1
|
Guo H, Chen J, Jiang G, Mei Y, Gong Z, Liu M, Li J, Gan J. Determination of 14 Benzodiazepine Multiresidues in Aquaculture Environment by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2025; 30:775. [PMID: 40005088 PMCID: PMC11858797 DOI: 10.3390/molecules30040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, an analytical method for the simultaneous determination of 14 benzodiazepine (BDZ) multiresidues in aquaculture environmental water and sediment was developed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The method uses an internal standard for quantification and achieves chromatographic separation and analysis within 11 min. The results of method validation showed that the recoveries of most analytes were in the range of 70-120% in water or sediment matrices, and the correlation coefficients of the 14 target chemistries were R2 > 0.99, with relative standard deviations (RSD) < 15%. The limits of detection (LODs) and the limits of quantification (LOQs) were in the ranges of 0.002-0.01 μg/L and 0.01-0.03 μg/L for water and 0.01-0.5 μg/kg and 0.04-1 μg/kg for the sediment matrix. The method is simple and has high rapidity, high sensitivity, and low cost. It provides technical support for the simultaneous monitoring of BDZ residues in the aquaculture environment.
Collapse
Affiliation(s)
- Hongyang Guo
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China;
| | - Jianwu Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.C.); (Y.M.); (Z.G.); (M.L.)
| | - Guangjun Jiang
- School of Agriculture, Ludong University, Yantai 264025, China;
| | - Yuqing Mei
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.C.); (Y.M.); (Z.G.); (M.L.)
| | - Zhiqiang Gong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.C.); (Y.M.); (Z.G.); (M.L.)
| | - Mingdian Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.C.); (Y.M.); (Z.G.); (M.L.)
| | - Jinping Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China;
| | - Jinhua Gan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.C.); (Y.M.); (Z.G.); (M.L.)
| |
Collapse
|
2
|
Singh PK, Singh N, Singh AP, Bhardwaj P, Sachan K, Singh S. Mixed Solvency Concept to Replace Harmful Organic Solvent: Recent Trends and Future Challenges in Formulation Development. Comb Chem High Throughput Screen 2025; 28:226-238. [PMID: 38504573 DOI: 10.2174/0113862073285654240308055228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/27/2024] [Accepted: 02/14/2024] [Indexed: 03/21/2024]
Abstract
Organic solvents are hazardous and should be replaced with less harmful alternatives. When developing a new formulation for a medicine with low aqueous solubility, improving its solubility might be a significant difficulty. According to the mixed solvency concept, a novel concept of solubilization, the solubility of poorly soluble drugs can be increased by dissolving them in a concentrated solution comprising various substances. Methods commonly used to improve solubility include complexation, pH modification, salt formation, hydrotropy, cosolvency, and micelle solubilization. By reducing the concentration of specific solubilizers, this method can be used to reduce the toxicity of solubilizers in various formulations of poorly soluble medicines. This review aims to provide scientists with a fresh concept for enhancing medication solubility. The benefits and drawbacks of currently available green solvents have been analyzed as potential replacements for traditional solvents. Some examples of these solvents are bio-based solvents like ethanol, methanol, and cyrene; d-limonene; deep eutectic solvents such as ionic liquids and natural deep eutectic solvents; supercritical fluids; subcritical water; surfactant-based solutions like hydrotopes and supramolecular solvents; and deep eutectic solvents like cyrene.
