1
|
Ford ZK, Reker AN, Chen S, Kadakia F, Bunk A, Davidson S. Cannabinoid Receptor 1 Expression in Human Dorsal Root Ganglia and CB13-Induced Bidirectional Modulation of Sensory Neuron Activity. FRONTIERS IN PAIN RESEARCH 2022; 2:721332. [PMID: 35295508 PMCID: PMC8915700 DOI: 10.3389/fpain.2021.721332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Cannabinoid receptors have been identified as potential targets for analgesia from studies on animal physiology and behavior, and from human clinical trials. Here, we sought to improve translational understanding of the mechanisms of cannabinoid-mediated peripheral analgesia. Human lumbar dorsal root ganglia were rapidly recovered from organ donors to perform physiological and anatomical investigations into the potential for cannabinoids to mediate analgesia at the level of the peripheral nervous system. Anatomical characterization of in situ gene expression and immunoreactivity showed that 61 and 53% of human sensory neurons express the CB1 gene and receptor, respectively. Calcium influx evoked by the algogen capsaicin was measured by Fura-2AM in dissociated human sensory neurons pre-exposed to the inflammatory mediator prostaglandin E2 (PGE2) alone or together with CB13 (1 μM), a cannabinoid agonist with limited blood–brain barrier permeability. Both a higher proportion of neurons and a greater magnitude of response to capsaicin were observed after exposure to CB13, indicating cannabinoid-mediated sensitization. In contrast, membrane properties measured by patch-clamp electrophysiology demonstrated that CB13 suppressed excitability and reduced action potential discharge in PGE2-pre-incubated sensory neurons, suggesting the suppression of sensitization. This bidirectional modulation of sensory neuron activity suggests that cannabinoids may suppress overall membrane excitability while simultaneously enhancing responsivity to TRPV1-mediated stimuli. We conclude that peripherally restricted cannabinoids may have both pro- and anti-nociceptive effects in human sensory neurons.
Collapse
Affiliation(s)
- Zachary K Ford
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Ashlie N Reker
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Sisi Chen
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Feni Kadakia
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Alexander Bunk
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Steve Davidson
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
2
|
Melkes B, Markova V, Hejnova L, Marek A, Novotny J. Naloxone Is a Potential Binding Ligand and Activator of the Capsaicin Receptor TRPV1. Biol Pharm Bull 2021; 43:908-912. [PMID: 32378567 DOI: 10.1248/bpb.b19-00806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The receptor channel transient receptor potential vanilloid 1 (TRPV1) functions as a sensor of noxious heat and various chemicals. There is increasing evidence for a crosstalk between TRPV1 and opioid receptors. Here we investigated the effect of the prototypical TRPV1 agonist capsaicin and selected opioid ligands on TRPV1 movement in the plasma membrane and intracellular calcium levels in HEK293 cells expressing TRPV1 tagged with cyan fluorescent protein (CFP). We observed that lateral mobility of TRPV1 increased after treatment of cells with capsaicin or naloxone (a nonselective opioid receptor antagonist) but not with DAMGO (a μ-opioid receptor agonist). Interestingly, both capsaicin and naloxone, unlike DAMGO, elicited intracellular calcium responses. The increased TRPV1 movement and calcium influx induced by capsaicin and naloxone were blocked by the TRPV1 antagonist capsazepine. The ability of naloxone to directly interact with TRPV1 was further corroborated by [3H]-naloxone binding. In conclusion, our data suggest that besides acting as an opioid receptor antagonist, naloxone may function as a potential TRPV1 agonist.
Collapse
Affiliation(s)
- Barbora Melkes
- Department of Physiology, Faculty of Science, Charles University
| | - Vendula Markova
- Department of Physiology, Faculty of Science, Charles University
| | - Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University
| | - Ales Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University
| |
Collapse
|
3
|
Braga Ferreira LG, Faria JV, dos Santos JPS, Faria RX. Capsaicin: TRPV1-independent mechanisms and novel therapeutic possibilities. Eur J Pharmacol 2020; 887:173356. [DOI: 10.1016/j.ejphar.2020.173356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
|
4
|
Sappington RM, Sidorova T, Ward NJ, Chakravarthy R, Ho KW, Calkins DJ. Activation of transient receptor potential vanilloid-1 (TRPV1) influences how retinal ganglion cell neurons respond to pressure-related stress. Channels (Austin) 2016; 9:102-13. [PMID: 25713995 DOI: 10.1080/19336950.2015.1009272] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Our recent studies implicate the transient receptor potential vanilloid-1 (TRPV1) channel as a mediator of retinal ganglion cell (RGC) function and survival. With elevated pressure in the eye, TRPV1 increases in RGCs, supporting enhanced excitability, while Trpv1 -/- accelerates RGC degeneration in mice. Here we find TRPV1 localized in monkey and human RGCs, similar to rodents. Expression increases in RGCs exposed to acute changes in pressure. In retinal explants, contrary to our animal studies, both Trpv1 -/- and pharmacological antagonism of the channel prevented pressure-induced RGC apoptosis, as did chelation of extracellular Ca(2+). Finally, while TRPV1 and TRPV4 co-localize in some RGC bodies and form a protein complex in the retina, expression of their mRNA is inversely related with increasing ocular pressure. We propose that TRPV1 activation by pressure-related insult in the eye initiates changes in expression that contribute to a Ca(2+)-dependent adaptive response to maintain excitatory signaling in RGCs.
Collapse
Affiliation(s)
- Rebecca M Sappington
- a The Vanderbilt Eye Institute and Vanderbilt Brain Institute ; Vanderbilt University School of Medicine ; Nashville , TN USA
| | | | | | | | | | | |
Collapse
|
5
|
The Effect of Capsaicin Derivatives on Tight-Junction Integrity and Permeability of Madin-Darby Canine Kidney Cells. J Pharm Sci 2016; 105:630-638. [PMID: 26869424 DOI: 10.1016/j.xphs.2015.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022]
Abstract
Capsaicin is known to interfere with tight junctions (TJs) of epithelial cells and therefore to enhance paracellular permeability of poorly absorbable drugs. However, due to its low water solubility, pungency, and cytotoxicity, its pharmacologic use is limited. In this study, we investigated the effect of capsaicin derivatives of synthetic (e.g., 10-hydroxy-N-(4-hydroxy-3-methoxybenzyl)decanamide, etc.) and natural (olvanil and dihydrocapsaicin) origin on Madin-Darby Canine Kidney-C7 cells. Impedance spectroscopy was used to determine the transepithelial electrical resistance and the capacitance. Permeability assays with fluorescein isothiocyanate-dextran were carried out to evaluate the impact on cell permeability. The results show that lipophilicity could play an important role for the interference with TJ and that the mechanism is independent from the ion channel TRPV-1 and hence on the flux of calcium into the cells. In summary, we synthesized 4 derivatives of capsaicin of lower lipophilicity and compared their properties with other well-known vanilloids. We show that these compounds are able to enhance the permeability of a hydrophilic macromolecule, by opening the TJ for a shorter time than capsaicin. This behavior is dependent on the lipophilicity of the molecule. Understanding of these phenomena may lead to better control of administration of therapeutic molecules.
