1
|
Maddeppungeng M, Nurdin A, Nency YM, Sekartini R, Medise BE, Soedjatmiko S, Massi MN, Darma S, Darussalam AHE, Ramadhani N, Hidayah N, Chalid MT, Ramadany S, Wahyuni S, Djaharuddin I, Santoso A, Fikri B, Alimuddin S, Pelupessy NM, Masadah R, Putri AZ, Setyaningsih L, Yani FF, Anggrainy F, Deza PA, Maharani N, Mahati E, Hapsari R, Farhanah N, Pramudo SG, Tri Anantyo D. Safety and immunogenicity of a SARS-CoV-2 recombinant protein subunit vaccine adjuvanted with Alum + CpG 1018 in healthy Indonesian adults: A multicenter, randomized, comparative, observer-blind, placebo-controlled phase 2 study. Hum Vaccin Immunother 2024; 20:2429231. [PMID: 39632708 PMCID: PMC11622629 DOI: 10.1080/21645515.2024.2429231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/31/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024] Open
Abstract
Globally, dozens of COVID-19 vaccines are licensed under emergency or conditional authorization, but especially in low and middle-income countries, their availability varies. Indonesia decided to become independent and produce its own vaccines locally. This study investigated the safety and immunogenicity of a SARS-CoV-2 recombinant protein subunit vaccine adjuvanted with Alum + CpG 1018. This study involved 360 adults aged 18 years and above. It compared two vaccine dosages, a-12.5 µg and a 25-µg dose of receptor binding domain protein, to a placebo (1:1:1). A total of 40.6% of participants in this study experienced at least one adverse event (AE), with most being mild. There was no statistically significant difference in AEs between the groups. The microneutralization test showed the highest neutralizing antibody titer (IU/mL) in the 25 µg dose vaccine group at day 28 after the second dose (3,300 95%CI 2,215-4,914), although it was not statistically different from the 12.5 µg dose group (3,157 95%CI 2,135-4,669). Similarly, IgG antibody concentrations in the 25 µg dose vaccine group at day 28 were the highest compared to the 12.5 µg dose and placebo. According to protocol, only the formulation with the better antibody profile and comparable reactogenicity was further evaluated at months three and six. Thus, follow-up was only performed for the 25 µg dose vaccine, demonstrating antibody persistence at month six and had a favorable safety profile. These results position this SARS-CoV-2 recombinant protein subunit vaccine adjuvanted with Alum + CpG 1018 as a promising candidate to fight against COVID-19.
Collapse
Affiliation(s)
- Martira Maddeppungeng
- Department of Pediatrics, Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
- Department of Pediatrics, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Asrawati Nurdin
- Department of Pediatrics, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
- Department of Pediatrics, Dr. M. Djamil Hospital Padang, Kota Padang, Indonesia
| | - Yetty Movieta Nency
- Department of Child Health, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Rini Sekartini
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Bernie Endyarni Medise
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Muh. Nasrum Massi
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
- Institute for Research and Community Services, Universitas Hasanuddin, Makassar, Indonesia
| | - Sidrah Darma
- Department of Pediatrics, Universitas Muslim Indonesia, Makassar, Indonesia
| | | | - Nur Ramadhani
- Department of Pediatrics, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Najdah Hidayah
- Institute for Research and Community Services, Universitas Hasanuddin, Makassar, Indonesia
| | - Maisuri Tadjuddin Chalid
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Sri Ramadany
- Department of Public Health and Community Medicine, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Sitti Wahyuni
- Department of Parasitology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Irawaty Djaharuddin
- Department of Pulmonology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
- Department of Pulmonology, Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Arif Santoso
- Department of Pulmonology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
- Department of Pulmonology, Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Bahrul Fikri
- Department of Pediatrics, Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
