1
|
Rai S, Roy G, Hajam YA. Melatonin: a modulator in metabolic rewiring in T-cell malignancies. Front Oncol 2024; 13:1248339. [PMID: 38260850 PMCID: PMC10800968 DOI: 10.3389/fonc.2023.1248339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Melatonin, (N-acetyl-5-methoxytryptamine) an indoleamine exerts multifaced effects and regulates numerous cellular pathways and molecular targets associated with circadian rhythm, immune modulation, and seasonal reproduction including metabolic rewiring during T cell malignancy. T-cell malignancies encompass a group of hematological cancers characterized by the uncontrolled growth and proliferation of malignant T-cells. These cancer cells exhibit a distinct metabolic adaptation, a hallmark of cancer in general, as they rewire their metabolic pathways to meet the heightened energy requirements and biosynthesis necessary for malignancies is the Warburg effect, characterized by a shift towards glycolysis, even when oxygen is available. In addition, T-cell malignancies cause metabolic shift by inhibiting the enzyme pyruvate Dehydrogenase Kinase (PDK) which in turn results in increased acetyl CoA enzyme production and cellular glycolytic activity. Further, melatonin plays a modulatory role in the expression of essential transporters (Glut1, Glut2) responsible for nutrient uptake and metabolic rewiring, such as glucose and amino acid transporters in T-cells. This modulation significantly impacts the metabolic profile of T-cells, consequently affecting their differentiation. Furthermore, melatonin has been found to regulate the expression of critical signaling molecules involved in T-cell activations, such as CD38, and CD69. These molecules are integral to T-cell adhesion, signaling, and activation. This review aims to provide insights into the mechanism of melatonin's anticancer properties concerning metabolic rewiring during T-cell malignancy. The present review encompasses the involvement of oncogenic factors, the tumor microenvironment and metabolic alteration, hallmarks, metabolic reprogramming, and the anti-oncogenic/oncostatic impact of melatonin on various cancer cells.
Collapse
Affiliation(s)
- Seema Rai
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Gunja Roy
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Bhag Singh University, Jalandhar, India
| |
Collapse
|
2
|
Karaca Atabay E, Mecca C, Wang Q, Ambrogio C, Mota I, Prokoph N, Mura G, Martinengo C, Patrucco E, Leonardi G, Hossa J, Pich A, Mologni L, Gambacorti-Passerini C, Brugières L, Geoerger B, Turner SD, Voena C, Cheong TC, Chiarle R. Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma. Blood 2022; 139:717-731. [PMID: 34657149 PMCID: PMC8814675 DOI: 10.1182/blood.2020008136] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Anaplastic large cell lymphomas (ALCLs) frequently carry oncogenic fusions involving the anaplastic lymphoma kinase (ALK) gene. Targeting ALK using tyrosine kinase inhibitors (TKIs) is a therapeutic option in cases relapsed after chemotherapy, but TKI resistance may develop. By applying genomic loss-of-function screens, we identified PTPN1 and PTPN2 phosphatases as consistent top hits driving resistance to ALK TKIs in ALK+ ALCL. Loss of either PTPN1 or PTPN2 induced resistance to ALK TKIs in vitro and in vivo. Mechanistically, we demonstrated that PTPN1 and PTPN2 are phosphatases that bind to and regulate ALK phosphorylation and activity. In turn, oncogenic ALK and STAT3 repress PTPN1 transcription. We found that PTPN1 is also a phosphatase for SHP2, a key mediator of oncogenic ALK signaling. Downstream signaling analysis showed that deletion of PTPN1 or PTPN2 induces resistance to crizotinib by hyperactivating SHP2, the MAPK, and JAK/STAT pathways. RNA sequencing of patient samples that developed resistance to ALK TKIs showed downregulation of PTPN1 and PTPN2 associated with upregulation of SHP2 expression. Combination of crizotinib with a SHP2 inhibitor synergistically inhibited the growth of wild-type or PTPN1/PTPN2 knock-out ALCL, where it reverted TKI resistance. Thus, we identified PTPN1 and PTPN2 as ALK phosphatases that control sensitivity to ALK TKIs in ALCL and demonstrated that a combined blockade of SHP2 potentiates the efficacy of ALK inhibition in TKI-sensitive and -resistant ALK+ ALCL.
