1
|
Bernabé-Antonio A, Sánchez-Carranza JN, Silva-Guzmán JA, Romero-Estrada A, Pérez-Rodríguez SG, Cruz-Sosa F, Sánchez-Ramos M, Nieto-Trujillo A. Antioxidant, Anti-Inflammatory, and Antiproliferative Activity of a Callus Culture of Prionosciadium dissectum (Apiaceae). PLANTS (BASEL, SWITZERLAND) 2025; 14:1394. [PMID: 40364423 PMCID: PMC12073327 DOI: 10.3390/plants14091394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Traditionally, medicinal plants have served as the main resource for treating various human health conditions. Prionosciadium dissectum is a plant used in traditional medicine in the southern region of Jalisco, Mexico, to treat inflammatory respiratory problems. However, this species has not undergone pharmacological or biotechnological studies that validate these popular uses. The aim of this study was to induce calluses on P. dissectum leaves and then evaluate the antioxidant, anti-inflammatory, and antiproliferative activity of their extracts. The best callus induction was obtained using Murashige and Skoog (MS) culture medium with 1 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 mg/L kinetin (KIN). Extracts of hexane, dichloromethane, and methanol were obtained from the dry biomass, and the highest yield was obtained with methanol. The total phenolic content and antioxidant activity of the methanolic extracts were quantified. The methanolic extract showed 26.5 ± 0.4 mg equivalents of gallic acid/g extract, while, for antioxidant activity, it demonstrated IC50 values of 49.4 ± 0.2 and 10.0 ± 0.0 μg/mL for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ((2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) (ABTS), respectively. Regarding anti-inflammatory potential, the extracts did not significantly affect cell viability in RAW 264.7 macrophages. In contrast, it was clear that all extracts significantly decreased nitric oxide (NO) production at concentrations of 5-40 µg/mL. Additionally, extracts evaluated in human cancer cell lines only had a significant inhibitory effect at 100 µg/mL after 48 h, mainly with dichloromethane extract. This first biotechnological study indicates that P. dissectum cell cultures may produce compounds that favor the biological activities evaluated; however, it is necessary to carry out more in-depth evaluations of its extracts. This study is the basis for future research to enable the sustainable use of this valuable resource.
Collapse
Affiliation(s)
- Antonio Bernabé-Antonio
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico;
| | - Jessica Nayelli Sánchez-Carranza
- Faculty of Pharmacy, Autonomous University of the State of Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico;
| | - José Antonio Silva-Guzmán
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico;
| | - Antonio Romero-Estrada
- Technological Institute José Mario Molina Pasquel and Henríquez, Higher Technological Institute of Jalisco, Tala Academic Unit, Tecnológico Avenue S/N, Tala 45300, Jalisco, Mexico;
| | - Samantha Guadalupe Pérez-Rodríguez
- Department of Botany and Zoology, University Center of Biological and Agricultural Sciences, University of Guadalajara, Cam. Ramón Padilla Sánchez 2100, Col. Las Agujas, Zapopan 44600, Jalisco, Mexico;
| | - Francisco Cruz-Sosa
- Department of Biotechnology, Autonomous Metropolitan University-Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1ª. Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico; (F.C.-S.); (M.S.-R.)
| | - Mariana Sánchez-Ramos
- Department of Biotechnology, Autonomous Metropolitan University-Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1ª. Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico; (F.C.-S.); (M.S.-R.)
| | - Aurelio Nieto-Trujillo
- Biotic Resources Research Center, Autonomous University of the State of Mexico, Carretera Toluca-Ixtlahuaca Km 14.5, Col. San Cayetano, Toluca 50295, State of Mexico, Mexico;
| |
Collapse
|
2
|
Gu S, Zheng Y, Chen C, Liu J, Wang Y, Wang J, Li Y. Research progress on the molecular mechanisms of Saikosaponin D in various diseases (Review). Int J Mol Med 2025; 55:37. [PMID: 39717942 PMCID: PMC11722148 DOI: 10.3892/ijmm.2024.5478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Bupleurum, a Traditional Chinese Medicine (TCM) herb, is widely used in China and other Asian countries to manage chronic liver inflammation and viral hepatitis. Saikosaponin D (SSD), a triterpenoid saponin extracted from Bupleurum, exhibits extensive pharmacological properties, including anti‑inflammatory, antioxidant, anti‑apoptotic, anti‑fibrotic and anti‑cancer effects, making it a therapeutic candidate for numerous diseases. Clarifying the targets and molecular mechanisms underlying TCM compounds is essential for scientifically validating TCM's therapeutic roles in disease prevention and treatment, as well as for identifying novel therapeutic targets and lead compounds. This analysis comprehensively examines SSD's mechanisms across various conditions, such as myocardial injury, pulmonary diseases, hepatic disorders, renal pathologies, neurological disorders, diabetes and cancer. In addition, challenges and potential solutions encountered in SSD research are addressed. SSD is posited as a promising monomer for multifaceted therapeutic applications and this article aims to enhance researchers' understanding of the current landscape of SSD studies, offering strategic insights to guide future investigations.
Collapse
Affiliation(s)
- Simin Gu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Chong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jing Liu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yanping Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Junmin Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
3
|
Jia R, Meng D, Geng W. Advances in the anti-tumor mechanisms of saikosaponin D. Pharmacol Rep 2024; 76:780-792. [PMID: 38965200 DOI: 10.1007/s43440-024-00569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 07/06/2024]
Abstract
Saikosaponin D, a saponin compound, is extracted from Bupleurum and is a principal active component of the plant. It boasts a variety of pharmacologic effects including anti-inflammatory, antioxidant, immunomodulatory, metabolic, and anti-tumor properties, drawing significant attention in anti-tumor research in recent years. Research indicates that saikosaponin D inhibits the proliferation of numerous tumor cells, curbing the progression of cancers such as liver, pancreatic, lung, glioma, ovarian, thyroid, stomach, and breast cancer. Its anti-tumor mechanisms largely involve inhibiting tumor cell proliferation, promoting tumor cell apoptosis, thwarting tumor-cell invasion, and modulating tumor cell autophagy. Moreover, saikosaponin D enhances the sensitivity to anti-tumor drugs and augments body immunity. Given its multi-faceted anti-tumor roles, saikosaponin D offers promising potential in anti-tumor therapy. This paper reviews recent studies on its anti-tumor effects, aiming to furnish new theoretical insights for clinical cancer treatments.
Collapse
Affiliation(s)
- Ruixue Jia
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Dandan Meng
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Wei Geng
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| |
Collapse
|
4
|
Chen M, Hu C, Yang L, Guo Q, Liang Y, Wang W. Saikosaponin-D induces the pyroptosis of lung cancer by increasing ROS and activating the NF-κB/NLRP3/caspase-1/GSDMD pathway. J Biochem Mol Toxicol 2023; 37:e23444. [PMID: 37393521 DOI: 10.1002/jbt.23444] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/22/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
Saikosaponin-D (SSD), an active ingredient in Bupleurum chinense, exerts anticancer effects in various cancers by inhibiting cancer proliferation and inducing apoptosis. However, whether SSD can induce other forms of cell death is unknown. The current study aims to demonstrate that SSD can induce pyroptosis in non-small-cell lung cancer. In this study, HCC827 and A549 non-small-cell lung cancer cells were treated with different concentrations of SSD for 1.5 h. HE and TUNEL staining were used to verify cell damage caused by SSD. Immunofluorescence and western blotting were performed to verify the effect of SSD on the NF-κB/NLRP3/caspase-1/gasdermin D (GSDMD) pathway. Changes in inflammatory factors were detected by ELISAs. Finally, the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) was introduced to verify that SSD induces pyroptosis through the ROS/NF-κB pathway. The results of the HE and TUNEL staining showed that SSD resulted in balloon-like swelling of NSCLC cells accompanied by increased DNA damage. Immunofluorescence and western blot assays confirmed that SSD treatment activated the NLRP3/caspase-1/GSDMD pathway, stimulated an increase in ROS levels and activated NF-κB in lung cancer cells. The ROS scavenger N-acetylcysteine significantly attenuated SSD-induced NF-κB/NLRP3/caspase-1/GSDMD pathway activation and inhibited the release of the inflammatory cytokines IL-1β and IL-18. In conclusion, SSD induced lung cancer cell pyroptosis by inducing ROS accumulation and activating the NF-κB/NLRP3/caspase-1/GSDMD pathway. These experiments lay the foundation for the application of SSD in the treatment of non-small-cell lung cancer and regulation of the lung cancer immune microenvironment.
Collapse
Affiliation(s)
- Mengqing Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Chunyan Hu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Lei Yang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Neijiang, Sichuan, China
| | - Qingxi Guo
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Yuling Liang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| |
Collapse
|
5
|
Kim TW. Targeting ER Stress with Saikosaponin A to Overcome Resistance under Radiation in Gastric Cancer Cells. Int J Mol Sci 2023; 24:ijms24065661. [PMID: 36982736 PMCID: PMC10052548 DOI: 10.3390/ijms24065661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Saikosaponin A is a triterpene saponin and a potentially bioactive compound derived from Bupleurum falcatum L. However, the molecular mechanisms and effects of saikosaponin A in gastric cancer remain unknown. In the present study, I evaluated the effects of saikosaponin A on cell death and endoplasmic reticulum stress via calcium and reactive oxygen species release. Targeting reactive oxygen species with diphenyleneiodonium and N-acetylcysteine inhibited cell death and protein kinase RNA-like ER kinase signaling pathway by down-regulating Nox4 and inducing glucose-regulated protein 78 exosomes. Furthermore, saikosaponin A caused a synergistic inhibitory effect of the epithelial mesenchymal transition phenomenon, indicating the reversible phenotype modulation by epithelial cells under radiation exposure in radiation-resistant gastric cancer cells. These results suggest that saikosaponin A-mediated calcium and reactive oxygen species-induced endoplasmic reticulum stress overcome radio-resistance and induce cell death under radiation in gastric cancer cells. Therefore, saikosaponin A in combination with radiation may be a potential strategy for gastric cancer therapy.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biopharmaceutical Engineering, Dongguk University-WISE, Gyeongju 38066, Gyeongbuk, Republic of Korea
| |
Collapse
|
6
|
Huang S, Cui M, Wang R, Yang G, Wang N, Cui L, Ma G. Combined treatment with Prunella vulgaris and Radix bupleuri activated the Bax/Bcl-2 and Caspase-3 signal pathways in papillary thyroid carcinoma cells. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023:1-12. [PMID: 36924446 DOI: 10.1080/15257770.2023.2189464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
To explore the effect of Prunella vulgaris (PV) combined with Radix bupleuri (RB) on apoptosis of papillary thyroid carcinoma cells. Our study was divided into four groups: the control group, the PV group, the RB group, and the PV combined with the RB group. The viability of cells from different treatment groups was assessed by the CCK-8 assay. Cell migration and invasion were assessed by healing wounding and the transwell assay, respectively. Cell apoptosis rate and cell cycle arrest were detected by a flow cytometry assay. The protein expression of Bcl-2, Bax, Caspase-3, CyclinA1, CyclinB1, and CDK1 was detected using a western blot assay. Our results indicated that, compared with the control group, PV combined with RB group could significantly alter the cell morphology, inhibit cell migration and invasion, decrease the number of cells in the G0/G1 phase and increase the number of cells in the G2/M phase, and promote the cell apoptosis. Moreover, PV combined with RB treatment also obviously increased the expression of Bax/Bcl2 and caspase-3 proteins and decreased the expression of Cyclin A1, Cyclin B1, and CDK1 proteins. Overall, our results indicated that PV combined with RB could activate the Bax/Bcl-2 and Caspase-3 signal pathways to induce cell apoptosis in papillary thyroid carcinoma cells; this also provides a new way to treat thyroid cancer.