- Department of Pediatrics, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Suriani Alimuddin
- Department of Internal Medicine, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Ninny Meutia Pelupessy
- Department of Pediatrics, Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
- Department of Pediatrics, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Rina Masadah
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | | | | | - Finny Fitry Yani
- Department of Pediatrics, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
- Department of Pediatrics, Dr. M. Djamil Hospital Padang, Kota Padang, Indonesia
| | - Fenty Anggrainy
- Department of Pulmonology and Respiratory Medicine, Dr. M. Djamil Hospital Padang, Kota Padang, Indonesia
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Putri Awaliyah Deza
- Department of Pediatrics, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Nani Maharani
- Department of Pharmacology and Therapeutics, Faculty of Medicine Universitas Diponegoro, Semarang, Indonesia
| | - Endang Mahati
- Department of Pharmacology and Therapeutics, Faculty of Medicine Universitas Diponegoro, Semarang, Indonesia
| | - Rebriarina Hapsari
- Department of Microbiology, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Nur Farhanah
- Department of Internal Medicine, Faculty of Medicine, Universitas Diponegoro. Semarang, Indonesia
| | - Setyo Gundi Pramudo
- Department of Internal Medicine, Faculty of Medicine, Universitas Diponegoro. Semarang, Indonesia
| | - Dimas Tri Anantyo
- Department of Internal Medicine, Faculty of Medicine, Universitas Diponegoro. Semarang, Indonesia
| |
Collapse
|
2
|
Mirzakhani M, Bayat M, Dashti M, Tahmasebi S, Rostamtabar M, Esmaeili Gouvarchin Ghaleh H, Amani J. The Assessment of Anti-SARS-CoV-2 Antibodies in Different Vaccine Platforms: A Systematic Review and Meta-Analysis of COVID-19 Vaccine Clinical Trial Studies. Rev Med Virol 2024; 34:e2579. [PMID: 39327654 DOI: 10.1002/rmv.2579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND OBJECTIVE The COVID-19 pandemic spread rapidly throughout the world and caused millions of deaths globally. Several vaccines have been developed to control the COVID-19 pandemic and reduce the burden it placed on public health. This study aimed to assess the efficacy of different vaccine platforms in inducing potent antibody responses. Moreover, the seroconversion rate and common side effects of vaccine platforms were evaluated. METHODS This meta-analysis included clinical trials of COVID-19 vaccines that met the eligibility criteria. Electronic databases (including PubMed, Scopus, and Web of Science) and Google Scholar search engine were searched for eligible studies. Regarding the methodological heterogeneity between the included studies, we selected a random-effects model. The geometric mean ratio (GMR) was chosen as the effect size for this meta-analysis. RESULTS Of the 1838 records identified through screening and after removing duplicate records, the full texts of 1076 records were assessed for eligibility. After the full-text assessment, 56 records were eligible and included in the study. Overall, vaccinated participants had a 150.8-fold increased rate of anti-spike IgG titres compared with the placebo group (GMR = 150.8; 95% CI, 95.9-237.1; I2 = 100%). Moreover, vaccinated participants had a 37.3-fold increased rate of neutralising antibody titres compared with the placebo group (GMR = 37.3; 95% CI, 28.5-48.7; I2 = 99%). The mRNA platform showed a higher rate of anti-spike IgG (GMR = 1263.5; 95% CI, 431.1-3702.8; I2 = 99%), while neutralising antibody titres were higher in the subunit platform (GMR = 53.4; 95% CI, 32.8-87.1; I2 = 99%) than in other platforms. Different vaccine platforms showed different rates of both anti-spike IgG and neutralising antibody titres with interesting results. The seroconversion rate of anti-spike IgG and neutralising antibody titres was more than 98% in the vaccinated participants. CONCLUSION Inactivated and subunit vaccines produced a high percentage of neutralising antibodies and had a low common adverse reaction rate compared to other platforms. In this regard, subunit and inactivated vaccines can still be used as the main vaccine platforms for effectively controlling infections with high transmission rates.
