1
|
Jia S, Shao C, Cheng X, Pan H, Wang Z, Xia Y, Xu J, Huai X, Leng D, Wang J, Zhao G, Wang B, Li J, Zhu F. Immunogenicity and safety of a COVID-19 DNA vaccine in healthy adults and elderly: A randomized, observer-blind, placebo-controlled phase 2 trial. Hum Vaccin Immunother 2025; 21:2448405. [PMID: 39865693 PMCID: PMC11776483 DOI: 10.1080/21645515.2024.2448405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
INO-4800 represents a DNA-based vaccine encoding the spike protein of SARS-CoV-2. This phase 2 trial evaluated the immunogenicity and safety of INO-4800 as a primary vaccination series in adults. We conducted a randomized, observer-blind, placebo-controlled phase 2 trial of intradermal injection of INO-4800 in both healthy adults and elderly individuals. Eligible participants from each age group were enrolled and randomly assigned in a 3:3:2 ratio to receive two doses of INO-4800 (1.0 mg or 2.0 mg) or placebo, followed by electroporation on day 0 and day 28. The primary immunogenicity endpoints focused on determining the geometric mean titers (GMTs) of spike-binding antibodies and live SARS-CoV-2 neutralizing antibody at day 30 after the second dose. The primary endpoint for safety was the occurrence of adverse events within 30 days after vaccination. A total of 781 volunteers were recruited and screened for eligibility, with 320 eligible young adults (≥18 to <60 years old) and 320 elderly (≥60 to ≤85 years old) were randomly assigned to receive the low-dose (1.0 mg, n = 120) or high-dose (2.0 mg, n = 120) INO-4800, or placebo (n = 80). Notably, both dose groups exhibited significant increases in spike-binding antibodies at day 30 after the second dose, with GMTs of 1609.3 (95% CI: 1385.5-1869.3) for the low-dose group and 3016.7 (95% CI: 2577.4-3530.8) for the high-dose group. Additionally, both dose groups induced neutralizing antibodies against live SARS-CoV-2, with GMTs of 4.7 (95% CI: 4.2-5.3) and 6.6 (95% CI: 5.9-7.4) at day 30 after the second dose. The incidence of adverse events within 30 days after vaccination was slightly higher in the high-dose group (115 [47.9%]) than that in the low-dose group (105 [43.8%]) (p = .0060). All adverse reactions were grade 1 or 2, primarily occurring within 14 days after vaccination. No vaccine-related serious adverse events were reported. The COVID-19 DNA vaccine INO-4800 at two doses (1.0 mg or 2.0 mg) showed an acceptable safety profile and modest immunogenicity, with the high-dose slightly more immunogenic than the low-dose.Clinical Trials Registration: www.chictr.org.cn, identifier is ChiCTR2000040146.
Collapse
MESH Headings
- Humans
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/adverse effects
- COVID-19 Vaccines/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/adverse effects
- Male
- Adult
- Female
- Middle Aged
- Aged
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- SARS-CoV-2/immunology
- Young Adult
- Immunogenicity, Vaccine
- Spike Glycoprotein, Coronavirus/immunology
- Adolescent
- Aged, 80 and over
- Healthy Volunteers
- Vaccination
Collapse
Affiliation(s)
- Siyue Jia
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, China
| | - Chengwei Shao
- School of Public Health, Southeast University, Nanjing, China
| | - Xin Cheng
- R&D Business Unit, Advaccine Biopharmaceuticals Suzhou Co., Ltd, Suzhou, China
| | - Hongxing Pan
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, China
| | - Zhijian Wang
- Department of Acute Infectious Diseases and Immunization Program Management, Danyang Center for Disease Control and Prevention, Zhenjiang, China
| | - Yu Xia
- R&D Business Unit, Advaccine Biopharmaceuticals Suzhou Co., Ltd, Suzhou, China
| | - Jianfang Xu
- Department of Acute Infectious Diseases and Immunization Program Management, Danyang Center for Disease Control and Prevention, Zhenjiang, China
| | - Xuefen Huai
- R&D Business Unit, Advaccine Biopharmaceuticals Suzhou Co., Ltd, Suzhou, China
| | - Danjing Leng
- Department of Acute Infectious Diseases and Immunization Program Management, Danyang Center for Disease Control and Prevention, Zhenjiang, China
| | - Jiarong Wang
- R&D Business Unit, Advaccine Biopharmaceuticals Suzhou Co., Ltd, Suzhou, China
| | - Gan Zhao
- R&D Business Unit, Advaccine Biopharmaceuticals Suzhou Co., Ltd, Suzhou, China
| | - Bin Wang
- R&D Business Unit, Advaccine Biopharmaceuticals Suzhou Co., Ltd, Suzhou, China
| | - Jingxin Li
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, China
- School of Public Health, Southeast University, Nanjing, China
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, China
| | - Fengcai Zhu
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, China
- School of Public Health, Southeast University, Nanjing, China
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Liu C, Tsang TK, Sullivan SG, Cowling BJ, Yang B. Comparative duration of neutralizing responses and protections of COVID-19 vaccination and correlates of protection. Nat Commun 2025; 16:4748. [PMID: 40404724 PMCID: PMC12098666 DOI: 10.1038/s41467-025-60024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 05/06/2025] [Indexed: 05/24/2025] Open
Abstract