Collapse
Affiliation(s)
- Elif Karaca Atabay
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Carmen Mecca
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Qi Wang
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Ines Mota
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Nina Prokoph
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Giulia Mura
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Cinzia Martinengo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enrico Patrucco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giulia Leonardi
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Jessica Hossa
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Achille Pich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | | | - Laurence Brugières
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Villejuif, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Villejuif, France
- Department of Oncology for Children and Adolescents, Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8203, Villejuif, France; and
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Taek-Chin Cheong
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
3
|
Redl E, Sheibani-Tezerji R, Cardona CDJ, Hamminger P, Timelthaler G, Hassler MR, Zrimšek M, Lagger S, Dillinger T, Hofbauer L, Draganić K, Tiefenbacher A, Kothmayer M, Dietz CH, Ramsahoye BH, Kenner L, Bock C, Seiser C, Ellmeier W, Schweikert G, Egger G. Requirement of DNMT1 to orchestrate epigenomic reprogramming for NPM-ALK-driven lymphomagenesis. Life Sci Alliance 2021; 4:e202000794. [PMID: 33310759 PMCID: PMC7768196 DOI: 10.26508/lsa.202000794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant transformation depends on genetic and epigenetic events that result in a burst of deregulated gene expression and chromatin changes. To dissect the sequence of events in this process, we used a T-cell-specific lymphoma model based on the human oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) translocation. We find that transformation of T cells shifts thymic cell populations to an undifferentiated immunophenotype, which occurs only after a period of latency, accompanied by induction of the MYC-NOTCH1 axis and deregulation of key epigenetic enzymes. We discover aberrant DNA methylation patterns, overlapping with regulatory regions, plus a high degree of epigenetic heterogeneity between individual tumors. In addition, ALK-positive tumors show a loss of associated methylation patterns of neighboring CpG sites. Notably, deletion of the maintenance DNA methyltransferase DNMT1 completely abrogates lymphomagenesis in this model, despite oncogenic signaling through NPM-ALK, suggesting that faithful maintenance of tumor-specific methylation through DNMT1 is essential for sustained proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Elisa Redl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Melanie Rosalia Hassler
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Maša Zrimšek
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Dillinger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Lorena Hofbauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andreas Tiefenbacher
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Michael Kothmayer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Charles H Dietz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernard H Ramsahoye
- Centre for Genetic and Experimental Medicine, Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), CoreLab 2, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Schweikert
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| |
Collapse
|
4
|
Zhang P, Zhang M. Epigenetic alterations and advancement of treatment in peripheral T-cell lymphoma. Clin Epigenetics 2020; 12:169. [PMID: 33160401 PMCID: PMC7648940 DOI: 10.1186/s13148-020-00962-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of clinically aggressive diseases associated with poor prognosis. Except for ALK + anaplastic large-cell lymphoma (ALCL), most peripheral T-cell lymphomas are highly malignant and have an aggressive disease course and poor clinical outcomes, with a poor remission rate and frequent relapse after first-line treatment. Aberrant epigenetic alterations play an important role in the pathogenesis and development of specific types of peripheral T-cell lymphoma, including the regulation of the expression of genes and signal transduction. The most common epigenetic alterations are DNA methylation and histone modification. Histone modification alters the level of gene expression by regulating the acetylation status of lysine residues on the promoter surrounding histones, often leading to the silencing of tumour suppressor genes or the overexpression of proto-oncogenes in lymphoma. DNA methylation refers to CpG islands, generally leading to tumour suppressor gene transcriptional silencing. Genetic studies have also shown that some recurrent mutations in genes involved in the epigenetic machinery, including TET2, IDH2-R172, DNMT3A, RHOA, CD28, IDH2, TET2, MLL2, KMT2A, KDM6A, CREBBP, and EP300, have been observed in cases of PTCL. The aberrant expression of miRNAs has also gradually become a diagnostic biomarker. These provide a reasonable molecular mechanism for epigenetic modifying drugs in the treatment of PTCL. As epigenetic drugs implicated in lymphoma have been continually reported in recent years, many new ideas for the diagnosis, treatment, and prognosis of PTCL originate from epigenetics in recent years. Novel epigenetic-targeted drugs have shown good tolerance and therapeutic effects in the treatment of peripheral T-cell lymphoma as monotherapy or combination therapy. NCCN Clinical Practice Guidelines also recommended epigenetic drugs for PTCL subtypes as second-line therapy. Epigenetic mechanisms provide new directions and therapeutic strategies for the research and treatment of peripheral T-cell lymphoma. Therefore, this paper mainly reviews the epigenetic changes in the pathogenesis of peripheral T-cell lymphoma and the advancement of epigenetic-targeted drugs in the treatment of peripheral T-cell lymphoma (PTCL).
Collapse
Affiliation(s)
- Ping Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China. .,Academy of Medical Sciences of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China.
| |
Collapse
|
5
|
Iżykowska K. Methylation patterns of cutaneous T-cell lymphomas. Exp Dermatol 2020; 30:1135-1140. [PMID: 32350933 DOI: 10.1111/exd.14108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/24/2020] [Accepted: 04/24/2020] [Indexed: 12/23/2022]
Abstract
In cutaneous T-cell lymphoma (CTCL), global hypomethylation of the genome and hypermethylation of tumor suppressor genes were detected. Studies show that methylation dysregulation is often a starting point for processes that might lead to malignant transformation. In this review, all data regarding copy-number variations (CNVs) and mutations in main methylation players DNA methyltransferases/TET in CTCL were summarized. An overview of studies on gene-specific hypomethylation and hypermethylation in CTCL, including methylation of microRNA genes, was presented. The possibility of using the methylation pattern in diagnosis and methylation inhibitors in treatment of CTCL was discussed.
Collapse
|
6
|
Sermer D, Pasqualucci L, Wendel HG, Melnick A, Younes A. Emerging epigenetic-modulating therapies in lymphoma. Nat Rev Clin Oncol 2019; 16:494-507. [PMID: 30837715 DOI: 10.1038/s41571-019-0190-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite considerable advances in the treatment of lymphoma, the prognosis of patients with relapsed and/or refractory disease continues to be poor; thus, a continued need exists for the development of novel approaches and therapies. Epigenetic dysregulation might drive and/or promote tumorigenesis in various types of malignancies and is prevalent in both B cell and T cell lymphomas. Over the past decade, a large number of epigenetic-modifying agents have been developed and introduced into the clinical management of patients with haematological malignancies. In this Review, we provide a concise overview of the most promising epigenetic therapies for the treatment of lymphomas, including inhibitors of histone deacetylases (HDACs), DNA methyltransferases (DNMTs), enhancer of zeste homologue 2 (EZH2), bromodomain and extra-terminal domain proteins (BETs), protein arginine N-methyltransferases (PRMTs) and isocitrate dehydrogenases (IDHs), and highlight the most promising future directions of research in this area.
Collapse
Affiliation(s)
- David Sermer
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ari Melnick
- Weill-Cornell Medical College, New York, NY, USA
| | - Anas Younes
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Ducray SP, Natarajan K, Garland GD, Turner SD, Egger G. The Transcriptional Roles of ALK Fusion Proteins in Tumorigenesis. Cancers (Basel) 2019; 11:cancers11081074. [PMID: 31366041 PMCID: PMC6721376 DOI: 10.3390/cancers11081074] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase involved in neuronal and gut development. Initially discovered in T cell lymphoma, ALK is frequently affected in diverse cancers by oncogenic translocations. These translocations involve different fusion partners that facilitate multimerisation and autophosphorylation of ALK, resulting in a constitutively active tyrosine kinase with oncogenic potential. ALK fusion proteins are involved in diverse cellular signalling pathways, such as Ras/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt and Janus protein tyrosine kinase (JAK)/STAT. Furthermore, ALK is implicated in epigenetic regulation, including DNA methylation and miRNA expression, and an interaction with nuclear proteins has been described. Through these mechanisms, ALK fusion proteins enable a transcriptional programme that drives the pathogenesis of a range of ALK-related malignancies.