Collapse
Affiliation(s)
- Shujuan Huang
- Pathology Teaching and Research Department, Cangzhou Medical College, Cangzhou, Hebei, P. R. China
| | - Maoxiang Cui
- Pathology Teaching and Research Department, Cangzhou Medical College, Cangzhou, Hebei, P. R. China
| | - Rufeng Wang
- School of Basic Medical Sciences, Cangzhou Medical College, Cangzhou, Hebei, P.R. China
| | - Guiran Yang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, Hebei, P.R. China
| | - Ning Wang
- Pathology Teaching and Research Department, Cangzhou Medical College, Cangzhou, Hebei, P. R. China
| | - Lijun Cui
- Pathology Teaching and Research Department, Cangzhou Medical College, Cangzhou, Hebei, P. R. China
| | - Guang Ma
- Pathology Teaching and Research Department, Cangzhou Medical College, Cangzhou, Hebei, P. R. China
| |
Collapse
|
7
|
Chemotherapeutic Potential of Saikosaponin D: Experimental Evidence. J Xenobiot 2022; 12:378-405. [PMID: 36547471 PMCID: PMC9782205 DOI: 10.3390/jox12040027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Saikosaponin D (SSD), an active compound derived from the traditional plant Radix bupleuri, showcases potential in disease management owing to its antioxidant, antipyretic, and anti-inflammatory properties. The toxicological effects of SSD mainly include hepatotoxicity, neurotoxicity, hemolysis, and cardiotoxicity. SSD exhibits antitumor effects on multiple targets and has been witnessed in diverse cancer types by articulating various cell signaling pathways. As a result, carcinogenic processes such as proliferation, invasion, metastasis, and angiogenesis are inhibited, whereas apoptosis, autophagy, and differentiation are induced in several cancer cells. Since it reduces side effects and strengthens anti-cancerous benefits, SSD has been shown to have an additive or synergistic impact with chemo-preventive medicines. Regardless of its efficacy and benefits, the considerations of SSD in cancer prevention are absolutely under-researched due to its penurious bioavailability. Diverse studies have overcome the impediments of inadequate bioavailability using nanotechnology-based methods such as nanoparticle encapsulation, liposomes, and several other formulations. In this review, we emphasize the association of SSD in cancer therapeutics and the discussion of the mechanisms of action with the significance of experimental evidence.
Collapse
|
8
|
Park SM, Kim A, Lee H, Baek SJ, Kim NS, Park M, Yi JM, Cha S. Systematic transcriptome analysis reveals molecular mechanisms and indications of bupleuri radix. Front Pharmacol 2022; 13:1010520. [PMID: 36304143 PMCID: PMC9592978 DOI: 10.3389/fphar.2022.1010520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Pharmacogenomic analysis based on drug transcriptomic signatures is widely used to identify mechanisms of action and pharmacological indications. Despite accumulating reports on the efficacy of medicinal herbs, related transcriptome-level analyses are lacking. The aim of the present study was to elucidate the underlying molecular mechanisms of action of Bupleuri Radix (BR), a widely used herbal medicine, through a systematic transcriptomic analysis. We analyzed the drug-responsive transcriptome profiling of A549 lung cancer cell line after treating them with multiple doses of BR water (W-BR) and ethanol (E-BR) extracts and their phytochemicals. In vitro validation experiments were performed using both A549 and the immortalized human keratinocyte line HaCaT. Pathway enrichment analysis revealed the anti-cancer effects of BR treatment via inhibition of cell proliferation and induction of apoptosis. Enhanced cell adhesion and migration were observed with the W-BR but not with the E-BR. Comparison with a disease signature database validated an indication of the W-BR for skin disorders. Moreover, W-BR treatment showed the wound-healing effect in skin and lung cells. The main active ingredients of BR showed only the anti-cancer effect of the E-BR and not the wound healing effect of the W-BR, suggesting the need for research on minor ingredients of BR.
Collapse
Affiliation(s)
- Sang-Min Park
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Aeyung Kim
- KM Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Haeseung Lee
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Su-Jin Baek
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - No Soo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Musun Park
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Jin-Mu Yi
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
- *Correspondence: Jin-Mu Yi, ; Seongwon Cha,
| | - Seongwon Cha
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
- *Correspondence: Jin-Mu Yi, ; Seongwon Cha,
| |
Collapse
|
9
|
Chang Y, Li C, Wang R, Li X, Guo S, Zhang W, Liu B. The metabolic profile elucidation of Lonicera japonica flos water extract and the metabolic characteristics evaluation of bioactive compounds in human gastrointestinal tract in vitro. J Pharm Biomed Anal 2022; 219:114906. [PMID: 35772236 DOI: 10.1016/j.jpba.2022.114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
Abstract
Lonicera japonica Flos (LJF) is taken orally as a health food and medicinal plant in China for a long time. The gastrointestinal metabolism of LJF was investigated in vitro by three independent models (gastric juice, intestinal juice, and human intestinal bacteria), qualitative analyzed by UPLC-LTQ-Orbitrap-MSn and quantified by HPLC-DAD. 72 prototype compounds were detected in LJF water extraction (LJF-WE), including 14 organic acids, 43 iridoids, 14 flavonoids and one other compound. The prototype and metabolic components of LJF-WE bio-transformed by simulated gastric fluid (70 and 12), intestinal fluid (69 and 12) and human fecal bacteria (29 and 70) were characterized, respectively. The metabolites were formed through desaccharization, isomerization, hydrogenation, methylation, dehydration, and then cyclization, glucuronization and dimethylation followed. 8 bioactive compounds including neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, sweroside, secoxyloganin, isochlorogenic acid B, isochlorogenic acid A and isochlorogenic acid C were much stable in simulated gastric fluid and intestinal fluid, compared with human fecal bacteria. Especially, sweroside and secoxyloganin with glucoside bonds degradated extraordinarily fast, because of the abundant β-glucosidases in human fecal bacteria.
Collapse
Affiliation(s)
- Yanli Chang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Caixia Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rufeng Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiang Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Bin Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
10
|
Jia A, Yang X, Zou B, Li J, Wang Y, Ma R, Li J, Yao Y. Saikosaponins: A Review of Structures and Pharmacological Activities. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221094908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Radix Bupleuri is a traditional medicine widely used in China and other Asian countries. Phytochemistry and pharmacology study reveal that saikosaponins(SSs) are the main bioactive compounds in Radix Bupleuri. SSs are complex compounds composed of triterpene aglycone and carbohydrate part containing 1-13 monosaccharides, which can be divided into seven types based on their structural characteristics. Many different kinds of SSs have been isolated from plants of Bupleurum L. SSs show a variety of biological activities, such as central nervous system protection, liver protection, antivirus, anti-tumor, anti-inflammation, hormone-like effects, and immune regulation functions. Due to their broad activity and favorable safety profile, SSs attract an increasing amount of attention in recent years. In this review, the structures of 86 SSs are summarized based on the different aglycones due to the diverse structures of saikosaponin(SS). The pharmacological effects and related mechanism of SSs are thoroughly reviewed, and perspectives for future research are further discussed.
Collapse
Affiliation(s)
- Ao Jia
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xinhe Yang
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Bin Zou
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yefeng Wang
- School of Public Health & Management, Ningxia Medical University, Yinchuan 750004, China
| | - Ruixia Ma
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Li
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Modernization of Traditional Chinese Medicine, Ministry of Education, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
11
|
The Effect of Terpenoid Natural Chinese Medicine Molecular Compound on Lung Cancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3730963. [PMID: 34956377 PMCID: PMC8702311 DOI: 10.1155/2021/3730963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Among all malignant tumors in the whole universe, the incidence and mortality of lung cancer disease rank first. Especially in the past few years, the occurrence of lung cancer in the urban population has continued to increase, which seriously threatens the lives and health of people. Among the many treatments for lung cancer, chemotherapy is the best one, but traditional chemotherapy has low specificity and drug resistance. To address the above issue, this study reviews the five biological pathways that common terpenoid compounds in medicinal plants interfere with the occurrence and development of lung cancer: cell proliferation, cell apoptosis, cell autophagy, cell invasion, metastasis, and immune mechanism regulation. In addition, the mechanism of the terpenoid natural traditional Chinese medicine monomer compound combined with Western medicine in the multipathway antilung cancer is summarized.
Collapse
|
12
|
Zhou P, Shi W, He XY, Du QY, Wang F, Guo J. Saikosaponin D: review on the antitumour effects, toxicity and pharmacokinetics. PHARMACEUTICAL BIOLOGY 2021; 59:1480-1489. [PMID: 34714209 PMCID: PMC8567945 DOI: 10.1080/13880209.2021.1992448] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Bupleuri Radix, the dried root of Bupleurum chinense DC and Bupleurum scorzonerifolium Willd (Apiaceae), is an important medicinal herb widely used to treat cancers for hundreds of years in Asian countries. As the most antitumour component but also the main toxic component in Bupleuri Radix, saikosaponin D (SSD) has attracted extensive attention. However, no summary studies have been reported on the antitumour effects, toxicity and pharmacokinetics of this potential natural anticancer substance. OBJECTIVE To analyse and summarise the existing findings regarding to the antitumour effects, toxicity and pharmacokinetics of SSD. MATERIALS AND METHODS We collected relevant information published before April 2021 by conducting a search of literature available in various online databases including PubMed, Science Direct, CNKI, Wanfang database and the Chinese Biological Medicine Database. Bupleurum, Bupleuri Radix, saikosaponin, saikosaponin D, tumour, toxicity, and pharmacokinetics were used as the keywords. RESULTS The antitumour effects of SSD were multi-targeted and can be realised through various mechanisms, including inhibition of proliferation, invasion, metastasis and angiogenesis, as well as induction of cell apoptosis, autophagy, and differentiation. The toxicological effects of SSD mainly included hepatotoxicity, neurotoxicity, haemolysis and cardiotoxicity. Pharmacokinetic studies demonstrated that SSD had the potential to alter the pharmacokinetics of some drugs for its influence on CYPs and P-gp, and the oral bioavailability and actual pharmacodynamic substances in vivo of SSD are still controversial. CONCLUSIONS SSD is a potentially effective and relatively safe natural antitumour substance, but more research is needed, especially in vivo antitumour effects and pharmacokinetics of the compound.