The decline in neutralizing antibody (nAb) titers and vaccine efficacy /effectiveness (VE) for SARS-CoV-2 vaccines has been observed over time and when confronted with emerging variants, two factors that are hard to distinguish. Despite substantial drop in nAb titers against Omicron, VE remains high for severe cases and fatalities, raising questions about the utility of detected nAbs as a correlate of protection for COVID-19 vaccines for varying disease severity. Here, we conducted a systematic comparison of waning dynamics of nAb and VE over time and against variants with varying levels of disease severity. Using Bayesian linear regression models, we found that antigenically-shifted variants, like Omicron, could potentially lead to greater reductions in nAb titers and primary VE against mild infections than associated immunity waning observed over a 180-day period. By comparing model predicted nAb titers and VE on the same time scales, we found that VE against severe and fatal outcomes remained above 75% even when nAb titers reached the detectable limit of assays, despite strong correlations with nAb titers (spearman correlations ≥0.7) across variants over time. This finding suggested detectable nAb titers are not always sensitive enough to fully predict protection against severe disease and death from SARS-CoV-2.
Collapse
Affiliation(s)
- Chang Liu
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Tim K Tsang
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, Hong Kong, China
| | - Sheena G Sullivan
- School of Clinical Sciences, Monash University, Melbourne, Australia
- Department of Epidemiology, University of California, Los Angeles, USA
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, Hong Kong, China
| | - Bingyi Yang
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
| |
Collapse
|
3
|
van den Ouweland F, Charpentier N, Türeci Ö, Rizzi R, Mensa FJ, Lindemann C, Pather S. Safety and reactogenicity of the BNT162b2 COVID-19 vaccine: Development, post-marketing surveillance, and real-world data. Hum Vaccin Immunother 2024; 20:2315659. [PMID: 38407186 PMCID: PMC10900268 DOI: 10.1080/21645515.2024.2315659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/03/2024] [Indexed: 02/27/2024] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to urgent actions by innovators, vaccine developers, regulators, and other stakeholders to ensure public access to protective vaccines while maintaining regulatory agency standards. Although development timelines for vaccines against SARS-CoV-2 were much quicker than standard vaccine development timelines, regulatory requirements for efficacy and safety evaluations, including the volume and quality of data collected, were upheld. Rolling review processes supported by sponsors and regulatory authorities enabled rapid assessment of clinical data as well as emergency use authorization. Post-authorization and pharmacovigilance activities enabled the quantity and breadth of post-marketing safety information to quickly exceed that generated from clinical trials. This paper reviews safety and reactogenicity data for the BNT162 vaccine candidates, including BNT162b2 (Comirnaty, Pfizer/BioNTech COVID-19 vaccine) and bivalent variant-adapted BNT162b2 vaccines, from preclinical studies, clinical trials, post-marketing surveillance, and real-world studies, including an unprecedentedly large body of independent evidence.
Collapse
Affiliation(s)
| | | | | | - Ruben Rizzi
- Global Regulatory Affairs, BioNTech, Germany, Germany
| | | | | | | |
Collapse
|
4
|
Mirzakhani M, Bayat M, Dashti M, Tahmasebi S, Rostamtabar M, Esmaeili Gouvarchin Ghaleh H, Amani J. The Assessment of Anti-SARS-CoV-2 Antibodies in Different Vaccine Platforms: A Systematic Review and Meta-Analysis of COVID-19 Vaccine Clinical Trial Studies. Rev Med Virol 2024; 34:e2579. [PMID: 39327654 DOI: 10.1002/rmv.2579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND OBJECTIVE The COVID-19 pandemic spread rapidly throughout the world and caused millions of deaths globally. Several vaccines have been developed to control the COVID-19 pandemic and reduce the burden it placed on public health. This study aimed to assess the efficacy of different vaccine platforms in inducing potent antibody responses. Moreover, the seroconversion rate and common side effects of vaccine platforms were evaluated. METHODS This meta-analysis included clinical trials of COVID-19 vaccines that met the eligibility criteria. Electronic databases (including PubMed, Scopus, and Web of Science) and Google Scholar search engine were searched for eligible studies. Regarding the methodological heterogeneity between the included studies, we selected a random-effects model. The geometric mean ratio (GMR) was chosen as the effect size for this meta-analysis. RESULTS Of the 1838 records identified through screening and after removing duplicate records, the full texts of 1076 records were assessed for eligibility. After the full-text assessment, 56 records were eligible and included in the study. Overall, vaccinated participants had a 150.8-fold increased rate of anti-spike IgG titres compared with the placebo group (GMR = 150.8; 95% CI, 95.9-237.1; I2 = 100%). Moreover, vaccinated participants had a 37.3-fold increased rate of neutralising antibody titres compared with the placebo group (GMR = 37.3; 95% CI, 28.5-48.7; I2 = 99%). The mRNA platform showed a higher rate of anti-spike IgG (GMR = 1263.5; 95% CI, 431.1-3702.8; I2 = 99%), while neutralising antibody titres were higher in the subunit platform (GMR = 53.4; 95% CI, 32.8-87.1; I2 = 99%) than in other platforms. Different vaccine platforms showed different rates of both anti-spike IgG and neutralising antibody titres with interesting results. The seroconversion rate of anti-spike IgG and neutralising antibody titres was more than 98% in the vaccinated participants. CONCLUSION Inactivated and subunit vaccines produced a high percentage of neutralising antibodies and had a low common adverse reaction rate compared to other platforms. In this regard, subunit and inactivated vaccines can still be used as the main vaccine platforms for effectively controlling infections with high transmission rates.