Collapse
Affiliation(s)
- Stephen P Ducray
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | | | - Gavin D Garland
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK.
| | - Gerda Egger
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria.
| |
Collapse
|
8
|
Liang J, Yang F, Zhao L, Bi C, Cai B. Physiological and pathological implications of 5-hydroxymethylcytosine in diseases. Oncotarget 2018; 7:48813-48831. [PMID: 27183914 PMCID: PMC5217052 DOI: 10.18632/oncotarget.9281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/19/2016] [Indexed: 12/11/2022] Open
Abstract
Gene expression is the prerequisite of proteins. Diverse stimuli result in alteration of gene expression profile by base substitution for quite a long time. However, during the past decades, accumulating studies proved that bases modification is involved in this process. CpG islands (CGIs) are DNA fragments enriched in CpG repeats which mostly locate in promoters. They are frequently modified, methylated in most conditions, thereby suggesting a role of methylation in profiling gene expression. DNA methylation occurs in many conditions, such as cancer, embryogenesis, nervous system diseases etc. Recently, 5-hydroxymethylcytosine (5hmC), the product of 5-methylcytosine (5mC) demethylation, is emerging as a novel demethylation marker in many disorders. Consistently, conversion of 5mC to 5hmC has been proved in many studies. Here, we reviewed recent studies concerning demethylation via 5hmC conversion in several conditions and progress of therapeutics-associated with it in clinic. We aimed to unveil its physiological and pathological significance in diseases and to provide insight into its clinical application potential.
Collapse
Affiliation(s)
- Jing Liang
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Fan Yang
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Liang Zhao
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Chongwei Bi
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Benzhi Cai
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China.,Institute of Clinical Pharmacy and Medicine, Academics of Medical Sciences of Heilongjiang Province, Harbin, China
| |
Collapse
|
9
|
Hassler MR, Pulverer W, Lakshminarasimhan R, Redl E, Hacker J, Garland GD, Merkel O, Schiefer AI, Simonitsch-Klupp I, Kenner L, Weisenberger DJ, Weinhaeusel A, Turner SD, Egger G. Insights into the Pathogenesis of Anaplastic Large-Cell Lymphoma through Genome-wide DNA Methylation Profiling. Cell Rep 2017; 17:596-608. [PMID: 27705804 PMCID: PMC6066089 DOI: 10.1016/j.celrep.2016.09.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/29/2016] [Accepted: 09/04/2016] [Indexed: 01/06/2023] Open
Abstract
Aberrant DNA methylation patterns in malignant cells allow insight into tumor evolution and development and can be used for disease classification. Here, we describe the genome-wide DNA methylation signatures of NPM-ALK-positive (ALK+) and NPM-ALK-negative (ALK−) anaplastic large-cell lymphoma (ALCL). We find that ALK+ and ALK− ALCL share common DNA methylation changes for genes involved in T cell differentiation and immune response, including TCR and CTLA-4, without an ALK-specific impact on tumor DNA methylation in gene promoters. Furthermore, we uncover a close relationship between global ALCL DNA methylation patterns and those in distinct thymic developmental stages and observe tumor-specific DNA hypomethylation in regulatory regions that are enriched for conserved transcription factor binding motifs such as AP1. Our results indicate similarity between ALCL tumor cells and thymic T cell subsets and a direct relationship between ALCL oncogenic signaling and DNA methylation through transcription factor induction and occupancy.
Collapse
Affiliation(s)
- Melanie R Hassler
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Pulverer
- Health & Environment Department, Molecular Diagnostics, Austrian Institute of Technology (AIT), 1190 Vienna, Austria
| | - Ranjani Lakshminarasimhan
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California-Los Angeles, Los Angeles, CA 90089, USA
| | - Elisa Redl
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Hacker
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gavin D Garland
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Olaf Merkel
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria; European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Ana-Iris Schiefer
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Lukas Kenner
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria; Unit of Pathology of Laboratory Animals (UPLA), University of Veterinary Medicine Vienna, 1210 Vienna, Austria; European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California-Los Angeles, Los Angeles, CA 90089, USA
| | - Andreas Weinhaeusel
- Health & Environment Department, Molecular Diagnostics, Austrian Institute of Technology (AIT), 1190 Vienna, Austria
| | - Suzanne D Turner
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria; European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge CB2 0QQ, UK.
| |
Collapse
|
10
|
Hoareau-Aveilla C, Meggetto F. Crosstalk between microRNA and DNA Methylation Offers Potential Biomarkers and Targeted Therapies in ALK-Positive Lymphomas. Cancers (Basel) 2017; 9:cancers9080100. [PMID: 28771164 PMCID: PMC5575603 DOI: 10.3390/cancers9080100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
The discovery of microRNA (miRNA) has provided new and powerful tools for studying the mechanism, diagnosis and treatment of human cancers. The down-regulation of tumor suppressive miRNA by hypermethylation of CpG island (CpG is shorthand for 5′-C-phosphate-G-3′, that is, cytosine and guanine separated by only one phosphate) is emerging as a common hallmark of cancer and appears to be involved in drug resistance. This review discusses the role of miRNA and DNA methylation in drug resistance mechanisms and highlights their potential as anti-cancer therapies in Anaplastic Lymphoma Kinase (ALK)-positive lymphomas. These are a sub-type of non-Hodgkin’s lymphomas that predominantly affect children and young adults and are characterized by the expression of the nucleophosmin (NPM)/ALK chimeric oncoprotein. Dysregulation of miRNA expression and regulation has been shown to affect several signaling pathways in ALK carcinogenesis and control tumor growth, both in cell lines and mouse models. These data suggest that the modulation of DNA methylation and/or the expression of these miRNA could serve as new biomarkers and have potential therapeutic applications for ALK-positive malignancies.