Collapse
|
6
|
Rudd JA, Nalivaiko E, Matsuki N, Wan C, Andrews PL. The involvement of TRPV1 in emesis and anti-emesis. Temperature (Austin) 2015; 2:258-76. [PMID: 27227028 PMCID: PMC4843889 DOI: 10.1080/23328940.2015.1043042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/29/2022] Open
Abstract
Diverse transmitter systems (e.g. acetylcholine, dopamine, endocannabinoids, endorphins, glutamate, histamine, 5-hydroxytryptamine, substance P) have been implicated in the pathways by which nausea and vomiting are induced and are targets for anti-emetic drugs (e.g. 5-hydroxytryptamine3 and tachykinin NK1 antagonists). The involvement of TRPV1 in emesis was discovered in the early 1990s and may have been overlooked previously as TRPV1 pharmacology was studied in rodents (mice, rats) lacking an emetic reflex. Acute subcutaneous administration of resiniferatoxin in the ferret, dog and Suncus murinus revealed that it had “broad–spectrum” anti-emetic effects against stimuli acting via both central (vestibular system, area postrema) and peripheral (abdominal vagal afferents) inputs. One of several hypotheses discussed here is that the anti-emetic effect is due to acute depletion of substance P (or another peptide) at a critical site (e.g. nucleus tractus solitarius) in the central emetic pathway. Studies in Suncus murinus revealed a potential for a long lasting (one month) effect against the chemotherapeutic agent cisplatin. Subsequent studies using telemetry in the conscious ferret compared the anti-emetic, hypothermic and hypertensive effects of resiniferatoxin (pungent) and olvanil (non-pungent) and showed that the anti-emetic effect was present (but reduced) with olvanil which although inducing hypothermia it did not have the marked hypertensive effects of resiniferatoxin. The review concludes by discussing general insights into emetic pathways and their pharmacology revealed by these relatively overlooked studies with TRPV1 activators (pungent an non-pungent; high and low lipophilicity) and antagonists and the potential clinical utility of agents targeted at the TRPV1 system.
Collapse
Key Words
- 12-HPETE, 12-hydroperoxy-eicosatetraenoic acid
- 5-HT, 5-hydroxytryptamine
- 5-HT3, 5-hdroxytryptamine3
- 8-OH-DPAT, (±)-8-Hydroxy-2-dipropylaminotetralin
- AM404
- AM404, N-arachidonoylaminophenol
- AMT, anandamide membrane transporter
- AP, area postrema
- BBB, blood brain barrier
- CB1, cannabinoid1
- CGRP, calcitonin gene-related peptide
- CINV, chemotherapy-induced nausea and vomiting
- CP 99,994
- CTA, conditioned taste aversion
- CVO's, circumventricular organs
- D2, dopamine2
- DRG, dorsal root ganglia
- FAAH, fatty acid amide hydrolase
- H1, histamine1
- LTB4, leukotriene B4
- NADA, N-arachidonoyl-dopamine
- NK1, neurokinin1
- POAH, preoptic anterior hypothalamus
- RTX
- Suncus murinus
- TRPV1
- TRPV1, transient receptor potential vanilloid receptor1
- anti-emetic
- capsaicin
- ferret
- i.v., intravenous
- nausea
- olvanil
- thermoregulation
- vanilloid
- vomiting
Collapse
Affiliation(s)
- John A Rudd
- Brain and Mind Institute; Chinese University of Hong Kong; Shatin; New Territories, Hong Kong SAR; School of Biomedical Sciences; Faculty of Medicine; Chinese University of Hong Kong; Shatin; New Territories, Hong Kong SAR
| | - Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy; University of Newcastle ; Callaghan, NSW, Australia
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology; Graduate School of Pharmaceutical Sciences; The University of Tokyo ; Tokyo, Japan
| | - Christina Wan
- School of Biomedical Sciences; Faculty of Medicine; Chinese University of Hong Kong ; Shatin; New Territories, Hong Kong SAR
| | - Paul Lr Andrews
- Division of Biomedical Sciences; St George's University of London ; London, UK
| |
Collapse
|
7
|
Rossi S, Motta C, Musella A, Centonze D. The interplay between inflammatory cytokines and the endocannabinoid system in the regulation of synaptic transmission. Neuropharmacology 2014; 96:105-12. [PMID: 25268960 DOI: 10.1016/j.neuropharm.2014.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022]
Abstract
Excessive glutamate-mediated synaptic transmission and secondary excitotoxicity have been proposed as key determinants of neurodegeneration in many neurological diseases. Soluble mediators of inflammation have recently gained attention owing to their ability to enhance glutamate transmission and affect synaptic sensitivity to neurotransmitters. In the complex crosstalk between soluble immunoactive molecules and synapses, the endocannabinoid system (ECS) plays a central role, exerting an indirect neuroprotective action by inhibiting cytokine-dependent synaptic alterations, and a direct neuroprotective effect by limiting glutamate transmission and excitotoxic damage. On the other hand, the endocannabinoid (eCB)-mediated control of synaptic transmission is altered by proinflammatory cytokines with consequent effects in central nervous system (CNS) disorders. In this review, we summarize the interactions, at the pre- and postsynaptic level, between major inflammatory cytokines and the ECS. In addition, the behavioral and clinical consequences of the modulation of synaptic transmission during neuroinflammation are discussed. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Silvia Rossi
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), 00143 Rome, Italy
| | - Caterina Motta
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), 00143 Rome, Italy
| | - Alessandra Musella
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), 00143 Rome, Italy
| | - Diego Centonze
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), 00143 Rome, Italy.
| |
Collapse
|
8
|
Ho KW, Lambert WS, Calkins DJ. Activation of the TRPV1 cation channel contributes to stress-induced astrocyte migration. Glia 2014; 62:1435-51. [PMID: 24838827 DOI: 10.1002/glia.22691] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 01/13/2023]
Abstract
Astrocytes provide metabolic, structural, and synaptic support to neurons in normal physiology and also contribute widely to pathogenic processes in response to stress or injury. Reactive astrocytes can undergo cytoskeletal reorganization and increase migration through changes in intracellular Ca(2+) mediated by a variety of potential modulators. Here we tested whether migration of isolated retinal astrocytes following mechanical injury (scratch wound) involves the transient receptor potential vanilloid-1 channel (TRPV1), which contributes to Ca(2+)-mediated cytoskeletal rearrangement and migration in other systems. Application of the TRPV1-specific antagonists, capsazepine (CPZ) or 5'-iodoresiniferatoxin (IRTX), slowed migration by as much as 44%, depending on concentration. In contrast, treatment with the TRPV1-specific agonists, capsaicin (CAP) or resiniferatoxin (RTX) produced only a slight acceleration over a range of concentrations. Chelation of extracellular Ca(2+) with EGTA (1 mM) slowed astrocyte migration by 35%. Ratiometric imaging indicated that scratch wound induced a sharp 20% rise in astrocyte Ca(2+) that dissipated with distance from the wound. Treatment with IRTX both slowed and dramatically reduced the scratch-induced Ca(2+) increase. Both CPZ and IRTX influenced astrocyte cytoskeletal organization, especially near the wound edge. Taken together, our results indicate that astrocyte mobilization in response to mechanical stress involves influx of extracellular Ca(2+) and cytoskeletal changes in part mediated by TRPV1 activation.
Collapse
Affiliation(s)
- Karen W Ho
- Vanderbilt Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | |
Collapse
|
9
|
Sousa-Valente J, Varga A, Ananthan K, Khajuria A, Nagy I. Anandamide in primary sensory neurons: too much of a good thing? Eur J Neurosci 2014; 39:409-18. [DOI: 10.1111/ejn.12467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/22/2013] [Accepted: 12/02/2013] [Indexed: 01/01/2023]
Affiliation(s)
- João Sousa-Valente
- Section of Anaesthetics, Pain Medicine and Intensive Care; Department of Surgery and Cancer; Imperial College London; 369 Fulham Road London SW10 9NH UK
| | - Angelika Varga
- Section of Anaesthetics, Pain Medicine and Intensive Care; Department of Surgery and Cancer; Imperial College London; 369 Fulham Road London SW10 9NH UK
| | - Kajaluxy Ananthan
- Section of Anaesthetics, Pain Medicine and Intensive Care; Department of Surgery and Cancer; Imperial College London; 369 Fulham Road London SW10 9NH UK
| | - Ankur Khajuria
- Section of Anaesthetics, Pain Medicine and Intensive Care; Department of Surgery and Cancer; Imperial College London; 369 Fulham Road London SW10 9NH UK
| | - Istvan Nagy
- Section of Anaesthetics, Pain Medicine and Intensive Care; Department of Surgery and Cancer; Imperial College London; 369 Fulham Road London SW10 9NH UK
| |
Collapse
|
10
|
TRPV1 channels are functionally coupled with BK(mSlo1) channels in rat dorsal root ganglion (DRG) neurons. PLoS One 2013; 8:e78203. [PMID: 24147119 PMCID: PMC3797745 DOI: 10.1371/journal.pone.0078203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022] Open
Abstract
The transient receptor potential vanilloid receptor 1 (TRPV1) channel is a nonselective cation channel activated by a variety of exogenous and endogenous physical and chemical stimuli, such as temperature (≥42 °C), capsaicin, a pungent compound in hot chili peppers, and allyl isothiocyanate. Large-conductance calcium- and voltage-activated potassium (BK) channels regulate the electric activities and neurotransmitter releases in excitable cells, responding to changes in membrane potentials and elevation of cytosolic calcium ions (Ca2+). However, it is unknown whether the TRPV1 channels are coupled with the BK channels. Using patch-clamp recording combined with an infrared laser device, we found that BK channels could be activated at 0 mV by a Ca2+ influx through TRPV1 channels not the intracellular calcium stores in submilliseconds. The local calcium concentration around BK is estimated over 10 μM. The crosstalk could be affected by 10 mM BAPTA, whereas 5 mM EGTA was ineffectual. Fluorescence and co-immunoprecipitation experiments also showed that BK and TRPV1 were able to form a TRPV1-BK complex. Furthermore, we demonstrated that the TRPV1-BK coupling also occurs in dosal root ganglion (DRG) cells, which plays a critical physiological role in regulating the “pain” signal transduction pathway in the peripheral nervous system.
