1
|
Cui J, Liu W, Zhong S, Fang Y, Xu P, Xu C, Wang R, Hu X, Zhou W, Li K, Hong M, Qian S, Sun Q. Blockade of TIGAR prevents CD8 + T cell dysfunction and elicits anti-AML immunity. Cancer Immunol Immunother 2025; 74:183. [PMID: 40285889 PMCID: PMC12033161 DOI: 10.1007/s00262-025-04042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
Acute myeloid leukemia (AML) cells and activated T cells rely on aerobic glycolysis for energy metabolism. The TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits glycolysis and protects AML cells from apoptosis. Preliminary studies suggest that combining TIGAR inhibition with the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) may offer a therapeutic strategy for AML. However, it remains unclear whether silencing TIGAR can enhance T cell function and thereby improve AML prognosis. This study aims to investigate whether TIGAR silencing in host can eliminate AML cells and rejuvenate dysfunctional T cells with mouse models. TIGAR knockout mice on the C57BL/6J background were generated and AML mouse models were established through intravenous injection of C1498 cells. We found that TIGAR depletion enhanced CD8+ T cell counts and raised CD4/CD8 ratio, downregulating CD44 and immune checkpoints CTLA-4, LAG-3, PD-1 on cell surface of CD8+ T cells. TIGAR depletion boosted cytokine secretion (IFN-γ, perforin, granzyme B, TNF-α) by CD8+ T cells and IL-2, TNF-α by CD4+ T cells, improving cytotoxicity against AML cells, proliferation, and reducing apoptosis. TIGAR suppression in host with 2-DG prolonged AML mouse survival, decreased tumor burden, and leukemic infiltration. TIGAR suppression restored thymic T cell development and peripheral immune balance. Single-cell RNA sequencing analysis also revealed that high TIGAR expression influences the glycolysis pathway, and correlates with markers of T cell exhaustion. This study indicates that blocking TIGAR prevents CD8+ T cell dysfunction and induces anti-AML immunity.
Collapse
Affiliation(s)
- Jialin Cui
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wenjie Liu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Shiyang Zhong
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huaian, China
| | - Yiran Fang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Pei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Cheng Xu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Rong Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xingfei Hu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huaian, China
| | - Wanting Zhou
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huaian, China
| | - Kening Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huaian, China
| | - Ming Hong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Sixuan Qian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| | - Qian Sun
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| |
Collapse
|
2
|
AlMaazmi FI, Bou Malhab LJ, ElDohaji L, Saber-Ayad M. Deciphering the Controversial Role of TP53 Inducible Glycolysis and Apoptosis Regulator (TIGAR) in Cancer Metabolism as a Potential Therapeutic Strategy. Cells 2025; 14:598. [PMID: 40277923 PMCID: PMC12025843 DOI: 10.3390/cells14080598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Tumor metabolism has emerged as a critical target in cancer therapy, revolutionizing our understanding of how cancer cells grow, survive, and respond to treatment. Historically, cancer research focused on genetic mutations driving tumorigenesis, but in recent decades, metabolic reprogramming has been recognized as a hallmark of cancer. The TP53 inducible glycolysis and apoptosis regulator, or TIGAR, affects a wide range of cellular and molecular processes and plays a key role in cancer cell metabolism by regulating the balance between glycolysis and antioxidant defense mechanisms. Cancer cells often exhibit a shift towards aerobic glycolysis (the Warburg effect), which allows rapid energy production and gives rise to biosynthetic intermediates for proliferation. By inhibiting glycolysis, TIGAR can reduce the proliferation rate of cancer cells, particularly in early-stage tumors or specific tissue types. This metabolic shift may limit the resources available for rapid cell division, thereby exerting a tumor-suppressive effect. However, this metabolic shift also leads to increased levels of reactive oxygen species (ROS), which can damage the cell if not properly managed. TIGAR helps protect cancer cells from excessive ROS by promoting the pentose phosphate pathway (PPP), which generates NADPH-a key molecule involved in antioxidant defense. Through its actions, TIGAR decreases the glycolytic flux while increasing the diversion of glucose-6-phosphate into the PPP. This reduces ROS levels and supports biosynthesis and cell survival by maintaining the balance of nucleotides and lipids. The role of TIGAR has been emerging as a prognostic and potential therapeutic target in different types of cancers. This review highlights the role of TIGAR in different types of cancer, evaluating its potential role as a diagnostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Fatima I. AlMaazmi