Collapse
Affiliation(s)
- Pranjal Kumar Singh
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Nidhi Singh
- Sunder Deep Pharmacy College, Dasna, Ghaziabad, Uttar Pradesh, India
| | - Atul Pratap Singh
- School of Pharmaceutical Sciences, IIMT University, Ganga Nagar, Meerut, Uttar Pradesh, India
| | - Poonam Bhardwaj
- NKBR College of Pharmacy and Research Center, Phaphunda, Meerut, Uttar Pradesh, India
| | - Kapil Sachan
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India
| | - Smita Singh
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
3
|
Sánchez-Sellero I, Cabarcos-Fernández P, Jaureguízar-Rodríguez ME, Álvarez-Freire I, Tabernero-Duque MJ, Bermejo-Barrera AM. Development and Validation of a Sonication-Assisted Dispersive Liquid-Liquid Microextraction Procedure and an HPLC-PDA Method for Quantitative Determination of Zolpidem in Human Plasma and Its Application to Forensic Samples. Molecules 2024; 29:2490. [PMID: 38893365 PMCID: PMC11173445 DOI: 10.3390/molecules29112490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The use of z-drugs has increased worldwide since its introduction. Although the prescribing patterns of hypnotics differ among countries, zolpidem is the most widely used z-drug in the world. Zolpidem may be involved in poisoning and deaths. A simple and fast HPLC-PDA method was developed and validated. Zolpidem and the internal standard chloramphenicol were extracted from plasma using a sonication-assisted dispersive liquid-liquid microextraction procedure. The method was validated including selectivity, linearity, precision, accuracy, and recovery. The calibration range (0.15-0.6 µg/mL) covers therapeutic and toxic levels of zolpidem in plasma. The limit of quantification was set at 0.15 µg/mL. Intra- and interday accuracy and precision values were lower than 15% at the concentration levels studied. Excellent recovery results were obtained for all concentrations. The proposed method was successfully applied to ten real postmortem plasma samples. In our series, multiple substances (alcohol and/or other drugs) were detected in most cases of death involving zolpidem. Our analytical method is suitable for routine toxicological analysis.
Collapse
Affiliation(s)
| | - Pamela Cabarcos-Fernández
- Forensic Toxicology Service, Forensic Sciences Institute, Faculty of Medicine, Universidade de Santiago de Compostela, C/San Francisco s/n, 15782 Santiago de Compostela, Spain; (I.S.-S.); (M.E.J.-R.); (I.Á.-F.); (M.J.T.-D.); (A.M.B.-B.)
| | | | | | | | | |
Collapse
|
4
|
Justo-Vega A, Jinadasa KK, Jayasinghe GDTM, Álvarez-Freire I, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A. Ultrasound assisted membrane-assisted solvent extraction for the simultaneous assessment of some drugs involved in drug-facilitated sexual assaults by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1706:464284. [PMID: 37572537 DOI: 10.1016/j.chroma.2023.464284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/24/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
A simple and highly efficient ultrasound assisted membrane-assisted solvent extraction (MASE) pre-treatment method for urine has been developed and validated for the simultaneous determination of twenty-two drugs involved in drug-facilitated sexual assaults (DFSAs) by liquid chromatography-tandem mass spectrometry. MASE was performed with 4.0 mL of urine (pH adjusted at 12), 400 μL of hexane as an organic solvent inside the polypropylene membrane, and ultrasonication (45 kHz, 120 W) for 10 min. A pre-concentration factor of 40 was achieved after evaporation (N2 stream) and re-dissolution in 100 µL of methanol. Analytes were separated using a Zorbax Eclipse Plus C18 column under gradient elution with aqueous 10 mM NH4HCO3 (pH 8.0) and methanol as mobile phases. Matrix-matched calibrations allowed the assessment of DFSA drugs of quite different octanol-water partition coefficients (Ko/w), from 1.32 101 for pregabalin to 2.45 105 for clomipramine (Log P values from 1.12 (pregabalin) to 5.39 (clomipramine)). The limit of detection (LOD) was between 0.0075 to 0.37 µg L-1, with analytical recoveries ranging from 73 to 103%, and relative standard deviations (RSDs) within the 2-20% range. The applicability of the method was demonstrated after analysing urine samples under forensic investigation.