Collapse
|
11
|
Czikora Á, Lizanecz E, Bakó P, Rutkai I, Ruzsnavszky F, Magyar J, Pórszász R, Kark T, Facskó A, Papp Z, Édes I, Tóth A. Structure-activity relationships of vanilloid receptor agonists for arteriolar TRPV1. Br J Pharmacol 2012; 165:1801-1812. [PMID: 21883148 DOI: 10.1111/j.1476-5381.2011.01645.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The transient receptor potential vanilloid 1 (TRPV1) plays a role in the activation of sensory neurons by various painful stimuli and is a therapeutic target. However, functional TRPV1 that affect microvascular diameter are also expressed in peripheral arteries and we attempted to characterize this receptor. EXPERIMENTAL APPROACH Sensory TRPV1 activation was measured in rats by use of an eye wiping assay. Arteriolar TRPV1-mediated smooth muscle specific responses (arteriolar diameter, changes in intracellular Ca(2+)) were determined in isolated, pressurized skeletal muscle arterioles obtained from the rat and wild-type or TRPV1(-/-) mice and in canine isolated smooth muscle cells. The vascular pharmacology of the TRPV1 agonists (potency, efficacy, kinetics of action and receptor desensitization) was determined in rat isolated skeletal muscle arteries. KEY RESULTS Capsaicin evoked a constrictor response in isolated arteries similar to that mediated by noradrenaline, this was absent in arteries from TRPV1 knockout mice and competitively inhibited by TRPV1 antagonist AMG9810. Capsaicin increased intracellular Ca(2+) in the arteriolar wall and in isolated smooth muscle cells. The TRPV1 agonists evoked similar vascular constrictions (MSK-195 and JYL-79) or were without effect (resiniferatoxin and JYL-273), although all increased the number of responses (sensory activation) in the eye wiping assay. Maximal doses of all agonists induced complete desensitization (tachyphylaxis) of arteriolar TRPV1 (with the exception of capsaicin). Responses to the partial agonist JYL-1511 suggested 10% TRPV1 activation is sufficient to evoke vascular tachyphylaxis without sensory activation. CONCLUSIONS AND IMPLICATIONS Arteriolar TRPV1 have different pharmacological properties from those located on sensory neurons in the rat.
Collapse
Affiliation(s)
- Á Czikora
- Division of Clinical Physiology, Institute of CardiologyDepartment of PhysiologyDepartment of Pharmacology and Pharmacotherapy, Institute of PharmacologyDepartment of OphthalmologyResearch Centre for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - E Lizanecz
- Division of Clinical Physiology, Institute of CardiologyDepartment of PhysiologyDepartment of Pharmacology and Pharmacotherapy, Institute of PharmacologyDepartment of OphthalmologyResearch Centre for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - P Bakó
- Division of Clinical Physiology, Institute of CardiologyDepartment of PhysiologyDepartment of Pharmacology and Pharmacotherapy, Institute of PharmacologyDepartment of OphthalmologyResearch Centre for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - I Rutkai
- Division of Clinical Physiology, Institute of CardiologyDepartment of PhysiologyDepartment of Pharmacology and Pharmacotherapy, Institute of PharmacologyDepartment of OphthalmologyResearch Centre for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - F Ruzsnavszky
- Division of Clinical Physiology, Institute of CardiologyDepartment of PhysiologyDepartment of Pharmacology and Pharmacotherapy, Institute of PharmacologyDepartment of OphthalmologyResearch Centre for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - J Magyar
- Division of Clinical Physiology, Institute of CardiologyDepartment of PhysiologyDepartment of Pharmacology and Pharmacotherapy, Institute of PharmacologyDepartment of OphthalmologyResearch Centre for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - R Pórszász
- Division of Clinical Physiology, Institute of CardiologyDepartment of PhysiologyDepartment of Pharmacology and Pharmacotherapy, Institute of PharmacologyDepartment of OphthalmologyResearch Centre for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - T Kark
- Division of Clinical Physiology, Institute of CardiologyDepartment of PhysiologyDepartment of Pharmacology and Pharmacotherapy, Institute of PharmacologyDepartment of OphthalmologyResearch Centre for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - A Facskó
- Division of Clinical Physiology, Institute of CardiologyDepartment of PhysiologyDepartment of Pharmacology and Pharmacotherapy, Institute of PharmacologyDepartment of OphthalmologyResearch Centre for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Z Papp
- Division of Clinical Physiology, Institute of CardiologyDepartment of PhysiologyDepartment of Pharmacology and Pharmacotherapy, Institute of PharmacologyDepartment of OphthalmologyResearch Centre for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - I Édes
- Division of Clinical Physiology, Institute of CardiologyDepartment of PhysiologyDepartment of Pharmacology and Pharmacotherapy, Institute of PharmacologyDepartment of OphthalmologyResearch Centre for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - A Tóth
- Division of Clinical Physiology, Institute of CardiologyDepartment of PhysiologyDepartment of Pharmacology and Pharmacotherapy, Institute of PharmacologyDepartment of OphthalmologyResearch Centre for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Veldhuis NA, Lew MJ, Abogadie FC, Poole DP, Jennings EA, Ivanusic JJ, Eilers H, Bunnett NW, McIntyre P. N-glycosylation determines ionic permeability and desensitization of the TRPV1 capsaicin receptor. J Biol Chem 2012; 287:21765-72. [PMID: 22570472 DOI: 10.1074/jbc.m112.342022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The balance of glycosylation and deglycosylation of ion channels can markedly influence their function and regulation. However, the functional importance of glycosylation of the TRPV1 receptor, a key sensor of pain-sensing nerves, is not well understood, and whether TRPV1 is glycosylated in neurons is unclear. We report that TRPV1 is N-glycosylated and that N-glycosylation is a major determinant of capsaicin-evoked desensitization and ionic permeability. Both N-glycosylated and unglycosylated TRPV1 was detected in extracts of peripheral sensory nerves by Western blotting. TRPV1 expressed in HEK-293 cells exhibited various degrees of glycosylation. A mutant of asparagine 604 (N604T) was not glycosylated but did not alter plasma membrane expression of TRPV1. Capsaicin-evoked increases in intracellular calcium ([Ca(2+)](i)) were sustained in wild-type TRPV1 HEK-293 cells but were rapidly desensitized in N604T TRPV1 cells. There was marked cell-to-cell variability in capsaicin responses and desensitization between individual cells expressing wild-type TRPV1 but highly uniform responses in cells expressing N604T TRPV1, consistent with variable levels of glycosylation of the wild-type channel. These differences were also apparent when wild-type or N604T TRPV1-GFP fusion proteins were expressed in neurons from trpv1(-/-) mice. Capsaicin evoked a marked, concentration-dependent increase in uptake of the large cationic dye YO-PRO-1 in cells expressing wild-type TRPV1, indicative of loss of ion selectivity, that was completely absent in cells expressing N604T TRPV1. Thus, TRPV1 is variably N-glycosylated and glycosylation is a key determinant of capsaicin regulation of TRPV1 desensitization and permeability. Our findings suggest that physiological or pathological alterations in TRPV1 glycosylation would affect TRPV1 function and pain transmission.