Collapse
Affiliation(s)
- Mohammad Mirzakhani
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Bayat
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Dashti
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rostamtabar
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Esmaeili Gouvarchin Ghaleh
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Chen GL, Qiu YZ, Wu KQ, Wu Y, Wang YH, Zou YY, Peng CG, Zhao J, Su C, Ma JH, Ni SN, Wang X, Jin TH, Jiang Q, Guo T, Xu Y, Huang CC, Zhang Q, Liu KL, Ji L, Yang HY, Li CL, Su YW, Lu X, Li LJ. Safety and immunogenicity of primary vaccination with a SARS-CoV-2 mRNA vaccine (SYS6006) in Chinese participants aged 18 years or more: Two randomized, observer-blinded, placebo-controlled and dose-escalation phase 1 clinical trials. Hum Vaccin Immunother 2023; 19:2285089. [PMID: 38111106 PMCID: PMC10760391 DOI: 10.1080/21645515.2023.2285089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Vaccination plays a key role in preventing morbidity and mortality caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We aimed to evaluate the safety and immunogenicity of a SARS-CoV-2 messenger ribonucleic acid (mRNA) vaccine SYS6006. In the two randomized, observer-blinded, placebo-controlled phase 1 trials, 40 adult participants aged 18-59 years and 40 elderly participants aged 60 years or more were randomized to receive two doses of SYS6006 or placebo (saline). Adverse events (AEs) were collected through 30 days post the second vaccination. Immunogenicity was assessed by live-virus neutralizing antibody (Nab), spike protein (S1) binding antibody (S1-IgG), and cellular immunity. The result showed that 7/15, 9/15 and 4/10 adult participants, and 9/15, 8/15 and 4/10 elderly participants reported at least one AE in the 20-µg, 30-µg and placebo groups, respectively. Most AEs were grade 1. Injection-site pain was the most common AE. Two adults and one elder reported fever. No vaccination-related serious AE was reported. SYS6006 elicited wild-type Nab response with a peak geometric mean titer of 232.1 and 130.6 (adults), and 48.7 and 66.7 (elders), in the 20-µg and 30-µg groups, respectively. SYS6006 induced moderate-to-robust Nab response against Delta, and slight Nab response against Omicron BA.2 and BA.5. Robust IgG response against wild type and BA.2 was observed. Cellular immune response was induced. In conclusion, two-dose primary vaccination with SYS6006 demonstrated good safety and immunogenicity during a follow-up period of 51 days in immunologically naive population aged 18 years or more. (Trial registry: Chictr.org.cn ChiCTR2200059103 and ChiCTR2200059104).