Collapse
Affiliation(s)
- Coralie Hoareau-Aveilla
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.
- CNRS, ERL5294 CRCT, F-31000 Toulouse, France.
- Laboratoire d'Excellence Toulouse Cancer-TOUCAN, F-31024 Toulouse, France.
| | - Fabienne Meggetto
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.
- CNRS, ERL5294 CRCT, F-31000 Toulouse, France.
- Laboratoire d'Excellence Toulouse Cancer-TOUCAN, F-31024 Toulouse, France.
| |
Collapse
|
11
|
Bodoor K, Haddad Y, Alkhateeb A, Al-Abbadi A, Dowairi M, Magableh A, Bsoul N, Ghabkari A. DNA hypermethylation of cell cycle (p15 and p16) and apoptotic (p14, p53, DAPK and TMS1) genes in peripheral blood of leukemia patients. Asian Pac J Cancer Prev 2014; 15:75-84. [PMID: 24528084 DOI: 10.7314/apjcp.2014.15.1.75] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Aberrant DNA methylation of tumor suppressor genes has been reported in all major types of leukemia with potential involvement in the inactivation of regulatory cell cycle and apoptosis genes. However, most of the previous reports did not show the extent of concurrent methylation of multiple genes in the four leukemia types. Here, we analyzed six key genes (p14, p15, p16, p53, DAPK and TMS1) for DNA methylation using methylation specific PCR to analyze peripheral blood of 78 leukemia patients (24 CML, 25 CLL, 12 AML, and 17 ALL) and 24 healthy volunteers. In CML, methylation was detected for p15 (11%), p16 (9%), p53 (23%) and DAPK (23%), in CLL, p14 (25%), p15 (19%), p16 (12%), p53 (17%) and DAPK (36%), in AML, p14 (8%), p15 (45%), p53 (9%) and DAPK (17%) and in ALL, p15 (14%), p16 (8%), and p53 (8%). This study highlighted an essential role of DAPK methylation in chronic leukemia in contrast to p15 methylation in the acute cases, whereas TMS1 hypermethylation was absent in all cases. Furthermore, hypermethylation of multiple genes per patient was observed, with obvious selectiveness in the 9p21 chromosomal region genes (p14, p15 and p16). Interestingly, methylation of p15 increased the risk of methylation in p53, and vice versa, by five folds (p=0.03) indicating possible synergistic epigenetic disruption of different phases of the cell cycle or between the cell cycle and apoptosis. The investigation of multiple relationships between methylated genes might shed light on tumor specific inactivation of the cell cycle and apoptotic pathways.
Collapse
Affiliation(s)
- Khaldon Bodoor
- Department of Biology, Jordan University of Science and Technology, Irbid, Jordan E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sterle HA, Valli E, Cayrol F, Paulazo MA, Martinel Lamas DJ, Diaz Flaqué MC, Klecha AJ, Colombo L, Medina VA, Cremaschi GA, Barreiro Arcos ML. Thyroid status modulates T lymphoma growth via cell cycle regulatory proteins and angiogenesis. J Endocrinol 2014; 222:243-55. [PMID: 24928937 DOI: 10.1530/joe-14-0159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have shown in vitro that thyroid hormones (THs) regulate the balance between proliferation and apoptosis of T lymphoma cells. The effects of THs on tumor development have been studied, but the results are still controversial. Herein, we show the modulatory action of thyroid status on the in vivo growth of T lymphoma cells. For this purpose, euthyroid, hypothyroid, and hyperthyroid mice received inoculations of EL4 cells to allow the development of solid tumors. Tumors in the hyperthyroid animals exhibited a higher growth rate, as evidenced by the early appearance of palpable solid tumors and the increased tumor volume. These results are consistent with the rate of cell division determined by staining tumor cells with carboxyfluorescein succinimidyl ester. Additionally, hyperthyroid mice exhibited reduced survival. Hypothyroid mice did not differ significantly from the euthyroid controls with respect to these parameters. Additionally, only tumors from hyperthyroid animals had increased expression levels of proliferating cell nuclear antigen and active caspase 3. Differential expression of cell cycle regulatory proteins was also observed. The levels of cyclins D1 and D3 were augmented in the tumors of the hyperthyroid animals, whereas the cell cycle inhibitors p16/INK4A (CDKN2A) and p27/Kip1 (CDKN1B) and the tumor suppressor p53 (TRP53) were increased in hypothyroid mice. Intratumoral and peritumoral vasculogenesis was increased only in hyperthyroid mice. Therefore, we propose that the thyroid status modulates the in vivo growth of EL4 T lymphoma through the regulation of cyclin, cyclin-dependent kinase inhibitor, and tumor suppressor gene expression, as well as the stimulation of angiogenesis.