Collapse
Affiliation(s)
- Nicholas A Veldhuis
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sanz-Salvador L, Andrés-Borderia A, Ferrer-Montiel A, Planells-Cases R. Agonist- and Ca2+-dependent desensitization of TRPV1 channel targets the receptor to lysosomes for degradation. J Biol Chem 2012; 287:19462-71. [PMID: 22493457 DOI: 10.1074/jbc.m111.289751] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPV1 receptor agonists such as the vanilloid capsaicin and the potent analog resiniferatoxin are well known potent analgesics. Depending on the vanilloid, dose, and administration site, nociceptor refractoriness may last from minutes up to months, suggesting the contribution of different cellular mechanisms ranging from channel receptor desensitization to Ca(2+) cytotoxicity of TRPV1-expressing neurons. The molecular mechanisms underlying agonist-induced TRPV1 desensitization and/or tachyphylaxis are still incompletely understood. Here, we report that prolonged exposure of TRPV1 to agonists induces rapid receptor endocytosis and lysosomal degradation in both sensory neurons and recombinant systems. Agonist-induced receptor internalization followed a clathrin- and dynamin-independent endocytic route, triggered by TRPV1 channel activation and Ca(2+) influx through the receptor. This process appears strongly modulated by PKA-dependent phosphorylation. Taken together, these findings indicate that TRPV1 agonists induce long-term receptor down-regulation by modulating the expression level of the channel through a mechanism that promotes receptor endocytosis and degradation and lend support to the notion that cAMP signaling sensitizes nociceptors through several mechanisms.
Collapse
|
14
|
Storti B, Bizzarri R, Cardarelli F, Beltram F. Intact microtubules preserve transient receptor potential vanilloid 1 (TRPV1) functionality through receptor binding. J Biol Chem 2012; 287:7803-11. [PMID: 22262838 DOI: 10.1074/jbc.m111.332296] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transient receptor potential cation channel subfamily V member 1 (TRPV1) is a protein currently under scrutiny as a pharmacological target for pain management therapies. Recently, the role of TRPV1-microtubule interaction in transducing nociception stimuli to cells by cytoskeletal rearrangement was proposed. In this work, we investigate TRPV1-microtubule interaction in living cells under the resting or activated state of TRPV1, as well as in presence of structurally intact or depolymerized cytoskeletal microtubules. We combined a toolbox of high resolution/high sensitivity fluorescence imaging techniques (such as FRET, correlation spectroscopy, and fluorescence anisotropy) to monitor TRPV1 aggregation status, membrane mobility, and interaction with microtubules. We found that TRPV1 is a dimeric membrane protein characterized by two populations with different diffusion properties in basal condition. After stimulation with resiniferatoxin, TRPV1 dimers tetramerize. The tetramers and the slower population of TRPV1 dimers bind dynamically to intact microtubules but not to tubulin dimers. Upon microtubule disassembly, the interaction with TRPV1 is lost thereby inducing receptor self-aggregation with partial loss of functionality. Intact microtubules play an essential role in maintaining TRPV1 functionality toward activation stimuli. This previously undisclosed property mirrors the recently reported role of TRPV1 in modulating microtubule assembly/disassembly and suggests the participation of these two players in a feedback cycle linking nociception and cytoskeletal remodeling.
Collapse
Affiliation(s)
- Barbara Storti
- National Enterprise for nanoScience and nanoTechnology (NEST), Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy.
| | | | | | | |
Collapse
|
15
|
Spinal anandamide produces analgesia in neuropathic rats: possible CB(1)- and TRPV1-mediated mechanisms. Neuropharmacology 2011; 62:1746-55. [PMID: 22178705 DOI: 10.1016/j.neuropharm.2011.11.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 11/21/2022]
Abstract
The endocannabinoid anandamide (AEA) activates also transient receptor potential vanilloid-1 (TRPV1) channels. However, no data exist on the potential role of spinal TRPV1 activation by AEA in neuropathic pain. We tested the effect of: 1) AEA (5-100 μg), alone or in the presence of an inhibitor of its hydrolysis, and 2) elevated levels of endogenous AEA (following inhibition of AEA hydrolysis), in CCI rats, and the involvement of TRPV1 or cannabinoid CB(1) receptors in the observed effects. Levels of AEA in the spinal cord of CCI rats were measured following all treatments. AEA (50 μg) displayed anti-allodynic and anti-hyperalgesic effects which were abolished by previous antagonism of TRPV1, but not CB(1), receptors. Depending on the administered dose, the selective inhibitor of AEA enzymatic hydrolysis, URB597 (10-100 μg), reduced thermal and tactile nociception via CB(1) or CB(1)/TRPV1 receptors. The anti-nociceptive effects of co-administered per se ineffective doses of AEA (5 μg) and URB597 (5 μg) was abolished by antagonism of CB(1), but not TRPV1, receptors. Spinal AEA levels were increased after CCI, slightly increased further by URB597, 10 μg i.t., and strongly elevated by URB597, 100 μg. Injection of AEA (50 μg) into the lumbar spinal cord led to its dramatic elevation in this tissue, whereas, when a lower dose was used (5 μg) AEA endogenous levels were elevated only in the presence of URB597 (5 μg). We suggest that spinal AEA reduces neuropathic pain via CB(1) or TRPV1, depending on its local concentration.
Collapse
|
16
|
Kawahara H, Drew GM, Christie MJ, Vaughan CW. Inhibition of fatty acid amide hydrolase unmasks CB1 receptor and TRPV1 channel-mediated modulation of glutamatergic synaptic transmission in midbrain periaqueductal grey. Br J Pharmacol 2011; 163:1214-22. [PMID: 21175570 DOI: 10.1111/j.1476-5381.2010.01157.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE While arachidonyl ethanolamine (anandamide) produces pharmacological effects mediated by cannabinoid CB1 receptors, it is also an agonist at the transient receptor potential vanilloid type 1 (TRPV1) ion channel. This study examined the cellular actions of anandamide in the midbrain periaqueductal grey (PAG), a region implicated in the analgesic actions of cannabinoids, and which expresses both CB1 receptors and TRPV1. EXPERIMENTAL APPROACH In vitro whole cell patch clamp recordings of glutamatergic excitatory postsynaptic currents (EPSCs) were made from rat and mouse PAG slices. KEY RESULTS Capsaicin (1 µM) increased the rate, but not the amplitude of miniature EPSCs in subpopulations of neurons throughout the rat and mouse PAG. Capsaicin had no effect on miniature EPSCs in PAG neurons from TRPV1 knock-out mice. In mouse PAG neurons, anandamide (30 µM) had no effect on the rate of miniature EPSCs alone, or in the presence of either the CB1 antagonist AM251 (3 µM) or the TRPV1 antagonist iodoresiniferatoxin (300 nM). Anandamide produced a decrease in miniature EPSC rate in the presence of the fatty acid amide hydrolase (FAAH) inhibitor URB597 (1 µM). By contrast, anandamide produced an increase in miniature EPSC rate in the presence of both URB597 and AM251, which was absent in TRPV1 knock-out mice. CONCLUSIONS AND IMPLICATIONS These results suggest that the actions of anandamide within PAG are limited by enzymatic degradation by FAAH. FAAH blockade unmasks both presynaptic inhibition and excitation of glutamatergic synaptic transmission which are mediated via CB1 receptors and TRPV1 respectively.