Collapse
Affiliation(s)
- Mohammad Mirzakhani
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Bayat
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Dashti
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rostamtabar
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Esmaeili Gouvarchin Ghaleh
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Shukla N, Shamim U, Agarwal P, Pandey R, Narayan J. From bench to bedside: potential of translational research in COVID-19 and beyond. Brief Funct Genomics 2024; 23:349-362. [PMID: 37986554 DOI: 10.1093/bfgp/elad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) have been around for more than 3 years now. However, due to constant viral evolution, novel variants are emerging, leaving old treatment protocols redundant. As treatment options dwindle, infection rates continue to rise and seasonal infection surges become progressively common across the world, rapid solutions are required. With genomic and proteomic methods generating enormous amounts of data to expand our understanding of SARS-CoV-2 biology, there is an urgent requirement for the development of novel therapeutic methods that can allow translational research to flourish. In this review, we highlight the current state of COVID-19 in the world and the effects of post-infection sequelae. We present the contribution of translational research in COVID-19, with various current and novel therapeutic approaches, including antivirals, monoclonal antibodies and vaccines, as well as alternate treatment methods such as immunomodulators, currently being studied and reiterate the importance of translational research in the development of various strategies to contain COVID-19.
Collapse
Affiliation(s)
- Nityendra Shukla
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Uzma Shamim
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Preeti Agarwal
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Rajesh Pandey
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Jitendra Narayan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| |
Collapse
|
4
|
Lundstrom K. COVID-19 Vaccines: Where Did We Stand at the End of 2023? Viruses 2024; 16:203. [PMID: 38399979 PMCID: PMC10893040 DOI: 10.3390/v16020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccine development against SARS-CoV-2 has been highly successful in slowing down the COVID-19 pandemic. A wide spectrum of approaches including vaccines based on whole viruses, protein subunits and peptides, viral vectors, and nucleic acids has been developed in parallel. For all types of COVID-19 vaccines, good safety and efficacy have been obtained in both preclinical animal studies and in clinical trials in humans. Moreover, emergency use authorization has been granted for the major types of COVID-19 vaccines. Although high safety has been demonstrated, rare cases of severe adverse events have been detected after global mass vaccinations. Emerging SARS-CoV-2 variants possessing enhanced infectivity have affected vaccine protection efficacy requiring re-design and re-engineering of novel COVID-19 vaccine candidates. Furthermore, insight is given into preparedness against emerging SARS-CoV-2 variants.
Collapse
|
5
|
Ajmera H, Lakhawat SS, Malik N, Kumar A, Bhatti JS, Kumar V, Gogoi H, Jaswal SK, Chandel S, Sharma PK. Global Emergence of SARS-CoV2 Infection and Scientific Interventions to Contain its Spread. Curr Protein Pept Sci 2024; 25:307-325. [PMID: 38265408 DOI: 10.2174/0113892037274719231212044235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 01/25/2024]
Abstract
The global pandemic caused by COVID-19 posed a significant challenge to public health, necessitating rapid scientific interventions to tackle the spread of infection. The review discusses the key areas of research on COVID-19 including viral genomics, epidemiology, pathogenesis, diagnostics, and therapeutics. The genome sequencing of the virus facilitated the tracking of its evolution, transmission dynamics, and identification of variants. Epidemiological studies have provided insights into disease spread, risk factors, and the impact of public health infrastructure and social distancing measures. Investigations of the viral pathogenesis have elucidated the mechanisms underlying immune responses and severe manifestations including the long-term effects of COVID-19. Overall, the article provides an updated overview of the diagnostic methods developed for SARS-CoV-2 and discusses their strengths, limitations, and appropriate utilization in different clinical and public health settings. Furthermore, therapeutic approaches including antiviral drugs, immunomodulatory therapies, and repurposed medications have been investigated to alleviate disease severity and improve patient outcomes. Through a comprehensive analysis of these scientific efforts, the review provides an overview of the advancements made in understanding and tackling SARS-CoV-2, while underscoring the need for continued research to address the evolving challenges posed by this global health crisis.
