1
|
Knox J, Magana C, Duncan DT, Shrader CH, Wilson A, Keedy S, Pagkas-Bather J, Chen YT, Schneider JA. Cannabis use and HIV among Black sexually minoritized men: a systematic review and narrative analysis. AIDS 2025; 39:1032-1046. [PMID: 39918441 PMCID: PMC12122238 DOI: 10.1097/qad.0000000000004149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/30/2025] [Indexed: 02/23/2025]
Abstract
OBJECTIVE We conducted a systematic review evaluating the extant literature examining the impacts of cannabis use on HIV-related outcomes among Black sexual minoritized men (BSMM). DESIGN A systematic review. METHODS We conducted a search in November 2024 of PubMed, EMBASE, CINAHL, PsycINFO, and Web of Science using keywords related to BSMM, HIV, and cannabis. Study quality was assessed utilizing a tool developed for observational studies. One hundred eight unique articles were screened with 55 undergoing full-text review, and 20 met inclusion criteria. Results were synthesized and presented utilizing a narrative review process. RESULTS We identified 20 studies published between 1999 and 2024. Measures of cannabis use included any use (e.g., ever, past 30 days), daily/intermittent/heavy use, use before/during sex, and problematic use. Outcomes included HIV positivity/seroconversion, HIV Continuum of Care (CoC), PrEP CoC, and sex behavior strengths, vulnerabilities, and assets. Study findings were generally mixed, however positive associations between cannabis use and HIV seroconversion, inconsistent condom use, being HIV-positive and unaware of one's serostatus, and suboptimal ART adherence were reported. CONCLUSION This systematic review identified a growing literature on cannabis use and HIV among Black SMM. Conclusions that can be drawn from the evidence are limited. There is a critical need for studies that more rigorously measure cannabis use by considering contexts of cannabis use. In addition, there is a need for research that examines the pathways and mechanisms through which cannabis use may affect prevention and treatments outcomes related to HIV among Black SMM.
Collapse
Affiliation(s)
- Justin Knox
- New York State Psychiatric Institute, New York, NY, USA, 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10036, USA
- Department of Sociomedical Sciences, Mailman School of Public Health, New York, NY, 10036, USA
| | - Christopher Magana
- New York State Psychiatric Institute, New York, NY, USA, 10032, USA
- Department of Sociomedical Sciences, Mailman School of Public Health, New York, NY, 10036, USA
| | - Dustin T. Duncan
- Department of Epidemiology, Mailman School of Public Health, New York, NY, 10036, USA
| | - Cho-Hee Shrader
- Department of Epidemiology, Mailman School of Public Health, New York, NY, 10036, USA
| | - Allison Wilson
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Sarah Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Jade Pagkas-Bather
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Yen-Tyng Chen
- School of Planning and Public Policy, Rutgers University, New Brunswick, NJ 08854, USA
| | - John A. Schneider
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
2
|
Valizadeh A, Veenhuis RT, Bradley BA, Xu K. Transcriptomic Alterations Induced by Tetrahydrocannabinol in SIV/HIV Infection: A Systematic Review. Int J Mol Sci 2025; 26:2598. [PMID: 40141240 PMCID: PMC11942185 DOI: 10.3390/ijms26062598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Given the high prevalence of cannabis use among people with HIV (PWH) and its potential to modulate immune responses and reduce inflammation, this systematic review examines preclinical evidence on how tetrahydrocannabinol (THC), a key compound in cannabis, affects gene and micro-RNA expression in simian immunodeficiency virus (SIV)-infected macaques and HIV-infected human cells. Through a comprehensive search, 19 studies were identified, primarily involving SIV-infected macaques, with a pooled sample size of 176, though methodological quality varied across the studies. Pathway analysis of differentially expressed genes (DEGs) and miRNAs associated with THC revealed enrichment in pathways related to inflammation, epithelial cell proliferation, and adhesion. Notably, some DEGs were targets of the differentially expressed miRNAs, suggesting that epigenetic regulation may contribute to THC's effects on gene function. These findings indicate that THC may help mitigate chronic immune activation in HIV infection by altering gene and miRNA expression, suggesting its potential immunomodulatory role. However, the evidence is constrained by small sample sizes and inconsistencies across studies. Further research employing advanced methodologies and larger cohorts is essential to confirm THC's potential as a complementary therapy for PWH and fully elucidate the underlying mechanisms, which could inform targeted interventions to harness its immunomodulatory effects.