Collapse
Affiliation(s)
- H Kawahara
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia.
| | | | | | | |
Collapse
|
17
|
Wang EE, Li H, Wang S, Chuang AY, Chuang HH. Induction of TRPV1 desensitization by a biased receptor agonist. Channels (Austin) 2011; 5:464-7. [PMID: 21829089 DOI: 10.4161/chan.5.6.17401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Selective suppression of hyperactive sensory neurons is an attractive strategy for managing pathological pain. Blocking Na(+) channels to eliminate action potentials and desensitizing transduction channels can both reduce sensory neuron excitability. The novel synthetic vanilloid ligand cap-ET preserves agonist activation of intracellular Ca(2+) signals and large organic cation transport but loses effective electric current induction. Cap-ET can therefore be used to deliver the membrane impermeable Na(+) channel blocker QX-314 to substantially inhibit voltage-activated Na(+) currents. We explored, besides facilitating entry of organic cationic therapeutics, whether cap-ET can also produce receptor desensitization similar to the natural agonist capsaicin. Using the YO-PRO-1 based fluorescent dye uptake assay, we found that cap-ET effectively triggered Ca(2+) dependent desensitization of TRPV1 when the receptor was pre-sensitized with the surrogate oxidative chemical phenylarsine oxide (PAO), suggesting an alternative use of permanently charged cationic capsaicinoids in differential neuronal silencing.
Collapse
|
18
|
Blumberg PM, Pearce LV, Lee J. TRPV1 activation is not an all-or-none event: TRPV1 partial agonism/antagonism and its regulatory modulation. Curr Top Med Chem 2011; 11:2151-8. [PMID: 21671879 PMCID: PMC3420352 DOI: 10.2174/156802611796904825] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/18/2010] [Indexed: 12/26/2022]
Abstract
TRPV1 has emerged as a promising therapeutic target for pain as well as a broad range of other conditions such as asthma or urge incontinence. The identification of resiniferatoxin as an ultrapotent ligand partially able to dissect the acute activation of TRPV1 from subsequent desensitization and the subsequent intense efforts in medicinal chemistry have revealed that TRPV1 affords a dramatic landscape of opportunities for pharmacological manipulation. While agonism and antagonism have represented the primary directions for drug development, the pharmacological complexity of TRPV1 affords additional opportunities. Partial agonism/partial antagonism, its modulation by signaling pathways, variable desensitization, and slow kinetics of action can all be exploited through drug design.
Collapse
Affiliation(s)
- Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA.
| | | | | |
Collapse
|
19
|
Pungency of TRPV1 agonists is directly correlated with kinetics of receptor activation and lipophilicity. Eur J Pharmacol 2010; 641:114-22. [DOI: 10.1016/j.ejphar.2010.05.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 04/19/2010] [Accepted: 05/23/2010] [Indexed: 12/11/2022]
|
20
|
Acid-evoked Ca2+ signalling in rat sensory neurones: effects of anoxia and aglycaemia. Pflugers Arch 2010; 459:159-81. [PMID: 19806360 PMCID: PMC2765625 DOI: 10.1007/s00424-009-0715-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 07/30/2009] [Accepted: 08/14/2009] [Indexed: 12/11/2022]
Abstract
Ischaemia excites sensory neurones (generating pain) and promotes calcitonin gene-related peptide release from nerve endings. Acidosis is thought to play a key role in mediating excitation via the activation of proton-sensitive cation channels. In this study, we investigated the effects of acidosis upon Ca2+ signalling in sensory neurones from rat dorsal root ganglia. Both hypercapnic (pHo 6.8) and metabolic–hypercapnic (pHo 6.2) acidosis caused a biphasic increase in cytosolic calcium concentration ([Ca2+]i). This comprised a brief Ca2+ transient (half-time approximately 30 s) caused by Ca2+ influx followed by a sustained rise in [Ca2+]i due to Ca2+ release from caffeine and cyclopiazonic acid-sensitive internal stores. Acid-evoked Ca2+ influx was unaffected by voltage-gated Ca2+-channel inhibition with nickel and acid sensing ion channel (ASIC) inhibition with amiloride but was blocked by inhibition of transient receptor potential vanilloid receptors (TRPV1) with (E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide (AMG 9810; 1 μM) and N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropryazine-1(2H)-carbox-amide (BCTC; 1 μM). Combining acidosis with anoxia and aglycaemia increased the amplitude of both phases of Ca2+ elevation and prolonged the Ca2+ transient. The Ca2+ transient evoked by combined acidosis, aglycaemia and anoxia was also substantially blocked by AMG 9810 and BCTC and, to a lesser extent, by amiloride. In summary, the principle mechanisms mediating increase in [Ca2+]i in response to acidosis are a brief Ca2+ influx through TRPV1 followed by sustained Ca2+ release from internal stores. These effects are potentiated by anoxia and aglycaemia, conditions also prevalent in ischaemia. The effects of anoxia and aglycaemia are suggested to be largely due to the inhibition of Ca2+-clearance mechanisms and possible increase in the role of ASICs.
Collapse
|
21
|
Choi HK, Choi S, Lee Y, Kang DW, Ryu H, Maeng HJ, Chung SJ, Pavlyukovets VA, Pearce LV, Toth A, Tran R, Wang Y, Morgan MA, Blumberg PM, Lee J. Non-vanillyl resiniferatoxin analogues as potent and metabolically stable transient receptor potential vanilloid 1 agonists. Bioorg Med Chem 2009; 17:690-8. [PMID: 19135377 PMCID: PMC2798733 DOI: 10.1016/j.bmc.2008.11.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Revised: 11/20/2008] [Accepted: 11/20/2008] [Indexed: 01/08/2023]
Abstract
A series of non-vanillyl resiniferatoxin analogues, having 4-methylsulfonylaminophenyl and fluorophenyl moieties as vanillyl surrogates, have been investigated as ligands for rat TRPV1 heterologously expressed in Chinese hamster ovary cells. Although lacking the metabolically problematic 4-hydroxy substituent on the A-region phenyl ring, the compounds retained substantial agonist potency. Indeed, the 3-methoxy-4-methylsulfonylaminophenyl analog (1) was modestly (2.5-fold) more potent than RTX, with an EC(50)=0.106 nM. Further, it resembled RTX in its kinetics and pattern of stimulation of the levels of intracellular calcium in individual cells, as revealed by imaging. Compound 1 displayed modestly enhanced in vitro stability in rat liver microsomes and in plasma, suggesting that it might be a pharmacokinetically more favorable surrogate of resiniferatoxin. Molecular modeling analyses with selected analogues provide evidence that the conformational differences could affect their binding affinities, especially for the ester versus amide at the B-region.
Collapse
Affiliation(s)
- Hyun-Kyung Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Shinlim-Dong, Kwanak-Ku, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yeh JH, Lee JK, Wang JS, Yeh MY, Yang YL, Huang JS, Chang WT, Kuo DH, Shieh P, Chen FA, Kuo CC, Jan CR. Effect of capsaicin on Ca 2+fluxes in Madin-Darby canine renal tubular cells. Drug Dev Res 2009. [DOI: 10.1002/ddr.20330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Tóth A, Blumberg PM, Boczán J. Chapter 15 Anandamide and the Vanilloid Receptor (TRPV1). VITAMINS AND HORMONES 2009; 81:389-419. [DOI: 10.1016/s0083-6729(09)81015-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Sappington RM, Sidorova T, Long DJ, Calkins DJ. TRPV1: contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure. Invest Ophthalmol Vis Sci 2008; 50:717-28. [PMID: 18952924 DOI: 10.1167/iovs.08-2321] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Elevated hydrostatic pressure induces retinal ganglion cell (RGC) apoptosis in culture. The authors investigated whether the transient receptor potential vanilloid 1 (TRPV1) channel, which contributes to pressure sensing and Ca(2+)-dependent cell death in other systems, also contributes to pressure-induced RGC death and whether this contribution involves Ca(2+). METHODS trpv1 mRNA expression in RGCs was probed with the use of PCR and TRPV1 protein localization through immunocytochemistry. Subunit-specific antagonism (iodo-resiniferatoxin) and agonism (capsaicin) were used to probe how TRPV1 activation affects the survival of isolated RGCs at ambient and elevated hydrostatic pressure (+70 mm Hg). Finally, for RGCs under pressure, the authors tested whether EGTA chelation of Ca(2+) improves survival and whether, with the Ca(2+) dye Fluo-4 AM, TRPV1 contributes to increased intracellular Ca(2+). RESULTS RGCs express trpv1 mRNA, with robust TRPV1 protein localization to the cell body and axon. For isolated RGCs under pressure, TRPV1 antagonism increased cell density and reduced apoptosis to ambient levels (P <or= 0.05), whereas for RGCs at ambient pressure, TRPV1 agonism reduced density and increased apoptosis to levels for elevated pressure (P <or= 0.01). Chelation of extracellular Ca(2+) reduced RGC apoptosis at elevated pressure by nearly twofold (P <or= 0.01). Exposure to elevated hydrostatic pressure induced a fourfold increase in RGC intracellular Ca(2+) that was reduced by half with TRPV1 antagonism. Finally, in the DBA/2 mouse model of glaucoma, levels of TRPV1 in RGCs increased with elevated IOP. CONCLUSIONS RGC apoptosis induced by elevated hydrostatic pressure arises substantially through TRPV1, likely through the influx of extracellular Ca(2+).