Collapse
Affiliation(s)
- Himanshu Ajmera
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | | | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd milestone Faridabad, Haryana, India
| | - Sunil Kumar Jaswal
- Department of Biotechnology, Himachal Pradesh University Summer Hill, Shimla, India
| | - Sanjeev Chandel
- Department of Nursing, GHG College of Nursing Rajkot Road, Ludhiana, Punjab, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, Jaipur, 303002, India
| |
Collapse
|
6
|
Ao D, He X, Liu J, Xu L. Strategies for the development and approval of COVID-19 vaccines and therapeutics in the post-pandemic period. Signal Transduct Target Ther 2023; 8:466. [PMID: 38129394 PMCID: PMC10739883 DOI: 10.1038/s41392-023-01724-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant casualties and put immense strain on public health systems worldwide, leading to economic recession and social unrest. In response, various prevention and control strategies have been implemented globally, including vaccine and drug development and the promotion of preventive measures. Implementing these strategies has effectively curbed the transmission of the virus, reduced infection rates, and gradually restored normal social and economic activities. However, the mutations of SARS-CoV-2 have led to inevitable infections and reinfections, and the number of deaths continues to rise. Therefore, there is still a need to improve existing prevention and control strategies, mainly focusing on developing novel vaccines and drugs, expediting medical authorization processes, and keeping epidemic surveillance. These measures are crucial to combat the Coronavirus disease (COVID-19) pandemic and achieve sustained, long-term prevention, management, and disease control. Here, we summarized the characteristics of existing COVID-19 vaccines and drugs and suggested potential future directions for their development. Furthermore, we discussed the COVID-19-related policies implemented over the past years and presented some strategies for the future.
Collapse
Affiliation(s)
- Danyi Ao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China
| | - Jian Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China
| | - Li Xu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Park J, Pho T, Champion JA. Chemical and biological conjugation strategies for the development of multivalent protein vaccine nanoparticles. Biopolymers 2023; 114:e23563. [PMID: 37490564 PMCID: PMC10528127 DOI: 10.1002/bip.23563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles. Increasing multivalency can be an effective approach to provide a potent humoral immune response by more strongly engaging and clustering B cell receptors (BCRs) to induce activation, as well as increased uptake by antigen presenting cells and their subsequent T cell activation. Proper orientation of antigen on protein nanoparticles is also considered a crucial factor for enhanced BCR engagement and subsequent immune responses. Therefore, various strategies have been reported to decorate highly repetitive surfaces of protein nanoparticle scaffolds with multiple copies of antigens, arrange antigens in proper orientation, or combinations thereof. In this review, we describe different chemical bioconjugation methods, approaches for genetic fusion of recombinant antigens, biological affinity tags, and enzymatic conjugation methods to effectively present antigens on the surface of protein nanoparticle vaccine scaffolds.
Collapse
Affiliation(s)
- Jaeyoung Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
| | - Thomas Pho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| | - Julie A. Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| |
Collapse
|
8
|
Liao HC, Huang MS, Chiu FF, Chai KM, Liao CL, Wu SC, Chen HW, Liu SJ. Co-delivery of a trimeric spike DNA and protein vaccine with aluminum hydroxide enhanced Th1-dominant humoral and cellular immunity against SARS-CoV-2. J Med Virol 2023; 95:e29040. [PMID: 37635380 DOI: 10.1002/jmv.29040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023]
Abstract
Protein subunit vaccines have been used as prophylactic vaccines for a long time. The well-established properties of these vaccines make them the first choice for the coronavirus disease 2019 (COVID-19) outbreak. However, it is not easy to develop a protein vaccine that induces cytotoxic T lymphocyte responses and requires a longer time for manufacturing, which limits the usage of this vaccine type. Here, we report the combination of a recombinant spike (S)-trimer protein with a DNA vaccine-encoded S protein as a novel COVID-19 vaccine. The recombinant S protein was formulated with different adjuvants and mixed with the DNA plasmid before injection. We found that the recombinant S protein formulated with the adjuvant aluminum hydroxide and mixed with the DNA plasmid could enhance antigen-specific antibody titers, neutralizing antibody titers. We further evaluated the IgG2a/IgG1 isotype and cytokine profiles of the specific boosted T-cell response, which indicated that the combined vaccine induced a T-helper 1 cell-biased immune response. Immunized hamsters were challenged with severe acute respiratory syndrome coronavirus 2, and the body weight of the hamsters that received the recombinant S protein with aluminum hydroxide and/or the DNA plasmid was not reduced. Alternatively, those that received control or only the DNA plasmid immunization were reduced. Interestingly, after the third day of the viral load in the lungs, the viral challenge could not be detected in hamsters immunized with the recombinant S protein in aluminum hydroxide mixed with DNA (tissue culture infectious dose < 10). The viral load in the lungs was 109 , 106 , and 107 for the phosphate-buffered saline, protein in aluminum hydroxide, and DNA-only immunizations, respectively. These results indicated that antiviral mechanisms neutralizing antibodies play important roles. Furthermore, we found that the combination of protein and DNA vaccination could induce relatively strong CD8+ T-cell responses. In summary, the protein subunit vaccine combined with a DNA vaccine could induce strong CD8+ T-cell responses to increase antiviral immunity for disease control.