Collapse
Affiliation(s)
- Piao Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Yan He
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quan-Yu Du
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- CONTACT Fei Wang Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu610072, P.R. China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Jing Guo Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu610072, P.R. China
| |
Collapse
|
13
|
Abstract
In response to increasing natural surfactant demand and environmental concerns, natural plant-based surfactants have been replacing synthetic ones. Saponins belong to a class of plant metabolites with surfactant properties that are widely distributed in nature. They are eco-friendly because of their natural origin and biodegradable. To date, many plant-based saponins have been investigated for their surface activity. An overview of saponins with a particular focus on their surface-active properties is presented in this article. For this purpose, works published in the past few decades, which report better surfactant relevant properties of saponins than synthetic ones, were extensively studied. The investigations on the potential surfactant application of saponins are also documented. Moreover, some biological activities of saponins such as antimicrobial activity, antidiabetic activity, adjuvant potentials, anticancer activity, and others are reported. Plants rich in saponins are widely distributed in nature, offering great potential for the replacement of toxic synthetic surfactants in a variety of modern commercial products and these saponins exhibit excellent surface and biological activities. New opportunities and challenges associated with the development of saponin-based commercial formulations in the future are also discussed in detail.
Collapse
|
14
|
The Ameliorative Effects of Saikosaponin in Thioacetamide-Induced Liver Injury and Non-Alcoholic Fatty Liver Disease in Mice. Int J Mol Sci 2021; 22:ijms222111383. [PMID: 34768813 PMCID: PMC8583725 DOI: 10.3390/ijms222111383] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Liver disorders are a major health concern. Saikosaponin-d (SSd) is an effective active ingredient extracted from Bupleurum falcatum, a traditional Chinese medicinal plant, with anti-inflammatory and antioxidant properties. However, its hepatoprotective properties and underlying mechanisms are unknown. We investigated the effects and underlying mechanisms of SSd treatment for thioacetamide (TAA)-induced liver injury and high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in male C57BL/6 mice. The SSd group showed significantly higher food intake, body weight, and hepatic antioxidative enzymes (catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD)) and lower hepatic cyclooxygenase-2 (COX-2), serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and fibroblast growth factor-21 (FGF21) compared with controls, as well as reduced expression of inflammation-related genes (nuclear factor kappa B (NF-κB) and inducible nitric oxide synthase (iNOS)) messenger RNA (mRNA). In NAFLD mice, SSd reduced serum ALT, AST, triglycerides, fatty acid–binding protein 4 (FABP4) and sterol regulatory element–binding protein 1 (SREBP1) mRNA, and endoplasmic reticulum (ER)-stress-related proteins (phosphorylated eukaryotic initiation factor 2α subunit (p-eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). SSd has a hepatoprotective effect in liver injury by suppressing inflammatory responses and acting as an antioxidant.
Collapse
|
15
|
Saikosaponin D Inhibits the Proliferation and Promotes the Apoptosis of Rat Hepatic Stellate Cells by Inducing Autophagosome Formation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5451758. [PMID: 34457023 PMCID: PMC8390134 DOI: 10.1155/2021/5451758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/18/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Objective This study aimed to investigate the effects of saikosaponin D (SSd) on the proliferation and apoptosis of the HSC-T6 hepatic stellate cell line and determine the key pathway that mediates SSd's function. Methods Cell viability was detected using the CCK-8 kit. The EdU kit and flow cytometry were used to examine cell proliferation. The Annexin V-FITC/PI double staining kit and flow cytometry were used to examine cell apoptosis. Western blot analysis was performed to analyze the expression levels of LC3, Ki67, cleaved caspase 3, Bax, and Bcl2. Autophagosome formation was detected by LC3-GFP adenovirus transfection. Results SSd inhibits the proliferation and promotes the apoptosis of acetaldehyde-activated HSC-T6 cells. SSd treatment increased the expression of cleaved caspase 3 and Bax but reduced that of Ki67 and Bcl2. The same concentration of SSd barely influenced the growth of normal rat liver BRL-3A cells. SSd upregulated LC3-II expression and induced autophagosome formation. Autophagy agonist rapamycin had the same effect as SSd and autophagy inhibitor 3-methyladenine could neutralize the effect of SSd in acetaldehyde-activated HSC-T6 cells. Conclusions SSd could inhibit the proliferation and promote the apoptosis of HSC-T6 cells by inducing autophagosome formation.
Collapse
|
16
|
Lee HYJ, Meng M, Liu Y, Su T, Kwan HY. Medicinal herbs and bioactive compounds overcome the drug resistance to epidermal growth factor receptor inhibitors in non-small cell lung cancer. Oncol Lett 2021; 22:646. [PMID: 34386068 DOI: 10.3892/ol.2021.12907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases. Patients harboring epidermal growth factor receptor (EGFR) mutations usually develop resistance to treatment with frontline EGFR-tyrosine kinase inhibitors (EGFR-TKIs). The present review summarizes the current findings and delineates the molecular mechanism of action for the therapeutic effects of herbal extracts and phytochemicals in overcoming EGFR-TKI resistance in NSCLC. Novel molecular targets underlying EGFR-TKI resistance in NSCLC are also discussed. This review provides valuable information for the development of herbal bioactive compounds as alternative treatments for EGFR-TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Hiu Yan Jennifer Lee
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Mingjing Meng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yulong Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| |
Collapse
|
17
|
Yu X, Pan J, Shen N, Zhang H, Zou L, Miao H, Xing L. Development of Saikosaponin D Liposome Nanocarrier with Increased Hepatoprotective Effect Against Alcoholic Hepatitis Mice. J Biomed Nanotechnol 2021; 17:627-639. [PMID: 35057889 DOI: 10.1166/jbn.2021.3054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mortality rate of ethanol induced liver disease has substantially raised to alert level with an increasing use of alcohol, but development of definite hepatoprotective drug is still challenging. The efficacy of Saikosaponin D, one of the natural herbal medicine has been studied
in different diseases. Nonetheless, its clinical application is restricted by poor bioavailability, stability and solubility. This study sought to develop a Saikosaponin D loaded liposome via thin film hydration method. The surface morphology, encapsulation efficiency and drug loading capacity
were detected with transmission electron microscopy and HPLC, in vitro dissolution was via dialysis method, but efficacy and safety evaluation was through pharmacokinetics, while the assessment of hepatoprotective activity on alcohol induced acute hepatitis mice models was conducted.
The optimized liposomes showed significant greater therapeutic effect on liver, through decreased serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), total cholesterol (TC) and triglyceride (TG)
in liver homogenate. In contrast, levels of glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) were increased significantly. Pathological study exhibited remarkable alteration of hepatitis liver architecture to almost normal state after administration of Saikosaponin D
liposome. The increased hepatoprotective effect of Saikosaponin D liposome was observed during the attenuation of alcoholic hepatitis in mice, which might be ascribable to the anti-oxidative and anti-inflammatory properties of the drug. This study provides a theoretical basis for developing
advanced system of Saikosaponin D delivery for the promotion of the therapeutic effects of the liposome against various kinds of diseases.
Collapse
Affiliation(s)
- Xiao Yu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jielu Pan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Nan Shen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Haiyan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lu Zou
- Experiment Center for Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongyu Miao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lianjun Xing
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
18
|
Wu S, Chen W, Liu K, Ren F, Zheng D, Xu F, Wu H. Saikosaponin D inhibits proliferation and induces apoptosis of non-small cell lung cancer cells by inhibiting the STAT3 pathway. J Int Med Res 2020; 48:300060520937163. [PMID: 32962498 PMCID: PMC7780581 DOI: 10.1177/0300060520937163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To study the effects of saikosaponin D (SSD) on proliferation and apoptosis in human non-small cell lung cancer cell lines, and to explore underlying mechanisms. METHODS Following treatment with saikosaponin D, A549 and H1299 cells were assessed for anti-proliferation effects using cell cycle kit-8 assays, changes in nuclear morphology using 4',6-diamidino-2-phenylindole (DAPI) staining, and cell apoptosis using annexin V/propidium iodide double staining. Proliferation- and apoptosis-related proteins were detected by immunoblotting. RESULTS Saikosaponin D had dose-dependent inhibitory effects on A549 cells (IC50, 3.57 µM) and H1299 cells (IC50, 8.46 µM). DAPI staining revealed decreased cell numbers, and most H1299 cells became round after treatment with 20 µM saikosaponin D. As saikosaponin D concentration increased, the proportions of cells in G0/G1 phase, and cells undergoing apoptosis, increased. Levels of phosphorylated p44/42 and signal transducer and activator of transcription (STAT)3 were significantly downregulated in both cell lines, while total STAT3 levels were not significantly affected. The cleaved form of caspase 3 was significantly upregulated. CONCLUSIONS Saikosaponin D inhibits proliferation, inducing cell cycle arrest and apoptosis, in lung cancer cells in a dose-dependent manner, possibly through inhibition of STAT3 phosphorylation and activation of caspase 3.
Collapse
Affiliation(s)
- Shibo Wu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Respiratory medicine, Lihuili Hospital, Ningbo Medical Centre, Ningbo, China
| | - Weizhuang Chen
- Department of Respiratory medicine, Lihuili Hospital, Ningbo Medical Centre, Ningbo, China
| | - Kaitai Liu
- Department of Radiation oncology, Lihuili Hospital, Ningbo Medical Centre, Ningbo, China
| | - Feng Ren
- Department of Medical Imaging, Lihuili Hospital, Ningbo Medical Centre, Ningbo, China
| | - Dawei Zheng
- Department of Cardio-Thoracic, Lihuili Hospital, Ningbo Medical Centre, Ningbo, China
| | - Feng Xu
- Medical Administration Division, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Hongcheng Wu
- Department of Respiratory medicine, Lihuili Hospital, Ningbo Medical Centre, Ningbo, China
- Hongcheng Wu, Department of Respiratory Medicine, Lihuili Hospital, Ningbo Medical Centre, 57 Xing’Ning Road, Ningbo 315041, Zhejiang, China.
| |
Collapse
|
19
|
Qi X, Fan M, Huang N, Zhang X, Liu J, Li X, Sun R. Saikosaponin d contributed to cancer chemotherapy induced neutropenia therapy by promoting neutrophil differentiation via activation CBL-dependent ERK pathway. Pharmacol Res 2020; 160:105149. [PMID: 32822868 DOI: 10.1016/j.phrs.2020.105149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Abstract
Cancer chemotherapy induced neutropenia (CCIN) is one of the most common toxicity caused by cytotoxic anticancer agents. Despite granulocyte colony-stimulating factor (GCSF) is widely used in clinical practice, the infection and infection-related mortality rate is still high for lack of functionally mature neutrophils. Saikosaponin d (SSD) is one of the major bioactive constituents of Radix Bupleuri (RB), which exerts immune-modulatory properties. We explored the function of SSD in CCIN therapy, we found that SSD contributed to generate functional mature neutrophils which capable of fighting infection both in vitro and in vivo. Network pharmacology was employed to explore the mechanism, 61 signal pathways might play an important role in CCIN treatment. Western Blot was employed to further confirm the potential pathway involved. We found CBL-ERK1/2 pathway was activated by SSD, followed by upregulating PU.1 and CEBPβ expression and leading to neutrophil differentiation. Our findings suggest a natural regimen SSD which could regenerate microbicidal neutrophils to effectively reduce CCIN-associated infection via activating CBL-ERK1/2, providing a rationale for future therapeutic approaches.