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.I.A.); (L.E.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Immunology and NAT, Dubai Blood Donation Center, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates
| | - Lara J. Bou Malhab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Leen ElDohaji
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.I.A.); (L.E.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.I.A.); (L.E.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
3
|
Yapindi L, Bowley T, Kurtaneck N, Bergeson RL, James K, Wilbourne J, Harrod CK, Hernandez BY, Emerling BM, Yates C, Harrod R. Activation of p53-regulated pro-survival signals and hypoxia-independent mitochondrial targeting of TIGAR by human papillomavirus E6 oncoproteins. Virology 2023; 585:1-20. [PMID: 37257253 PMCID: PMC10527176 DOI: 10.1016/j.virol.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
The high-risk subtype human papillomaviruses (hrHPVs) infect and oncogenically transform basal epidermal stem cells associated with the development of squamous-cell epithelial cancers. The viral E6 oncoprotein destabilizes the p53 tumor suppressor, inhibits p53 K120-acetylation by the Tat-interacting protein of 60 kDa (TIP60, or Kat5), and prevents p53-dependent apoptosis. Intriguingly, the p53 gene is infrequently mutated in HPV + cervical cancer clinical isolates which suggests a possible paradoxical role for this gatekeeper in viral carcinogenesis. Here, we demonstrate that E6 activates the TP53-induced glycolysis and apoptosis regulator (TIGAR) and protects cells against oncogene-induced oxidative genotoxicity. The E6 oncoprotein induces a Warburg-like stress response and activates PI3K/PI5P4K/AKT-signaling that phosphorylates the TIGAR on serine residues and induces its hypoxia-independent mitochondrial targeting in hrHPV-transformed cells. Primary HPV + cervical cancer tissues contain high levels of TIGAR, p53, and c-Myc and our xenograft studies have further shown that lentiviral-siRNA-knockdown of TIGAR expression inhibits hrHPV-induced tumorigenesis in vivo. These findings suggest the modulation of p53 pro-survival signals and the antioxidant functions of TIGAR could have key ancillary roles during HPV carcinogenesis.
Collapse
Affiliation(s)
- Lacin Yapindi
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Tetiana Bowley
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Nick Kurtaneck
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Rachel L Bergeson
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Kylie James
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Jillian Wilbourne
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Carolyn K Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Brenda Y Hernandez
- Hawaii Tumor Registry, University of Hawaii Cancer Center, Honolulu, HI, 96813, United States
| | | | - Courtney Yates
- Laboratory Animal Resource Center, Southern Methodist University, Dallas, TX, 75275, United States
| | - Robert Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States.
| |
Collapse
|
4
|
Yang C, Cui XW, Ding ZW, Jiang TY, Feng XF, Pan YF, Lin YK, Shang TY, Wang Q, Pan J, Wang J, Wang HY, Dong LW. Gankyrin and TIGAR cooperatively accelerate glucose metabolism toward the PPP and TCA cycle in hepatocellular carcinoma. Cancer Sci 2022; 113:4151-4164. [PMID: 36114745 DOI: 10.1111/cas.15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022] Open
Abstract
Oncogene-derived metabolic reprogramming is important for anabolic growth of cancer cells, which is now considered to be not simply rely on glycolysis. Pentose phosphate pathway and tricarboxylic acid cycle also play pivotal roles in helping cancer cells to meet their anabolic and energy demands. The present work focused on gankyrin, a relatively specific oncogene in hepatocellular carcinoma (HCC), and its impact on glycolysis and mitochondrial homeostasis. Metabolomics, RNA-seq analysis, and subsequent conjoint analysis illustrated that gankyrin regulated the pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, and mitochondrial function and homeostasis, which play pivotal roles in tumor development. Mechanistically, gankyrin was found to modulate HCC metabolic reprogramming via TIGAR. Gankyrin positively regulated the transcription of TIGAR through Nrf2, which bound to the antioxidant response elements (AREs) in the promoter of TIGAR. Interestingly, TIGAR feedback regulated the transcription of Nrf2 and subsequently gankyrin by promoting nuclear importation of PGC1α. The loop between gankyrin, Nrf2, and TIGAR accelerated glucose metabolism toward the PPP and TCA cycle, which provided vital building blocks, such as NADPH, ATP, and ribose of tumor and further facilitated the progression of HCC.