Collapse
Affiliation(s)
- Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Institute of Biotechnology, College of Life Science and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Min-Syuan Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Institute of Biotechnology, College of Life Science and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Fang-Feng Chiu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, College of Life Science and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Zhang J, Xia Y, Liu X, Liu G. Advanced Vaccine Design Strategies against SARS-CoV-2 and Emerging Variants. Bioengineering (Basel) 2023; 10:148. [PMID: 36829642 PMCID: PMC9951973 DOI: 10.3390/bioengineering10020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Vaccination is the most cost-effective means in the fight against infectious diseases. Various kinds of vaccines have been developed since the outbreak of COVID-19, some of which have been approved for clinical application. Though vaccines available achieved partial success in protecting vaccinated subjects from infection or hospitalization, numerous efforts are still needed to end the global pandemic, especially in the case of emerging new variants. Safe and efficient vaccines are the key elements to stop the pandemic from attacking the world now; novel and evolving vaccine technologies are urged in the course of fighting (re)-emerging infectious diseases. Advances in biotechnology offered the progress of vaccinology in the past few years, and lots of innovative approaches have been applied to the vaccine design during the ongoing pandemic. In this review, we summarize the state-of-the-art vaccine strategies involved in controlling the transmission of SARS-CoV-2 and its variants. In addition, challenges and future directions for rational vaccine design are discussed.
Collapse
Affiliation(s)
- Jianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yutian Xia
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuan Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Innovation Center for Cell Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
10
|
Bai AD, Jiang Y, Nguyen DL, Lo CKL, Stefanova I, Guo K, Wang F, Zhang C, Sayeau K, Garg A, Loeb M. Comparison of Preprint Postings of Randomized Clinical Trials on COVID-19 and Corresponding Published Journal Articles: A Systematic Review. JAMA Netw Open 2023; 6:e2253301. [PMID: 36705921 DOI: 10.1001/jamanetworkopen.2022.53301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
IMPORTANCE Randomized clinical trials (RCTs) on COVID-19 are increasingly being posted as preprints before publication in a scientific, peer-reviewed journal. OBJECTIVE To assess time to journal publication for COVID-19 RCT preprints and to compare differences between pairs of preprints and corresponding journal articles. EVIDENCE REVIEW This systematic review used a meta-epidemiologic approach to conduct a literature search using the World Health Organization COVID-19 database and Embase to identify preprints published between January 1 and December 31, 2021. This review included RCTs with human participants and research questions regarding the treatment or prevention of COVID-19. For each preprint, a literature search was done to locate the corresponding journal article. Two independent reviewers read the full text, extracted data, and assessed risk of bias using the Cochrane Risk of Bias 2 tool. Time to publication was analyzed using a Cox proportional hazards regression model. Differences between preprint and journal article pairs in terms of outcomes, analyses, results, or conclusions were described. Statistical analysis was performed on October 17, 2022. FINDINGS This study included 152 preprints. As of October 1, 2022, 119 of 152 preprints (78.3%) had been published in journals. The median time to publication was 186 days (range, 17-407 days). In a multivariable model, larger sample size and low risk of bias were associated with journal publication. With a sample size of less than 200 as the reference, sample sizes of 201 to 1000 and greater than 1000 had hazard ratios (HRs) of 1.23 (95% CI, 0.80-1.91) and 2.19 (95% CI, 1.36-3.53) for publication, respectively. With high risk of bias as the reference, medium-risk articles with some concerns for bias had an HR of 1.77 (95% CI, 1.02-3.09); those with a low risk of bias had an HR of 3.01 (95% CI, 1.71-5.30). Of the 119 published preprints, there were differences in terms of outcomes, analyses, results, or conclusions in 65 studies (54.6%). The main conclusion in the preprint contradicted the conclusion in the journal article for 2 studies (1.7%). CONCLUSIONS AND RELEVANCE These findings suggest that there is a substantial time lag from preprint posting to journal publication. Preprints with smaller sample sizes and high risk of bias were less likely to be published. Finally, although differences in terms of outcomes, analyses, results, or conclusions were observed for preprint and journal article pairs in most studies, the main conclusion remained consistent for the majority of studies.
