Diego State University, San Diego and Imperial Valley, CA
| | - Rasha Maal-Bared
- Quality Assurance and Environment, EPCOR Water Services Inc., EPCOR Tower, 2000–10423 101 Street NW, Edmonton, Alberta, CA
| | - Lisa M. Lee
- Department of Population Health Sciences and Division of Scholarly Integrity and Research Compliance, Virginia Tech, 300 Turner St. NW, Suite 4120 (0497), Blacksburg, VA 24061
| | - Kenneth Goodman
- Institute for Bioethics and Health Policy, Miller School of Medicine, University of Miami, Miami, Florida
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287
| | - Srijan Aggarwal
- Department of Civil, Geological, and Environmental Engineering, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, AK 99775
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803
| | - Zuzana Bohrerova
- The Ohio State University, Department of Civil, Environmental and Geodetic Engineering, 2070 Neil Avenue, 470 Hitchcock Hall, Columbus, OH 43210
| | - Alasdair Cohen
- Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street; 415 Durham Hall; Blacksburg, VA 24061
- Department of Population Health Sciences, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061
| | - Claire Duvallet
- Biobot Analytics, Inc., 501 Massachusetts Avenue; Cambridge, MA; 02139
| | - Rasha A. Elnimeiry
- Public Health Outbreak Coordination, Informatics, Surveillance (PHOCIS) Office – Surveillance Section, Division of Disease Control and Health Statistics, Washington State Department of Health, 111 Israel Rd SE, Tumwater, WA 98501
| | - Justin M. Hutchison
- Department of Civil, Environmental, and Architectural Engineering, University of Kansas, 1530 W 15th St, Lawrence, KS 66045
| | - Vikram Kapoor
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249
| | - Ishi Keenum
- Complex Microbial Systems Group, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899
| | - Fangqiong Ling
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130
| | - Deborah Sills
- Department of Civil and Environmental Engineering, Bucknell University, Lewisburg, PA, 17837
| | - Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöberginkatu 2 P.O. Box 66 FI 00014 Helsinki, Finland
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street; 415 Durham Hall; Blacksburg, VA 24061
| | - Ryan Ziels
- Department of Civil Engineering, the University of British Columbia, 6250 Applied Science Ln #2002, Vancouver, BC V6T 1Z4
| | - Cresten Mansfeldt
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, UCB 428, Boulder, CO 80309
- Environmental Engineering Program, University of Colorado Boulder, UCB 607, Boulder, CO 80309
| |
Collapse
|
24
|
Anand U, Pal T, Zanoletti A, Sundaramurthy S, Varjani S, Rajapaksha AU, Barceló D, Bontempi E. The spread of the omicron variant: Identification of knowledge gaps, virus diffusion modelling, and future research needs. ENVIRONMENTAL RESEARCH 2023; 225:115612. [PMID: 36871942 PMCID: PMC9985523 DOI: 10.1016/j.envres.2023.115612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/11/2023]
Abstract
The World Health Organization (WHO) recognised variant B.1.1.529 of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a variant of concern, termed "Omicron", on November 26, 2021. Its diffusion was attributed to its several mutations, which allow promoting its ability to diffuse worldwide and its capability in immune evasion. As a consequence, some additional serious threats to public health posed the risk to undermine the global efforts made in the last two years to control the pandemic. In the past, several works were devoted to discussing a possible contribution of air pollution to the SARS-CoV-2 spread. However, to the best of the authors' knowledge, there are still no works dealing with the Omicron variant diffusion mechanisms. This work represents a snapshot of what we know right now, in the frame of an analysis of the Omicron variant spread. The paper proposes the use of a single indicator, commercial trade data, to model the virus spread. It is proposed as a surrogate of the interactions occurring between humans (the virus transmission mechanism due to human-to-human contacts) and could be considered for other diseases. It allows also to explain the unexpected increase in infection cases in China, detected at beginning of 2023. The air quality data are also analyzed to evaluate for the first time the role of air particulate matter (PM) as a carrier of the Omicron variant diffusion. Due to emerging concerns associated with other viruses (such as smallpox-like virus diffusion in Europe and America), the proposed approach seems to be promising to model the virus spreading.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Tarun Pal
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona, 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona, 1826, Barcelona, 08034, Spain
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy.
| |
Collapse
|
25
|
Izquierdo-Lara RW, Heijnen L, Oude Munnink BB, Schapendonk CME, Elsinga G, Langeveld J, Post J, Prasad DK, Carrizosa C, Been F, van Beek J, Schilperoort R, Vriend R, Fanoy E, de Schepper EIT, Sikkema RS, Molenkamp R, Aarestrup FM, Medema G, Koopmans MPG, de Graaf M. Rise and fall of SARS-CoV-2 variants in Rotterdam: Comparison of wastewater and clinical surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162209. [PMID: 36796689 PMCID: PMC9927792 DOI: 10.1016/j.scitotenv.2023.162209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/04/2023]
Abstract
Monitoring of SARS-CoV-2 in wastewater (WW) is a promising tool for epidemiological surveillance, correlating not only viral RNA levels with the infection dynamics within the population, but also to viral diversity. However, the complex mixture of viral lineages in WW samples makes tracking of specific variants or lineages circulating in the population a challenging task. We sequenced sewage samples of 9 WW-catchment areas within the city of Rotterdam, used specific signature mutations from individual SARS-CoV-2 lineages to estimate their relative abundances in WW and compared them against those observed in clinical genomic surveillance of infected individuals between September 2020 and December 2021. We showed that especially for dominant lineages, the median of the frequencies of signature mutations coincides with the occurrence of those lineages in Rotterdam's clinical genomic surveillance. This, along with digital droplet RT-PCR targeting signature mutations of specific variants of concern (VOCs), showed that several VOCs emerged, became dominant and were replaced by the next VOC in Rotterdam at different time points during the study. In addition, single nucleotide variant (SNV) analysis provided evidence that spatio-temporal clusters can also be discerned from WW samples. We were able to detect specific SNVs in sewage, including one resulting in the Q183H amino acid change in the Spike gene, that was not captured by clinical genomic surveillance. Our results highlight the potential use of WW samples for genomic surveillance, increasing the set of epidemiological tools to monitor SARS-CoV-2 diversity.
Collapse
Affiliation(s)
- Ray W Izquierdo-Lara
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Leo Heijnen
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Goffe Elsinga
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Jeroen Langeveld
- Partners4urbanwater, Nijmegen, the Netherlands; Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
| | - Johan Post
- Partners4urbanwater, Nijmegen, the Netherlands
| | - Divyae K Prasad
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Christian Carrizosa
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Frederic Been
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Janko van Beek
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Rianne Vriend
- Regional Public Health Service Rotterdam-Rijnmond, Rotterdam, the Netherlands
| | - Ewout Fanoy
- Regional Public Health Service Rotterdam-Rijnmond, Rotterdam, the Netherlands
| | - Evelien I T de Schepper
- Department of General Practice, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Reina S Sikkema
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Richard Molenkamp
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Gertjan Medema
- KWR Water Research Institute, Nieuwegein, the Netherlands; Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands; Pandemic and Disaster Preparedness Centre Rotterdam and Delft, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Centre Rotterdam and Delft, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Centre Rotterdam and Delft, the Netherlands.
| |
Collapse
|
26
|
Swift CL, Isanovic M, Correa Velez KE, Norman RS. SARS-CoV-2 concentration in wastewater consistently predicts trends in COVID-19 case counts by at least two days across multiple WWTP scales. ENVIRONMENTAL ADVANCES 2023; 11:100347. [PMID: 36718477 PMCID: PMC9876004 DOI: 10.1016/j.envadv.2023.100347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Wastewater surveillance of SARS-CoV-2 has proven instrumental in mitigating the spread of COVID-19 by providing an economical and equitable approach to disease surveillance. Here, we analyze the correlation of SARS-CoV-2 RNA in influents of seven wastewater plants (WWTPs) across the state of South Carolina with corresponding daily case counts to determine whether underlying characteristics of WWTPs and sewershed populations predict stronger correlations. The populations served by these WWTPs have varying social vulnerability and represent 24% of the South Carolina population. The study spanned 15 months from April 19, 2020, to July 1, 2021, which includes the administration of the first COVID-19 vaccines. SARS-CoV-2 RNA concentrations were measured by either reverse transcription quantitative PCR (RT-qPCR) or droplet digital PCR (RT-ddPCR). Although populations served and average flow rate varied across WWTPs, the strongest correlation was identified for six of the seven WWTPs when daily case counts were lagged two days after the measured SARS-CoV-2 RNA concentration in wastewater. The weakest correlation was found for WWTP 6, which had the lowest ratio of population served to average flow rate, indicating that the SARS-CoV-2 signal was too dilute for a robust correlation. Smoothing daily case counts by a 7-day moving average improved correlation strength between case counts and SARS-CoV-2 RNA concentration in wastewater while dampening the effect of lag-time optimization. Correlation strength between cases and SARS-CoV-2 RNA was compared for cases determined at the ZIP-code and sewershed levels. The strength of correlations using ZIP-code-level versus sewershed-level cases were not statistically different across WWTPs. Results indicate that wastewater surveillance, even without normalization to fecal indicators, is a strong predictor of clinical cases by at least two days, especially when SARS-CoV-2 RNA is measured using RT-ddPCR. Furthermore, the ratio of population served to flow rate may be a useful metric to assess whether a WWTP is suitable for a surveillance program.