Collapse
Affiliation(s)
- Xiaotian Qi
- Institute of Advanced Medical Research, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Mengyue Fan
- Institute of Advanced Medical Research, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Nana Huang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Xinyu Zhang
- Institute of Advanced Medical Research, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Jing Liu
- Institute of Advanced Medical Research, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Xiaoyu Li
- Department of Medical Pathomorphology, Shandong Academy of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Rong Sun
- Institute of Advanced Medical Research, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China.
| |
Collapse
|
20
|
Peterková L, Kmoníčková E, Ruml T, Rimpelová S. Sarco/Endoplasmic Reticulum Calcium ATPase Inhibitors: Beyond Anticancer Perspective. J Med Chem 2020; 63:1937-1963. [PMID: 32030976 DOI: 10.1021/acs.jmedchem.9b01509] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sarco/endoplasmic reticulum calcium ATPase (SERCA), which plays a key role in the maintenance of Ca2+ ion homeostasis, is an extensively studied enzyme, the inhibition of which has a considerable impact on cell life and death decision. To date, several SERCA inhibitors have been thoroughly studied and the most notable one, a derivative of the sesquiterpene lactone thapsigargin, is gradually approaching a clinical application. Meanwhile, new compounds with SERCA-inhibiting properties of natural, synthetic, or semisynthetic origin are being discovered and/or developed; some of these might also be suitable for the development of new drugs with improved performance. This review brings an up-to-date comprehensive overview of recently discovered compounds with the potential of SERCA inhibition, discusses their mechanism of action, and highlights their potential clinical applications, such as cancer treatment.
Collapse
Affiliation(s)
- Lucie Peterková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Eva Kmoníčková
- Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.,Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
21
|
Tu Y, Zhu S, Wang J, Burstein E, Jia D. Natural compounds in the chemoprevention of alcoholic liver disease. Phytother Res 2019; 33:2192-2212. [PMID: 31264302 DOI: 10.1002/ptr.6410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Alcoholic liver disease (ALD), caused by excessive consumption of alcohol, is a major cause of chronic liver disease worldwide. Much effort has been expended to explore the pathogenesis of ALD. Hepatic cell injury, oxidative stress, inflammation, regeneration, and bacterial translocation are all involved in the pathogenesis of ALD. Immediate abstinence is the most important therapeutic treatment for affected individuals. However, the medical treatment for ALD had not advanced in a long period. Intriguingly, an increasing body of research indicates the potential of natural compounds in the targeted therapy of ALD. A plethora of dietary natural products such as flavonoids, resveratrol, saponins, and β-carotene are found to exert protective effects on ALD. This occurs through various mechanisms composed of antioxidative, anti-inflammatory, iron chelation, pro-apoptosis, and/or antiproliferation of hepatic stellate cells and hepatocellular carcinoma cells. In this review, we will summarize current knowledge about the pathogenesis and treatments of ALD and focus on the potential of natural compounds in ALD therapies and underlying mechanisms.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shu Zhu
- Chinese Academy of Science and Technology for Development, Ministry of Science and Technology, Institute of Foresight and Evaluation Research, Beijing, China
| | - Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Ren M, McGowan E, Li Y, Zhu X, Lu X, Zhu Z, Lin Y, He S. Saikosaponin-d Suppresses COX2 Through p-STAT3/C/EBPβ Signaling Pathway in Liver Cancer: A Novel Mechanism of Action. Front Pharmacol 2019; 10:623. [PMID: 31191326 PMCID: PMC6549044 DOI: 10.3389/fphar.2019.00623] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/15/2019] [Indexed: 01/30/2023] Open
Abstract
Saikosaponin-d (SSd) is an active extract from Radix Bupleuri, the dried root from the plant Bupleurum falcatum used in China for thousands of years to treat liver diseases. The SSd extract possesses valuable pharmacological activities including anti-cancer and anti-inflammatory effects; however, the mechanism underlying the anti-cancer activity of SSd is largely unknown. Here, we explored the mechanism of action of SSd as an anti-cancer agent for liver cancer in two human hepatocellular carcinoma cell lines. Using MTT and annexin-V-FITC/PI assays, Western blots, immunohistochemistry, qRT-PCR, luciferase reporter assay, and a JAK2-specific inhibitor (AG490), we demonstrated that the anti-tumorigenic effects of SSd act through the intermediatory p-STAT3/C/EBPβ signaling pathway to suppress cyclooxygenase (COX)-2. SSd effectively inhibited cell proliferation in a dose-dependent manner. Apoptosis was significantly increased in cells treated with SSd (2.5–15 µg/ml) with concurrent increase and decrease in pro- and anti-apoptosis proteins, respectively. COX-2, C/EBPβ, and p-STAT3 were significantly decreased, at both the translational and transcriptional levels, by SSd treatment. AG490 produced similar inhibitory effects on STAT3, p-STAT3, C/EBPβ, and COX-2. In conclusion, our data suggest that SSd controls liver cancer proliferation through suppression of the p-STAT3/C/EBPβ signaling pathway inhibiting COX2 expression. These findings further our understanding of the pharmacological action of SSd, providing new information on SSd mechanism of action and showing potential for SSd as a novel therapy for liver cancer.
Collapse
Affiliation(s)
- Mudan Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Yarui Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China
| | - Xiaofeng Zhu
- Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinlan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China
| | - Zhanfang Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China
| |
Collapse
|
23
|
Lv Y, Hou X, Zhang Q, Li R, Xu L, Chen Y, Tian Y, Sun R, Zhang Z, Xu F. Untargeted Metabolomics Study of the In Vitro Anti-Hepatoma Effect of Saikosaponin d in Combination with NRP-1 Knockdown. Molecules 2019; 24:molecules24071423. [PMID: 30978940 PMCID: PMC6480384 DOI: 10.3390/molecules24071423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
Saikosaponin d (SSd) is one of the main active ingredients in Radix Bupleuri. In our study, network pharmacology databases and metabolomics were used in combination to explore the new targets and reveal the in-depth mechanism of SSd. A total of 35 potential targets were chosen through database searching (HIT and TCMID), literature mining, or chemical similarity predicting (Pubchem). Out of these obtained targets, Neuropilin-1 (NRP-1) was selected for further research based on the degree of molecular docking scores and novelty. Cell viability and wound healing assays demonstrated that SSd combined with NRP-1 knockdown could significantly enhance the damage of HepG2. Metabolomics analysis was then performed to explore the underlying mechanism. The overall difference between groups was quantitatively evaluated by the metabolite deregulation score (MDS). Results showed that NRP-1 knockdown exhibited the lowest MDS, which demonstrated that the metabolic profile experienced the slightest interference. However, SSd alone, or NRP-1 knockdown in combination with SSd, were both significantly influenced. Differential metabolites mainly involved short- or long-chain carnitines and phospholipids. Further metabolic pathway analysis revealed that disturbed lipid transportation and phospholipid metabolism probably contributed to the enhanced anti-hepatoma effect by NRP-1 knockdown in combination with SSd. Taken together, in this study, we provided possible interaction mechanisms between SSd and its predicted target NRP-1.
Collapse
Affiliation(s)
- Yingtong Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaoying Hou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Qianqian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruiting Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Yadong Chen
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Rong Sun
- Advanced Medical Research Institute, Shandong University, Jinan 250100, China.
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
Hu SCS, Lai YC, Lin CL, Tzeng WS, Yen FL. Inclusion complex of saikosaponin-d with hydroxypropyl-β-cyclodextrin: Improved physicochemical properties and anti-skin cancer activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:174-182. [PMID: 30776588 DOI: 10.1016/j.phymed.2018.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Saikosaponin-d (SSD) is a triterpene saponin isolated from Bupleurum plants. It has been shown to exhibit antioxidant, anti-inflammatory, and anticancer activities. However, its biomedical applications are limited by its poor water solubility. Cyclodextrins are highly water soluble oligosaccharide compounds which can form inclusion complexes with lipophilic drugs. PURPOSE We complexed SSD with hydroxypropyl-β-cyclodextrin (HPBCD) in various ratios to form SSD-HPBCD inclusion complexes. The inclusion complexes were evaluated for their solubility, physicochemical properties and cytotoxic effects in cutaneous squamous cell carcinoma cells. METHODS Surface morphology of pure SSD and SSD-HPBCD inclusion complexes was evaluated by scanning electron microscopy. Crystalline structure was determined by X-ray diffractometry. Intermolecular hydrogen bond formation between SSD and HPBCD was investigated by Fourier transform infrared spectroscopy. Human cutaneous squamous cell carcinoma HSC-1 cell viability was determined by the MTS assay, and cell apoptosis by the caspase 3/7 assay. Signal transduction pathways were investigated by Western blotting. RESULTS SSD-HPBCD inclusion complexes showed greatly increased water solubility. This was associated with an improvement in physicochemical properties, including transformation of crystalline structure to amorphous form, and formation of hydrogen bonds between SSD and HPBCD. In addition, SSD-HPBCD inclusion complexes induced apoptosis in HSC-1 cells, and this was mediated through activation of MAPK and suppression of Akt-mTOR signaling pathways. CONCLUSION SSD-HPBCD inclusion complex shows improvement in water solubility and physicochemical properties, and exhibits anticancer effects against cutaneous squamous cell carcinoma cells. Therefore, it may be a potential drug formulation for the treatment of skin cancer.
Collapse
Affiliation(s)
- Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chien Lai
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Ling Lin
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Dermatology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Wen-Sheng Tzeng
- Department of Radiology, Pingtung Christian Hospital, Pingtung, Taiwan.
| | - Feng-Lin Yen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
25
|
Analyses of the possible anti-tumor effect of yokukansan. J Nat Med 2019; 73:468-479. [PMID: 30739283 DOI: 10.1007/s11418-019-01283-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/28/2019] [Indexed: 02/08/2023]
Abstract
The Kampo medicine yokukansan (YKS) has a wide variety of properties such as anxiolytic, anti-inflammatory and analgesic effects, and is also thought to regulate tumor suppression. In this study, we investigated the anti-tumor effect of YKS. We used Lewis lung carcinoma (LLC)-bearing mice that were fed food pellets containing YKS and then performed a fecal microbiota analysis, a microarray analysis for microRNAs (miRNAs) and an in vitro anti-tumor assay. The fecal microbiota analysis revealed that treatment with YKS partly reversed changes in the microbiota composition due to LLC implantation. Furthermore, a miRNA array analysis using blood serum showed that treatment with YKS restored the levels of miR-133a-3p/133b-3p, miR-1a-3p and miR-342-3p following LLC implantation to normal levels. A TargetScan analysis revealed that the epidermal growth factor receptor 1 signaling pathway is one of the major target pathways for these miRNAs. Furthermore, treatment with YKS restored the levels of miR-200b-3p and miR-200c-3p, a recognized mediator of cancer progression and controller of emotion, in the hypothalamus of mice bearing LLC. An in vitro assay revealed that a mixture of pachymic acid, saikosaponins a and d and isoliquiritigenin, which are all contained in YKS, exerted direct and additive anti-tumor effects. The present findings constitute novel evidence that YKS may exert an anti-tumor effect by reversing changes in the fecal microbiota and miRNAs circulating in the blood serum and hypothalamus, and the compounds found in YKS could have direct and additive anti-tumor effects.