Collapse
Affiliation(s)
- Chun Yang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China.,Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Xiao-Wen Cui
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China.,National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Zhi-Wen Ding
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Tian-Yi Jiang
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Xiao-Fan Feng
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Yu-Fei Pan
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Yun-Kai Lin
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Tai-Yu Shang
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Qing Wang
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China.,National Center for Liver Cancer, The Naval Medical University, Shanghai, China.,Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Naval Medical University & Ministry of Education, Shanghai, China
| | - Li-Wei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China.,National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Targeting metabolic reprogramming in chronic lymphocytic leukemia. Exp Hematol Oncol 2022; 11:39. [PMID: 35761419 PMCID: PMC9235173 DOI: 10.1186/s40164-022-00292-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
Metabolic reprogramming, fundamentally pivotal in carcinogenesis and progression of cancer, is considered as a promising therapeutic target against tumors. In chronic lymphocytic leukemia (CLL) cells, metabolic abnormalities mediate alternations in proliferation and survival compared with normal B cells. However, the role of metabolic reprogramming is still under investigation in CLL. In this review, the critical metabolic processes of CLL were summarized, particularly glycolysis, lipid metabolism and oxidative phosphorylation. The effects of T cells and stromal cells in the microenvironment on metabolism of CLL were also elucidated. Besides, the metabolic alternation is regulated by some oncogenes and tumor suppressor regulators, especially TP53, MYC and ATM. Thus, the agents targeting metabolic enzymes or signal pathways may impede the progression of CLL. Both the inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) statins and the lipoprotein lipase inhibitor orlistat induce the apoptosis of CLL cells. In addition, a series of oxidative phosphorylation inhibitors play important roles in decreasing the proliferation of CLL cells. We epitomized recent advancements in metabolic reprogramming in CLL and discussed their clinical potentiality for innovative therapy options. Metabolic reprogramming plays a vital role in the initiation and progression of CLL. Therapeutic approaches targeting metabolism have their advantages in improving the survival of CLL patients. This review may shed novel light on the metabolism of CLL, leading to the development of targeted agents based on the reshaping metabolism of CLL cells.
Collapse
|
6
|
Wang H, Wang Q, Cai G, Duan Z, Nugent Z, Huang J, Zheng J, Borowsky AD, Li JJ, Liu P, Kung HJ, Murphy L, Chen HW, Wang J. Nuclear TIGAR mediates an epigenetic and metabolic autoregulatory loop via NRF2 in cancer therapeutic resistance. Acta Pharm Sin B 2022; 12:1871-1884. [PMID: 35847493 PMCID: PMC9279715 DOI: 10.1016/j.apsb.2021.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Hong Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qianqian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guodi Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhijian Duan
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Zoann Nugent
- Research Institute in Oncology and Hematology, University of Manitoba and CancerCare Manitoba, Winnipeg R3E 0V9, Canada
| | - Jie Huang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Corresponding authors.
| | - Jianwei Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Alexander D. Borowsky
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA 95817, USA
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
- UC Davis Comprehensive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Leigh Murphy
- Research Institute in Oncology and Hematology, University of Manitoba and CancerCare Manitoba, Winnipeg R3E 0V9, Canada
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
- UC Davis Comprehensive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
- Corresponding authors.
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
- Corresponding authors.