Collapse
Affiliation(s)
- Anthony D Bai
- Division of Infectious Diseases, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yunbo Jiang
- Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - David L Nguyen
- Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Carson K L Lo
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Kevin Guo
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Frank Wang
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cindy Zhang
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kyle Sayeau
- Mental Health and Addictions Care Program, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Akhil Garg
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Mark Loeb
- Division of Infectious Diseases, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Division of Medical Microbiology, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Graña C, Ghosn L, Evrenoglou T, Jarde A, Minozzi S, Bergman H, Buckley BS, Probyn K, Villanueva G, Henschke N, Bonnet H, Assi R, Menon S, Marti M, Devane D, Mallon P, Lelievre JD, Askie LM, Kredo T, Ferrand G, Davidson M, Riveros C, Tovey D, Meerpohl JJ, Grasselli G, Rada G, Hróbjartsson A, Ravaud P, Chaimani A, Boutron I. Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst Rev 2022; 12:CD015477. [PMID: 36473651 PMCID: PMC9726273 DOI: 10.1002/14651858.cd015477] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Different forms of vaccines have been developed to prevent the SARS-CoV-2 virus and subsequent COVID-19 disease. Several are in widespread use globally. OBJECTIVES: To assess the efficacy and safety of COVID-19 vaccines (as a full primary vaccination series or a booster dose) against SARS-CoV-2. SEARCH METHODS We searched the Cochrane COVID-19 Study Register and the COVID-19 L·OVE platform (last search date 5 November 2021). We also searched the WHO International Clinical Trials Registry Platform, regulatory agency websites, and Retraction Watch. SELECTION CRITERIA We included randomized controlled trials (RCTs) comparing COVID-19 vaccines to placebo, no vaccine, other active vaccines, or other vaccine schedules. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. We used GRADE to assess the certainty of evidence for all except immunogenicity outcomes. We synthesized data for each vaccine separately and presented summary effect estimates with 95% confidence intervals (CIs). MAIN RESULTS: We included and analyzed 41 RCTs assessing 12 different vaccines, including homologous and heterologous vaccine schedules and the effect of booster doses. Thirty-two RCTs were multicentre and five were multinational. The sample sizes of RCTs were 60 to 44,325 participants. Participants were aged: 18 years or older in 36 RCTs; 12 years or older in one RCT; 12 to 17 years in two RCTs; and three to 17 years in two RCTs. Twenty-nine RCTs provided results for individuals aged over 60 years, and three RCTs included immunocompromized patients. No trials included pregnant women. Sixteen RCTs had two-month follow-up or less, 20 RCTs had two to six months, and five RCTs had greater than six to 12 months or less. Eighteen reports were based on preplanned interim analyses. Overall risk of bias was low for all outcomes in eight RCTs, while 33 had concerns for at least one outcome. We identified 343 registered RCTs with results not yet available. This abstract reports results for the critical outcomes of confirmed symptomatic COVID-19, severe and critical COVID-19, and serious adverse events only for the 10 WHO-approved vaccines. For remaining outcomes and vaccines, see main text. The evidence for mortality was generally sparse and of low or very low certainty for all WHO-approved vaccines, except AD26.COV2.S (Janssen), which probably reduces the risk of all-cause mortality (risk ratio (RR) 0.25, 95% CI 0.09 to 0.67; 1 RCT, 43,783 participants; high-certainty evidence). Confirmed symptomatic COVID-19 High-certainty evidence found that BNT162b2 (BioNtech/Fosun Pharma/Pfizer), mRNA-1273 (ModernaTx), ChAdOx1 (Oxford/AstraZeneca), Ad26.COV2.S, BBIBP-CorV (Sinopharm-Beijing), and BBV152 (Bharat Biotect) reduce the incidence of symptomatic COVID-19 compared to placebo (vaccine efficacy (VE): BNT162b2: 97.84%, 95% CI 44.25% to 99.92%; 2 RCTs, 44,077 participants; mRNA-1273: 93.20%, 95% CI 91.06% to 94.83%; 2 RCTs, 31,632 participants; ChAdOx1: 70.23%, 95% CI 62.10% to 76.62%; 2 RCTs, 43,390 participants; Ad26.COV2.S: 66.90%, 95% CI 59.10% to 73.40%; 1 RCT, 39,058 participants; BBIBP-CorV: 78.10%, 95% CI 64.80% to 86.30%; 1 RCT, 25,463 participants; BBV152: 77.80%, 95% CI 65.20% to 86.40%; 1 RCT, 16,973 participants). Moderate-certainty evidence found that NVX-CoV2373 (Novavax) probably reduces the incidence of symptomatic COVID-19 compared to placebo (VE 82.91%, 95% CI 50.49% to 94.10%; 3 RCTs, 42,175 participants). There is low-certainty evidence for CoronaVac (Sinovac) for this outcome (VE 69.81%, 95% CI 12.27% to 89.61%; 2 RCTs, 19,852 participants). Severe or critical COVID-19 High-certainty evidence found that BNT162b2, mRNA-1273, Ad26.COV2.S, and BBV152 result in a large reduction in incidence of severe or critical disease due to COVID-19 compared to placebo (VE: BNT162b2: 95.70%, 95% CI 73.90% to 99.90%; 1 RCT, 46,077 participants; mRNA-1273: 98.20%, 95% CI 92.80% to 99.60%; 1 RCT, 28,451 participants; AD26.COV2.S: 76.30%, 95% CI 57.90% to 87.50%; 1 RCT, 39,058 participants; BBV152: 93.40%, 95% CI 57.10% to 99.80%; 1 RCT, 16,976 participants). Moderate-certainty evidence found that NVX-CoV2373 probably reduces the incidence of severe or critical COVID-19 (VE 100.00%, 95% CI 86.99% to 100.00%; 1 RCT, 25,452 participants). Two trials reported high efficacy of CoronaVac for severe or critical disease with wide CIs, but these results could not be pooled. Serious adverse events (SAEs) mRNA-1273, ChAdOx1 (Oxford-AstraZeneca)/SII-ChAdOx1 (Serum Institute of India), Ad26.COV2.S, and BBV152 probably result in little or no difference in SAEs compared to placebo (RR: mRNA-1273: 0.92, 95% CI 0.78 to 1.08; 2 RCTs, 34,072 participants; ChAdOx1/SII-ChAdOx1: 0.88, 95% CI 0.72 to 1.07; 7 RCTs, 58,182 participants; Ad26.COV2.S: 0.92, 95% CI 0.69 to 1.22; 1 RCT, 43,783 participants); BBV152: 0.65, 95% CI 0.43 to 0.97; 1 RCT, 25,928 participants). In each of these, the likely absolute difference in effects was fewer than 5/1000 participants. Evidence for SAEs is uncertain for BNT162b2, CoronaVac, BBIBP-CorV, and NVX-CoV2373 compared to placebo (RR: BNT162b2: 1.30, 95% CI 0.55 to 3.07; 2 RCTs, 46,107 participants; CoronaVac: 0.97, 95% CI 0.62 to 1.51; 4 RCTs, 23,139 participants; BBIBP-CorV: 0.76, 95% CI 0.54 to 1.06; 1 RCT, 26,924 participants; NVX-CoV2373: 0.92, 95% CI 0.74 to 1.14; 4 RCTs, 38,802 participants). For the evaluation of heterologous schedules, booster doses, and efficacy against variants of concern, see main text of review. AUTHORS' CONCLUSIONS Compared to placebo, most vaccines reduce, or likely reduce, the proportion of participants with confirmed symptomatic COVID-19, and for some, there is high-certainty evidence that they reduce severe or critical disease. There is probably little or no difference between most vaccines and placebo for serious adverse events. Over 300 registered RCTs are evaluating the efficacy of COVID-19 vaccines, and this review is updated regularly on the COVID-NMA platform (covid-nma.com). Implications for practice Due to the trial exclusions, these results cannot be generalized to pregnant women, individuals with a history of SARS-CoV-2 infection, or immunocompromized people. Most trials had a short follow-up and were conducted before the emergence of variants of concern. Implications for research Future research should evaluate the long-term effect of vaccines, compare different vaccines and vaccine schedules, assess vaccine efficacy and safety in specific populations, and include outcomes such as preventing long COVID-19. Ongoing evaluation of vaccine efficacy and effectiveness against emerging variants of concern is also vital.