Collapse
|
26
|
Saikosaponin D from Radix Bupleuri suppresses triple-negative breast cancer cell growth by targeting β-catenin signaling. Biomed Pharmacother 2018; 108:724-733. [PMID: 30248540 DOI: 10.1016/j.biopha.2018.09.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/18/2022] Open
|
27
|
Zhao L, Li J, Sun ZB, Sun C, Yu ZH, Guo X. Saikosaponin D inhibits proliferation of human osteosarcoma cells via the p53 signaling pathway. Exp Ther Med 2018; 17:488-494. [PMID: 30651826 DOI: 10.3892/etm.2018.6969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/28/2018] [Indexed: 01/28/2023] Open
Abstract
Saikosaponin D (SSd), the major monomeric terpenoid extracted from Radix bupleuri, a traditional Chinese medicinal herb, exerts various pharmacological properties, including antitumor, anti-inflammatory and antiviral. The present study aimed to investigate the role of SSd in human osteosarcoma (OS) cell growth. In the investigation MTS and EdU assays were applied and flow cytometric analyses of cell cycle and apoptosis were performed. Western blotting and reverse transcription-quantitative polymerase chain reaction analyses were used to explore the underlying mechanisms of SSd on cell cycle transition and p53 signaling. Here, it was demonstrated that SSd administration at 80 µmol/l significantly inhibited 143B and MG-63 proliferation. Furthermore, SSd significantly increased the percentage of 143B and MG-63 cells in G0-G1 phase and the number of apoptosis cells compared with the control group. Data further demonstrated that SSd treatment upregulated mRNA and protein levels of tumor protein 53 (p53) and its downstream targets, including p21, p27, B-cell lymphoma-2-like protein 4 and cleaved caspase-3, and downregulated mRNA and protein levels of cyclinD1. The results suggested that SSd was a functional tumor suppressor and inhibited OS proliferation via activation of the p53 signaling pathway and may be used in the treatment of osteosarcoma in future.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Orthopaedics, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jing Li
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, P.R. China
| | - Zhi-Bo Sun
- Department of Orthopaedics, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Chen Sun
- Department of Orthopaedics, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhi-Hong Yu
- Department of Orthopaedics, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiao Guo
- Department of Orthopaedics, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
28
|
Albuquerque KRS, Pacheco NM, del Rosario Loyo Casao T, de Melo FCSA, Novaes RD, Gonçalves RV. Applicability of Plant Extracts in Preclinical Studies of Melanoma: A Systematic Review. Mediators Inflamm 2018; 2018:6797924. [PMID: 30147443 PMCID: PMC6083739 DOI: 10.1155/2018/6797924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023] Open
Abstract
Melanoma is the most aggressive form of skin cancer and arises from melanocyte gene mutation. This disease is multifactorial, but its main cause is the excessive exposure to ultraviolet radiation. Currently, available chemotherapy has shown little expressive results, which may justify the high use of natural products to treat this cancer. We performed a systematic review to compile the results of studies carried out in murine models and investigated the effect of plant extracts on melanoma treatment. Papers were selected in MEDLINE/Pubmed and Scopus according to the PRISM statement. Search filters were developed using three parameters: plant extract, melanoma, and animal model. The 35 identified studies were all submitted to the criteria described in the ARRIVE guidelines. The different extracts showed antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory activity, and also proved to be effective in cell cycle modulation and apoptosis evasion. Bias analysis evidenced the absence of standardized experimental designs, as well as failures in statistical tests and in the presentation of results. The analysis of the studies suggests that the use of plant extracts is effective for the treatment of melanoma in murine models.
Collapse
Affiliation(s)
| | - Nívea Maria Pacheco
- Department of Biochemistry and Biotechnology, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, MG, Brazil
| | | |
Collapse
|
29
|
Li XQ, Song YN, Wang SJ, Rahman K, Zhu JY, Zhang H. Saikosaponins: a review of pharmacological effects. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:399-411. [PMID: 29726699 DOI: 10.1080/10286020.2018.1465937] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Over the past decades, a number of phytochemicals have been reported to possess potent pharmacological effects. Saikosaponins represent a group of oleanane derivatives, usually as glucosides, which are commonly found in medicinal plants Bupleurum spp., which have been used as traditional Chinese medicine for more than 1,000 years in China. Emerging evidence suggests that saikosaponins have many pharmacological effects, including sedation, anticonvulsant, antipyretic, antiviral, immunity, anti-inflammation, antitumor properties, protecting liver and kidney and so on. The present review provides a comprehensive summary and analysis of the pharmacological properties of saikosaponins, supporting the potential uses of saikosaponins as a medicinal agent.
Collapse
Affiliation(s)
- Xiao-Qin Li
- a School of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , China
- b Central Laboratory , Seventh People's Hospital of Shanghai University of TCM , Shanghai 200137 , China
| | - Ya-Nan Song
- b Central Laboratory , Seventh People's Hospital of Shanghai University of TCM , Shanghai 200137 , China
| | - Su-Juan Wang
- b Central Laboratory , Seventh People's Hospital of Shanghai University of TCM , Shanghai 200137 , China
| | - Khalid Rahman
- c Faculty of Science, School of Biomolecular Sciences , Liverpool John Moores University , Liverpool L3 3AF , UK
| | - Jian-Yong Zhu
- b Central Laboratory , Seventh People's Hospital of Shanghai University of TCM , Shanghai 200137 , China
| | - Hong Zhang
- a School of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , China
- b Central Laboratory , Seventh People's Hospital of Shanghai University of TCM , Shanghai 200137 , China
| |
Collapse
|
30
|
The Role of Saikosaponins in Therapeutic Strategies for Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8275256. [PMID: 29849917 PMCID: PMC5924972 DOI: 10.1155/2018/8275256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/25/2018] [Indexed: 12/19/2022]
Abstract
As life expectancy increases, elderly populations tend to spend an increasing number of years in poor health, with chronic age-related diseases and disability. Therefore, the development of therapeutic strategies to treat or prevent multiple pathophysiological conditions in the elderly may improve health-adjusted life expectancy and alleviate the potential economic and social burdens arising from age-related diseases. Bioactive natural products might represent promising new drug candidates for the treatment of many chronic age-related diseases, including cancer, Alzheimer's disease, cardiovascular disease, obesity, and liver disease. Here, we discuss a therapeutic option using saikosaponins, which are triterpene saponins isolated from Bupleurum, against a variety of age-related diseases. Understanding the underlying mechanisms of natural products like saikosaponins in the treatment of age-related diseases may help in the development of diverse natural product-derived compounds that may be effective against a number of chronic health problems.
Collapse
|
31
|
Wang J, Huang S. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway. Exp Ther Med 2017; 15:2667-2673. [PMID: 29467859 DOI: 10.3892/etm.2017.5666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/02/2017] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the most prevalent malignant tumor type in the developed world and the discovery of novel anti-tumor drugs is a research hotspot. Fisetin, a naturally occurring flavonoid, has been reported to have anti-cancer effects in multiple tumor types. The present study found that fisetin inhibited the growth and migration of non-small cell lung cancer in vitro. MTT, wound-healing, cell-matrix adhesion and Transwell assays were performed and demonstrated that fisetin suppressed proliferation, migration, adhesion and invasion, respectively. Flow cytometric analysis indicated that fisetin induced apoptosis in the A549 cell line by decreasing the expression of c-myc, cyclin-D1, cyclooxygenase-2, B cell lymphoma-2, CXC chemokine receptor type 4, cluster of differentiation 44 and metalloproteinase-2/9, increasing the expression of cyclin dependent kinase inhibitor (CDKN) 1A/B, CDKN2D and E-cadherin and increasing the activity of caspase-3/9 via targeting the extracellular signal-regulated kinase signaling pathway. The results provided comprehensive evidence for the anti-tumor effects of fisetin in non-small cell lung cancer in vitro, which may provide a novel approach for clinical treatment.
Collapse
Affiliation(s)
- Junjian Wang
- Department of Respiratory Medicine, Tianjin 5th Central Hospital, Tianjin 300450, P.R. China
| | - Shaoxiang Huang
- Department of Respiratory Medicine, Tianjin 5th Central Hospital, Tianjin 300450, P.R. China
| |
Collapse
|
32
|
Yuan B, Yang R, Ma Y, Zhou S, Zhang X, Liu Y. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications. PHARMACEUTICAL BIOLOGY 2017; 55:620-635. [PMID: 27951737 PMCID: PMC6130612 DOI: 10.1080/13880209.2016.1262433] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/08/2016] [Accepted: 11/15/2016] [Indexed: 05/18/2023]
Abstract
CONTEXT Radix Bupleuri has been used in traditional Chinese medicine for over 2000 years with functions of relieving exterior syndrome, clearing heat, regulating liver-qi, and lifting yang-qi. More natural active compounds, especially saikosaponins, have been isolated from Radix Bupleuri, which possess various valuable pharmacological activities. OBJECTIVE To summarize the current knowledge on pharmacological activities, mechanisms and applications of extracts and saikosaponins isolated from Radix Bupleuri, and obtain new insights for further research and development of Radix Bupleuri. METHODS PubMed, Web of Science, Science Direct, Research Gate, Academic Journals and Google Scholar were used as information sources through the inclusion of the search terms 'Radix Bupleuri', 'Bupleurum', 'saikosaponins', 'Radix Bupleuri preparation', and their combinations, mainly from the year 2008 to 2016 without language restriction. Clinical preparations containing Radix Bupleuri were collected from official website of China Food and Drug Administration (CFDA). RESULTS AND CONCLUSION 296 papers were searched and 128 papers were reviewed. A broad spectrum of in vitro and in vivo research has proved that Radix Bupleuri extracts, saikosaponin a, saikosaponin d, saikosaponin c, and saikosaponin b2, exhibit evident anti-inflammatory, antitumor, antiviral, anti-allergic, immunoregulation, and neuroregulation activities mainly through NF-κB, MAPK or other pathways. 15 clinical preparations approved by CFDA remarkably broaden the application of Radix Bupleuri. The main side effect of Radix Bupleuri is liver damage when the dosage is excess, which indicates that the maximum tolerated dose is critical for clinical use of Radix Bupleuri extract and purified compounds.