Collapse
Affiliation(s)
- Amir Valizadeh
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; (A.V.); (B.A.B.)
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Rebecca T. Veenhuis
- Department of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Brooklyn A. Bradley
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; (A.V.); (B.A.B.)
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; (A.V.); (B.A.B.)
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
3
|
Hale JF, Reynolds S, Kates HR, Palella RD, Benmassaoud MM, Smith KA, Yu D, Ramirez SH, Andrews AM. Cannabis use is associated with a lower likelihood of presence of HIV drug resistance mutations in a retrospective cohort of adults with HIV. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2025; 4:49-57. [PMID: 40313366 PMCID: PMC12041849 DOI: 10.1515/nipt-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/20/2025] [Indexed: 05/03/2025]
Abstract
Objectives A significant clinical concern in the era of Pre-Exposure Prophylaxis (PrEP) is the increased incidence of HIV Anti-Retroviral Drug Resistance Mutations (ARV-DRM). Previous research has indicated that there is an association between substance use and failed viral suppression, which can lead to ARV-DRM. The goal of this retrospective study was to investigate whether substance use as determined by at least one positive urinalysis screen is associated with increased/decreased odds of having a ARV-DRM. Methods This study used firth logistic regression analyses of data retrieved from the National NeuroAIDS Tissue Consortium Data Coordinating Center to examine the relationship between substance use and ARV-DRM. The dataset analyzed 614 participants with the following criteria: HIV+ status, at least one paired plasma and cerebrospinal fluid (CSF) viral load measurement, at least one urinalysis of substance use, at least 18 years of age, and analysis of DRM in CSF/Plasma. Results Cannabis use was a significant predictor of ARV-DRM and was associated with a lower odds of having ARV-DRM (odds ratio=0.189), after accounting for demographic variables and the interaction between polysubstance use and cannabis use. A significant negative relationship was observed between a cannabis positive test and high viremia (>1,000 copies/mL) but not between a cannabis positive test and CSF Escape (viral load CSF>viral load plasma). Conclusions The above results may suggest an immunomodulatory role for cannabis that impacts the propensity for ARV-DRM. These findings could incentivize future research to further investigate effects of cannabis use on the development of HIV ARV-DRM.
Collapse
Affiliation(s)
- Jonathan F. Hale
- Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shellynea Reynolds
- Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Heather R. Kates
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Mohammed M. Benmassaoud
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Kelly A. Smith
- Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Daohai Yu
- Center for Biostatistics and Epidemiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Servio H. Ramirez
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Allison M. Andrews
- Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Substance of Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Hassan Kalantar Neyestanaki M, Gholizadeh O, Hosseini Tabatabaie F, Akbarzadeh S, Yasamineh S, Afkhami H, Sedighi S. Immunomodulatory effects of cannabinoids against viral infections: a review of its potential use in SARS-CoV2 infection. Virusdisease 2024; 35:342-356. [PMID: 39071880 PMCID: PMC11269557 DOI: 10.1007/s13337-024-00871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/11/2024] [Indexed: 07/30/2024] Open
Abstract
The COVID-19 pandemic is a global health crisis affecting millions of people worldwide. Along with vaccine development, there is also a priority to discover new drugs and treatments. One approach involves modulating the immune system to manage inflammation and cytokine storms. Patients with a high severity of complications exhibit a high level of inflammatory cytokines, particularly IL-6, in the airways and other infected tissues. Several studies have reported the function of the endocannabinoid system in regulating inflammation and different immune responses. Cannabinoids are a class of natural chemicals found in the Cannabis plant. Recently, the anti-inflammatory properties of cannabinoids and their mediatory immunosuppression mechanisms through the endocannabinoid system have engrossed scientists in the health field for infectious