Collapse
Affiliation(s)
- Ana Justo-Vega
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., Santiago de Compostela 15782, Spain
| | - Kamal K Jinadasa
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., Santiago de Compostela 15782, Spain
| | - G D Thilini Madurangika Jayasinghe
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., Santiago de Compostela 15782, Spain
| | - Iván Álvarez-Freire
- Forensic Sciences Institute "Luís Concheiro" (INCIFOR), Department of Pathologic Anatomy and Forensic Sciences, Faculty of Medicine, Universidade de Santiago de Compostela, Rúa de San Francisco, s/n, Santiago de Compostela 15782, Spain
| | - Ana María Bermejo
- Forensic Sciences Institute "Luís Concheiro" (INCIFOR), Department of Pathologic Anatomy and Forensic Sciences, Faculty of Medicine, Universidade de Santiago de Compostela, Rúa de San Francisco, s/n, Santiago de Compostela 15782, Spain
| | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., Santiago de Compostela 15782, Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., Santiago de Compostela 15782, Spain.
| |
Collapse
|
5
|
Yin J, Guo W, Li X, Ding H, Han L, Yang X, Zhu L, Li F, Bie S, Song X, Yu H, Li Z. Extensive evaluation of plasma metabolic sample preparation process based on liquid chromatography-mass spectrometry and its application in the in vivo metabolism of Shuang-Huang-Lian powder injection. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123808. [PMID: 37453388 DOI: 10.1016/j.jchromb.2023.123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Shuang-Huang-Lian powder injection (SHLPI) is a natural drug injection made of honeysuckle, scutellaria baicalensis and forsythia suspensa. It has the characteristics of complex chemical composition and difficult metabolism research in vivo. LC-MS platform has been proven to be an important analytical technology in plasma metabolomics. Unfortunately, the lack of an effective sample preparation strategy before analysis often significantly impacts experimental results. In this work, twenty-one extraction protocols including eight protein precipitation (PPT), eight liquid-liquid extractions (LLE), four solid-phase extractions (SPE), and one ultrafiltration (U) were simultaneously evaluated using plasma metabolism of SHLPI in vivo. In addition, a strategy of "feature ion extraction of the multi-component metabolic platform of traditional Chinese medicine" (FMM strategy) was proposed for the in-depth characterization of metabolites after intravenous injection of SHLPI in rats. The results showed that the LLE-3 protocol (Pentanol:Tetrahydrofuran:H2O, 1:4:35, v:v:v) was the most effective strategy in the in vivo metabolic detection of SHLPI. Furthermore, we used the FMM strategy to elaborate the in vivo metabolic pathways of six representative substances in SHLPI components. This research was completed by ion migration quadrupole time of flight mass spectrometer combined with ultra high performance liquid chromatography (UPLC/Vion™-IMS-QTof-MS) and UNIFI™ metabolic platform. The results showed that 114 metabolites were identified or preliminarily identified in rat plasma. This work provides relevant data and information for further research on the pharmacodynamic substances and in vivo mechanisms of SHLPI. Meanwhile, it also proves that LLE-3 and FMM strategies could achieve the in-depth characterization of complex natural drug metabolites related to Shuang-Huang-Lian in vivo.