Collapse
Affiliation(s)
- Bochuan Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yongsheng Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Zhou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaodong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
- CONTACT Ying LiuSchool of Chinese Pharmacy, Beijing University of Chinese Medicine, Wangjing Zhonghuan South Street, Chaoyang District, Beijing100102, China
| |
Collapse
|
33
|
Saikosaponin-d, a calcium mobilizing agent, sensitizes chemoresistant ovarian cancer cells to cisplatin-induced apoptosis by facilitating mitochondrial fission and G2/M arrest. Oncotarget 2017; 8:99825-99840. [PMID: 29245943 PMCID: PMC5725134 DOI: 10.18632/oncotarget.21076] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/19/2017] [Indexed: 11/25/2022] Open
Abstract
Cisplatin (CDDP) and its derivatives are first line anti-cancer drugs for ovarian cancer (OVCA). However, chemoresistance due to high incidence of p53 mutations leads to poor clinical prognosis. Saikosaponin-d (Ssd), a saponin from a herbal plant extract, has been shown to induce cell death and sensitize chemoresistant cells to chemotherapeutic agents. Here, we demonstrated that Ssd sensitized chemoresistant OVCA cells with either p53-wt, -mutant and -null to CDDP. The action of Ssd appears to be through induction of mitochondrial fragmentation and G2/M arrest. Ssd is mediated via calcium signaling, up-regulation of the mitochondrial fission proteins Dynamin-related protein 1 (Drp1) and optic atrophy 1 (Opa1), and loss in mitochondrial membrane potential (MMP). Moreover, in the presence of CDDP, Ssd also down-regulates protein phosphatase magnesium-dependent 1 D (PPM1D) and increases the phosphorylation of checkpoint protein kinases (Chk) 1, cell division cycle 25c (Cdc25c) and Cyclin dependent kinase 1 (Cdk1). Our findings suggest that Ssd could sensitize OVCA to CDDP independent of the p53 status through multiple signaling pathways. They support the notion that Ssd may be a novel adjuvant for the treatment of chemoresistant OVCA.
Collapse
|
34
|
|
35
|
Xu XH, Li T, Fong CMV, Chen X, Chen XJ, Wang YT, Huang MQ, Lu JJ. Saponins from Chinese Medicines as Anticancer Agents. Molecules 2016; 21:molecules21101326. [PMID: 27782048 PMCID: PMC6272920 DOI: 10.3390/molecules21101326] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022] Open
Abstract
Saponins are glycosides with triterpenoid or spirostane aglycones that demonstrate various pharmacological effects against mammalian diseases. To promote the research and development of anticancer agents from saponins, this review focuses on the anticancer properties of several typical naturally derived triterpenoid saponins (ginsenosides and saikosaponins) and steroid saponins (dioscin, polyphyllin, and timosaponin) isolated from Chinese medicines. These saponins exhibit in vitro and in vivo anticancer effects, such as anti-proliferation, anti-metastasis, anti-angiogenesis, anti-multidrug resistance, and autophagy regulation actions. In addition, related signaling pathways and target proteins involved in the anticancer effects of saponins are also summarized in this work.
Collapse
Affiliation(s)
- Xiao-Huang Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Chi Man Vivienne Fong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Xiao-Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Ming-Qing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
36
|
Chen MF, Huang SJ, Huang CC, Liu PS, Lin KI, Liu CW, Hsieh WC, Shiu LY, Chen CH. Saikosaponin d induces cell death through caspase-3-dependent, caspase-3-independent and mitochondrial pathways in mammalian hepatic stellate cells. BMC Cancer 2016; 16:532. [PMID: 27461108 PMCID: PMC4962421 DOI: 10.1186/s12885-016-2599-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/22/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Saikosaponin d (SSd) is one of the main active triterpene saponins in Bupleurum falcatum. It has a steroid-like structure, and is reported to have pharmacological activities, including liver protection in rat, cell cycle arrest and apoptosis induction in several cancer cell lines. However, the biological functions and molecular mechanisms of mammalian cells under SSd treatment are still unclear. METHODS The cytotoxicity and apoptosis of hepatic stellate cells (HSCs) upon SSd treatment were discovered by MTT assay, colony formation assay and flow cytometry. The collage I/III, caspase activity and apoptotic related genes were examined by quantitative PCR, Western blotting, immunofluorescence and ELISA. The mitochondrial functions were monitored by flow cytometry, MitoTracker staining, ATP production and XF24 bioenergetic assay. RESULTS This study found that SSd triggers cell death via an apoptosis path. An example of this path might be typical apoptotic morphology, increased sub-G1 phase cell population, inhibition of cell proliferation and activation of caspase-3 and caspase-9. However, the apoptotic effects induced by SSd are partially blocked by the caspase-3 inhibitor, Z-DEVD-FMK, suggesting that SSd may trigger both HSC-T6 and LX-2 cell apoptosis through caspase-3-dependent and independent pathways. We also found that SSd can trigger BAX and BAK translocation from the cytosol to the mitochondria, resulting in mitochondrial function inhibition, membrane potential disruption. Finally, SSd also increases the release of apoptotic factors. CONCLUSIONS The overall analytical data indicate that SSd-elicited cell death may occur through caspase-3-dependent, caspase-3-independent and mitochondrial pathways in mammalian HSCs, and thus can delay the formation of liver fibrosis by reducing the level of HSCs.
Collapse
Affiliation(s)
- Ming-Feng Chen
- Department of Gastroenterology and Hepatology, E-DA Hospital, Kaohsiung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - S. Joseph Huang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, University of South Florida, College of Medicine, Tampa, FL USA
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Tissue Bank and Biobank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Pei-Shan Liu
- Department of Microbiology, Soochow University, Shihlin, Taipei Taiwan
| | - Kun-I Lin
- Departments of Obstetrics & Gynecology, Chang Bing Show Chwan Memorial Hospital, Lukang Zhen, Changhua County Taiwan
| | - Ching-Wen Liu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chuan Hsieh
- Department of Biological Science & Technology, I-SHOU University, Kaohsiung, Taiwan
| | - Li-Yen Shiu
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
- Department of Medical Research, Cell Therapy and Research Center, E-Da Hospital, I-Shou University, No.6, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445 Taiwan People’s Republic of China
| | - Chang-Han Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta-Pei Road, Niaosong District, Kaohsiung City, Taiwan People’s Republic of China
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
37
|
Jianxin C, Qingxia X, Junhui W, Qinhong Z. A Case of Recurrent Hepatocellular Carcinoma Acquiring Complete Remission of Target Lesion With Treatment With Traditional Chinese Medicine. Integr Cancer Ther 2016; 16:597-604. [PMID: 27444311 PMCID: PMC5739135 DOI: 10.1177/1534735416660617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide. Although surgery is known as the most promising radical treatment, a high recurrent or metastatic rate after surgery has limited its clinical efficacy. Sorafenib, a target agent, has seemed to be the only option for metastatic HCC patients to date, but none of clinical trials showed it could prolong the overall survival (OS) of advanced HCC to 1 year. How to prolong the OS and improve cure rate of HCC patients is still beset with difficulties. This report presents a rare case of recurrent HCC patient with complete regression of target lesion with 2 years of Chinese herbal treatment. A 64-year-old Chinese man with hepatitis B virus–associated chronic hepatitis presented HCC has been clinically diagnosed tumor relapse and omentum metastasis with computed tomography and α-fetoprotein blood test 4 months after surgery. It was decided the patient would receive traditional Chinese medicine treatment because of poor prognosis. After approximately 2 years of treatment, recurrent hepatic tumor and omentum metastasis have been found in complete regression. The patient remains alive over 31 months after relapse.
Collapse
Affiliation(s)
| | - Xu Qingxia
- 1 Quzhou People's Hospital, Zhejiang, China
| | - Wang Junhui
- 2 Department of Radiation Oncology, Quzhou People's Hospital, Zhejiang, China
| | | |
Collapse
|
38
|
Zhong D, Zhang HJ, Jiang YD, Wu P, Qi H, Cai C, Zheng SB, Dang Q. Saikosaponin-d: A potential chemotherapeutics in castration resistant prostate cancer by suppressing cancer metastases and cancer stem cell phenotypes. Biochem Biophys Res Commun 2016; 474:722-729. [PMID: 27155154 DOI: 10.1016/j.bbrc.2016.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
Androgen deprivation therapy is the gold standard regimen for advanced Prostate cancer (PCa) patients, nevertheless, patients eventually develop into castration-resistant prostate cancer (CRPC). Currently only a few chemotherapeutics are available for CRPC. Therefore, it is critical for identifying a new drug. In this study, we will explore a new agent, Saikosaponin-d (SSd), for CRPC therapy based on its mechanism of action. DU145 and CWR22Rv1 cells representing CRPC were employed in this study. A series of cell, biochemical, and molecular biologic assays such as Immunofluorescence, Zymography, Sphere formation, Colony formation, and MTT were used. Finally, we find SSd can significantly inhibit the growth of PCa cells in both dose- and time-dependent and suppress the colony formation during a long-term drug administration, it also can inhibit their migration and invasion abilities, which was accompanied by reverse the epithelial-mesenchymal transition (EMT) and suppress MMP2/9 expression as well as activities. Furthermore, SSd can suppress cancer stem cell (CSC) phenotypes such as self-renewal ability. Mechanistically, SSd blocks Wnt/β-catenin signaling pathway by decreasing GSK3β phosphorylation to affect EMT and CSC. These findings demonstrate the mechanism of anti-cancer activity of SSd in targeting EMT and CSC, suggesting SSd can be a potent agent for CRPC therapy.
Collapse
Affiliation(s)
- Di Zhong
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hui-Jian Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yao-Dong Jiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huan Qi
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chao Cai
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shao-Bin Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Qiang Dang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
39
|
Yu P, Qiu H, Wang M, Tian Y, Zhang Z, Song R. In vitro metabolism study of saikosaponin d and its derivatives in rat liver microsomes. Xenobiotica 2016; 47:11-19. [PMID: 27052332 DOI: 10.3109/00498254.2016.1163753] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Saikosaponins, one of the representative bioactive ingredients in Radix Bupleuri, possess hepatoprotective, anti-inflammatory, antiviral, antitumor, and other pharmacological activities. Up to now, few studies focused on the further metabolism of saikosaponins and their secondary metabolites absorbed into the circulatory system. 2. To understand the in vivo efficacy of saikosaponin d, the in vitro metabolism of saikosaponin d, and its two derivatives formed in the gastrointestinal tract, prosaikogenin G and saikogenin G was investigated in rat liver microsomes, respectively. 3. Fifteen metabolites were detected using high-performance liquid chromatography hybrid ion trap and time-of-flight mass spectrometry and triple-quadrupole mass spectrometry, and the predominant metabolic reactions were hydroxylation, carboxylation and combinations of these steps on the aglycone moiety. 4. The metabolic pathways of saikosaponin d, prosaikogenin G, and saikogenin G were proposed in vitro and the results contribute to the understanding of saikosaponins in vivo metabolism.