conditions. Research suggests that the immune system can regulate cytokine activation through cannabinoid receptors, particularly with Cannabidiol (CBD), the second most prevalent compound in cannabis. While CBD has been deemed safe by the World Health Organization and shows no signs of abuse potential, excessive CBD use may lead to respiratory depression. CBD shows promise in reducing immune cell recruitment and cytokine storms in organs affected by SARS-CoV2. However, before clinical use, it's crucial to evaluate cannabinoid-based medications' active ingredient concentrations and potential interactions with other drugs, along with associated side effects. Indication-based dosing, consistent formulations, and ensuring purity and potency are essential. This review highlights cannabinoids' effects on COVID-19 management and prognosis, drawing from preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Fatemeh Hosseini Tabatabaie
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Somayeh Sedighi
- Department of Immunology, Faculty of Medicine, Medical Science of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Cannabis sativa: A look at protozoa, helminths, insect vectors, and pests. Fitoterapia 2023; 166:105467. [PMID: 36893925 DOI: 10.1016/j.fitote.2023.105467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Active principles extracted from plants, such as essential oils, have been commonly described in the literature as therapeutic targets for numerous pathological conditions. Cannabis sativa, which has an ancient and peculiar history, has been used for various purposes, from recreational to compounds of pharmacotherapeutic and industrial importance, such as pesticides based on this plant. It is a plant that contains approximately 500 described cannabinoid compounds and is the target of in vitro and in vivo studies at different locations. This review clarifies the role of cannabinoid compounds in parasitic infections caused by helminths and protozoa. In addition, this study briefly presented the use of C. sativa constituents in the formulation of pesticides for vector control, as the latter topic is justified by the economic burden faced by several regions where vector-borne diseases are a troubling reality. Studies involving cannabis compounds with pesticidal potential should be encouraged, especially those that evaluate their effectiveness against the different life cycles of insects, seeking to interrupt vector proliferation after egg laying. Actions aimed at the management and cultivation of plant species with ecologically correct pharmacotherapeutic and pesticide potentials are becoming urgent.
Collapse
|
6
|
Chen J, Wang F, Zhang S, Lin Q, Xu H, Zhu T, Peng L, Cen F, Li F, Wang Z, Feng CG, Yin Z, Liu Y, Zhang G. Activation of CD4 + T Cell-Derived Cannabinoid Receptor 2 Signaling Exacerbates Sepsis via Inhibiting IL-10. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2515-2522. [PMID: 35534212 DOI: 10.4049/jimmunol.2101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The cannabinoid receptor 2 (CB2) is a receptor mainly expressed in immune cells and believed to be immunosuppressive in infective or inflammatory models. However, its role in sepsis has not been fully elucidated. In this study, we delineate the function and mechanism of CB2 in the cecal ligation and puncture-induced septic model in mice. The activation of CB2 signaling with HU308 led to decreased survival rates and more severe lung injury in septic mice, and lower IL-10 levels in peritoneal lavage fluid were observed in the CB2 agonist group. The mice with conditional knockout of CB2-encoding gene CNR2 in CD4+ T cells (CD4 Cre CNR2fl/fl) improved survival, enhanced IL-10 production, and ameliorated pulmonary damage in the sepsis model after CB2 activation. In addition, double-knockout of the CNR2 gene (Lyz2 Cre CD4 Cre CNR2fl/fl) decreased the susceptibility to sepsis compared with Lyz2 Cre CNR2fl/fl mice. Mechanistically, the blockade of IL-10 with the anti-IL-10 Ab abolished its protection in CD4 Cre CNR2fl/fl mice. In accordance with the animal study, in vitro results revealed that the lack of CNR2 in CD4+ cells elevated IL-10 production, and CB2 activation inhibited CD4+ T cell-derived IL-10 production. Furthermore, in the clinical environment, septic patients expressed enhanced CB2 mRNA levels compared with healthy donors in PBMCs, and their CB2 expression was inversely correlated with IL-10. These results suggested that the activation of CD4+ T cell-derived CB2 increased susceptibility to sepsis through inhibiting IL-10 production.