Collapse
Affiliation(s)
- Jiaxin Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China
| | - Wen Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China
| | - Xuejuan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China
| | - Hui Ding
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xiangdong Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Limin Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Songtao Bie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xinbo Song
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
6
|
An X, Jiang D, Cao Q, Xu F, Shiigi H, Wang W, Chen Z. Highly Efficient Dual-Color Luminophores for Sensitive and Selective Detection of Diclazepam Based on MOF/COF Bi-Mesoporous Composites. ACS Sens 2023. [PMID: 37363936 DOI: 10.1021/acssensors.3c00497] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Currently, studies on electrochemiluminescence (ECL) mainly focused on the single emission of luminophores while those on multi-color ECL were rarely reported. Here, a bi-mesoporous composite of the metal-organic framework (MOF)/covalent-organic framework (COF) with strong and stable dual-color ECL was prepared to construct a novel ECL sensor for sensitive detecting targets. A PTCA-COF with excellent ECL performance was loaded with a great amount of another ECL emitter Cu3(HHTP)2. Remarkably, the integrated composite had both ECL properties of PTCA-COF at 520 nm and Cu3(HHTP)2 at 600 nm wavelengths. Furthermore, Cu3(HHTP)2 with good electron transfer ability can greatly enhance the electrical conductivity and promote electrochemical activation. Thus, the simultaneous enhanced two-color ECL intensity and the catalytic properties of the conductive MOF exerted a dual enhancement effect on the ECL signal of the composite. Significantly, diclazepam can not only be adsorbed well on the multi-stage porous structure MOF/COF composite by π-π interactions but also selectively quench the ECL signal of the PTCA-COF, realizing the sensitive detection. The ECL sensor showed a wide detection range from 1.0 × 10-13 to 1.0 × 10-8 g/L, and the limit of detection (LOD) was as low as 2.6 × 10-14 g/L (S/N = 3). The proposed ECL sensor preparation method was simple and sensitive, providing a new perspective for the potential application of multi-color ECL in the sensing field.
Collapse
Affiliation(s)
- Xiaomei An
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou 213164, China
| | - Qianying Cao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Fangmin Xu
- Institute of Forensic Science, Public Security Bureau of Jiangyin, Wuxi 214431, China
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Prefecture University, Naka Ku, 1-2 Gakuen, Sakai, Osaka 5998570, Japan
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou 213164, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou 213164, China
| |
Collapse
|
7
|
Zhang YX, Zhang Y, Bian Y, Liu YJ, Ren A, Zhou Y, Shi D, Feng XS. Benzodiazepines in complex biological matrices: Recent updates on pretreatment and detection methods. J Pharm Anal 2023; 13:442-462. [PMID: 37305786 PMCID: PMC10257149 DOI: 10.1016/j.jpha.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/10/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Benzodiazepines (BDZs) are used in clinics for anxiolysis, anticonvulsants, sedative hypnosis, and muscle relaxation. They have high consumptions worldwide because of their easy availability and potential addiction. They are often used for suicide or criminal practices such as abduction and drug-facilitated sexual assault. The pharmacological effects of using small doses of BDZs and their detections from complex biological matrices are challenging. Efficient pretreatment methods followed by accurate and sensitive detections are necessary. Herein, pretreatment methods for the extraction, enrichment, and preconcentration of BDZs as well as the strategies for their screening, identification, and quantitation developed in the past five years have been reviewed. Moreover, recent advances in various methods are summarized. Characteristics and advantages of each method are encompassed. Future directions of the pretreatment and detection methods for BDZs are also reviewed.
Collapse
Affiliation(s)
- Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ai Ren
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| |
Collapse
|
8
|
Establishment and application of a screening method for 354 organic toxicants in blood and urine with high-performance liquid chromatography-high-resolution orbitrap mass spectrometry. Anal Bioanal Chem 2023; 415:493-507. [PMID: 36422665 DOI: 10.1007/s00216-022-04432-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022]
Abstract
A rapid and sensitive high-performance liquid chromatography-high-resolution orbitrap mass spectrometry method was developed for the simultaneous screening of 354 organic poisons and metabolites in blood and urine, including drugs, medications, pesticides, rodenticides, veterinary drugs, alkaloids, and mycotoxins with a multi-toxicant chromatography-mass spectrometry information library. The method and library showed good prospects in clinical poisoning screening and forensic toxicological identification. Blood and urine samples were extracted successively with ethyl acetate in acidic and alkaline conditions; then, the extract was blown to nearly dry by nitrogen gas and redissolved with methanol-aqueous solution (v:v, 50:50), and the dissolved solution was analyzed by LC-MS/MS after filtering. Precursor ions' m/z was set for identification, retention time, fragment ions, and isotopic pattern which were used for confirmation. No interference peaks were found in the blank samples, showing good specificity. The LODs of toxicants in urine and blood were 1.00×10-3-50.0 ng/mL and 2.07×10-3-50.0 ng/mL, respectively, while the LOQs were 3.30×10-3-1.67×102 ng/mL and 6.91×10-3-1.67×102 ng/mL. The intra-day precision and inter-day precision of urine samples were 2.31-9.13% and 4.75-12.3%, respectively, which were 1.92-10.8% and 2.01-12.1% in blood samples. The established method was applied to analyze 9 cases of clinical poisoning patients, and bromadiolone, carbofuran, and amanitins were detected, respectively. A total of 382 biospecimens from drug abusers were analyzed with the proposed method, which indicated that some drugs were detected in 62 cases, mainly including methamphetamine, heroin, and MDMA. The results were consistent with the information from traditional liquid chromatography-triple quadrupole mass spectrometry.