Collapse
Affiliation(s)
- Candice L Swift
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly Street, Suite 401, Columbia, SC 29208, USA
| | - Mirza Isanovic
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly Street, Suite 401, Columbia, SC 29208, USA
| | - Karlen E Correa Velez
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly Street, Suite 401, Columbia, SC 29208, USA
| | - R Sean Norman
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly Street, Suite 401, Columbia, SC 29208, USA
| |
Collapse
|
27
|
Langeveld J, Schilperoort R, Heijnen L, Elsinga G, Schapendonk CEM, Fanoy E, de Schepper EIT, Koopmans MPG, de Graaf M, Medema G. Normalisation of SARS-CoV-2 concentrations in wastewater: The use of flow, electrical conductivity and crAssphage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161196. [PMID: 36581271 PMCID: PMC9791714 DOI: 10.1016/j.scitotenv.2022.161196] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 05/12/2023]
Abstract
Over the course of the Corona Virus Disease-19 (COVID-19) pandemic in 2020-2022, monitoring of the severe acute respiratory syndrome coronavirus 2 ribonucleic acid (SARS-CoV-2 RNA) in wastewater has rapidly evolved into a supplementary surveillance instrument for public health. Short term trends (2 weeks) are used as a basis for policy and decision making on measures for dealing with the pandemic. Normalisation is required to account for the dilution rate of the domestic wastewater that can strongly vary due to time- and location-dependent sewer inflow of runoff, industrial discharges and extraneous waters. The standard approach in sewage surveillance is normalisation using flow measurements, although flow based normalisation is not effective in case the wastewater volume sampled does not match the wastewater volume produced. In this paper, two alternative normalisation methods, using electrical conductivity and crAssphage have been studied and compared with the standard approach using flow measurements. For this, a total of 1116 24-h flow-proportional samples have been collected between September 2020 and August 2021 at nine monitoring locations. In addition, 221 stool samples have been analysed to determine the daily crAssphage load per person. Results show that, although crAssphage shedding rates per person vary greatly, on a population-level crAssphage loads per person per day were constant over time and similar for all catchments. Consequently, crAssphage can be used as a quantitative biomarker for populations above 5595 persons. Electrical conductivity is particularly suitable to determine dilution rates relative to dry weather flow concentrations. The overall conclusion is that flow normalisation is necessary to reliably determine short-term trends in virus circulation, and can be enhanced using crAssphage and/or electrical conductivity measurement as a quality check.
Collapse
Affiliation(s)
- Jeroen Langeveld
- Sanitary Engineering, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands; Partners4UrbanWater, Graafseweg 274, 6532 ZV Nijmegen, the Netherlands.
| | - Remy Schilperoort
- Partners4UrbanWater, Graafseweg 274, 6532 ZV Nijmegen, the Netherlands
| | - Leo Heijnen
- KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands
| | - Goffe Elsinga
- KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands
| | - Claudia E M Schapendonk
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Ewout Fanoy
- GGD Department public health, municipality Rotterdam, Schiedamsedijk 95, 3000 LP Rotterdam, the Netherlands
| | - Evelien I T de Schepper
- Department of General Practice, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Gertjan Medema
- Sanitary Engineering, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Natural resources, Michigan State University, 1405 S Harrison Rd, East-Lansing 48823, MI, USA
| |
Collapse
|
28
|
Tiwari A, Adhikari S, Zhang S, Solomon TB, Lipponen A, Islam MA, Thakali O, Sangkham S, Shaheen MNF, Jiang G, Haramoto E, Mazumder P, Malla B, Kumar M, Pitkänen T, Sherchan SP. Tracing COVID-19 Trails in Wastewater: A Systematic Review of SARS-CoV-2 Surveillance with Viral Variants. WATER 2023; 15:1018. [DOI: 10.3390/w15061018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The emergence of new variants of SARS-CoV-2 associated with varying infectivity, pathogenicity, diagnosis, and effectiveness against treatments challenged the overall management of the COVID-19 pandemic. Wastewater surveillance (WWS), i.e., monitoring COVID-19 infections in communities through detecting viruses in wastewater, was applied to track the emergence and spread of SARS-CoV-2 variants globally. However, there is a lack of comprehensive understanding of the use and effectiveness of WWS for new SARS-CoV-2 variants. Here we systematically reviewed published articles reporting monitoring of different SARS-CoV-2 variants in wastewater by following the PRISMA guidelines and provided the current state of the art of this study area. A total of 80 WWS studies were found that reported different monitoring variants of SARS-CoV-2 until November 2022. Most of these studies (66 out of the total 80, 82.5%) were conducted in Europe and North America, i.e., resource-rich countries. There was a high variation in WWS sampling strategy around the world, with composite sampling (50/66 total studies, 76%) as the primary method in resource-rich countries. In contrast, grab sampling was more common (8/14 total studies, 57%) in resource-limited countries. Among detection methods, the reverse transcriptase polymerase chain reaction (RT-PCR)-based sequencing method and quantitative RT-PCR method were commonly used for monitoring SARS-CoV-2 variants in wastewater. Among different variants, the B1.1.7 (Alpha) variant that appeared earlier in the pandemic was the most reported (48/80 total studies), followed by B.1.617.2 (Delta), B.1.351 (Beta), P.1 (Gamma), and others in wastewater. All variants reported in WWS studies followed the same pattern as the clinical reporting within the same timeline, demonstrating that WWS tracked all variants in a timely way when the variants emerged. Thus, wastewater monitoring may be utilized to identify the presence or absence of SARS-CoV-2 and follow the development and transmission of existing and emerging variants. Routine wastewater monitoring is a powerful infectious disease surveillance tool when implemented globally.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | | | - Shuxin Zhang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
| | | | - Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Md. Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj 2310, Bangladesh
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao 56000, Thailand
| | - Mohamed N. F. Shaheen
- Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, Giza 2310, Egypt
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong 2522, Australia
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Payal Mazumder
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | - Tarja Pitkänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Samendra P. Sherchan
- Department of Biology, Morgan State University, Baltimore, MD 11428, USA
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
29
|
Wurtz N, Boussier M, Souville L, Penant G, Lacoste A, Colson P, La Scola B, Aherfi S. Simple Wastewater Preparation Protocol Applied to Monitor the Emergence of the Omicron 21L/BA.2 Variant by Genome Sequencing. Viruses 2023; 15:268. [PMID: 36851484 PMCID: PMC9965846 DOI: 10.3390/v15020268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Detecting and monitoring viruses in wastewater samples have been reported as useful ways of tracking SARS-CoV-2 epidemic trends. However, there is currently no unanimously recognised method of processing samples to identify and quantify SARS-CoV-2 variants in wastewater. We aimed to implement a method that was as simple as possible in order to be used universally. In a study performed between January 2022 and June 2022 in the city of Marseille, France, we first evaluated the impact of the sample preservation strategy. We then compared ultracentrifugation to ultrafiltration and several steps of filtration to determine the optimal approach for virus concentration. As a proof-of-concept, the definitive protocol was applied to next-generation sequencing of SARS-CoV-2 in wastewater to monitor the emergence of the Omicron variant in the city. For sewage water to be processed in the week following the sampling, storage at +4 °C is sufficient, with less than 1 Ct loss. Filtration with a 5 µm syringe filter, then with a 0.8 µm filtration unit, followed by ultrafiltration was the optimal protocol, leading to an average increase of 3.24 Ct when the starting Ct was on average 38 in the wastewater. This made it possible to observe the emergence of the Omicron 21L/BA.2 variant after Omicron 21K/BA.1 by genome sequencing over a period ranging from 20 February to 10 April 2022 in agreement with observations based on patient data. To conclude, by using a simple method requiring only basic filters and a centrifuge as equipment, it is possible to accurately track the relative incidence rates and the emergence of SARS-CoV-2 variants based on sewage samples.