Collapse
Affiliation(s)
- H A Sterle
- Instituto de Investigaciones Biomédicas (BIOMED)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Av. A. Moreau de Justo 1600, 3er piso, 1107AFF Buenos Aires, ArgentinaCentro de Estudios Farmacológicos y Botánicos (CEFYBO)CONICET, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaLaboratorio de RadioisótoposFacultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaArea de InvestigaciónInstituto de Oncología 'Angel H. Roffo', Universidad de Buenos Aires (UBA), CONICET, Buenos Aires, ArgentinaDepartamento de Química BiológicaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - E Valli
- Instituto de Investigaciones Biomédicas (BIOMED)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Av. A. Moreau de Justo 1600, 3er piso, 1107AFF Buenos Aires, ArgentinaCentro de Estudios Farmacológicos y Botánicos (CEFYBO)CONICET, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaLaboratorio de RadioisótoposFacultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaArea de InvestigaciónInstituto de Oncología 'Angel H. Roffo', Universidad de Buenos Aires (UBA), CONICET, Buenos Aires, ArgentinaDepartamento de Química BiológicaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - F Cayrol
- Instituto de Investigaciones Biomédicas (BIOMED)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Av. A. Moreau de Justo 1600, 3er piso, 1107AFF Buenos Aires, ArgentinaCentro de Estudios Farmacológicos y Botánicos (CEFYBO)CONICET, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaLaboratorio de RadioisótoposFacultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaArea de InvestigaciónInstituto de Oncología 'Angel H. Roffo', Universidad de Buenos Aires (UBA), CONICET, Buenos Aires, ArgentinaDepartamento de Química BiológicaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - M A Paulazo
- Instituto de Investigaciones Biomédicas (BIOMED)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Av. A. Moreau de Justo 1600, 3er piso, 1107AFF Buenos Aires, ArgentinaCentro de Estudios Farmacológicos y Botánicos (CEFYBO)CONICET, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaLaboratorio de RadioisótoposFacultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaArea de InvestigaciónInstituto de Oncología 'Angel H. Roffo', Universidad de Buenos Aires (UBA), CONICET, Buenos Aires, ArgentinaDepartamento de Química BiológicaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - D J Martinel Lamas
- Instituto de Investigaciones Biomédicas (BIOMED)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Av. A. Moreau de Justo 1600, 3er piso, 1107AFF Buenos Aires, ArgentinaCentro de Estudios Farmacológicos y Botánicos (CEFYBO)CONICET, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaLaboratorio de RadioisótoposFacultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaArea de InvestigaciónInstituto de Oncología 'Angel H. Roffo', Universidad de Buenos Aires (UBA), CONICET, Buenos Aires, ArgentinaDepartamento de Química BiológicaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - M C Diaz Flaqué
- Instituto de Investigaciones Biomédicas (BIOMED)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Av. A. Moreau de Justo 1600, 3er piso, 1107AFF Buenos Aires, ArgentinaCentro de Estudios Farmacológicos y Botánicos (CEFYBO)CONICET, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaLaboratorio de RadioisótoposFacultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaArea de InvestigaciónInstituto de Oncología 'Angel H. Roffo', Universidad de Buenos Aires (UBA), CONICET, Buenos Aires, ArgentinaDepartamento de Química BiológicaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - A J Klecha
- Instituto de Investigaciones Biomédicas (BIOMED)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Av. A. Moreau de Justo 1600, 3er piso, 1107AFF Buenos Aires, ArgentinaCentro de Estudios Farmacológicos y Botánicos (CEFYBO)CONICET, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaLaboratorio de RadioisótoposFacultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaArea de InvestigaciónInstituto de Oncología 'Angel H. Roffo', Universidad de Buenos Aires (UBA), CONICET, Buenos Aires, ArgentinaDepartamento de Química BiológicaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - L Colombo
- Instituto de Investigaciones Biomédicas (BIOMED)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Av. A. Moreau de Justo 1600, 3er piso, 1107AFF Buenos Aires, ArgentinaCentro de Estudios Farmacológicos y Botánicos (CEFYBO)CONICET, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaLaboratorio de RadioisótoposFacultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaArea de InvestigaciónInstituto de Oncología 'Angel H. Roffo', Universidad de Buenos Aires (UBA), CONICET, Buenos Aires, ArgentinaDepartamento de Química BiológicaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - V A Medina
- Instituto de Investigaciones Biomédicas (BIOMED)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Av. A. Moreau de Justo 1600, 3er piso, 1107AFF Buenos Aires, ArgentinaCentro de Estudios Farmacológicos y Botánicos (CEFYBO)CONICET, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaLaboratorio de RadioisótoposFacultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaArea de InvestigaciónInstituto de Oncología 'Angel H. Roffo', Universidad de Buenos Aires (UBA), CONICET, Buenos Aires, ArgentinaDepartamento de Química BiológicaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - G A Cremaschi
- Instituto de Investigaciones Biomédicas (BIOMED)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Av. A. Moreau de Justo 1600, 3er piso, 1107AFF Buenos Aires, ArgentinaCentro de Estudios Farmacológicos y Botánicos (CEFYBO)CONICET, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaLaboratorio de RadioisótoposFacultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaArea de InvestigaciónInstituto de Oncología 'Angel H. Roffo', Universidad de Buenos Aires (UBA), CONICET, Buenos Aires, ArgentinaDepartamento de Química BiológicaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaInstituto de Investigaciones Biomédicas (BIOMED)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Av. A. Moreau de Justo 1600, 3er piso, 1107AFF Buenos Aires, ArgentinaCentro de Estudios Farmacológicos y Botánicos (CEFYBO)CONICET, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaLaboratorio de RadioisótoposFacultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaArea de InvestigaciónInstituto de Oncología 'Angel H. Roffo', Universidad de Buenos Aires (UBA), CONICET, Buenos Aires, ArgentinaDepartamento de Química BiológicaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - M L Barreiro Arcos
- Instituto de Investigaciones Biomédicas (BIOMED)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Av. A. Moreau de Justo 1600, 3er piso, 1107AFF Buenos Aires, ArgentinaCentro de Estudios Farmacológicos y Botánicos (CEFYBO)CONICET, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaLaboratorio de RadioisótoposFacultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaArea de InvestigaciónInstituto de Oncología 'Angel H. Roffo', Universidad de Buenos Aires (UBA), CONICET, Buenos Aires, ArgentinaDepartamento de Química BiológicaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaInstituto de Investigaciones Biomédicas (BIOMED)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Av. A. Moreau de Justo 1600, 3er piso, 1107AFF Buenos Aires, ArgentinaCentro de Estudios Farmacológicos y Botánicos (CEFYBO)CONICET, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaLaboratorio de RadioisótoposFacultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, ArgentinaArea de InvestigaciónInstituto de Oncología 'Angel H. Roffo', Universidad de Buenos Aires (UBA), CONICET, Buenos Aires, ArgentinaDepartamento de Química BiológicaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
13
|
Hassler MR, Klisaroska A, Kollmann K, Steiner I, Bilban M, Schiefer AI, Sexl V, Egger G. Antineoplastic activity of the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine in anaplastic large cell lymphoma. Biochimie 2012; 94:2297-307. [PMID: 22687603 PMCID: PMC3480637 DOI: 10.1016/j.biochi.2012.05.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/31/2012] [Indexed: 12/31/2022]
Abstract
DNA methylation is an epigenetic mechanism establishing long-term gene silencing during development and cell commitment, which is maintained in subsequent cell generations. Aberrant DNA methylation is found at gene promoters in most cancers and can lead to silencing of tumor suppressor genes. The DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5-aza-CdR) is able to reactivate genes silenced by DNA methylation and has been shown to be a very potent epigenetic drug in several hematological malignancies. In this report, we demonstrate that 5-aza-CdR exhibits high antineoplastic activity against anaplastic large cell lymphoma (ALCL), a rare CD30 positive non-Hodgkin lymphoma of T-cell origin. Low dose treatment of ALCL cell lines and xenografted tumors causes apoptosis and cell cycle arrest in vitro and in vivo. This is also reflected in genome-wide expression analyses, where genes related to apoptosis and cell death are amongst the most affected targets of 5-aza-CdR. Furthermore, we observed demethylation and re-expression of p16INK4A after drug administration and senescence associated β-galactosidase activity. Thus, our data provide evidence that 5-aza-CdR is highly efficient against ALCL and warrants further clinical evaluation for future therapeutic use.