| |
Collapse
|
7
|
Zhang E, Chen Y, Bao S, Hou X, Hu J, Mu OYN, Song Y, Shan L. Identification of subgroups along the glycolysis-cholesterol synthesis axis and the development of an associated prognostic risk model. Hum Genomics 2021; 15:53. [PMID: 34384498 PMCID: PMC8359075 DOI: 10.1186/s40246-021-00350-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is one of the most highly prevalent and complicated malignancies. Glycolysis and cholesterogenesis pathways both play important roles in cancer metabolic adaptations. The main aims of this study are to subtype SKCM based on glycolytic and cholesterogenic genes and to build a clinical outcome predictive algorithm based on the subtypes. METHODS A dataset with 471 SKCM specimens was downloaded from The Cancer Genome Atlas (TCGA) database. We extracted and clustered genes from the Molecular Signatures Database v7.2 and acquired co-expressed glycolytic and cholesterogenic genes. We then subtyped the SKCM samples and validated the efficacy of subtypes with respect to simple nucleotide variations (SNVs), copy number variation (CNV), patients' survival statuses, tumor microenvironment, and proliferation scores. We also constructed a risk score model based on metabolic subclassification and verified the model using validating datasets. Finally, we explored potential drugs for high-risk SKCM patients. RESULTS SKCM patients were divided into four subtype groups: glycolytic, cholesterogenic, mixed, and quiescent subgroups. The glycolytic subtype had the worst prognosis and MGAM SNV extent. Compared with the cholesterogenic subgroup, the glycolytic subgroup had higher rates of DDR2 and TPR CNV and higher proliferation scores and MK167 expression levels, but a lower tumor purity proportion. We constructed a forty-four-gene predictive signature and identified MST-321, SB-743921, Neuronal Differentiation Inducer III, romidepsin, vindesine, and YM-155 as high-sensitive drugs for high-risk SKCM patients. CONCLUSIONS Subtyping SKCM patients via glycolytic and cholesterogenic genes was effective, and patients in the glycolytic-gene enriched group were found to have the worst outcome. A robust prognostic algorithm was developed to enhance clinical decisions in relation to drug administration.
Collapse
Affiliation(s)
- Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yijing Chen
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- School of Postgraduate, China Medical University, Shenyang, Liaoning, China
| | - Shurui Bao
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueying Hou
- School of Postgraduate, China Medical University, Shenyang, Liaoning, China
| | - Jing Hu
- School of Postgraduate, China Medical University, Shenyang, Liaoning, China
| | | | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Liping Shan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
8
|
Song Y, Wang PY, Zheng Y, Liu C, Wang XM. Expression of TIGAR and its correlation with clinicopathology, prognosis, and 18F-FDG PET/CT parameters in patients with resectable pancreatic ductal adenocarcinoma. Nucl Med Commun 2021; 42:528-534. [PMID: 33481504 DOI: 10.1097/mnm.0000000000001366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the expression of TP53-inducible glycolysis and apoptosis regulator (TIGAR) and its relationship with clinical pathology and prognosis; and to analyze the correlation between TIGAR expression and 18F-labeled fluoro-2-deoxyglucose (18F-FDG) PET/computed tomography (CT) parameters in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS We retrospectively analyzed the data of 23 patients who underwent preoperative 18F-FDG PET/CT examinations and were confirmed to have PDAC by postoperative pathology. TIGAR was detected using immunohistochemistry. The relationships between TIGAR expression and clinicopathology and its value in predicting the prognosis of patients with PDAC were analyzed. The correlations between TIGAR expression and 18F-FDG PET/CT parameters [standard uptake value (SUV) max, SUVmean, SUVpeak, metabolic tumor volume (MTV), and total lesion glycolysis (TLG)] were analyzed. RESULTS The expression of TIGAR was low in 34.8% of patients and high in 65.2% of patients. There was no correlation between TIGAR expression and clinicopathology. The overall survival of patients with high TIGAR expression was significantly shorter than that of patients with low TIGAR expression (11.2 vs. 35.4 months). The 18F-FDG PET/CT parameters: SUVmax, SUVmean, SUVpeak, MTV, and TLG were positively correlated with TIGAR expression, but only the MTV correlation with TIGAR expression was statistically significant. CONCLUSION TIGAR is highly expressed in PDAC. Its expression is independent of clinicopathological data and can be used as an independent prognostic factor. TIGAR expression was significantly positively correlated with the 18F-FDG PET/CT parameter MTV.