Collapse
Affiliation(s)
- Nathalie Wurtz
- MEPHI, Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, 13005 Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Maelle Boussier
- MEPHI, Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, 13005 Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Louis Souville
- MEPHI, Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, 13005 Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Gwilherm Penant
- Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 13005 Marseille, France
| | - Alexandre Lacoste
- Bataillon des Marins Pompiers de la ville de Marseille, 13005 Marseille, France
| | - Philippe Colson
- MEPHI, Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, 13005 Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 13005 Marseille, France
| | - Bernard La Scola
- MEPHI, Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, 13005 Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 13005 Marseille, France
| | - Sarah Aherfi
- MEPHI, Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, 13005 Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
30
|
Gafurov A, Baláž A, Amman F, Boršová K, Čabanová V, Klempa B, Bergthaler A, Vinař T, Brejová B. VirPool: model-based estimation of SARS-CoV-2 variant proportions in wastewater samples. BMC Bioinformatics 2022; 23:551. [PMID: 36536300 PMCID: PMC9761630 DOI: 10.1186/s12859-022-05100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The genomes of SARS-CoV-2 are classified into variants, some of which are monitored as variants of concern (e.g. the Delta variant B.1.617.2 or Omicron variant B.1.1.529). Proportions of these variants circulating in a human population are typically estimated by large-scale sequencing of individual patient samples. Sequencing a mixture of SARS-CoV-2 RNA molecules from wastewater provides a cost-effective alternative, but requires methods for estimating variant proportions in a mixed sample. RESULTS We propose a new method based on a probabilistic model of sequencing reads, capturing sequence diversity present within individual variants, as well as sequencing errors. The algorithm is implemented in an open source Python program called VirPool. We evaluate the accuracy of VirPool on several simulated and real sequencing data sets from both Illumina and nanopore sequencing platforms, including wastewater samples from Austria and France monitoring the onset of the Alpha variant. CONCLUSIONS VirPool is a versatile tool for wastewater and other mixed-sample analysis that can handle both short- and long-read sequencing data. Our approach does not require pre-selection of characteristic mutations for variant profiles, it is able to use the entire length of reads instead of just the most informative positions, and can also capture haplotype dependencies within a single read.
Collapse
Affiliation(s)
- Askar Gafurov
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Andrej Baláž
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Fabian Amman
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 14 AKH BT 25.3, 1090 Vienna, Austria
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalsgasse 15, Vienna, 1090 Austria
| | - Kristína Boršová
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktória Čabanová
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Boris Klempa
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 14 AKH BT 25.3, 1090 Vienna, Austria
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalsgasse 15, Vienna, 1090 Austria
| | - Tomáš Vinař
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Broňa Brejová
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
31
|
Bonanno Ferraro G, Veneri C, Mancini P, Iaconelli M, Suffredini E, Bonadonna L, Lucentini L, Bowo-Ngandji A, Kengne-Nde C, Mbaga DS, Mahamat G, Tazokong HR, Ebogo-Belobo JT, Njouom R, Kenmoe S, La Rosa G. A State-of-the-Art Scoping Review on SARS-CoV-2 in Sewage Focusing on the Potential of Wastewater Surveillance for the Monitoring of the COVID-19 Pandemic. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:315-354. [PMID: 34727334 PMCID: PMC8561373 DOI: 10.1007/s12560-021-09498-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/21/2021] [Indexed: 05/07/2023]
Abstract
The outbreak of coronavirus infectious disease-2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has rapidly spread throughout the world. Several studies have shown that detecting SARS-CoV-2 in untreated wastewater can be a useful tool to identify new outbreaks, establish outbreak trends, and assess the prevalence of infections. On 06 May 2021, over a year into the pandemic, we conducted a scoping review aiming to summarize research data on SARS-CoV-2 in sewage. Papers dealing with raw sewage collected at wastewater treatment plants, sewer networks, septic tanks, and sludge treatment facilities were included in this review. We also reviewed studies on sewage collected in community settings such as private or municipal hospitals, healthcare facilities, nursing homes, dormitories, campuses, airports, aircraft, and cruise ships. The literature search was conducted using the electronic databases PubMed, EMBASE, and Web Science Core Collection. This comprehensive research yielded 1090 results, 66 of which met the inclusion criteria and are discussed in this review. Studies from 26 countries worldwide have investigated the occurrence of SARS-CoV-2 in sewage of different origin. The percentage of positive samples in sewage ranged from 11.6 to 100%, with viral concentrations ranging from ˂LOD to 4.6 × 108 genome copies/L. This review outlines the evidence currently available on wastewater surveillance: (i) as an early warning system capable of predicting COVID-19 outbreaks days or weeks before clinical cases; (ii) as a tool capable of establishing trends in current outbreaks; (iii) estimating the prevalence of infections; and (iv) studying SARS-CoV-2 genetic diversity. In conclusion, as a cost-effective, rapid, and reliable source of information on the spread of SARS-CoV-2 and its variants in the population, wastewater surveillance can enhance genomic and epidemiological surveillance with independent and complementary data to inform public health decision-making during the ongoing pandemic.
Collapse
Affiliation(s)
- G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Bonadonna
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Lucentini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - A Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - C Kengne-Nde
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | - D S Mbaga
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - G Mahamat
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - H R Tazokong
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - J T Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - R Njouom
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| | - S Kenmoe
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
32
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
33
|
Wurtzer S, Levert M, Dhenain E, Accrombessi H, Manco S, Fagour N, Goulet M, Boudaud N, Gaillard L, Bertrand I, Challant J, Masnada S, Azimi S, Gillon-Ritz M, Robin A, Mouchel JM, Sig O, Moulin L. From Alpha to Omicron BA.2: New digital RT-PCR approach and challenges for SARS-CoV-2 VOC monitoring and normalization of variant dynamics in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157740. [PMID: 35917966 PMCID: PMC9338838 DOI: 10.1016/j.scitotenv.2022.157740] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 05/17/2023]
Abstract
Throughout the COVID-19 pandemic, new variants have continuously emerged and spread in populations. Among these, variants of concern (VOC) have been the main culprits of successive epidemic waves, due to their transmissibility, pathogenicity or ability to escape the immune response. Quantification of the SARS-CoV-2 genomes in raw wastewater is a reliable approach well-described and widely deployed worldwide to monitor the spread of SARS-CoV-2 in human populations connected to sewage systems. Discrimination of VOCs in wastewater is also a major issue and can be achieved by genome sequencing or by detection of specific mutations suggesting the presence of VOCs. This study aimed to date the emergence of these VOCs (from Alpha to Omicron BA.2) by monitoring wastewater from the greater Paris area, France, but also to model the propagation dynamics of these VOCs and to characterize the replacement kinetics of the prevalent populations. These dynamics were compared to various individual-centered public health data, such as regional incidence and the proportions of VOCs identified by sequencing of strains isolated from patient. The viral dynamics in wastewater highlighted the impact of the vaccination strategy on the viral circulation within human populations but also suggested its potential effect on the selection of variants most likely to be propagated in immunized populations. Normalization of concentrations to capture population movements appeared statistically more reliable using variations in local drinking water consumption rather than using PMMoV concentrations because PMMoV fecal shedding was subject to variability and was not sufficiently relevant in this study. The dynamics of viral spread was observed earlier (about 13 days on the wave related to Omicron VOC) in raw wastewater than the regional incidence alerting to a possible risk of decorrelation between incidence and actual virus circulation probably resulting from a lower severity of infection in vaccinated populations.