Collapse
Affiliation(s)
- Pei Yu
- a Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Education , Nanjing , China.,b State Key Laboratory of Natural Medicine, China Pharmaceutical University , Nanjing , China , and
| | - Hongcong Qiu
- c Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards (Guangxi Institute of Traditional Medical and Pharmaceutical Sciences) , Nanning , China
| | - Min Wang
- a Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Education , Nanjing , China.,b State Key Laboratory of Natural Medicine, China Pharmaceutical University , Nanjing , China , and
| | - Yuan Tian
- a Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Education , Nanjing , China.,b State Key Laboratory of Natural Medicine, China Pharmaceutical University , Nanjing , China , and
| | - Zunjian Zhang
- a Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Education , Nanjing , China.,b State Key Laboratory of Natural Medicine, China Pharmaceutical University , Nanjing , China , and
| | - Rui Song
- a Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Education , Nanjing , China.,b State Key Laboratory of Natural Medicine, China Pharmaceutical University , Nanjing , China , and
| |
Collapse
|
40
|
Hu SCS, Lee IT, Yen MH, Lin CC, Lee CW, Yen FL. Anti-melanoma activity of Bupleurum chinense, Bupleurum kaoi and nanoparticle formulation of their major bioactive compound saikosaponin-d. JOURNAL OF ETHNOPHARMACOLOGY 2016; 179:432-442. [PMID: 26748071 DOI: 10.1016/j.jep.2015.12.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/27/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bupleurum chinense is a traditional Chinese medicinal herb which has been used to treat various inflammatory and infectious diseases, while Bupleurum kaoi is an endemic plant in Taiwan. We determined whether B. chinense and B. kaoi and their biologically active saikosaponin compounds possess anti-melanoma activity. In addition, we developed a novel saikosaponin-d nanoparticle system to improve its solubility, and evaluated its antiproliferative effects and molecular mechanisms in melanoma cells. MATERIALS AND METHODS Ethanolic extracts from B. chinense and B. kaoi were prepared, and their saikosaponin contents were determined by high performance liquid chromatography analysis. Saikosaponin-d nanoparticles were synthesized, and their physicochemical properties were evaluated by particle size analyzer, transmission electron microscopy, differential scanning calorimetry, X-ray diffractometry, and Fourier transform infrared spectroscopy. Human A375.S2 melanoma cells were cultured, and cell viability determined by the MTT assay. Apoptosis was evaluated by determination of mitochondrial membrane potential, and signal transduction pathways investigated by Western blotting. RESULTS Ethanolic extracts from B. kaoi showed more potent antiproliferative effect on human A375.S2 melanoma cells compared to B. chinense. The saikosaponin-a, -c and -d contents were higher in B. kaoi compared to B. chinense. Saikosaponin-d was the most potent compound in terms of anti-melanoma activity, and saikosaponin-d nanoparticles exhibited increased water solubility due to lowered particle size, amorphous transformation and intermolecular hydrogen bond formation with the excipient. Furthermore, saikosaponin-d nanoparticles showed enhanced antiproliferative activity against melanoma cells, and induced apoptosis through the mitochondrial pathway. The anti-melanoma activity was mediated by phosphorylation of JNK and p38, phosphorylation of p53, increased level of cytochrome c, and activation of caspase 9. CONCLUSIONS B. kaoi contains higher saikosaponin content and shows greater anti-melanoma activity than B. chinense. Saikosaponin-d nanoparticles have improved solubility, and may have potential use in the future as a form of treatment for melanoma.
Collapse
Affiliation(s)
- Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - I-Ta Lee
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Hong Yen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Ching Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiang-Wen Lee
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung Institute of Technology and Chronic Diseases and Health Promotion Research Center, Chiayi, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| | - Feng-Lin Yen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
41
|
Lee TH, Park S, You MH, Lim JH, Min SH, Kim BM. A potential therapeutic effect of saikosaponin C as a novel dual-target anti-Alzheimer agent. J Neurochem 2016; 136:1232-1245. [PMID: 26710244 DOI: 10.1111/jnc.13515] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and the risk of developing it increases with advancing age. In this study, we investigated the protective effects of saikosaponin C (SSc), one of the main bioactive components produced by the traditional Chinese herb, radix bupleuri, the root of Bupleurum falcatum, against AD in various neuronal models. Interestingly, we found that SSc has dual effects on AD by targeting amyloid beta (Aβ) and tau, two key proteins in AD. SSc significantly suppressed the release of both Aβ peptides 1-40 and 1-42 into cell culture supernatants, though it does not affect BACE1 activity and expression. SSc also inhibited abnormal tau phosphorylation at multiple AD-related residues. Moreover, SSc seems to have beneficial effects on cellular tau function; it accelerated nerve growth factor-mediated neurite outgrowth and increased the assembly of microtubules. In addition, SSc increased synaptic marker proteins such as synaptophysin and PSD-95. Considering its various biological activities, our results suggest that SSc might be a novel therapeutic tool for treating human AD and other neurodegenerative diseases. Tau and amyloid beta are two key features in Alzheimer's disease. Saikosaponin C, an active component of Bupleuri Radix, inhibits abnormal tau phosphorylation and amyloid beta production, thereby promoting synaptic integrity. Saikosaponin C also prevents amyloid beta-induced apoptosis in brain vascular endothelial cells. Therefore, Saikosaponin C may provide a new therapeutic strategy for treatment of neurodegenerative diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Tae Ho Lee
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sungha Park
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases (SIRIC), Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Hyeon You
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ji-Hong Lim
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | | | - Byeong Mo Kim
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases (SIRIC), Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Yuan Y, Gao Y, Song G, Lin S. Ursolic Acid and Oleanolic Acid from Eriobotrya fragrans Inhibited the Viability of A549 Cells. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Loquat { Eriobotrya japonica (Lindl.)}, a kind of Chinese herb, has many efficacies such as anti-inflammatory, antimicrobial and curing chronic bronchitis. However, reports on the pharmacological action of wild loquat extract are limited. In this work, the A549 cell line was selected to study the inhibitory effect of ursolic acid and oleanolic acid (UA, OA) from the leaves of E. fragrans. Results showed that UA/OA inhibited A549 cell viability and induced apoptosis in a dose and time dependent manner. The cell fraction in the G0/G1 phase dramatically increased under treatment with UA/OA. Data showed that UA activated the expression of PARP. UA and OA down-regulated MMP-2 and Bcl-2; on the contrary, they up-regulated Bid. This work demonstrated that UA/OA extracted from wild loquat leaves can significantly inhibit the viability of A549 cells.
Collapse
Affiliation(s)
- Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yongshun Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Gang Song
- Cancer Research Center, Xiamen University Medical College, Xiamen 361005, China
| | - Shunquan Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
43
|
Liu A, Tanaka N, Sun L, Guo B, Kim JH, Krausz KW, Fang Z, Jiang C, Yang J, Gonzalez FJ. Saikosaponin d protects against acetaminophen-induced hepatotoxicity by inhibiting NF-κB and STAT3 signaling. Chem Biol Interact 2014; 223:80-86. [PMID: 25265579 PMCID: PMC4376644 DOI: 10.1016/j.cbi.2014.09.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022]
Abstract
Overdose of acetaminophen (APAP) can cause acute liver injury that is sometimes fatal, requiring efficient pharmacological intervention. The traditional Chinese herb Bupleurum falcatum has been widely used for the treatment of several liver diseases in eastern Asian countries, and saikosaponin d (SSd) is one of its major pharmacologically-active components. However, the efficacy of Bupleurum falcatum or SSd on APAP toxicity remains unclear. C57/BL6 mice were administered SSd intraperitoneally once daily for 5days, followed by APAP challenge. Biochemical and pathological analysis revealed that mice treated with SSd were protected against APAP-induced hepatotoxicity. SSd markedly suppressed phosphorylation of nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) and reversed the APAP-induced increases in the target genes of NF-κB, such as pro-inflammatory cytokine Il6 and Ccl2, and those of STAT3, such as Socs3, Fga, Fgb and Fgg. SSd also enhanced the expression of the anti-inflammatory cytokine Il10 mRNA. Collectively, these results demonstrate that SSd protects mice from APAP-induced hepatotoxicity mainly through down-regulating NF-κB- and STAT3-mediated inflammatory signaling. This study unveils one of the possible mechanisms of hepatoprotection caused by Bupleurum falcatum and/or SSd.
Collapse
Affiliation(s)
- Aiming Liu
- Medical School of Ningbo University, Ningbo 315211, China; Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Bin Guo
- Hunan Normal University, Changsha 410081, China
| | - Jung-Hwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Zhongze Fang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Changtao Jiang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Julin Yang
- Ningbo College of Health Sciences, Ningbo 315100, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
He S, Lu G, Hou H, Zhao Z, Zhu Z, Lu X, Chen J, Wang Z. Saikosaponin‑d suppresses the expression of cyclooxygenase‑2 through the phospho‑signal transducer and activator of transcription 3/hypoxia‑inducible factor‑1α pathway in hepatocellular carcinoma cells. Mol Med Rep 2014; 10:2556-62. [PMID: 25231214 DOI: 10.3892/mmr.2014.2574] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 06/05/2014] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and accounts for ~6% of all types of human cancer worldwide, particularly in Asia. The incidence and mortality rates in the USA have also rapidly increased. Saikosaponin‑d (SSD), a saponin derivative extracted from several species of Bupleurum (Umbelliferae), possesses unique biological activities, including anti‑inflammatory, antihepatitic and immunomodulatory effects. Our previous studies have demonstrated that SSD inhibits the proliferation and induces the apoptosis of HCC SMMC‑7721 cells by downregulating the expression of cyclooxygenase (COX)‑2 and decreasing the production of prostaglandin E2. However, the specific mechanism underlying how SSD controls the expression of COX‑2 remains to be elucidated. In the present study, it was demonstrated that hypoxia inducible factor‑1α (HIF‑1α) was responsible for the expression of COX‑2 under hypoxic conditions in HCC cells, and the activation of signal transducer and activator of transcription 3 (STAT3) was required for the expression of HIF‑1α. SSD treatment inhibited STAT3 activation [phosphorylation of STAT3 (p‑STAT3)], reduced the protein level of HIF‑1α and decreased the expression of COX‑2. These results suggested that SSD may target HCC cells by suppressing the expression of COX‑2 through the p‑STAT3/HIF‑1α pathway.
Collapse
Affiliation(s)
- Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guifang Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Helei Hou
- Department of Oncology, Qindao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Zhenjun Zhao
- The School of Optometry and Vision Science, University of New South Wales, Sydney NSW 2052, Australia
| | - Zhanfang Zhu
- Department of Public Health, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Xinlan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jinghong Chen
- Department of Public Health, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Zhilun Wang
- Department of Public Health, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| |
Collapse
|
45
|
Autophagic effects of Chaihu (dried roots of Bupleurum Chinense DC or Bupleurum scorzoneraefolium WILD). Chin Med 2014; 9:21. [PMID: 25228909 PMCID: PMC4165614 DOI: 10.1186/1749-8546-9-21] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/08/2014] [Indexed: 01/07/2023] Open
Abstract
Chaihu, prepared from the dried roots of Bupleurum Chinense DC (also known as bei Chaihu in Chinese) or Bupleurum scorzoneraefolium WILD (also known as nan Chaihu in Chinese), is a herbal medicine for harmonizing and soothing gan (liver) qi stagnation. Substantial pharmacological studies have been conducted on Chaihu and its active components (saikosaponins). One of the active components of Chaihu, saikosaponin-d, exhibited anticancer effects via autophagy induction. This article reviews the pharmacological findings for the roles of autophagy in the pharmacological actions of Chaihu and saikosaponins.