Collapse
Affiliation(s)
| | | | | | - Chang Liu
- Pathology, Shengjing hospital of China Medical University, Shenyang, China
| | | |
Collapse
|
9
|
Wang X, Li R, Chen R, Huang G, Zhou X, Liu J. Prognostic Values of TIGAR Expression and 18F-FDG PET/CT in Clear Cell Renal Cell Carcinoma. J Cancer 2020; 11:1-8. [PMID: 31892967 PMCID: PMC6930409 DOI: 10.7150/jca.33442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/18/2019] [Indexed: 12/15/2022] Open
Abstract
Aim: Evaluation of 18F-FDG accumulation using PET/CT is an potential imaging biomarker to reflect tumor metabolic burdens and to help predict prognosis in renal cell carcinoma (RCC). p53-induced glycolysis and apoptosis regulator (TIGAR) is a protein regulates glycolytic activity and glucose metabolism. The deregulated TIGAR expression has been associated with tumorigenesis and poor disease prognosis in several cancers. The purpose of this study is to evaluate the impact of the TIGAR expression and the maximum standardized uptake value (SUVmax) of 18F-FDG PET/CT on survival for patients with clear cell RCC. Methods: A total of 62 patients with confirmed clear cell RCC were included in this retrospective study. The TIGAR expression of tumors were determined through immunohistochemistry staining. The SUVmax of clear cell RCC lesions were assessed using 18F-FDG PET/CT. The impact of TIGAR expression and SUVmax on overall survival was evaluated by the Cox proportional hazards model and the Kaplan-Meier survival analysis. Results: Increased TIGAR staining was associated in clear cell RCC patients with older age, venous tumor thrombus, or increased SUVmax. A positive correlation was found between TIGAR expression and SUVmax in patients (r=0.396, P=0.001). Patients with positive TIGAR expression had a decreased overall survival time than those with negative TIGAR expression. The overall survival time was significantly shorter in patients with high SUVmax (>5.25) compared with those with low SUVmax (≤5.25). SUVmax and Fuhrman grade were identified as independent prognostic factors in clear cell RCC. Patients with high SUVmax (>5.25) and positive TIGAR expression were associated with a worse disease prognosis. Conclusion: The expression of TIGAR is significantly correlated with SUVmax in clear cell RCC. The combined use of TIGAR expression and 18F-FDG PET/CT can provide additional information for tumor glucose metabolic status and disease prognosis in patients with clear cell RCC.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Li
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruohua Chen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Maurer GD, Heller S, Wanka C, Rieger J, Steinbach JP. Knockdown of the TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) Sensitizes Glioma Cells to Hypoxia, Irradiation and Temozolomide. Int J Mol Sci 2019; 20:ijms20051061. [PMID: 30823646 PMCID: PMC6429390 DOI: 10.3390/ijms20051061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
The TP53-induced glycolysis and apoptosis regulator (TIGAR) has been shown to decrease glycolysis, to activate the pentose phosphate pathway, and to provide protection against oxidative damage. Hypoxic regions are considered characteristic of glioblastoma and linked with resistance to current treatment strategies. Here, we established that LNT-229 glioma cell lines stably expressed shRNA constructs targeting TIGAR, and exposed them to hypoxia, irradiation and temozolomide. The disruption of TIGAR enhanced levels of reactive oxygen species and cell death under hypoxic conditions, as well as the effectiveness of irradiation and temozolomide. In addition, TIGAR was upregulated by HIF-1α. As a component of a complex network, TIGAR contributes to the metabolic adjustments that arise from either spontaneous or therapy-induced changes in tumor microenvironment.
Collapse
Affiliation(s)
- Gabriele D Maurer
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Sonja Heller
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Christina Wanka
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Johannes Rieger
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany.
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Liu Y, Zhang Z, Wang J, Chen C, Tang X, Zhu J, Liu J. Metabolic reprogramming results in abnormal glycolysis in gastric cancer: a review. Onco Targets Ther 2019; 12:1195-1204. [PMID: 30863087 PMCID: PMC6389007 DOI: 10.2147/ott.s189687] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Warburg effect in tumor cells involves the uptake of high levels of glucose, enhanced glycolysis, and the metabolism of pyruvate to lactic acid rather than oxidative phos-phorylation to generate energy under aerobic conditions. This effect is closely related to the occurrence, invasion, metastasis, drug resistance, and poor prognosis of gastric cancer (GC). Current research has further demonstrated that the Warburg effect in GC cells is not only mediated by the glycolysis pathway, but also includes roles for mitochondria, noncoding RNAs, and other proteins that do not directly regulate metabolism. As a result, changes in the glycolysis pathway not only lead to abnormal glucose metabolism, but they also affect mitochondrial functions, cellular processes such as apoptosis and cell cycle regulation, and the metabolism of lipids and amino acids. In this review, we discuss metabolic reprogramming in GC based on glycolysis, a possible link between glucose metabolism, lipid metabolism, and amino acid metabolism, and we clarify the role of mitochondria. We also examine recent studies of metabolic inhibitors in GC.