Collapse
Affiliation(s)
- Sebastien Wurtzer
- Eau de Paris, Research & Development, 33 avenue Jean Jaures, FR-94200 Ivry sur Seine, France.
| | - Morgane Levert
- Sorbonne Universite, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - Eloïse Dhenain
- Sorbonne Universite, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - Heberte Accrombessi
- Eau de Paris, Research & Development, 33 avenue Jean Jaures, FR-94200 Ivry sur Seine, France
| | - Sandra Manco
- Eau de Paris, Research & Development, 33 avenue Jean Jaures, FR-94200 Ivry sur Seine, France
| | - Nathalie Fagour
- Eau de Paris, Research & Development, 33 avenue Jean Jaures, FR-94200 Ivry sur Seine, France
| | - Marion Goulet
- Eau de Paris, Research & Development, 33 avenue Jean Jaures, FR-94200 Ivry sur Seine, France
| | | | - Lucie Gaillard
- ACTALIA, Food Safety Department, F-50000 Saint-Lô, France
| | | | - Julie Challant
- University of Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Sophie Masnada
- SIAM - STV, Avenue de la courtiere, FR-77400 Saint Thibault des vignes, France
| | - Sam Azimi
- SIAAP, Innovation Department, 82 Avenue Kléber, FR-92700 Colombes, France
| | - Miguel Gillon-Ritz
- Direction de la Proprete et de l'Eau - Service Technique de l'Eau et de l'Assainissement, Rue du Commandeur, FR-75014 Paris, France
| | - Alban Robin
- Eau de Paris, Research & Development, 33 avenue Jean Jaures, FR-94200 Ivry sur Seine, France
| | - Jean-Marie Mouchel
- Sorbonne Universite, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - Obepine Sig
- Sorbonne Universite, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - Laurent Moulin
- Eau de Paris, Research & Development, 33 avenue Jean Jaures, FR-94200 Ivry sur Seine, France
| |
Collapse
|
34
|
Brian I, Manuzzi A, Dalla Rovere G, Giussani E, Palumbo E, Fusaro A, Bonfante F, Bortolami A, Quaranta EG, Monne I, Patarnello T, Bargelloni L, Terregino C, Holmes EC, Todesco G, Sorrentino F, Berton A, Badetti C, Carrer C, Ferrari G, Zincone C, Milan M, Panzarin V. Molecular Monitoring of SARS-CoV-2 in Different Sewage Plants in Venice and the Implications for Genetic Surveillance. ACS ES&T WATER 2022; 2:1953-1963. [PMID: 37552713 PMCID: PMC9115883 DOI: 10.1021/acsestwater.2c00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 05/20/2023]
Abstract
Wastewater-based epidemiology is now widely used as an indirect tool to monitor the spread of SARS-CoV-2. In this study, five different sample matrices representing diverse phases of the wastewater treatment process were collected during the second wave of SARS-CoV-2 from two wastewater treatment plants (WWTPs) serving the Civil Hospital and Sacca Fisola island in Venice, Italy. Positive SARS-CoV-2 detections occurred at both WWTPs, and data on viral genome detection rate and quantification suggest that the pellet (i.e., the particulate resulting from the influent) is a sensitive matrix that permits reliable assessment of infection prevalence while reducing time to results. On the contrary, analysis of post-treatment matrices provides evidence of the decontamination efficacy of both WWTPs. Finally, direct sequencing of wastewater samples enabled us to identify B.1.177 and B.1.160 as the prevalent SARS-CoV-2 lineages circulating in Venice at the time of sampling. This study confirmed the suitability of wastewater testing for studying SARS-CoV-2 circulation and established a simplified workflow for the prompt detection and characterization of the virus.
Collapse
Affiliation(s)
- Irene Brian
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Alice Manuzzi
- Department of Comparative Biomedicine and Food
Science, University of Padova, Viale
dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food
Science, University of Padova, Viale
dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Edoardo Giussani
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Elisa Palumbo
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Alice Fusaro
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Francesco Bonfante
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Alessio Bortolami
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Erika Giorgia Quaranta
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Isabella Monne
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food
Science, University of Padova, Viale
dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food
Science, University of Padova, Viale
dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Calogero Terregino
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life
and Environmental Sciences and School of Medical Sciences, University of
Sydney, Sydney 2006, Australia
| | | | - Francesco Sorrentino
- Provveditorato interregionale per il
Veneto, Trentino AA, Friuli Venezia Giulia, Ponte di Rialto, 19, Venezia,
30125, Italy
| | | | | | | | | | - Cinzia Zincone
- Provveditorato interregionale per il
Veneto, Trentino AA, Friuli Venezia Giulia, Ponte di Rialto, 19, Venezia,
30125, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food
Science, University of Padova, Viale
dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Valentina Panzarin
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| |
Collapse
|
35
|
Dotto-Maurel A, Pelletier C, Morga B, Jacquot M, Faury N, Dégremont L, Bereszczynki M, Delmotte J, Escoubas JM, Chevignon G. Evaluation of tangential flow filtration coupled to long-read sequencing for ostreid herpesvirus type 1 genome assembly. Microb Genom 2022; 8:mgen000895. [PMID: 36355418 PMCID: PMC9836095 DOI: 10.1099/mgen.0.000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Whole-genome sequencing is widely used to better understand the transmission dynamics, the evolution and the emergence of new variants of viral pathogens. This can bring crucial information to stakeholders for disease management. Unfortunately, aquatic virus genomes are usually difficult to characterize because most of these viruses cannot be easily propagated in vitro. Developing methodologies for routine genome sequencing of aquatic viruses is timely given the ongoing threat of disease emergence. This is particularly true for pathogenic viruses infecting species of commercial interest that are widely exchanged between production basins or countries. For example, the ostreid herpesvirus type 1 (OsHV-1) is a Herpesvirus widely associated with mass mortality events of juvenile Pacific oyster Crassostrea gigas. Genomes of Herpesviruses are large and complex with long direct and inverted terminal repeats. In addition, OsHV-1 is unculturable. It therefore accumulates several features that make its genome sequencing and assembly challenging. To overcome these difficulties, we developed a tangential flow filtration (TFF) method to enrich OsHV-1 infective particles from infected host tissues. This virus purification allowed us to extract high molecular weight and high-quality viral DNA that was subjected to Illumina short-read and Nanopore long-read sequencing. Dedicated bioinformatic pipelines were developed to assemble complete OsHV-1 genomes with reads from both sequencing technologies. Nanopore sequencing allowed characterization of new structural variations and major viral isomers while having 99,98 % of nucleotide identity with the Illumina assembled genome. Our study shows that TFF-based purification method, coupled with Nanopore sequencing, is a promising approach to enable in field sequencing of unculturable aquatic DNA virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean Delmotte
- IHPE, Univ. Montpellier, CNRS, Ifremer, UPVD, F-34095 Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, Univ. Montpellier, CNRS, Ifremer, UPVD, F-34095 Montpellier, France,*Correspondence: Jean-Michel Escoubas,
| | - Germain Chevignon
- Ifremer, ASIM, F-17390 La Tremblade, France,*Correspondence: Germain Chevignon,
| |
Collapse
|
36
|
de Llanos R, Cejudo-Marín R, Barneo M, Pérez-Cataluña A, Barberá-Riera M, Rebagliato M, Bellido-Blasco J, Sánchez G, Hernández F, Bijlsma L. Monitoring the evolution of SARS-CoV-2 on a Spanish university campus through wastewater analysis: A pilot project for the reopening strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157370. [PMID: 35842154 PMCID: PMC9278994 DOI: 10.1016/j.scitotenv.2022.157370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 06/03/2023]
Abstract
Wastewater surveillance is a fast and cost-effective tool that enables tracing of both symptomatic and asymptomatic transmission of SARS-CoV-2. In this paper, a pilot program carried out at the University Jaume I for monitoring the trends of the presence of SARS-CoV-2 in wastewater. To the best of our knowledge, this is the first such project conducted on a university campus in Spain. Wastewater samples (n = 838) were collected when students returned to campus, from October 2020 until August 2021, at a confluence sewer point and at the building level including different academic departments and services, the library, administration offices and the university student residence. It has been observed that the probability of SARS-CoV-2 RNA detection in wastewater depended on COVID-19 incidence on campus and visitors/occupants of the buildings i.e., high-, or low-traffic buildings with high or low frequency of potential contacts. Moreover, the third wave in Spain (after Christmas 2020) and an outbreak that occurred at the university student's residence could be carefully followed, allowing confirmation of the end of the outbreak. In addition, viral variants (i.e., mutations and linages) from selected time points were detected by sequencing and gave an indication of the evolution of the virus over time. The results illustrate the potential of wastewater-based epidemiology to provide an early warning for SARS-CoV-2 within the university, especially in buildings with low traffic and more defined populations, like the student residence. The strategy and experience gathered in this study will allow for implementation of improvements for reliable monitoring in the future.