Collapse
Affiliation(s)
- Rebecca M Sappington
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0654, USA
| | | | | | | |
Collapse
|
25
|
McDonald HA, Neelands TR, Kort M, Han P, Vos MH, Faltynek CR, Moreland RB, Puttfarcken PS. Characterization of A-425619 at native TRPV1 receptors: A comparison between dorsal root ganglia and trigeminal ganglia. Eur J Pharmacol 2008; 596:62-9. [DOI: 10.1016/j.ejphar.2008.07.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/18/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
|
26
|
Marincsák R, Tóth BI, Czifra G, Szabó T, Kovács L, Bíró T. The Analgesic Drug, Tramadol, Acts as an Agonist of the Transient Receptor Potential Vanilloid-1. Anesth Analg 2008; 106:1890-6. [DOI: 10.1213/ane.0b013e318172fefc] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Pearce LV, Toth A, Ryu H, Kang DW, Choi HK, Jin MK, Lee J, Blumberg PM. Differential modulation of agonist and antagonist structure activity relations for rat TRPV1 by cyclosporin A and other protein phosphatase inhibitors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2008; 377:149-57. [PMID: 18259730 PMCID: PMC2931423 DOI: 10.1007/s00210-007-0258-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
Abstract
The transient receptor potential V1 channel (vanilloid receptor, TRPV1) represents a promising therapeutic target for inflammatory pain and other conditions involving C-fiber sensory afferent neurons. Sensitivity of TRPV1 is known to be subject to modulation by numerous signaling pathways, in particular by phosphorylation, and we wished to determine whether TRPV1 structure activity relations could be differentially affected. We demonstrate here that the structure activity relations of TRPV1, as determined by (45)Ca(2) uptake, were substantially altered by treatment of the cells with cyclosporin A, an inhibitor of protein phosphatase 2B. Whereas the potency of resiniferatoxin for stimulation of (45)Ca(2) was not altered by cyclosporin A treatment, the potencies of some other agonists were increased up to 8-fold. Among the antagonists examined, potencies were reduced to a lesser extent, ranging from 1- to 2.5-fold. Finally, the efficacy of partial agonists was increased. In contrast to cyclosporin A, okadaic acid, an inhibitor of protein phosphatases 1 and 2A, had little effect on agonist potencies, and calyculin A, an inhibitor of protein phosphatases 1 and 2A but with somewhat different selectivity from that of okadaic acid, caused changes in structure activity relations distinct from those induced by cyclosporin A. Because phosphatase activity differentially modulates the structure activity relations of TRPV1 agonists and antagonists, our findings predict that it may be possible to design agonists and antagonists selective for TRPV1 in a specific regulatory environment. A further implication is that it may be desirable to tailor screening approaches for drug discovery to reflect the desired regulatory state of the targeted TRPV1.
Collapse
Affiliation(s)
- Larry V. Pearce
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Attila Toth
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, 22 Moricz Zs krt, Debrecen, H-4032, Hungary
| | - HyungChul Ryu
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Dong Wook Kang
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Hyun-Kyung Choi
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Mi-Kyoung Jin
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
28
|
Sappington RM, Calkins DJ. Contribution of TRPV1 to microglia-derived IL-6 and NFkappaB translocation with elevated hydrostatic pressure. Invest Ophthalmol Vis Sci 2008; 49:3004-17. [PMID: 18362111 DOI: 10.1167/iovs.07-1355] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PURPOSE The authors investigated the contributions of the transient receptor potential vanilloid-1 receptor (TRPV1) and Ca(2+) to microglial IL-6 and nuclear factor kappa B (NFkappaB) translocation with elevated hydrostatic pressure. METHODS The authors first examined IL-6 colocalization with the microglia marker Iba-1 in the DBA/2 mouse model of glaucoma to establish relevance. They isolated microglia from rat retina and maintained them at ambient or elevated (+70 mm Hg) hydrostatic pressure in vitro and used ELISA and immunocytochemistry to measure changes in the IL-6 concentration and NFkappaB translocation induced by the Ca(2+) chelator EGTA, the broad-spectrum Ca(2+) channel inhibitor ruthenium red, and the TRPV1 antagonist iodo-resiniferatoxin (I-RTX). They applied the Ca(2+) dye Fluo-4 AM to measure changes in intracellular Ca(2+) at elevated pressure induced by I-RTX and confirmed TRPV1 expression in microglia using PCR and immunocytochemistry. RESULTS In DBA/2 retina, elevated intraocular pressure increased microglial IL-6 in the ganglion cell layer. Elevated hydrostatic pressure (24 hours) increased microglial IL-6 release, cytosolic NFkappaB, and NFkappaB translocation in vitro. These effects were reduced substantially by EGTA and ruthenium red. Antagonism of TRPV1 in microglia partially inhibited pressure-induced increases in IL-6 release and NFkappaB translocation. Brief elevated pressure (1 hour) induced a significant increase in microglial intracellular Ca(2+) that was partially attenuated by TRPV1 antagonism. CONCLUSIONS Elevated pressure induces an influx of extracellular Ca(2+) in retinal microglia that precedes the activation of NFkappaB and the subsequent production and release of IL-6 and is at least partially dependent on the activation of TRPV1 and other ruthenium red-sensitive channels.
Collapse
Affiliation(s)
- Rebecca M Sappington
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0654, USA
| | | |
Collapse
|
29
|
Hagenacker T, Büsselberg D. Modulation of intracellular calcium influences capsaicin-induced currents of TRPV-1and voltage-activated channel currents in nociceptive neurones. J Peripher Nerv Syst 2007; 12:277-84. [DOI: 10.1111/j.1529-8027.2007.00149.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Martelli L, Ragazzi E, di Mario F, Martelli M, Castagliuolo I, Dal Maschio M, Palù G, Maschietto M, Scorzeto M, Vassanelli S, Brun P. A potential role for the vanilloid receptor TRPV1 in the therapeutic effect of curcumin in dinitrobenzene sulphonic acid-induced colitis in mice. Neurogastroenterol Motil 2007; 19:668-674. [PMID: 17640182 DOI: 10.1111/j.1365-2982.2007.00928.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A protective role of the transient potential vanilloid receptor 1 (TRPV1) in intestinal inflammation induced by dinitrobenzene sulphonic acid (DNBS) has been recently demonstrated. Curcumin, the major active component of turmeric, is also able to prevent and ameliorate the severity of the damage in DNBS-induced colitis. We evaluated the possibility that curcumin (45 mg kg(-1) day p.o. for 2 days before and 5 days after the induction of colitis) was able to reduce DNBS-induced colitis in mice, by acting as a TRPV1 agonist. Macroscopic damage score, histological damage score and colonic myeloperoxidase (MPO) activity were significantly lower (by 71%, 65% and 73%, respectively; P < 0.01), in animals treated with curcumin compared with untreated animals. Capsazepine (30 mg kg(-1), i.p.), a TRPV1 receptor antagonist, completely abolished the protective effects of curcumin. To extend these data in vitro, Xenopus oocytes expressing rat TRPV1 were examined. Capsaicin-evoked currents (3.3 micromol L(-1)) disappeared subsequent either to removal of the agonist or subsequent to the addition of capsazepine. However, curcumin (30 micromol L(-1)) was ineffective both as regard direct modification of cell membrane currents and as regard interference with capsaicin-mediated effects. As sensitization of the TRPV1 receptor by mediators of inflammation in damaged tissues has been shown previously, our results suggest that in inflamed, but not in normal tissue, curcumin can interact with the TRPV1 receptor to mediate its protective action in DNBS-induced colitis.