Collapse
Affiliation(s)
- Gui-Ling Chen
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuan-Zheng Qiu
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Kai-Qi Wu
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Ying Wu
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuan-Hui Wang
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yu-Ying Zou
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Cong-Gao Peng
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jie Zhao
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Chang Su
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jun-Heng Ma
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Shao-Nan Ni
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Xing Wang
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Ting-Han Jin
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Qi Jiang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Tong Guo
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Xu
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Chao-Chao Huang
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Qing Zhang
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Kai-Li Liu
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Li Ji
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Han-Yu Yang
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Chun-Lei Li
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Yu-Wen Su
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xiang Lu
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
6
|
Tana C, Moffa L, Falasca K, Vecchiet J, Tana M, Mantini C, Ricci F, Ticinesi A, Meschi T, Cipollone F, Giamberardino MA. Approach to COVID-19 in older adults and indications for improving the outcomes. Ann Med 2023; 55:2265298. [PMID: 37839411 PMCID: PMC10578089 DOI: 10.1080/07853890.2023.2265298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
Background: COVID-19 continues to present challenges in the care of older adults with frailty and/or comorbidities and very old patients, who can be hospitalized with severe COVID-19 despite full vaccination. Frailty is a heterogeneous syndrome characterized by an increased aging-related vulnerability due to a reduced physiological reserve and function of systemic organs, and is associated with an impairment of activities of daily living. Frail older adults remain at elevated risk of mortality from COVID-19 compared to older adults without frailty, and some pre-existing risk factors such as malnutrition, prolonged bed rest, and the association with comorbidities can aggravate the SARS-CoV-2 infection. Furthermore, the severity of COVID-19 can impact on long-term functioning of older patients surviving from the infection. Persistent symptoms are another emerging problem of the post-vaccination phase of pandemic, as most patients suffer from chronic symptoms which can become debilitating and affect the daily routine. Aim of this review: In this complex relationship, the evaluation of COVID-19 in vulnerable categories is still a matter of high interest and personalized care plans based on a comprehensive geriatric assessment, tailored interventions; specific therapeutic algorithms among older adults are thus recommended in order to improve the outcomes.
Collapse
Affiliation(s)
- Claudio Tana
- Geriatrics Clinic, SS Annunziata Hospital of Chieti, Chieti, Italy
| | - Livia Moffa
- Infectious Disease Department and COVID-19 Unit, University Hospital of Chieti, Chieti, Italy
| | - Katia Falasca
- Infectious Disease Department and COVID-19 Unit, University Hospital of Chieti, Chieti, Italy
| | - Jacopo Vecchiet
- Infectious Disease Department and COVID-19 Unit, University Hospital of Chieti, Chieti, Italy
| | - Marco Tana
- Internal Medicine Unit, SS. Annunziata Hospital of Chieti, Chieti, Italy
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D’Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D’Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Italy and Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Italy and Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Francesco Cipollone
- Medical Clinic, SS. Annunziata Hospital of Chieti, Department of Medicine and Science of Aging, "G. D’Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Maria Adele Giamberardino
- Geriatrics Clinic, SS Annunziata Hospital of Chieti, Chieti, Italy
- Department of Medicine and Science of Aging, “G. D’Annunzio” University of Chieti, Chieti, Italy
| |
Collapse
|
7
|
Chavda VP, Jogi G, Dave S, Patel BM, Vineela Nalla L, Koradia K. mRNA-Based Vaccine for COVID-19: They Are New but Not Unknown! Vaccines (Basel) 2023; 11:507. [PMID: 36992091 PMCID: PMC10052021 DOI: 10.3390/vaccines11030507] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
mRNA vaccines take advantage of the mechanism that our cells use to produce proteins. Our cells produce proteins based on the knowledge contained in our DNA; each gene encodes a unique protein. The genetic information is essential, but cells cannot use it until mRNA molecules convert it into instructions for producing specific proteins. mRNA vaccinations provide ready-to-use mRNA instructions for constructing a specific protein. BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) both are newly approved mRNA-based COVID-19 vaccines that have shown excellent protection and efficacy. In total, there are five more mRNA-based vaccine candidates for COVID-19 under different phases of clinical development. This review is specifically focused on mRNA-based vaccines for COVID-19 covering its development, mechanism, and clinical aspects.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India
| | - Gargi Jogi
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India
| | - Srusti Dave
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Bhoomika M. Patel
- School of Medico-legal Studies, National Forensic Sciences University, Gandhinagar 382007, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India
| | - Krishna Koradia
- Department of Pharmaceutics, Saurashtra University, Rajkot 360005, India
| |
Collapse
|
8
|
Kountouras J, Tzitiridou-Chatzopoulou M, Papaefthymiou A, Chatzopoulos D, Doulberis M. COVID-19 mRNA Vaccine Effectiveness against Elderly Frail People. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020202. [PMID: 36837403 PMCID: PMC9962607 DOI: 10.3390/medicina59020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
The frail, elderly population is often characterized by poor immunogenicity post COVID-19 mRNA vaccination. "Inflame-ageing" and "immune-senescence" are pathogenetic mechanisms that might explain this phenomenon. Complex interplay with cytokines and microbiota is also implicated in this inflammatory cascade. The abovementioned population, although very important from immunologic perspective, has barely been included in the mRNA vaccination clinical trials.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Correspondence: (J.K.); (M.D.)
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Midwifery Department, School of Healthcare Sciences, University of West Macedonia, Koila, 50100 Kozani, Greece
| | - Apostolis Papaefthymiou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Department of Gastroenterology, University Hospital of Larisa, 41110 Larisa, Greece
| | - Dimitrios Chatzopoulos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001 Aarau, Switzerland
- Correspondence: (J.K.); (M.D.)
| |
Collapse
|