Collapse
Affiliation(s)
- Rosa de Llanos
- Faculty of Health Sciences, University Jaume I, Castellón, Spain.
| | | | - Manuela Barneo
- Faculty of Health Sciences, University Jaume I, Castellón, Spain
| | - Alba Pérez-Cataluña
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - María Barberá-Riera
- Faculty of Health Sciences, University Jaume I, Castellón, Spain; Epidemiology and Public Health Center of Castellón, Spain
| | - Marisa Rebagliato
- Faculty of Health Sciences, University Jaume I, Castellón, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Bellido-Blasco
- Faculty of Health Sciences, University Jaume I, Castellón, Spain; Epidemiology and Public Health Center of Castellón, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain.
| |
Collapse
|
37
|
Brunner FS, Brown MR, Bassano I, Denise H, Khalifa MS, Wade MJ, van Aerle R, Kevill JL, Jones DL, Farkas K, Jeffries AR, Cairns E, Wierzbicki C, Paterson S. City-wide wastewater genomic surveillance through the successive emergence of SARS-CoV-2 Alpha and Delta variants. WATER RESEARCH 2022; 226:119306. [PMID: 36369689 PMCID: PMC9614697 DOI: 10.1016/j.watres.2022.119306] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 05/08/2023]
Abstract
Genomic surveillance of SARS-CoV-2 has provided a critical evidence base for public health decisions throughout the pandemic. Sequencing data from clinical cases has helped to understand disease transmission and the spread of novel variants. Genomic wastewater surveillance can offer important, complementary information by providing frequency estimates of all variants circulating in a population without sampling biases. Here we show that genomic SARS-CoV-2 wastewater surveillance can detect fine-scale differences within urban centres, specifically within the city of Liverpool, UK, during the emergence of Alpha and Delta variants between November 2020 and June 2021. Furthermore, wastewater and clinical sequencing match well in the estimated timing of new variant rises and the first detection of a new variant in a given area may occur in either clinical or wastewater samples. The study's main limitation was sample quality when infection prevalence was low in spring 2021, resulting in a lower resolution of the rise of the Delta variant compared to the rise of the Alpha variant in the previous winter. The correspondence between wastewater and clinical variant frequencies demonstrates the reliability of wastewater surveillance. However, discrepancies in the first detection of the Alpha variant between the two approaches highlight that wastewater monitoring can also capture missing information, possibly resulting from asymptomatic cases or communities less engaged with testing programmes, as found by a simultaneous surge testing effort across the city.
Collapse
Affiliation(s)
- F S Brunner
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB, UK
| | - M R Brown
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK; School of Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - I Bassano
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK; Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - H Denise
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK
| | - M S Khalifa
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK; Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University, London, UB8 3PH, UK
| | - M J Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK; School of Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - R van Aerle
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries & Aquaculture Science, Dorset, DT4 8UB, UK
| | - J L Kevill
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries & Aquaculture Science, Dorset, DT4 8UB, UK
| | - D L Jones
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries & Aquaculture Science, Dorset, DT4 8UB, UK; Food Futures Institute, Murdoch University, Murdoch WA 6105, Australia
| | - K Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - A R Jeffries
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - E Cairns
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB, UK
| | - C Wierzbicki
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB, UK
| | - S Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB, UK.
| |
Collapse
|
38
|
Hubert CRJ, Acosta N, Waddell BJM, Hasing ME, Qiu Y, Fuzzen M, Harper NBJ, Bautista MA, Gao T, Papparis C, Van Doorn J, Du K, Xiang K, Chan L, Vivas L, Pradhan P, McCalder J, Low K, England WE, Kuzma D, Conly J, Ryan MC, Achari G, Hu J, Cabaj JL, Sikora C, Svenson L, Zelyas N, Servos M, Meddings J, Hrudey SE, Frankowski K, Parkins MD, Pang XL, Lee BE. Tracking Emergence and Spread of SARS-CoV-2 Omicron Variant in Large and Small Communities by Wastewater Monitoring in Alberta, Canada. Emerg Infect Dis 2022. [PMID: 35867051 DOI: 10.1101/2022.03.07.22272055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Wastewater monitoring of SARS-CoV-2 enables early detection and monitoring of the COVID-19 disease burden in communities and can track specific variants of concern. We determined proportions of the Omicron and Delta variants across 30 municipalities covering >75% of the province of Alberta (population 4.5 million), Canada, during November 2021-January 2022. Larger cities Calgary and Edmonton exhibited more rapid emergence of Omicron than did smaller and more remote municipalities. Notable exceptions were Banff, a small international resort town, and Fort McMurray, a medium-sized northern community that has many workers who fly in and out regularly. The integrated wastewater signal revealed that the Omicron variant represented close to 100% of SARS-CoV-2 burden by late December, before the peak in newly diagnosed clinical cases throughout Alberta in mid-January. These findings demonstrate that wastewater monitoring offers early and reliable population-level results for establishing the extent and spread of SARS-CoV-2 variants.
Collapse
|
39
|
Robins K, Leonard AFC, Farkas K, Graham DW, Jones DL, Kasprzyk-Hordern B, Bunce JT, Grimsley JMS, Wade MJ, Zealand AM, McIntyre-Nolan S. Research needs for optimising wastewater-based epidemiology monitoring for public health protection. JOURNAL OF WATER AND HEALTH 2022; 20:1284-1313. [PMID: 36170187 DOI: 10.2166/wh.2022.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) is an unobtrusive method used to observe patterns in illicit drug use, poliovirus, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The pandemic and need for surveillance measures have led to the rapid acceleration of WBE research and development globally. With the infrastructure available to monitor SARS-CoV-2 from wastewater in 58 countries globally, there is potential to expand targets and applications for public health protection, such as other viral pathogens, antimicrobial resistance (AMR), pharmaceutical consumption, or exposure to chemical pollutants. Some applications have been explored in academic research but are not used to inform public health decision-making. We reflect on the current knowledge of WBE for these applications and identify barriers and opportunities for expanding beyond SARS-CoV-2. This paper critically reviews the applications of WBE for public health and identifies the important research gaps for WBE to be a useful tool in public health. It considers possible uses for pathogenic viruses, AMR, and chemicals. It summarises the current evidence on the following: (1) the presence of markers in stool and urine; (2) environmental factors influencing persistence of markers in wastewater; (3) methods for sample collection and storage; (4) prospective methods for detection and quantification; (5) reducing uncertainties; and (6) further considerations for public health use.
Collapse
Affiliation(s)
- Katie Robins
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Anne F C Leonard
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; University of Exeter Medical School, European Centre for Environment and Human Health, University of Exeter, Cornwall TR10 9FE, UK
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David W Graham
- School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | | | - Joshua T Bunce
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Jasmine M S Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Matthew J Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Andrew M Zealand
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Shannon McIntyre-Nolan
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; Her Majesty's Prison and Probation Service, Ministry of Justice, London, SW1H 9AJ, UK
| |
Collapse
|
40
|
Hubert CRJ, Acosta N, Waddell BJM, Hasing ME, Qiu Y, Fuzzen M, Harper NBJ, Bautista MA, Gao T, Papparis C, Van Doorn J, Du K, Xiang K, Chan L, Vivas L, Pradhan P, McCalder J, Low K, England WE, Kuzma D, Conly J, Ryan MC, Achari G, Hu J, Cabaj JL, Sikora C, Svenson L, Zelyas N, Servos M, Meddings J, Hrudey SE, Frankowski K, Parkins MD, Pang XL, Lee BE. Tracking Emergence and Spread of SARS-CoV-2 Omicron Variant in Large and Small Communities by Wastewater Monitoring in Alberta, Canada. Emerg Infect Dis 2022; 28:1770-1776. [PMID: 35867051 PMCID: PMC9423933 DOI: 10.3201/eid2809.220476] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Wastewater monitoring of SARS-CoV-2 enables early detection and monitoring of the COVID-19 disease burden in communities and can track specific variants of concern. We determined proportions of the Omicron and Delta variants across 30 municipalities covering >75% of the province of Alberta (population 4.5 million), Canada, during November 2021-January 2022. Larger cities Calgary and Edmonton exhibited more rapid emergence of Omicron than did smaller and more remote municipalities. Notable exceptions were Banff, a small international resort town, and Fort McMurray, a medium-sized northern community that has many workers who fly in and out regularly. The integrated wastewater signal revealed that the Omicron variant represented close to 100% of SARS-CoV-2 burden by late December, before the peak in newly diagnosed clinical cases throughout Alberta in mid-January. These findings demonstrate that wastewater monitoring offers early and reliable population-level results for establishing the extent and spread of SARS-CoV-2 variants.