Collapse
Affiliation(s)
- L Martelli
- Department of Pharmacology and Anaesthesiology, Universitá di Padova, 2 Largo Menenghetti, I-35131 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Blumberg P, Szallasi A. Complex Regulation of TRPV1 by Vanilloids. TRP ION CHANNEL FUNCTION IN SENSORY TRANSDUCTION AND CELLULAR SIGNALING CASCADES 2006. [DOI: 10.1201/9781420005844.ch6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Morita A, Iwasaki Y, Kobata K, Iida T, Higashi T, Oda K, Suzuki A, Narukawa M, Sasakuma S, Yokogoshi H, Yazawa S, Tominaga M, Watanabe T. Lipophilicity of capsaicinoids and capsinoids influences the multiple activation process of rat TRPV1. Life Sci 2006; 79:2303-10. [PMID: 16950406 DOI: 10.1016/j.lfs.2006.07.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 07/18/2006] [Accepted: 07/28/2006] [Indexed: 11/20/2022]
Abstract
Analogs of capsaicin, such as capsaicinoids and capsinoids, activate a cation channel, transient receptor potential cation channel vanilloid subfamily 1 (TRPV1), and then increase the intracellular calcium concentration ([Ca2+]i). These compounds would be expected to activate TRPV1 via different mechanism(s), depending on their properties. We synthesized several capsaicinoids and capsinoids that have variable lengths of acyl moiety. The activities of these compounds towards TRPV1 heterologously expressed in HEK293 cells were determined by measuring [Ca2+]i. When an extracellular or intracellular Ca2+ source was removed, some agonists such as capsaicin could increase [Ca2+]i. However, a highly lipophilic capsaicinoid containing C18:0 and capsinoids containing C14:0, C18:0, or C18:1 (the latter was named olvanilate) could not elicit a large increase in [Ca2+]i in the absence of an extracellular or intracellular Ca2+ source. These results suggest that highly lipophilic compounds cause only a slight Ca2+ influx, via TRPV1 in the plasma membrane, and are not able to activate TRPV1 in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Akihito Morita
- School of Food and Nutritional Sciences and COE Program in the 21st Century, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bianchi BR, Lee CH, Jarvis MF, El Kouhen R, Moreland RB, Faltynek CR, Puttfarcken PS. Modulation of human TRPV1 receptor activity by extracellular protons and host cell expression system. Eur J Pharmacol 2006; 537:20-30. [PMID: 16630609 DOI: 10.1016/j.ejphar.2006.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 02/28/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) receptor is a ligand-gated cation channel that can be activated by capsaicin, heat, protons and cytosolic lipids. We compared activation of recombinant human TRPV1 receptors stably expressed in human 293 cells, derived from kidney embryonic cells, and in human 1321N1 cells, derived from brain astrocytes. Cellular influx of calcium was measured in response to acid, endovanilloids (N-arachidonoyl-dopamine, N-oleoyl-dopamine and anandamide), capsaicin and other traditional vanilloid agonists under normal (pH 7.4) and acidic (pH 6.7 and 6.0) assay conditions. The host cell expression system altered the agonist profile of endogenous TRPV1 receptor agonists without affecting the pharmacological profile of either exogenous TRPV1 receptor agonists or antagonists. Our data signify that the host cell expression system plays a modulatory role in TRPV1 receptor activity, and suggests that activation of native human TRPV1 receptors in vivo will be dependent on cell-specific regulatory factors/pathways.
Collapse
Affiliation(s)
- Bruce R Bianchi
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Lazar J, Braun DC, Tóth A, Wang Y, Pearce LV, Pavlyukovets VA, Blumberg PM, Garfield SH, Wincovitch S, Choi HK, Lee J. Kinetics of penetration influence the apparent potency of vanilloids on TRPV1. Mol Pharmacol 2006; 69:1166-73. [PMID: 16418338 DOI: 10.1124/mol.105.019158] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence that the ligand binding site of TRPV1 lies on the inner face of the plasma membrane and that much of the TRPV1 itself is localized to internal membranes suggests that the rate of ligand entry into the cell may be an important determinant of the kinetics of ligand action. In this study, we synthesized a BODIPY TR-labeled fluorescent capsaicin analog (CHK-884) so that we could directly measure ligand entry. We report that CHK-884 penetrated only slowly into Chinese hamster ovary (CHO) cells expressing rat TRPV1, with a t1/2 of 30 +/- 4 min, and localized in the endoplasmic reticulum and Golgi. Although CHK-884 was only weakly potent for TRPV1 binding (Ki = 6400 +/- 230 nM), it was appreciably more potent when assayed by intracellular calcium imaging and was 3.2-fold more potent with a 1-h incubation time (37 nM) than with a 5-min incubation time. Olvanil, a highly lipophilic vanilloid, yielded an EC50 of 4.3 nM upon intracellular calcium imaging with an incubation time of 1 h, compared with an EC50 value of 29.5 nM for calcium imaging assayed at 5 min. Likewise, the antagonist 5-iodo-resiniferatoxin (5-iodo-RTX) displayed a Ki of 4.2 pM if incubated with CHO-TRPV1 cells for 2 h before addition of capsaicin compared with 1.5 nM if added simultaneously. We conclude that some vanilloids may have slow kinetics of uptake; this slow uptake may affect assessment of structure activity relations and may represent a significant factor for vanilloid drug design.
Collapse
Affiliation(s)
- Jozsef Lazar
- Molecular Mechanism of Tumor Promotion, Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, National Institutes of Health, Bldg. 37, Room 4048, 37 Convent Drive, MSC 4255, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Márquez N, De Petrocellis L, Caballero FJ, Macho A, Schiano-Moriello A, Minassi A, Appendino G, Muñoz E, Di Marzo V. Iodinated N-acylvanillamines: potential "multiple-target" anti-inflammatory agents acting via the inhibition of t-cell activation and antagonism at vanilloid TRPV1 channels. Mol Pharmacol 2006; 69:1373-82. [PMID: 16394182 DOI: 10.1124/mol.105.019786] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synthetic N-acylvanillamines were designed and developed as metabolically stable compounds with pharmacological potential in analgesia and inflammation because of their interaction with cannabinoid receptors and the vanilloid receptor (TRPV1). Here, we show that arvanil inhibits early events in T-cell receptor (TCR)-mediated T-cell activation, such as calcium mobilization and nuclear factor of activated T-cell activation, and in late events in TCR-mediated activation, such as interleukin (IL)-2 gene transcription, IL-2R expression, and cell-cycle progression. Arvanil also prevents tumor necrosis factor-alpha-induced nuclear factor-kappaB (NF-kappaB) activation by direct inhibition of IkappaBalpha degradation, NF-kappaB binding to DNA, and NF-kappaB-dependent transcription. Aromatic iodination meta to the phenolic hydroxyl (on the 6'-carbon atom) converts arvanil and olvanil from TRPV1 agonists into antagonists. However, this structural modification did not affect the immunosuppressive and proapoptotic activity of these compounds. In summary, we described here novel activities of arvanil on T-cell functions and the development of two novel inhibitors of neurogenic inflammation (6'-I-olvanil and 6'-I-arvanil) endowed with a unique combination of TRPV1 antagonistic-, immunosuppressive-, and NF-kappaB-inhibitory properties. Our findings provide new mechanistic insights into the biological activities of N-alkylvanillamines and should foster the synthesis of improved analogs amenable to pharmaceutical development as analgesic and anti-inflammatory agents.