Collapse
|
46
|
Yao M, Yang J, Cao L, Zhang L, Qu S, Gao H. Saikosaponin‑d inhibits proliferation of DU145 human prostate cancer cells by inducing apoptosis and arresting the cell cycle at G0/G1 phase. Mol Med Rep 2014; 10:365-72. [PMID: 24736800 DOI: 10.3892/mmr.2014.2153] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/12/2014] [Indexed: 11/05/2022] Open
Abstract
Saikosaponin‑d (SSd), a triterpene saponin compound derived from Bupleurum radix, has been shown to have a cytotoxic effect on various cancer cell lines. However, its effect on prostate cancer cells has remained unexplored. The present study reports the apoptosis‑inducing effect of SSd on the DU145 human prostate carcinoma cell line. Treatment with SSd inhibited DU145 cell proliferation in a concentration‑dependent manner. Flow cytometric analysis showed that SSd inhibited the proliferation of DU145 cells by induction of apoptosis and cell cycle arrest at G0/G1 phase. Further mechanistic experiments demonstrated that SSd arrested the cell cycle at G0/G1 phase via upregulation of p53 and p21 and induced apoptosis by modulating B‑cell lymphoma 2 family proteins, dissipation of the mitochondrial membrane potential, release of cytochrome c into the cytosol and activation of caspase‑3. In conclusion the present study indicated that SSd induced apoptosis in DU145 cells by the intrinsic apoptotic pathway. Therefore, SSd may become a leading candidate drug for the therapy of prostate carcinoma.
Collapse
Affiliation(s)
- Min Yao
- Department of Pathology, Jilin University Bethune Second Hospital, Changchun, Jilin 130041, P.R. China
| | - Jingbo Yang
- Department of Pathology, Jilin University Bethune Second Hospital, Changchun, Jilin 130041, P.R. China
| | - Lanqing Cao
- Department of Pathology, Jilin University Bethune Second Hospital, Changchun, Jilin 130041, P.R. China
| | - Lian Zhang
- Department of Pathology, Jilin University Bethune Second Hospital, Changchun, Jilin 130041, P.R. China
| | - Shanshan Qu
- Department of Pathology, Jilin University Bethune Second Hospital, Changchun, Jilin 130041, P.R. China
| | - Hongwen Gao
- Department of Pathology, Jilin University Bethune Second Hospital, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
47
|
Lee TH, Chang J, Kim BM. Saikosaponin C inhibits lipopolysaccharide-induced apoptosis by suppressing caspase-3 activation and subsequent degradation of focal adhesion kinase in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2014; 445:615-21. [PMID: 24565837 DOI: 10.1016/j.bbrc.2014.02.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/11/2014] [Indexed: 01/05/2023]
Abstract
Bacterial lipopolysaccharide (LPS) is an important mediator of inflammation and a potent inducer of endothelial cell damage and apoptosis. In this study, we investigated the protective effects of saikosaponin C (SSc), one of the active ingredients produced by the traditional Chinese herb, Radix Bupleuri, against LPS-induced apoptosis in human umbilical endothelial cells (HUVECs). LPS triggered caspase-3 activation, which was found to be important in LPS-induced HUVEC apoptosis. Inhibition of caspase-3 also inhibited LPS-induced degradation of focal adhesion kinase (FAK), indicating that caspase-3 is important in LPS-mediated FAK degradation as well as in apoptosis in HUVECs. SSc significantly inhibited LPS-induced apoptotic cell death in HUVECs through the selective suppression of caspase-3. SSc was also shown to rescue LPS-induced FAK degradation and other cell adhesion signals. Furthermore, the protective effects of SSc against LPS-induced apoptosis were abolished upon pretreatment with a FAK inhibitor, highlighting the importance of FAK in SSc activity. Taken together, these results show that SSc efficiently inhibited LPS-induced apoptotic cell death via inhibition of caspase-3 activation and caspase-3-mediated-FAK degradation. Therefore, SSc represents a promising therapeutic candidate for the treatment of vascular endothelial cell injury and cellular dysfunction.
Collapse
Affiliation(s)
- Tae Ho Lee
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jihoon Chang
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Byeong Mo Kim
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
48
|
Sung B, Kang YJ, Kim DH, Hwang SY, Lee Y, Kim M, Yoon JH, Kim CM, Chung HY, Kim ND. Corosolic acid induces apoptotic cell death in HCT116 human colon cancer cells through a caspase-dependent pathway. Int J Mol Med 2014; 33:943-9. [PMID: 24481288 DOI: 10.3892/ijmm.2014.1639] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/21/2014] [Indexed: 11/05/2022] Open
Abstract
Corosolic acid (CA), a pentacyclic triterpene isolated from Lagerstroemia speciosa L. (also known as Banaba), has been shown to exhibit anticancer properties in various cancer cell lines. However, the anticancer activity of CA on human colorectal cancer cells and the underlying mechanisms remain to be elucidated. In this study, we investigated the effects of CA on cell viability and apoptosis in HCT116 human colon cancer cells. CA dose-dependently inhibited the viability of HCT116 cells. The typical hallmarks of apoptosis, such as chromatin condensation, a sub-G1 peak and phosphatidylserine externalization were detected by Hoechst 33342 staining, flow cytometry and Annexin V staining following treatment with CA. Western blot analysis revealed that CA induced a decrease in the levels of procaspase-8, -9 and -3 and the cleavage of poly(ADP-ribose) polymerase (PARP). The apoptotic cell death induced by CA was accompanied by the activation of caspase-8, -9 and -3, which was completely abrogated by the pan-caspase inhibitor, z-VAD‑FMK. Furthermore, CA upregulated the levels of pro-apoptotic proteins, such as Bax, Fas and FasL and downregulated the levels of anti-apoptotic proteins, such as Bcl-2 and survivin. Taken together, our data provide insight into the molecular mechanisms of CA-induced apoptosis in colorectal cancer (CRC), rendering this compound a potential anticancer agent for the treatment of CRC.
Collapse
Affiliation(s)
- Bokyung Sung
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609‑735, Republic of Korea
| | - Yong Jung Kang
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609‑735, Republic of Korea
| | - Dong Hwan Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609‑735, Republic of Korea
| | - Seong Yeon Hwang
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609‑735, Republic of Korea
| | - Yujin Lee
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609‑735, Republic of Korea
| | - Minjeong Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609‑735, Republic of Korea
| | - Jeong-Hyun Yoon
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609‑735, Republic of Korea
| | - Cheol Min Kim
- Research Center for Anti‑Aging Technology Development, Pusan National University, Busan 609‑735, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609‑735, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609‑735, Republic of Korea
| |
Collapse
|
49
|
Yao RY, Zou YF, Chen XF. Traditional Use, Pharmacology, Toxicology, and Quality Control of Species in Genus Bupleurum L. CHINESE HERBAL MEDICINES 2013; 5:245-255. [PMID: 32288759 PMCID: PMC7129159 DOI: 10.1016/s1674-6384(13)60036-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/19/2013] [Accepted: 09/27/2013] [Indexed: 12/21/2022] Open
Abstract
Many species of genus Bupleurum L. have been pharmaceutically used mainly in Asia and Europe for thousand years. Their roots are the most popular ingredients in Chinese materia medica prescriptions for the treatment of inflammatory diseases and auto-immune diseases. A plenty of chemical constituents have been isolated and identified from the species in Bupleurum L., such as saikosaponins, polysaccharides, volatile oils, flavonoids, polyacetylenes, lignins, and coumarins, most of which possess a variety of biological activities, especially for the hepatoprotective effect, antitumor activity, immunoregulation, and febrifuge efficacy. Therefore, the species in genus Bupleurum L. could be potential herbs of immunomodulator, antineoplastic, anti-oxidant, etc. Meanwhile, as potential toxicities have been discovered in some constituents, it is urgent to establish a comprehensive quality evaluation system to ensure the safety and efficiency of herbs. This paper reviews on the phytochemical and pharmacological studies, especially for the toxicology and quality control of the species in Bupleurum L., which is a reference for the species in this genus for safe usage and further development.
Collapse
Affiliation(s)
- Ru-Yu Yao
- Agronomy College of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu 611130, China
| | - Yuan-Feng Zou
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Xing-Fu Chen
- Agronomy College of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu 611130, China
| |
Collapse
|
50
|
Chen MF, Huang CC, Liu PS, Chen CH, Shiu LY. Saikosaponin a and saikosaponin d inhibit proliferation and migratory activity of rat HSC-T6 cells. J Med Food 2013; 16:793-800. [PMID: 24044489 PMCID: PMC3778952 DOI: 10.1089/jmf.2013.2762] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/29/2013] [Indexed: 11/12/2022] Open
Abstract
The proliferation and migration of hepatic stellate cells (HSCs) profoundly impact the pathogenesis of liver inflammation and fibrogenesis. As a perennial herb native to China, Bupleurum falcatum is administered for its anti-inflammatory, antipyretic, and antihepatotoxic effects. Saikosaponin a (SSa) and Saikosaponin d (SSd) are the major active components of triterpene saponins in Bupleurum falcatum. This study analyzes how SSa and SSd affect rat HSC-T6 cell line proliferation and migration. Experimental results indicate that, in addition to suppressing HSC-T6 proliferation, wound healing activity and cell migration in a time- and dose-dependent manner, SSa and SSd significantly induce apoptosis. Additionally, SSa and SSd decreased the expressions of extracellular matrix-regulated kinase 1/2 (ERK1/2), platelet-derived growth factor receptor 1 (PDGFR1), and subsequently transforming growth factor-β1 receptor (TGF-β1R), α-smooth muscle actin, TGF-β1 and connective tissue growth factor. They also decreased phosphorylation of p38 (p-p38) and ERK1/2 (p-ERK1/2) of HSC-T6. Furthermore, both SSa and SSd can block PDGF-BB and TGF-β1-induced cell proliferation and migration of HSC-T6. These results suggest that SSa and SSd may inhibit proliferation and activation of HSC-T6, and the modulated mechanisms warrant further study.
Collapse
Affiliation(s)
- Ming Feng Chen
- Department of Gastroenterology and Hepatology, E-DA hospital, Kaohsiung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chao Cheng Huang
- Kaohsiung Chang Gung Head and Neck Oncology Group, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei Shan Liu
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Chang Han Chen
- Kaohsiung Chang Gung Head and Neck Oncology Group, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Li Yen Shiu
- Department of Medical Research and Development, Show Chwan Memorial Hospital and Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| |
Collapse
|