Collapse
Affiliation(s)
- Jincheng Chen
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Fuxiang Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Su Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Qiao Lin
- Department of Traditional Chinese Medicine, The Baoan People's Hospital of Shenzhen, Shenzhen University, Shenzhen, China
| | - Hui Xu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Tengfei Zhu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Ling Peng
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Fulan Cen
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Fang Li
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Zhaoqin Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Carl G Feng
- Infectious, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; and
| | - Zhinan Yin
- Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yingxia Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China;
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China;
| |
Collapse
|
7
|
Tomer S, Mu W, Suryawanshi G, Ng H, Wang L, Wennerberg W, Rezek V, Martin H, Chen I, Kitchen S, Zhen A. Cannabidiol modulates expression of type I IFN response genes and HIV infection in macrophages. Front Immunol 2022; 13:926696. [PMID: 36248834 PMCID: PMC9560767 DOI: 10.3389/fimmu.2022.926696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/15/2022] [Indexed: 01/27/2023] Open
Abstract
Cannabis (Cannabis sativa) is a widely used drug in the United States and the frequency of cannabis use is particularly high among people living with HIV (PLWH). One key component of cannabis, the non-psychotropic (-)-cannabidiol (CBD) exerts a wide variety of biological actions, including anticonvulsive, analgesic, and anti-inflammatory effects. However, the exact mechanism of action through which CBD affects the immune cell signaling remains poorly understood. Here we report that CBD modulates type I interferon responses in human macrophages. Transcriptomics analysis shows that CBD treatment significantly attenuates cGAS-STING-mediated activation of type I Interferon response genes (ISGs) in monocytic THP-1 cells. We further showed that CBD treatment effectively attenuates 2'3-cGAMP stimulation of ISGs in both THP-1 cells and primary human macrophages. Interestingly, CBD significantly upregulates expression of autophagy receptor p62/SQSTM1. p62 is critical for autophagy-mediated degradation of stimulated STING. We observed that CBD treated THP-1 cells have elevated autophagy activity. Upon 2'3'-cGAMP stimulation, CBD treated cells have rapid downregulation of phosphorylated-STING, leading to attenuated expression of ISGs. The CBD attenuation of ISGs is reduced in autophagy deficient THP-1 cells, suggesting that the effects of CBD on ISGs is partially mediated by autophagy induction. Lastly, CBD decreases ISGs expression upon HIV infection in THP-1 cells and human primary macrophages, leading to increased HIV RNA expression 24 hours after infection. However, long term culture with CBD in infected primary macrophages reduced HIV viral spread, suggesting potential dichotomous roles of CBD in HIV replication. Our study highlights the immune modulatory effects of CBD and the needs for additional studies on its effect on viral infection and inflammation.
Collapse
Affiliation(s)
- Shallu Tomer
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Gajendra Suryawanshi
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Hwee Ng
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Li Wang
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Wally Wennerberg
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Valerie Rezek
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Heather Martin
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Irvin Chen
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Scott Kitchen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- *Correspondence: Anjie Zhen,
| |
Collapse
|
8
|
Ghobadian R, Khaleghzadeh-Ahangar H. Smoke, nicotine, opioids, and cannabinoids effects on the ACE2 protein level and possibility of COVID-19 infection: Suggesting potential preventives and therapeutics. ACTA FACULTATIS MEDICAE NAISSENSIS 2022. [DOI: 10.5937/afmnai39-33402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction. The coronavirus caused the pandemic COVID-19 that has an extensive influence in the world. The virus enters and infects body cells through superficial protein ACE2. Each cell possessing ACE2 is potentially vulnerable to this virus. Since the respiratory system is exposed to the environment and has ACE2, it is one of the first candidates infected by the virus. One of the considerable complications in the severe stage of COVID-19 is an intense adaptive immunological response that is detrimental to body organs. Methods. This is a review article. All relevant articles which were accessible were reviewed. Results. Some drugs of abuse may have an adverse or beneficial influence on the disease, and their simultaneity with COVID-19 is remarkable. Nicotine and cholinergic nicotinic receptor agonists seem to decrease the cell's membrane superficial ACE2 protein number; thus, they would be appropriate candidates for COVID-19 prevention and expansion. Both opioids and cannabinoids attenuate the immune system and seem to be adverse for disease incidence but can be beneficial for the severe stage of COVID19. The antitussive effect of some opioids would be advantageous. Furthermore, some opioids are substrates for ACE2 and they bind it. Therefore, they would be an appropriate candidate to design a drug covering ACE2 with a high affinity to prevent coronavirus infection. Conclusion. Some drugs, such as nicotine and opioids, may have beneficial effects on preventing or reducing COVID-19 complications.
Collapse
|
9
|
Kaur S, Sharma N, Roy A. Role of cannabinoids in various diseases: A review. Curr Pharm Biotechnol 2021; 23:1346-1358. [PMID: 34951355 DOI: 10.2174/1389201023666211223164656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The plant, Cannabis sativa is heavily explored and researched with many industrial and pharmaceutical applications. The medicinal and therapeutic role of cannabis Sativa has been summarized in the paper, citing its mechanism of action and influence on the human body. Diseases like metabolic disorders, infectious diseases, and psychological disorders pose negative and long-term drastic effects on the body like neurodegeneration and other chronic system failures. Several existing literature has proved its effectiveness against such diseases. OBJECTIVES This review aims to provide an overview of the role of cannabinoids in various diseases like metabolic disorders, infectious diseases, and psychological disorders. METHOD Various e-resources like Pubmed, Science Direct, and Google Scholar were thoroughly searched and read to form a well-informed and information-heavy manuscript. Here we tried to summaries the therapeutic aspect of Cannabis sativa and its bioactive compound cannabinoids in various diseases. RESULT This review highlights the various constituents which are present in Cannabis sativa, the Endocannabinoid system, and the role of cannabinoids in various diseases Conclusion: Recent research on Cannabis has suggested its role in neurodegenerative diseases, inflammation, sleep disorders, pediatric diseases, and their analgesic nature. Therefore, the authors majorly focus on the therapeutic aspect of Cannabis sativa in various diseases. The focus is also on the endocannabinoid system (ECS) and its role in fighting or preventing bacterial, parasitic, fungal, and viral infections.