Collapse
Affiliation(s)
- Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Junyang Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Chao Chen
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Xiaohuan Tang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Jiaming Zhu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Jingjing Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| |
Collapse
|
12
|
Lin L, Mi Y, Li X, Peng C, Shangguan Z, Li Z, Liu S. Higher plasma concentration of TP53-induced glycolysis and apoptosis regulator is associated with a lower risk of colorectal cancer metastasis. Cancer Manag Res 2018; 11:263-272. [PMID: 30636898 PMCID: PMC6307687 DOI: 10.2147/cmar.s190272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose We aimed to explore the association of plasma TP53-induced glycolysis and apoptosis regulator (TIGAR) level with colorectal cancer (CRC) metastasis. Methods A cross-sectional study of 126 CRC patients was conducted in Xiamen, China. Multivariable logistic regression was used to calculate adjusted OR and 95% CIs of plasma TIGAR concentration for CRC metastasis in different models with adjustment for potential confounders. Area under the curve (AUC) of receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value. Results CRC patients with metastasis showed significantly decreased plasma TIGAR concentration compared to their controls (1.97±0.64 vs 2.49±0.69 ng/mL [log transformed], P=0.002). Higher plasma TIGAR was significantly associated with the decreased risk of CRC metastasis, and the adjusted OR (95% CI) was 0.134 (0.027–0.676, P=0.015) for per SD increase in plasma TIGAR concentration, and the trend test for increasing tertiles showed a negative trend of plasma TIGAR on risk of CRC metastasis (P for trend test: 0.005). Pearson correlation coefficients of plasma TIGAR with other cancer biomarkers (carbohydrate antigen 50 [CA50], carbohydrate antigen 199 [CA199], carbohydrate antigen 125 [CA125], carbohydrate antigen 724 [CA724], carcinoembryonic antigen [CEA], and ferritin [FER]) was low (P>0.05). AUC (95% CI) of ROC curve of plasma TIGAR for CRC metastasis was comparable to the values of cancer biomarkers (all P-values <0.05). Conclusion Higher level of plasma TIGAR was significantly and independently associated with lower risk of CRC metastasis, and its prognostic value on CRC metastasis was comparable to the common cancer biomarkers.
Collapse
Affiliation(s)
- Lin Lin
- Central Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China, ,
| | - Yanjun Mi
- Division of Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xun Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Cuixin Peng
- Division of Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhaoshui Shangguan
- Central Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China, ,
| | - Zhibin Li
- Epidemiology Research Unit, The First Affiliated Hospital of Xiamen University, Xiamen, China,
| | - Suhuan Liu
- Central Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China, ,
| |
Collapse
|
13
|
GongSun X, Zhao Y, Jiang B, Xin Z, Shi M, Song L, Qin Q, Wang Q, Liu X. Inhibition of MUC1-C regulates metabolism by AKT pathway in esophageal squamous cell carcinoma. J Cell Physiol 2018; 234:12019-12028. [PMID: 30523643 PMCID: PMC6587484 DOI: 10.1002/jcp.27863] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common digestive tumors worldwide. The Mucin 1 (MUC1) heterodimeric protein has been confirmed that is overexpressed in ESCC and induced adverse outcomes. However, the detailed mechanism(s) remained challenging. So, we investigated the relationship between MUC1‐C and metabolism in ESCC cells. In the results, TP53‐induced glycolysis and apoptosis regulator (TIGAR) was overexpressed and correlative with MUC1‐C positively in ESCC tissue. Targeting MUC1‐C inhibits AKT–mTORC–S6K1 signaling and blocks TIGAR translation. We found that the inhibitory effect of GO‐203 on TIGAR was mediated by inhibition of AKT–mTOR–S6K1 pathway. The findings also demonstrated that the suppressive effect of GO‐203 on TIGAR is related to the decrease of glutathione level, the increase of reactive oxygen species and the loss of mitochondrial transmembrane membrane potential. In xenograft tissues, GO‐203 inhibited the growth of ESCC cells and lead to the low expression of transmembrane C‐terminal subunit (MUC1‐C) and TIGAR. This evidence supports the contention that MUC1‐C is significant for metabolism in ESCC and indicated that MUC1‐C is a potential target for the treatment of ESCC.