Collapse
|
9
|
Tan Z, Wen Y, Yang K, Zhao X, Yang X, He J. Development and validation of the UPLC-MS method for simultaneous determination of six new psychoactive substances. RSC Adv 2022; 12:26704-26711. [PMID: 36320845 PMCID: PMC9490772 DOI: 10.1039/d2ra04869h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/09/2022] [Indexed: 12/05/2023] Open
Abstract
The combined abuse of benzodiazepines and antipsychotics has become a global problem, and to develop a highly sensitive and selective method for monitoring of benzodiazepine hypnotics and antipsychotics is urgently necessary. In this work, we established a rapid method for the simultaneous determination of benzodiazepines (diazepam, alprazolam, triazolam, and estazolam) and antipsychotic drugs (clozapine, and chlorpromazine) based on ultra performance liquid chromatography-mass spectrometry (UPLC-MS). The accuracy, precision, limit of detection (LOD), limit of quantification (LOQ), specificity, matrix effect and carry-over effect were verified in detail. The results of the recovery and repeat experiments proved that the proposed UPLC-MS method possessed very satisfactory accuracy and precision. The LOD and LOQ of the six psychoactive substances were as low as 0.001-0.005 and 0.005-0.01 μg L-1, respectively. The proposed method was employed to analyze urine samples which were pretreated with a protein precipitation process. The potential influences of precipitants on the analysis results were evaluated statistically, and 0.1% formic acid/acetonitrile/water was selected as the optimum precipitation agent. The detection of the targets was free from matrix and carryover effects.
Collapse
Affiliation(s)
- Zhouhong Tan
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China
- Yunnan Provincial Key Laboratory of Forensic Science Kunming 650223 Yunnan P. R. China
| | - Yunbo Wen
- Yunnan Provincial Key Laboratory of Forensic Science Kunming 650223 Yunnan P. R. China
| | - Kai Yang
- Public Security Bureau Dali Bai Autonomous Prefecture Dali 671000 Yunnan P. R. China
| | - Xia Zhao
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China
| | - Xiaoli Yang
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China
| | - Jieli He
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China
- Yunnan Provincial Key Laboratory of Forensic Science Kunming 650223 Yunnan P. R. China
| |
Collapse
|
10
|
Olasupo A, Suah FBM. Trends in hollow fibre liquid phase microextraction for the preconcentration of pharmaceutically active compounds in aqueous solution: A case for polymer inclusion membrane. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128573. [PMID: 35278960 DOI: 10.1016/j.jhazmat.2022.128573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Low concentrations of pharmaceutically active compounds have been reported in samples from highly complex aqueous environments. Due to their low concentrations, efficient sample pretreatment methods are needed to clean samples and concentrate the compounds of interest prior to instrumental analysis. Hollow fibre liquid-phase microextraction (HF-LPME) is an effective alternative to conventional techniques such as liquid-liquid extraction (LLE) and solid phase extraction (SPE) because it consumes less organic solvent and is less labour intensive with a short extraction time. HF-LPME involves the preconcentration and mass transfer of target analytes from an aqueous sample into an acceptor solution in the lumen of the fibre using a supported liquid membrane (SLM) impregnated in the hollow fibre pores. However, despite the high contaminant selectivity, reproducibility, and enrichment that HF-LPME offers, this technique is limited by membrane instability. Although several advances have been made to address membrane instability, they are either too costly or not feasible for industrial application. Hence, hollow fibre polymer inclusion membrane liquid-phase microextraction (HF-PIM-LPME) was introduced to ameliorate membrane instability. This new approach uses ionic liquids (ILs) as a green solvent, and has demonstrated high membrane stability, good contaminant enrichment, and similar selectivity and reproducibility to HF-SLM-LPME. Hence, this review aims to raise awareness of HF-PIM-LPME as a viable alternative for the selectivity and preconcentration of pharmaceuticals and other contaminants in aquatic environments.