Collapse
Affiliation(s)
- Nieves Márquez
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Medicina, Universidad de Córdoba, Córdoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lizanecz E, Bagi Z, Pásztor ET, Papp Z, Edes I, Kedei N, Blumberg PM, Tóth A. Phosphorylation-dependent desensitization by anandamide of vanilloid receptor-1 (TRPV1) function in rat skeletal muscle arterioles and in Chinese hamster ovary cells expressing TRPV1. Mol Pharmacol 2006; 69:1015-23. [PMID: 16338989 DOI: 10.1124/mol.105.015644] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been proposed that activation of vanilloid receptor-1 (TRPV1) affects the vasotone of resistance arteries. One of the endogenous activators of TRPV1 is anandamide. The effects of anandamide on TRPV1 responsiveness were tested on isolated, pressurized (80 mm Hg) skeletal muscle (m. gracilis) arterioles (179 +/- 33 microm in diameter). We found that the TRPV1 agonist capsaicin (1 microM) elicited a substantial constriction in isolated arterioles (51 +/- 12%). In contrast, anandamide (0-100 microM) did not affect arteriolar diameter significantly (3 +/- 5%). Isolated vessels were also preincubated with anandamide (30 microM for 20 min). This anandamide pretreatment completely blocked capsaicin-induced arteriolar constriction (response decreased to 1 +/- 0.6%), and this inhibition was reversed by a protein phosphatase-2B inhibitor (cyclosporin-A; 100 nM, 5 min) treatment (constriction, 31 +/- 1%). An exogenous TRPV1-expressing cell line [Chinese hamster ovary (CHO)-TRPV1] was used to specifically evaluate TRPV1-mediated effects of anandamide. The efficacy of anandamide in this system, as determined by 45Ca2+ uptake, was 65 +/- 8% of that of capsaicin. Upon treatment of the cells with cyclosporin-A or the protein kinase C activator phorbol 12-myristate 13-acetate (PMA), anandamide was transformed to a full agonist. Anandamide treatment caused an acute desensitization in these cells as measured by intracellular Ca2+ imaging. Application of cyclosporin-A or PMA reversed this desensitization. Our data suggest that anandamide may cause a complete (albeit phosphorylation-dependent) desensitization of TRPV1 in skeletal muscle arterioles and in CHO-TRPV1 cells, which apparently transforms the ligand-gated TRPV1 into a phosphorylation-gated channel. This property of anandamide may provide a new therapeutic strategy to manipulate TRPV1 activity.
Collapse
Affiliation(s)
- Erzsébet Lizanecz
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, 4004, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Maione S, Bisogno T, de Novellis V, Palazzo E, Cristino L, Valenti M, Petrosino S, Guglielmotti V, Rossi F, Di Marzo V. Elevation of endocannabinoid levels in the ventrolateral periaqueductal grey through inhibition of fatty acid amide hydrolase affects descending nociceptive pathways via both cannabinoid receptor type 1 and transient receptor potential vanilloid type-1 receptors. J Pharmacol Exp Ther 2006; 316:969-82. [PMID: 16284279 DOI: 10.1124/jpet.105.093286] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the ventrolateral periaqueductal gray (PAG), activation of excitatory output neurons projecting monosynaptically to OFF cells in the rostral ventromedial medulla (RVM) causes antinociceptive responses and is under the control of cannabinoid receptor type-1 (CB1) and vanilloid transient receptor potential vanilloid type 1 (TRPV1) receptors. We studied in healthy rats the effect of elevation of PAG endocannabinoid [anandamide and 2-arachidonoylglycerol (2-AG)] levels produced by intra-PAG injections of the inhibitor of fatty acid amide hydrolase URB597 [cyclohexylcarbamic acid-3'-carbamoyl-biphenyl-3-yl ester] on 1) nociception in the "plantar test" and 2) spontaneous and tail-flick-related activities of RVM neurons. Depending on the dose or time elapsed since administration, URB597 (0.5-2.5 nmol/rat) either suppressed or increased thermal nociception via TRPV1 or CB1 receptors, respectively. TRPV1 or cannabinoid receptor agonists capsaicin (6 nmol) and (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3,-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate [WIN55,212-2 (4 nmol)] also suppressed or enhanced nociception, respectively. URB597 dose dependently enhanced PAG anandamide and 2-AG levels, with probable subsequent activation of TRPV1/CB1 receptors and only CB1 receptors, respectively. The TRPV1-mediated antinociception and CB1-mediated nociception caused by URB597 correlated with enhanced or reduced activity of RVM OFF cells, suggesting that these effects occur via stimulation or inhibition of excitatory PAG output neurons, respectively. Accordingly, several ventrolateral PAG neurons were found by immunohistochemistry to coexpress TRPV1 and CB1 receptors. Finally, at the highest doses tested, URB597 (4 nmol/rat) and, as previously reported, WIN55,212-2 (25-100 nmol) also caused CB(1)-mediated analgesia, correlating with stimulation (possibly disinhibition) of RVM OFF cells. Thus, endocannabinoids affect the descending pathways of pain control by acting at either CB1 or TRPV1 receptors in healthy rats.
Collapse
Affiliation(s)
- Sabatino Maione
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Appendino G, Szallasi A. 4 Clinically Useful Vanilloid Receptor TRPV1 Antagonists: Just around the Corner (or too Early to Tell)? PROGRESS IN MEDICINAL CHEMISTRY 2006; 44:145-80. [PMID: 16697897 DOI: 10.1016/s0079-6468(05)44404-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Giovanni Appendino
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, Università del Piemonte Orientale, Novara, Italy
| | | |
Collapse
|
39
|
O'Connell PJ, Pingle SC, Ahern GP. Dendritic cells do not transduce inflammatory stimuli via the capsaicin receptor TRPV1. FEBS Lett 2005; 579:5135-9. [PMID: 16140298 DOI: 10.1016/j.febslet.2005.08.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 08/09/2005] [Indexed: 01/06/2023]
Abstract
Inflammatory stimuli provide critical activation signals for dendritic cells (DC). Signaling through the capsaicin receptor TRPV1 is reported to initiate DC maturation and migration. We attempted to characterize TRPV1 channels in DC. Capsaicin or extracellular protons failed to elicit a change in intracellular [Ca(2+)] or membrane current in DC. In contrast, capsaicin evoked a sustained increase in [Ca(2+)] and large inwards currents in sensory neurons and TRPV1-expressing HEK293 cells. TRPV1 expression was confirmed by RT-PCR in sensory neurons, but was undetectable in DC. Interestingly, and in contrast to capsaicin, the inflammatory neuropeptide substance P evoked Ca(2+) transients in DC. Thus, our data do not support the hypothesis that DC express TRPV1 channels. Rather, signaling through TRPV1 in sensory nerves may modulate DC via neurogenic actions.
Collapse
Affiliation(s)
- Peta J O'Connell
- Robarts Research Institute, 100 Perth Drive, P.O. Box 5015, London, Ont., Canada N6A 5K8.
| | | | | |
Collapse
|
40
|
Appendino G, Daddario N, Minassi A, Moriello AS, De Petrocellis L, Di Marzo V. The Taming of Capsaicin. Reversal of the Vanilloid Activity of N-Acylvanillamines by Aromatic Iodination. J Med Chem 2005; 48:4663-9. [PMID: 16000002 DOI: 10.1021/jm050139q] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aromatic iodination ortho to the phenolic hydroxyl reverts the activity of the ultrapotent vanilloid agonist resiniferatoxin (RTX, 1a), generating the ultrapotent antagonist 5'-iodoRTX (1b). To better understand the role of iodine in this remarkable switch of activity, a systematic investigation on the halogenation of vanillamides, a class of compounds structurally simpler than resiniferonoids, was carried out. The results showed that (a) the antagonistic activity depends on the site of halogenation and is maximal at C-6', (b) iodine is more efficient than chlorine and bromine at reverting the agonistic activity, and (c) iodine-carbon exchange decreases antagonist activity. Iodine-induced reversal of vanilloid activity was also observed in vanillamides more powerful than capsaicin, but a poor correlation was found between agonistic and antagonistic potencies, suggesting that differences exist in the way vanillamides and their 6'-iodo derivatives bind to TRPV1.' '
Collapse
Affiliation(s)
- Giovanni Appendino
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, Novara, Italy
| | | | | | | | | | | |
Collapse
|