Collapse
Affiliation(s)
- Melanie R Hassler
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Krejsgaard T, Kopp K, Ralfkiaer E, Willumsgaard AE, Eriksen KW, Labuda T, Rasmussen S, Mathiesen AM, Geisler C, Lauenborg B, Becker JC, Zhang Q, Wasik MA, Odum N, Woetmann A. A novel xenograft model of cutaneous T-cell lymphoma. Exp Dermatol 2011; 19:1096-102. [PMID: 20629733 DOI: 10.1111/j.1600-0625.2010.01138.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cutaneous T-cell lymphomas (CTCLs) are characterized by accumulation of malignant T cells in the skin. Early disease resembles benign skin disorders but during disease progression cutaneous tumors develop, and eventually the malignant T cells can spread to lymph nodes and internal organs. However, because of the lack of suitable animal models, little is known about the mechanisms driving CTCL development and progression in vivo. Here, we describe a novel xenograft model of tumor stage CTCL, where malignant T cells (MyLa2059) are transplanted to NOD/SCID-B2m(-/-) (NOD.Cg-Prkdc(scid) B2m(tm1Unc) /J) mice. Subcutaneous transplantation of the malignant T cells led to rapid tumor formation in 43 of 48 transplantations, whereas transplantation of non-malignant T cells isolated from the same donor did not result in tumor development. Importantly, the tumor growth was significantly suppressed in mice treated with vorinostat when compared to mice treated with vehicle. Furthermore, in most mice the tumors displayed subcutaneous and/or lymphatic dissemination. Histological, immunohistochemical and flow cytometric analyses confirmed that both tumors at the inoculation site, as well as distant subcutaneous and lymphatic tumors, originated from the transplanted malignant T cells. In conclusion, we describe a novel mouse model of tumor stage CTCL for future studies of disease dissemination and preclinical evaluations of new therapeutic strategies.
Collapse
|
15
|
Kinney MC, Higgins RA, Medina EA. Anaplastic large cell lymphoma: twenty-five years of discovery. Arch Pathol Lab Med 2011; 135:19-43. [PMID: 21204709 DOI: 10.5858/2010-0507-rar.1] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT The year 2010 commemorates the 25th year since the seminal publication by Karl Lennert and Harald Stein and others in Kiel, West Germany, describing an unusual large cell lymphoma now known as anaplastic large cell lymphoma (ALCL). Investigators at many universities and hospitals worldwide have contributed to our current in-depth understanding of this unique peripheral T-cell lymphoma, which in its systemic form, principally occurs in children and young adults. OBJECTIVE To summarize our current knowledge of the clinical and pathologic features of systemic and primary cutaneous ALCL. Particular emphasis is given to the biology and pathogenesis of ALCL. DATA SOURCES Search of the medical literature (Ovid MEDLINE In-Process & Other Non-Indexed Citations and Ovid MEDLINE: 1950 to Present [National Library of Medicine]) and more than 20 years of diagnostic experience were used as the source of data for review. CONCLUSIONS Based on immunostaining for activation antigen CD30 and the presence of dysregulation of the anaplastic lymphoma kinase gene (2p23), the diagnosis of ALCL has become relatively straightforward for most patients. Major strides have been made during the last decade in our understanding of the complex pathogenesis of ALCL. Constitutive NPM-ALK signaling has been shown to drive oncogenesis via an intricate network of redundant and interacting pathways that regulate cell proliferation, cell fate, and cytoskeletal modeling. Nevertheless, pathomechanistic, therapeutic, and diagnostic challenges remain that should be resolved as we embark on the next generation of discovery.
Collapse
Affiliation(s)
- Marsha C Kinney
- Department of Pathology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
16
|
Lack of TNFalpha expression protects anaplastic lymphoma kinase-positive T-cell lymphoma (ALK+ TCL) cells from apoptosis. Proc Natl Acad Sci U S A 2009; 106:15843-8. [PMID: 19717436 DOI: 10.1073/pnas.0907070106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Here we report that T-cell lymphomas characterized by the expression of anaplastic lymphoma kinase (ALK+ TCL) fail to express the TNFalpha and frequently display DNA methylation of the TNFalpha gene promoter. While only a subset of the ALK+ TCL-derived cell lines showed a high degree of the promoter methylation, all 6 showed low to nondetectable expression of the TNFalpha mRNA, and none expressed the TNFalpha protein. All 14 ALK+ TCL tissue samples examined displayed some degree of the TNFalpha promoter methylation, which was the most prominent in the distal portion of the the promoter. Treatment with a DNA methyltransferase inhibitor, 5'-aza-2'-deoxy-cytidine (5-ADC), reversed the promoter methylation and led to the expression of TNFalpha mRNA and protein. Furthermore, in vitro DNA methylation of the promoter impaired its transcriptional activity in the luciferase reporter assay. This impairment was seen even if only either distal or proximal portion were methylated, with methylation of the former exerting a more profound inhibitory effect. Notably, the ALK+ TCL cell lines uniformly expressed the type 1 TNFalpha receptor (TNF-R1) protein known to transduce the TNFalpha-induced pro-apoptotic signals. Moreover, exogenous TNFalpha inhibited growth of the ALK+ TCL cell lines in a dose-dependent manner and induced activation of the members of the cell apoptotic pathway: Caspase 8 and caspase 3. These findings provide additional rationale for the therapeutic inhibition of DNA methyltransferases in ALK+ TCL. They also suggest that treatment with TNFalpha may be highly effective in this type of lymphoma.