Collapse
Affiliation(s)
- Xin GongSun
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - YongQiang Zhao
- Department of Thoracic Surgery, Laiwu City People's Hospital, Laiwu, Shandong, China
| | - Bin Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - ZhongWei Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Liang Song
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - QiMing Qin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qiang Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - XiangYan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Geng J, Yuan X, Wei M, Wu J, Qin ZH. The diverse role of TIGAR in cellular homeostasis and cancer. Free Radic Res 2018; 52:1240-1249. [PMID: 30284488 DOI: 10.1080/10715762.2018.1489133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) is a p53 target protein that plays critical roles in glycolysis and redox balance. Accumulating evidence shows that TIGAR is highly expressed in cancer. TIGAR redirects glycolysis and promotes carcinoma growth by providing metabolic intermediates and reductive power derived from pentose phosphate pathway (PPP). The expression of TIGAR in cancer is positively associated with chemotherapy resistance, suggesting that TIGAR could be a novel therapeutic target. In this review, we briefly presented the function of TIGAR in metabolic homeostasis in normal and cancer cells. Finally, we discussed the future directions of TIGAR research in cancer.
Collapse
Affiliation(s)
- Ji Geng
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| | - Xiao Yuan
- b Pathology Department , The First Affiliated Hospital of Soochow University , Suzhou , PR China
| | - Mingzhen Wei
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| | - Junchao Wu
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| | - Zheng-Hong Qin
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| |
Collapse
|
15
|
Hutchison T, Malu A, Yapindi L, Bergeson R, Peck K, Romeo M, Harrod C, Pope J, Smitherman L, Gwinn W, Ratner L, Yates C, Harrod R. The TP53-Induced Glycolysis and Apoptosis Regulator mediates cooperation between HTLV-1 p30 II and the retroviral oncoproteins Tax and HBZ and is highly expressed in an in vivo xenograft model of HTLV-1-induced lymphoma. Virology 2018; 520:39-58. [PMID: 29777913 DOI: 10.1016/j.virol.2018.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
The human T-cell leukemia virus type-1 (HTLV-1) is an oncoretrovirus that infects and transforms CD4+ T-cells and causes adult T-cell leukemia/lymphoma (ATLL) -an aggressive lymphoproliferative disease that is highly refractive to most anticancer therapies. The HTLV-1 proviral genome encodes several regulatory products within a conserved 3' nucleotide sequence, known as pX; however, it remains unclear how these factors might cooperate or dynamically interact in virus-infected cells. Here we demonstrate that the HTLV-1 latency-maintenance factor p30II induces the TP53-induced glycolysis and apoptosis regulator (TIGAR) and counters the oxidative stress, mitochondrial damage, and cytotoxicity caused by the viral oncoproteins Tax and HBZ. The p30II protein cooperates with Tax and HBZ and enhances their oncogenic potential in colony transformation/foci-formation assays. Further, we have shown that TIGAR is highly expressed in HTLV-1-induced tumors associated with oncogene dysregulation and increased angiogenesis in an in vivo xenograft model of HTLV-1-induced T-cell lymphoma. These findings provide the first evidence that p30II likely collaborates as an ancillary factor for the major oncoproteins Tax and HBZ during retroviral carcinogenesis.
Collapse
Affiliation(s)
- Tetiana Hutchison
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Aditi Malu
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Laçin Yapindi
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Rachel Bergeson
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Kendra Peck
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Megan Romeo
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Carolyn Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Jordan Pope
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Louisa Smitherman
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Wesleigh Gwinn
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Lee Ratner
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Courtney Yates
- Laboratory Animal Resource Center, Southern Methodist University, Dallas, TX 75275, United States
| | - Robert Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States.