Collapse
Affiliation(s)
- Carolina Graña
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Lina Ghosn
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Theodoros Evrenoglou
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Alexander Jarde
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | | | | | | | | | | | | | - Hillary Bonnet
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Rouba Assi
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | | | - Melanie Marti
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Declan Devane
- Evidence Synthesis Ireland, Cochrane Ireland and HRB-Trials Methodology Research Network, National University of Ireland, Galway, Ireland
| | - Patrick Mallon
- UCD Centre for Experimental Pathogen Host Research and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Jean-Daniel Lelievre
- Department of Clinical Immunology and Infectious Diseases, Henri Mondor Hospital, Vaccine Research Institute, Université Paris Est Créteil, Paris, France
| | - Lisa M Askie
- Quality Assurance Norms and Standards Department, World Health Organization, Geneva, Switzerland
| | - Tamara Kredo
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
| | | | - Mauricia Davidson
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Carolina Riveros
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | | | - Joerg J Meerpohl
- Institute for Evidence in Medicine, Medical Center & Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Cochrane Germany, Cochrane Germany Foundation, Freiburg, Germany
| | - Giacomo Grasselli
- Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gabriel Rada
- Epistemonikos Foundation, Santiago, Chile
- UC Evidence Center, Cochrane Chile Associated Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Asbjørn Hróbjartsson
- Centre for Evidence Based Medicine Odense (CEBMO) and Cochrane Denmark, University of Southern Denmark, Odense, Denmark
- Open Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Philippe Ravaud
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Anna Chaimani
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Isabelle Boutron
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| |
Collapse
|
12
|
Covarrubias CE, Rivera TA, Soto CA, Deeks T, Kalergis AM. Current GMP standards for the production of vaccines and antibodies: An overview. Front Public Health 2022; 10:1021905. [PMID: 36743162 PMCID: PMC9891391 DOI: 10.3389/fpubh.2022.1021905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The manufacture of pharmaceutical products made under good manufacturing practices (GMP) must comply with the guidelines of national regulatory bodies based on international or regional compendia. The existence of this type of regulation allows pharmaceutical laboratories to count on the standardization of high-quality production processes, obtaining a safe product for human use, with a positive impact on public health. In addition, the COVID-19 pandemic highlights the importance of having more and better-distributed manufacturing plants, emphasizing regions such as Latin America. This review shows the most important GMP standards in the world and, in particular, their relevance in the production of vaccines and antibodies.
Collapse
Affiliation(s)
- Consuelo E. Covarrubias
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thomas A. Rivera
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A. Soto
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Trevor Deeks
- Deeks Pharmaceutical Consulting Services, Rockville, MD, United States
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Akbarzadehlaleh P, Farjami A, Montazersaheb S, Soofiyani S, Salatin S. Biopharmaceuticals for prevention of COVID-19: A scoping review. ASIAN PAC J TROP MED 2022. [DOI: 10.4103/1995-7645.348158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|