Collapse
Affiliation(s)
- Ayo Olasupo
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Faiz Bukhari Mohd Suah
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
| |
Collapse
|
11
|
Jiménez-Skrzypek G, Ortega-Zamora C, González-Sálamo J, Hernández-Borges J. Miniaturized green sample preparation approaches for pharmaceutical analysis. J Pharm Biomed Anal 2022; 207:114405. [PMID: 34653744 DOI: 10.1016/j.jpba.2021.114405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022]
Abstract
The development of green sample preparation procedures is an extremely important research field in which more and more applications are constantly being proposed in different areas, including pharmaceutical analysis. This review article is aimed at providing a general overview of the development of miniaturized green analytical sample preparation procedures in the pharmaceutical analysis field, with special focus on the works published between January 2017 and July 2021. Particular attention has been paid to the application of environmentally friendly solvents and sorbents as well as nanomaterials or high extraction capacity sorbents in which the solvent volumes and reagents amounts are drastically reduced, with their subsequent advantages from the sustainability point of view.
Collapse
Affiliation(s)
- Gabriel Jiménez-Skrzypek
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España
| | - Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España.
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España.
| |
Collapse
|
12
|
Yan M, Gao F, Chen M, Hu Q, Yang Y, Chen K, Wang P, Lei H, Ma Q. Synergistic Combination of Facile Thiol-Maleimide Derivatization and Supramolecular Solvent-Based Microextraction for UHPLC-HRMS Analysis of Glutathione in Biofluids. Front Chem 2021; 9:786627. [PMID: 34957048 PMCID: PMC8695729 DOI: 10.3389/fchem.2021.786627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Glutathione (GSH) is the most abundant non-protein thiol in biofluids, enabling diverse physiological functions. Among the proposed methods for GSH detection, ultra-high-performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS) has the advantages of high sensitivity and efficiency. In this study, a novel analytical method was developed for the determination of GSH using supramolecular solvent (SUPRAS)-based dispersive liquid–liquid microextraction (DLLME) and UHPLC–HRMS. N-Laurylmaleimide was dissolved in tetrahydrofuran, which served three functions: 1) precipitate the proteins present in the biofluid sample, 2) provide a reaction environment for derivatization, and 3) enable the use of SUPRAS as the dispersing agent. Critical parameters were optimized based on single factor testing and response surface methodology. The established method was validated in terms of linearity, accuracy, precision, and successful quantitative analysis of GSH in saliva, urine, and plasma samples. Experimental results showed that SUPRAS as an extraction solvent was particularly suitable for the extraction of GSH from complex matrices. The current study provides a useful tool for accurate measurements of GSH concentrations, which could potentially be used for clinical diagnostics.
Collapse
Affiliation(s)
- Mengmeng Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Feng Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Hu
- Chinese Academy of Inspection and Quarantine, Beijing, China.,School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yuqin Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Kedian Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Penglong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|