| |
Collapse
|
16
|
Shen M, Zhao X, Zhao L, Shi L, An S, Huang G, Liu J. Met is involved in TIGAR-regulated metastasis of non-small-cell lung cancer. Mol Cancer 2018; 17:88. [PMID: 29753331 PMCID: PMC5948872 DOI: 10.1186/s12943-018-0839-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/27/2018] [Indexed: 01/04/2023] Open
Abstract
TIGAR is a p53 target gene that is known to protect cells from ROS-induced apoptosis by promoting the pentose phosphate pathway. The role of TIGAR in tumor cell invasion and metastasis remains elusive. Here we found that downregulation of TIGAR reduced the invasion and metastasis of NSCLC cells in vitro and in vivo. Immunohistochemical analysis of 72 NSCLC patients showed that TIGAR and Met protein expression was positively correlated with late stages of lung cancer. Besides, patients with high co-expression of TIGAR and Met presented a significantly worse survival. In addition, we found that Met signaling pathway is involved in TIGAR-induced invasion and metastasis. Our study indicates that TIGAR/Met pathway may be a novel target for NSCLC therapy. It is necessary to evaluate the expression of TIGAR before Met inhibitors are used for NSCLC treatment.
Collapse
Affiliation(s)
- Mengqin Shen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liang Shi
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory for Molecular Imaging, Collaborative Scientific Research Center, Shanghai University of Medicine & Health Science, Shanghai, 200093, China. .,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
17
|
Tosato V, West N, Zrimec J, Nikitin DV, Del Sal G, Marano R, Breitenbach M, Bruschi CV. Bridge-Induced Translocation between NUP145 and TOP2 Yeast Genes Models the Genetic Fusion between the Human Orthologs Associated With Acute Myeloid Leukemia. Front Oncol 2017; 7:231. [PMID: 29034209 PMCID: PMC5626878 DOI: 10.3389/fonc.2017.00231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/07/2017] [Indexed: 01/03/2023] Open
Abstract
In mammalian organisms liquid tumors such as acute myeloid leukemia (AML) are related to spontaneous chromosomal translocations ensuing in gene fusions. We previously developed a system named bridge-induced translocation (BIT) that allows linking together two different chromosomes exploiting the strong endogenous homologous recombination system of the yeast Saccharomyces cerevisiae. The BIT system generates a heterogeneous population of cells with different aneuploidies and severe aberrant phenotypes reminiscent of a cancerogenic transformation. In this work, thanks to a complex pop-out methodology of the marker used for the selection of translocants, we succeeded by BIT technology to precisely reproduce in yeast the peculiar chromosome translocation that has been associated with AML, characterized by the fusion between the human genes NUP98 and TOP2B. To shed light on the origin of the DNA fragility within NUP98, an extensive analysis of the curvature, bending, thermostability, and B-Z transition aptitude of the breakpoint region of NUP98 and of its yeast ortholog NUP145 has been performed. On this basis, a DNA cassette carrying homologous tails to the two genes was amplified by PCR and allowed the targeted fusion between NUP145 and TOP2, leading to reproduce the chimeric transcript in a diploid strain of S. cerevisiae. The resulting translocated yeast obtained through BIT appears characterized by abnormal spherical bodies of nearly 500 nm of diameter, absence of external membrane and defined cytoplasmic localization. Since Nup98 is a well-known regulator of the post-transcriptional modification of P53 target genes, and P53 mutations are occasionally reported in AML, this translocant yeast strain can be used as a model to test the constitutive expression of human P53. Although the abnormal phenotype of the translocant yeast was never rescued by its expression, an exogenous P53 was recognized to confer increased vitality to the translocants, in spite of its usual and well-documented toxicity to wild-type yeast strains. These results obtained in yeast could provide new grounds for the interpretation of past observations made in leukemic patients indicating a possible involvement of P53 in cell transformation toward AML.
Collapse
Affiliation(s)
- Valentina Tosato
- Ulisse Biomed S.r.l., AREA Science Park, Trieste, Italy.,Faculty of Health Sciences, University of Primorska, Izola, Slovenia.,Yeast Molecular Genetics, ICGEB, AREA Science Park, Trieste, Italy
| | - Nicole West
- Clinical Pathology, Hospital Maggiore, Trieste, Italy
| | - Jan Zrimec
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Dmitri V Nikitin
- Biology Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Roberto Marano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michael Breitenbach
- Genetics Division, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Carlo V Bruschi
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Trieste, Italy.,Genetics Division, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|