Collapse
|
41
|
Wang H, Churqui MP, Tunovic T, Enache L, Johansson A, Kärmander A, Nilsson S, Lagging M, Andersson M, Dotevall L, Brezicka T, Nyström K, Norder H. The amount of SARS-CoV-2 RNA in wastewater relates to the development of the pandemic and its burden on the health system. iScience 2022; 25:105000. [PMID: 36035197 PMCID: PMC9398557 DOI: 10.1016/j.isci.2022.105000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 08/18/2022] [Indexed: 11/01/2022] Open
Abstract
Virus surveillance in wastewater can be a useful indicator of the development of the COVID-19 pandemic in communities. However, knowledge about how the amount of SARS-CoV-2 RNA in wastewater relates to different data on the burden on the health system is still limited. Herein, we monitored the amount of SARS-CoV-2 RNA and the spectrum of virus variants in weekly pooled wastewater samples for two years from mid-February 2020 and compared with several clinical data. The two-year monitoring showed the weekly changes in the amount of viral RNA in wastewater preceded the hospital care needs for COVID-19 and the number of acute calls on adult acute respiratory distress by 1-2 weeks during the first three waves of COVID-19. Our study demonstrates that virus surveillance in wastewater can predict the development of a pandemic and its burden on the health system, regardless of society's test capacity and possibility of tracking infected cases.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| | - Marianela Patzi Churqui
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Timur Tunovic
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Ambjörn Kärmander
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Institute of Biomedicine, Department of Pathology and Genetics, University of Gothenburg, Gothenburg, Sweden
| | - Martin Lagging
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| | - Maria Andersson
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| | - Leif Dotevall
- Department of Communicable Disease Control, Region Västra Götaland, Gothenburg, Sweden
| | - Thomas Brezicka
- Sahlgrenska University Hospital, Department of Quality and Patient Safety, Region Västra Götaland, Gothenburg, Sweden
| | - Kristina Nyström
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| | - Heléne Norder
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
42
|
Tamáš M, Potocarova A, Konecna B, Klucar Ľ, Mackulak T. Wastewater Sequencing-An Innovative Method for Variant Monitoring of SARS-CoV-2 in Populations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9749. [PMID: 35955106 PMCID: PMC9367975 DOI: 10.3390/ijerph19159749] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 05/14/2023]
Abstract
The SARS-CoV-2 outbreak has already affected more than 555 million people, and 6.3 million people have died. Due to its high infectivity, it is crucial to track SARS-CoV-2 outbreaks early to prevent the spread of infection. Wastewater monitoring appears to be a powerful and effective tool for managing epidemiological situations. Due to emerging mutations of SARS-CoV-2, there is a need to monitor mutations in order to control the pandemic. Since the sequencing of randomly chosen individuals is time-consuming and expensive, sequencing of wastewater plays an important role in revealing the dynamics of infection in a population. The sampling method used is a crucial factor and significantly impacts the results. Wastewater can be collected as a grab sample or as a 24 h composite sample. Another essential factor is the sample volume, as is the method of transport used. This review discusses different pretreatment procedures and RNA extraction, which may be performed using various methods, such as column-based extraction, TRIzol, or magnetic extraction. Each of the methods has its advantages and disadvantages, which are described accordingly. RT-qPCR is a procedure that confirms the presence of SARS-CoV-2 genes before sequencing. This review provides an overview of currently used methods for preparing wastewater samples, from sampling to sequencing.
Collapse
Affiliation(s)
- Michal Tamáš
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radinského 9, 81237 Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
| | - Alena Potocarova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Barbora Konecna
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Ľubos Klucar
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 84551 Bratislava, Slovakia
| | - Tomas Mackulak
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radinského 9, 81237 Bratislava, Slovakia
| |
Collapse
|
43
|
Kaya D, Falender R, Radniecki T, Geniza M, Cieslak P, Kelly C, Lininger N, Sutton M. Correlation between Clinical and Wastewater SARS-CoV-2 Genomic Surveillance, Oregon, USA. Emerg Infect Dis 2022; 28:1906-1908. [PMID: 35840124 PMCID: PMC9423899 DOI: 10.3201/eid2809.220938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
SARS-CoV-2 variant proportions in a population can be estimated through genomic sequencing of clinical specimens or wastewater samples. We demonstrate strong pairwise correlation between statewide variant estimates in Oregon, USA, derived from both methods (correlation coefficient 0.97). Our results provide crucial evidence of the effectiveness of community-level genomic surveillance.
Collapse
|
44
|
Ahmed W, Bivins A, Metcalfe S, Smith WJM, Ziels R, Korajkic A, McMinn B, Graber TE, Simpson SL. RT-qPCR and ATOPlex sequencing for the sensitive detection of SARS-CoV-2 RNA for wastewater surveillance. WATER RESEARCH 2022; 220:118621. [PMID: 35665675 PMCID: PMC9109001 DOI: 10.1016/j.watres.2022.118621] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 05/27/2023]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, wastewater surveillance has become an important tool for monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within communities. In particular, reverse transcription-quantitative PCR (RT-qPCR) has been used to detect and quantify SARS-CoV-2 RNA in wastewater, while monitoring viral genome mutations requires separate approaches such as deep sequencing. A high throughput sequencing platform (ATOPlex) that uses a multiplex tiled PCR-based enrichment technique has shown promise in detecting variants of concern (VOC) while also providing virus quantitation data. However, detection sensitivities of both RT-qPCR and sequencing can be impacted through losses occurring during sample handling, virus concentration, nucleic acid extraction, and RT-qPCR. Therefore, process limit of detection (PLOD) assessments are required to estimate the gene copies of target molecule to attain specific probability of detection. In this study, we compare the PLOD of four RT-qPCR assays (US CDC N1 and N2, China CDC N and ORF1ab) for detection of SARS-CoV-2 to that of ATOPlex sequencing by seeding known concentrations of gamma-irradiated SARS-CoV-2 into wastewater. Results suggest that among the RT-qPCR assays, US CDC N1 was the most sensitive, especially at lower SARS-CoV-2 seed levels. However, when results from all RT-qPCR assays were combined, it resulted in greater detection rates than individual assays, suggesting that application of multiple assays is better suited for the trace detection of SARS-CoV-2 from wastewater samples. Furthermore, while ATOPlex offers a promising approach to SARS-CoV-2 wastewater surveillance, this approach appears to be less sensitive compared to RT-qPCR under the experimental conditions of this study, and may require further refinements. Nonetheless, the combination of RT-qPCR and ATOPlex may be a powerful tool to simultaneously detect/quantify SARS-CoV-2 RNA and monitor emerging VOC in wastewater samples.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, LA, USA
| | - Suzanne Metcalfe
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J M Smith
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Ryan Ziels
- Department of Civil Engineering, University of British Columbia, Vancouver, Canada
| | - Asja Korajkic
- United States Environmental Protection Agency, 26 W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Brian McMinn
- United States Environmental Protection Agency, 26 W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | | |
Collapse
|
45
|
Acosta N, Bautista MA, Waddell BJ, McCalder J, Beaudet AB, Man L, Pradhan P, Sedaghat N, Papparis C, Bacanu A, Hollman J, Krusina A, Southern DA, Williamson T, Li C, Bhatnagar S, Murphy S, Chen J, Kuzma D, Clark R, Meddings J, Hu J, Cabaj JL, Conly JM, Dai X, Lu X, Chekouo T, Ruecker NJ, Achari G, Ryan MC, Frankowski K, Hubert CRJ, Parkins MD. Longitudinal SARS-CoV-2 RNA wastewater monitoring across a range of scales correlates with total and regional COVID-19 burden in a well-defined urban population. WATER RESEARCH 2022; 220:118611. [PMID: 35661506 PMCID: PMC9107283 DOI: 10.1016/j.watres.2022.118611] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/13/2022] [Accepted: 05/13/2022] [Indexed: 05/03/2023]
Abstract
Wastewater-based epidemiology (WBE) is an emerging surveillance tool that has been used to monitor the ongoing COVID-19 pandemic by tracking SARS-CoV-2 RNA shed into wastewater. WBE was performed to monitor the occurrence and spread of SARS-CoV-2 from three wastewater treatment plants (WWTP) and six neighborhoods in the city of Calgary, Canada (population 1.44 million). A total of 222 WWTP and 192 neighborhood samples were collected from June 2020 to May 2021, encompassing the end of the first-wave (June 2020), the second-wave (November end to December 2020) and the third-wave of the COVID-19 pandemic (mid-April to May 2021). Flow-weighted 24-hour composite samples were processed to extract RNA that was then analyzed for two SARS-CoV-2-specific regions of the nucleocapsid gene, N1 and N2, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Using this approach SARS-CoV-2 RNA was detected in 98.06% (406/414) of wastewater samples. SARS-CoV-2 RNA abundance was compared to clinically diagnosed COVID-19 cases organized by the three-digit postal code of affected individuals' primary residences, enabling correlation analysis at neighborhood, WWTP and city-wide scales. Strong correlations were observed between N1 & N2 gene signals in wastewater and new daily cases for WWTPs and neighborhoods. Similarly, when flow rates at Calgary's three WWTPs were used to normalize observed concentrations of SARS-CoV-2 RNA and combine them into a city-wide signal, this was strongly correlated with regionally diagnosed COVID-19 cases and clinical test percent positivity rate. Linked census data demonstrated disproportionate SARS-CoV-2 in wastewater from areas of the city with lower socioeconomic status and more racialized communities. WBE across a range of urban scales was demonstrated to be an effective mechanism of COVID-19 surveillance.