Collapse
|
17
|
Li Y, Sawalha AH, Lu Q. Aberrant DNA methylation in skin diseases. J Dermatol Sci 2009; 54:143-9. [PMID: 19395242 DOI: 10.1016/j.jdermsci.2009.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 01/16/2009] [Accepted: 01/29/2009] [Indexed: 12/21/2022]
Abstract
Epigenetic mechanisms are involved in regulating cell growth and differentiation without inducing changes in the gene sequence. The main epigenetic mechanisms include DNA methylation, histone modification, and microRNA. Recent studies indicate that aberrant DNA methylation is a common feature of many human disorders, including cancer, autoimmune diseases, heart diseases, skin diseases, and others. Skin diseases comprise various diseases that have a complex etiology and pathogenesis, including genetics and acquired factors such as environment and diet. These acquired factors often have pathogenic effects through modification of DNA and histones, of which DNA methylation is the most common mechanism. Aberrant DNA methylation has been demonstrated in skin diseases, including skin tumors and autoimmune-related skin disorders. Herein, we review the role of DNA methylation in the pathogenesis of skin diseases.
Collapse
Affiliation(s)
- Yaping Li
- Department of Dermatology and Epigenetic Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | |
Collapse
|
18
|
Nakase K, Cheng J, Zhu Q, Marasco WA. Mechanisms of SHP-1 P2 promoter regulation in hematopoietic cells and its silencing in HTLV-1-transformed T cells. J Leukoc Biol 2008; 85:165-74. [PMID: 18948549 DOI: 10.1189/jlb.0608383] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Src homology-2-containing protein-tyrosine phosphatase 1 (SHP-1), is a negative regulator of cell signaling. It is also considered a tumor suppressor gene because of its ability to antagonize the action of tyrosine kinases. Although SHP-1 is expressed strongly in hematopoietic cells, decreased expression has been observed in various hematological malignancies, which suggests a central involvement of SHP-1 in leukemogenesis. We have shown previously that human T cell lymphotropic virus type-1 (HTLV-1) Tax-induced promoter silencing (TIPS) is an early event causing down-regulation of SHP-1 expression, which is dependent on NF-kappaB. In this study, DNase I footprinting and EMSA also revealed binding of transcription factors, specificity protein 1 (Sp1) and octamer-binding transcription factor 1 (Oct-1) to the P2 promoter, and site-directed mutagenesis confirmed that these factors contribute to the basal P2 promoter activity. Chromatin immunoprecipitation (CHIP) assays showed that Sp1, Oct-1, NF-kappaB, CREB-1, and RNA polymerase II interacted with the core SHP-1 P2 promoter in CD4+ T cells and Jurkat cells but not in HTLV-1-transformed MT-2 and HUT102 cells when HTLV-1 Tax is present. Furthermore, bisulfite sequencing of the SHP-1 P2 core region revealed heavy CpG methylation in HTLV-1-transformed cells compared with freshly isolated CD4+ T cells and HTLV-1-noninfected T cell lines. A significant inverse correlation between degree of CpG methylation and expression of SHP-1 mRNA or protein was observed. Taken together, our data support the notion that in HTLV-1-transformed CD4+ T cells, TIPS causes dissociation of transcription factors from the core SHP-1 P2 promoter, which in turn leads to subsequent DNA methylation, an important early step for leukemogenesis.
Collapse
Affiliation(s)
- Koichi Nakase
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
19
|
Gambichler T, Bischoff S, Bechara FG, Altmeyer P, Kreuter A. Expression of proliferation markers and cell cycle regulators in T cell lymphoproliferative skin disorders. J Dermatol Sci 2007; 49:125-32. [PMID: 17826963 DOI: 10.1016/j.jdermsci.2007.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/03/2007] [Accepted: 07/27/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Abnormal cell proliferation, which results from deregulation of the cell cycle, is fundamental in tumorigenesis. OBJECTIVES To investigate the expression of proliferation markers and cell cycle regulators in a range of T cell lymphoproliferative skin diseases. METHODS We studied skin specimens of 51 patients with parapsoriasis (PP), mycosis fungiodes (MF), or lymphomatoid papulosis (LyP). Immunohistochemistry was performed for Ki-67, proliferating cell nuclear antigen (PCNA), minichromosome maintenance protein 7 (MCM7), and p21. RESULTS MF with stage IIB-IV and LyP showed a significantly greater number of Ki-67-positive cells than PP (P=0.02 and 0.001) and MF I-IIA (P=0.019 and 0.003), respectively. MCM7 staining revealed significantly higher labeling indices for MF IIB-IV and LyP when compared to PP (P=0.002 and 0.04) and MF I-IIA (P=0.0005 and 0.01), respectively. Compared to PP and MF I-IIA, MF IIB-IV was associated with significantly higher labeling indices for PCNA (P=0.006 and 0.0004). p21 staining was significantly increased in MF IIB-IV and LyP when compared to PP (P=0.006 and 0.003) and MF I-IIA (P=0.003). However, p21 staining was all in all very weak. CONCLUSIONS Ki-67 and PCNA seem to be useful immunohistological parameters for the correlation with the clinical stage of MF. In the differentiation and prognostication of T cell lymphoproliferative skin disorders, MCM7 may serve as a novel biomarker which is, in contrast to Ki-67 and PCNA, stable throughout the cell cycle.