Collapse
Affiliation(s)
- Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - María A Bautista
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Barbara J Waddell
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Janine McCalder
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Alexander Buchner Beaudet
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Lawrence Man
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Puja Pradhan
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Navid Sedaghat
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Chloe Papparis
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Andra Bacanu
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Jordan Hollman
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada; Department of Geosciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Alexander Krusina
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Danielle A Southern
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Tyler Williamson
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada; O'Brien Institute for Public Health, University of Calgary, Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada
| | - Carmen Li
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Srijak Bhatnagar
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Sean Murphy
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Jianwei Chen
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Darina Kuzma
- Advancing Canadian Water Assets, University of Calgary, 3131 210 Ave SE, Calgary, Alberta, T0L 0×0, Canada
| | - Rhonda Clark
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada; Advancing Canadian Water Assets, University of Calgary, 3131 210 Ave SE, Calgary, Alberta, T0L 0×0, Canada
| | - Jon Meddings
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Jia Hu
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada; O'Brien Institute for Public Health, University of Calgary, Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada; Provincial Population & Public Health, Alberta Health Services, 3030 Hospital Drive NW, Calgary, Alberta, T2N 4W4, Canada
| | - Jason L Cabaj
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada; O'Brien Institute for Public Health, University of Calgary, Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada; Provincial Population & Public Health, Alberta Health Services, 3030 Hospital Drive NW, Calgary, Alberta, T2N 4W4, Canada
| | - John M Conly
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; O'Brien Institute for Public Health, University of Calgary, Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada; Infection Prevention and Control, Alberta Health Services, 1403 29th Street NW, Calgary, Alberta, T2N 2T9, Canada; Department of Pathology and Laboratory Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Xiaotian Dai
- Department of Mathematics and Statistics, University of Calgary, 2500 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Xuewen Lu
- Department of Mathematics and Statistics, University of Calgary, 2500 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Thierry Chekouo
- Department of Mathematics and Statistics, University of Calgary, 2500 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Norma J Ruecker
- Water Quality Services, City of Calgary, 625 25 Ave SE, Calgary, Alberta, T2G 4k8, Canada
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - M Cathryn Ryan
- Department of Geosciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, 3131 210 Ave SE, Calgary, Alberta, T0L 0×0, Canada
| | - Casey R J Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
46
|
Le Targa L, Wurtz N, Lacoste A, Penant G, Jardot P, Annessi A, Colson P, La Scola B, Aherfi S. SARS-CoV-2 Testing of Aircraft Wastewater Shows That Mandatory Tests and Vaccination Pass before Boarding Did Not Prevent Massive Importation of Omicron Variant into Europe. Viruses 2022; 14:1511. [PMID: 35891491 PMCID: PMC9319773 DOI: 10.3390/v14071511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Most new SARS-CoV-2 epidemics in France occurred following the importation from abroad of emerging viral variants. Currently, the risk of new variants being imported is controlled based on a negative screening test (PCR or antigenic) and proof of up-to-date vaccine status, such as the International Air Transport Association travel pass. METHODS The wastewater from two planes arriving in Marseille (France) from Addis Ababa (Ethiopia) in December 2021 was tested by RT-PCR to detect SARS-CoV2 and screen for variants. These tests were carried out between landing and customs clearance and were then sequenced by MiSeq Illumina. Antigenic tests and sequencing by NovaSeq were carried out on respiratory samples collected from the 56 passengers on the second flight. RESULTS SARS-CoV-2 RNA suspected of being from the Omicron BA.1 variant was detected in the aircraft's wastewater. SARS-CoV2 RNA was detected in 11 [20%) passengers and the Omicron BA.1 variant was identified. CONCLUSION Our work shows the efficiency of aircraft wastewater testing to detect SARS-CoV-2 cases among travellers and to identify the viral genotype. It also highlights the low efficacy of the current control strategy for flights entering France from outside Europe, which combines a requirement to produce a vaccine pass and proof of a negative test before boarding.
Collapse
Affiliation(s)
- Lorlane Le Targa
- Microbes Evolution PHylogénie et Infections, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 13005 Marseille, France; (L.L.T.); (N.W.); (G.P.); (P.J.); (P.C.)
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Biosellal, 27 Chemin des Peupliers, 69570 Lyon, France
| | - Nathalie Wurtz
- Microbes Evolution PHylogénie et Infections, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 13005 Marseille, France; (L.L.T.); (N.W.); (G.P.); (P.J.); (P.C.)
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Alexandre Lacoste
- Bataillon des Marins Pompiers de la ville de Marseille, 13005 Marseille, France; (A.L.); (A.A.)
| | - Gwilherm Penant
- Microbes Evolution PHylogénie et Infections, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 13005 Marseille, France; (L.L.T.); (N.W.); (G.P.); (P.J.); (P.C.)
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Priscilla Jardot
- Microbes Evolution PHylogénie et Infections, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 13005 Marseille, France; (L.L.T.); (N.W.); (G.P.); (P.J.); (P.C.)
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Alexandre Annessi
- Bataillon des Marins Pompiers de la ville de Marseille, 13005 Marseille, France; (A.L.); (A.A.)
| | - Philippe Colson
- Microbes Evolution PHylogénie et Infections, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 13005 Marseille, France; (L.L.T.); (N.W.); (G.P.); (P.J.); (P.C.)
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Bernard La Scola
- Microbes Evolution PHylogénie et Infections, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 13005 Marseille, France; (L.L.T.); (N.W.); (G.P.); (P.J.); (P.C.)
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Sarah Aherfi
- Microbes Evolution PHylogénie et Infections, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 13005 Marseille, France; (L.L.T.); (N.W.); (G.P.); (P.J.); (P.C.)
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
47
|
Wu F, Lee WL, Chen H, Gu X, Chandra F, Armas F, Xiao A, Leifels M, Rhode SF, Wuertz S, Thompson J, Alm EJ. Making waves: Wastewater surveillance of SARS-CoV-2 in an endemic future. WATER RESEARCH 2022; 219:118535. [PMID: 35605390 PMCID: PMC9062764 DOI: 10.1016/j.watres.2022.118535] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 05/28/2023]
Abstract
Wastewater-based surveillance (WBS) has been widely used as a public health tool to monitor the emergence and spread of SARS-CoV-2 infections in populations during the COVID-19 pandemic. Coincident with the global vaccination efforts, the world is also enduring new waves of SARS-CoV-2 variants. Reinfections and vaccine breakthroughs suggest an endemic future where SARS-CoV-2 continues to persist in the general population. In this treatise, we aim to explore the future roles of wastewater surveillance. Practically, WBS serves as a relatively affordable and non-invasive tool for mass surveillance of SARS-CoV-2 infection while minimizing privacy concerns, attributes that make it extremely suited for its long-term usage. In an endemic future, the utility of WBS will include 1) monitoring the trend of viral loads of targets in wastewater for quantitative estimate of changes in disease incidence; 2) sampling upstream for pinpointing infections in neighborhoods and at the building level; 3) integrating wastewater and clinical surveillance for cost-efficient population surveillance; and 4) genome sequencing wastewater samples to track circulating and emerging variants in the population. We further discuss the challenges and future developments of WBS to reduce inconsistencies in wastewater data worldwide, improve its epidemiological inference, and advance viral tracking and discovery as a preparation for the next viral pandemic.
Collapse
Affiliation(s)
- Fuqing Wu
- Center for Infectious Disease, Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA.
| | - Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Xiaoqiong Gu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Franciscus Chandra
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Federica Armas
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Amy Xiao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | | | - Stefan Wuertz
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Janelle Thompson
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore
| | - Eric J Alm
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
48
|
Barbé L, Schaeffer J, Besnard A, Jousse S, Wurtzer S, Moulin L, Le Guyader FS, Desdouits M. SARS-CoV-2 Whole-Genome Sequencing Using Oxford Nanopore Technology for Variant Monitoring in Wastewaters. Front Microbiol 2022; 13:889811. [PMID: 35756003 PMCID: PMC9218694 DOI: 10.3389/fmicb.2022.889811] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 01/21/2023] Open
Abstract
Since the beginning of the Coronavirus Disease-19 (COVID-19) pandemic, multiple Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mutations have been reported and led to the emergence of variants of concern (VOC) with increased transmissibility, virulence or immune escape. In parallel, the observation of viral fecal shedding led to the quantification of SARS-CoV-2 genomes in wastewater, providing information about the dynamics of SARS-CoV-2 infections within a population including symptomatic and asymptomatic individuals. Here, we aimed to adapt a sequencing technique initially designed for clinical samples to apply it to the challenging and mixed wastewater matrix, and hence identify the circulation of VOC at the community level. Composite raw sewage sampled over 24 h in two wastewater-treatment plants (WWTPs) from a city in western France were collected weekly and SARS-CoV-2 quantified by RT-PCR. Samples collected between October 2020 and May 2021 were submitted to whole-genome sequencing (WGS) using the primers and protocol published by the ARTIC Network and a MinION Mk1C sequencer (Oxford Nanopore Technologies, Oxford, United Kingdom). The protocol was adapted to allow near-full genome coverage from sewage samples, starting from ∼5% to reach ∼90% at depth 30. This enabled us to detect multiple single-nucleotide variant (SNV) and assess the circulation of the SARS-CoV-2 VOC Alpha, Beta, Gamma, and Delta. Retrospective analysis of sewage samples shed light on the emergence of the Alpha VOC with detection of first co-occurring signature mutations in mid-November 2020 to reach predominance of this variant in early February 2021. In parallel, a mutation-specific qRT-PCR assay confirmed the spread of the Alpha VOC but detected it later than WGS. Altogether, these data show that SARS-CoV-2 sequencing in sewage can be used for early detection of an emerging VOC in a population and confirm its ability to track shifts in variant predominance.
Collapse
Affiliation(s)
- Laure Barbé
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | - Julien Schaeffer
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | - Alban Besnard
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | - Sarah Jousse
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | | | - Laurent Moulin
- R&D Laboratory, DRDQE, Eau de Paris, Ivry-sur-Seine, France
| | | | - Marion Desdouits
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| |
Collapse
|
49
|
Rainey AL, Loeb JC, Robinson SE, Lednicky JA, McPherson J, Colson S, Allen M, Coker ES, Sabo-Attwood T, Maurelli AT, Bisesi JH. Wastewater surveillance for SARS-CoV-2 in a small coastal community: Effects of tourism on viral presence and variant identification among low prevalence populations. ENVIRONMENTAL RESEARCH 2022; 208:112496. [PMID: 34902379 PMCID: PMC8820684 DOI: 10.1016/j.envres.2021.112496] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 05/05/2023]
Abstract
Wastewater-based epidemiology has been used to measure SARS-CoV-2 prevalence in cities worldwide as an indicator of community health, however, few longitudinal studies have followed SARS-CoV-2 in wastewater in small communities from the start of the pandemic or evaluated the influence of tourism on viral loads. Therefore the objective of this study was to use measurements of SARS-CoV-2 in wastewater to monitor viral trends and variants in a small island community over a twelve-month period beginning May 1, 2020, before the community re-opened to tourists. Wastewater samples were collected weekly and analyzed to detect and quantify SARS-CoV-2 genome copies. Sanger sequencing was used to determine genome sequences from total RNA extracted from wastewater samples positive for SARS-CoV-2. Visitor data was collected from the local Chamber of Commerce. We performed Poisson and linear regression to determine if visitors to the Cedar Key Chamber of Commerce were positively associated with SARS-CoV-2-positive wastewater samples and the concentration of SARS-CoV-2 RNA. Results indicated that weekly wastewater samples were negative for SARS-CoV-2 until mid-July when positive samples were recorded in four of five consecutive weeks. Additional positive results were recorded in November and December 2020, as well as January, March, and April 2021. Tourism data revealed that the SARS-CoV-2 RNA concentration in wastewater increased by 1.06 Log10 genomic copies/L per 100 tourists weekly. Sequencing from six positive wastewater samples yielded two complete sequences of SARS-CoV-2, two overlapping sequences, and two low yield sequences. They show arrival of a new variant SARS-CoV-2 in January 2021. Our results demonstrate the utility of wastewater surveillance for SARS-CoV-2 in a small community. Wastewater surveillance and viral genome sequencing suggest that population mobility likely plays an important role in the introduction and circulation of SARS-CoV-2 variants among communities experiencing high tourism and who have a small population size.
Collapse
Affiliation(s)
- Andrew L Rainey
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Julia C Loeb
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Sarah E Robinson
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA
| | - John McPherson
- Cedar Key Water and Sewer District, Cedar Key, FL, 32625, USA
| | - Sue Colson
- Cedar Key Chamber of Commerce, Cedar Key, FL, 32625, USA
| | - Michael Allen
- Nature Coast Biological Station, Institute of Food and Agricultural Sciences, University of Florida, Cedar Key, FL, 32625, USA
| | - Eric S Coker
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Anthony T Maurelli
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Joseph H Bisesi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
50
|
Liao YC, Chen FJ, Chuang MC, Wu HC, Ji WC, Yu GY, Huang TS. High-Integrity Sequencing of Spike Gene for SARS-CoV-2 Variant Determination. Int J Mol Sci 2022; 23:3257. [PMID: 35328676 PMCID: PMC8954144 DOI: 10.3390/ijms23063257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
For tiling of the SARS-CoV-2 genome, the ARTIC Network provided a V4 protocol using 99 pairs of primers for amplicon production and is currently the widely used amplicon-based approach. However, this technique has regions of low sequence coverage and is labour-, time-, and cost-intensive. Moreover, it requires 14 pairs of primers in two separate PCRs to obtain spike gene sequences. To overcome these disadvantages, we proposed a single PCR to efficiently detect spike gene mutations. We proposed a bioinformatic protocol that can process FASTQ reads into spike gene consensus sequences to accurately call spike protein variants from sequenced samples or to fairly express the cases of missing amplicons. We evaluated the in silico detection rate of primer sets that yield amplicon sizes of 400, 1200, and 2500 bp for spike gene sequencing of SARS-CoV-2 to be 59.49, 76.19, and 92.20%, respectively. The in silico detection rate of our proposed single PCR primers was 97.07%. We demonstrated the robustness of our analytical protocol against 3000 Oxford Nanopore sequencing runs of distinct datasets, thus ensuring high-integrity sequencing of spike genes for variant SARS-CoV-2 determination. Our protocol works well with the data yielded from versatile primer designs, making it easy to determine spike protein variants.
Collapse
Affiliation(s)
- Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan
| | - Feng-Jui Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan; (F.-J.C.); (H.-C.W.); (G.-Y.Y.)
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Min-Chieh Chuang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (M.-C.C.); (W.-C.J.)
| | - Han-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan; (F.-J.C.); (H.-C.W.); (G.-Y.Y.)
| | - Wan-Chen Ji
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (M.-C.C.); (W.-C.J.)
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan; (F.-J.C.); (H.-C.W.); (G.-Y.Y.)
| | - Tsi-Shu Huang
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
| |
Collapse
|