Collapse
Affiliation(s)
- Thilo Gambichler
- Department of Dermatology, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany.
| | | | | | | | | |
Collapse
|
20
|
Zhang C, Toulev A, Kamarashev J, Qin JZ, Dummer R, Döbbeling U. Consequences of p16 tumor suppressor gene inactivation in mycosis fungoides and Sézary syndrome and role of the bmi-1 and ras oncogenes in disease progression. Hum Pathol 2007; 38:995-1002. [PMID: 17442375 DOI: 10.1016/j.humpath.2006.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 10/05/2006] [Accepted: 10/06/2006] [Indexed: 01/07/2023]
Abstract
In examining the expression of oncogenes and tumor suppressor genes in mycosis fungoides and Sézary syndrome, we found the cell cycle-regulating protein p16 to be absent in T cells. Immunohistochemical staining with p16-specific antibodies showed that the number of p16-expressing cells in cutaneous lesions decreases in late stages. The repression of p16 was not attributable to deletion or methylation of this gene; however, the Bmi-1 oncogene, a known suppressor of p16, was present in mycosis fungoides and Sézary syndrome cell lines and skin lesions. The absence of p16 correlated with the phosphorylation of the retinoblastoma protein on cyclin D/CDK4- or cyclin D/CDK6-specific sites. Ki-ras, which stimulates phosphorylation of retinoblastoma via cyclin-dependent kinases, was found in all tested cutaneous T-cell lymphoma samples; and its expression generally was stronger in advanced stages. Thus, cutaneous T-cell lymphoma cells show changes in oncogene and tumor suppressor gene expression that increase proliferation.
Collapse
Affiliation(s)
- Chunlei Zhang
- Department of Dermatology, University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | - Albena Toulev
- Department of Dermatology, University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | - Jivko Kamarashev
- Department of Dermatology, University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | - Jian-Zhong Qin
- Department of Dermatology, University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | - Udo Döbbeling
- Department of Dermatology, University Hospital of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|
21
|
Sjahputera O, Keller JM, Davis JW, Taylor KH, Rahmatpanah F, Shi H, Anderson DT, Blisard SN, Luke RH, Popescu M, Arthur GC, Caldwell CW. Relational analysis of CpG islands methylation and gene expression in human lymphomas using possibilistic C-means clustering and modified cluster fuzzy density. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2007; 4:176-89. [PMID: 17473312 DOI: 10.1109/tcbb.2007.070205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Heterogeneous genetic and epigenetic alterations are commonly found in human non-Hodgkin's lymphomas (NHL). One such epigenetic alteration is aberrant methylation of gene promoter-related CpG islands, where hypermethylation frequently results in transcriptional inactivation of target genes, while a decrease or loss of promoter methylation (hypomethylation) is frequently associated with transcriptional activation. Discovering genes with these relationships in NHL or other types of cancers could lead to a better understanding of the pathobiology of these diseases. The simultaneous analysis of promoter methylation using Differential Methylation Hybridization (DMH) and its associated gene expression using Expressed CpG Island Sequence Tag (ECIST) microarrays generates a large volume of methylation-expression relational data. To analyze this data, we propose a set of algorithms based on fuzzy sets theory, in particular Possibilistic c-Means (PCM) and cluster fuzzy density. For each gene, these algorithms calculate measures of confidence of various methylation-expression relationships in each NHL subclass. Thus, these tools can be used as a means of high volume data exploration to better guide biological confirmation using independent molecular biology methods.
Collapse
Affiliation(s)
- Ozy Sjahputera
- Ellis Fischel Cancer Research Lab, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang Q, Wang HY, Woetmann A, Raghunath PN, Odum N, Wasik MA. STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes. Blood 2006; 108:1058-64. [PMID: 16861352 PMCID: PMC1895864 DOI: 10.1182/blood-2005-08-007377] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, we demonstrated that STAT3, a well-characterized transcription factor expressed in continuously activated oncogenic form in the large spectrum of cancer types, induces in malignant T lymphocytes the expression of DNMT1, the key effector of epigenetic gene silencing. STAT3 binds in vitro to 2 STAT3 SIE/GAS-binding sites identified in promoter 1 and enhancer 1 of the DNMT1 gene. STAT3 also binds to the promoter 1 region and induces its activity in vivo. Treatment of the malignant T lymphocytes with STAT3 siRNA abrogates expression of DNMT1, inhibits cell growth, and induces programmed cell death. In turn, inhibition of DNMT1 by a small molecule inhibitor, 5-aza-2-deoxy-cytidine, and 2 DNMT1 antisense DNA oligonucleotides inhibits the phosphorylation of STAT3. These data indicate that STAT3 may in part transform cells by fostering epigenetic silencing of tumor-suppressor genes. They also indicate that by inducing DNMT1, STAT3 facilitates its own persistent activation in malignant T cells. Finally, these data provide further rationale for therapeutically targeting STAT3 in T-cell lymphomas and, possibly, other malignancies.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, 7.103 Founders, Philadelphia, 19104, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Kim EJ, Lin J, Junkins-Hopkins JM, Vittorio CC, Rook AH. Mycosis fungoides and sezary syndrome: An update. Curr Oncol Rep 2006; 8:376-86. [PMID: 16901399 DOI: 10.1007/s11912-006-0061-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mycosis fungoides (MF), and the associated leukemic variant Sezary Syndrome (SS), are the most common group of cutaneous T-cell lymphomas. MF/SS is a non-Hodgkin's lymphoma of mature, skin-homing, clonal, malignant T lymphocytes that initially presents in the skin as patches, plaques, tumors, or generalized erythema (erythroderma) and can involve the lymph nodes and peripheral blood. Much progress has been made in recent years in understanding the origin of the malignant T cell in MF/SS and the pathophysiology and immunology of the disease. This recent work has made a great impact on diagnosis, prognostication, and treatment. In this review, we survey the MF/SS published literature over the past year and highlight some of the important advances.
Collapse
Affiliation(s)
- Ellen J Kim
- Department of Dermatology, University of Pennsylvania Health System, Philadelphia, 19104, USA.
| | | | | | | | | |
Collapse
|