Collapse
Affiliation(s)
- Simran Kaur
- Department of Biotechnology, Delhi Technological University. India
| | - Nikita Sharma
- Department of Biotechnology, Delhi Technological University, Delhi. India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida. India
| |
Collapse
|
10
|
Confound, Cause, or Cure: The Effect of Cannabinoids on HIV-Associated Neurological Sequelae. Viruses 2021; 13:v13071242. [PMID: 34206839 PMCID: PMC8310358 DOI: 10.3390/v13071242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
The persistence of human immunodeficiency virus-1 (HIV)-associated neurocognitive disorders (HAND) in the era of effective antiretroviral therapy suggests that modern HIV neuropathogenesis is driven, at least in part, by mechanisms distinct from the viral life cycle. Identifying more subtle mechanisms is complicated by frequent comorbidities in HIV+ populations. One of the common confounds is substance abuse, with cannabis being the most frequently used psychoactive substance among people living with HIV. The psychoactive effects of cannabis use can themselves mimic, and perhaps magnify, the cognitive deficits observed in HAND; however, the neuromodulatory and anti-inflammatory properties of cannabinoids may counter HIV-induced excitotoxicity and neuroinflammation. Here, we review our understanding of the cross talk between HIV and cannabinoids in the central nervous system by exploring both clinical observations and evidence from preclinical in vivo and in vitro models. Additionally, we comment on recent advances in human, multi-cell in vitro systems that allow for more translatable, mechanistic studies of the relationship between cannabinoid pharmacology and this uniquely human virus.
Collapse
|
11
|
Yadav-Samudrala BJ, Fitting S. Mini-review: The therapeutic role of cannabinoids in neuroHIV. Neurosci Lett 2021; 750:135717. [PMID: 33587986 DOI: 10.1016/j.neulet.2021.135717] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/25/2022]
Abstract
In the era of combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is considered a chronic disease with an inflammatory component that specifically targets the brain and causes a high prevalence of HIV-1-associated neurocognitive disorders (HAND). The endocannabinoid (eCB) system has attracted interest as a target for treatment of neurodegenerative disorders, due to the potential anti-inflammatory and neuroprotective properties of cannabinoids, including its potential therapeutic use in HIV-1 neuropathogenesis. In this review, we summarize what is currently known about the structural and functional changes of the eCB system under conditions of HAND. This will be followed by summarizing the current clinical and preclinical findings on the effects of cannabis use and cannabinoids in the context of HIV-1 infection, with specifically focusing on viral load, cognition, inflammation, and neuroprotection. Lastly, we present some potential future directions to better understand the involvement of the eCB system and the role that cannabis use and cannabinoids play in neuroHIV.
Collapse
Affiliation(s)
- Barkha J Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
12
|
Towe SL, Meade CS, Cloak CC, Bell RP, Baptiste J, Chang L. Reciprocal Influences of HIV and Cannabinoids on the Brain and Cognitive Function. J Neuroimmune Pharmacol 2020; 15:765-779. [PMID: 32445005 PMCID: PMC7680275 DOI: 10.1007/s11481-020-09921-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/23/2020] [Indexed: 02/03/2023]
Abstract
Globally, cannabis is the most commonly used illicit drug, with disproportionately high use among persons with HIV. Despite advances in HIV care, nearly half of persons living with HIV continue to experience neurocognitive deficits or impairments that may have negative impacts on their daily function. Chronic cannabis use may play a role in the development or exacerbation of these impairments. Here we present a review summarizing existing research detailing the effect of cannabis use associated with the neuropathogenesis of HIV. We examine evidence for possible additive or synergistic effects of HIV infection and cannabis use on neuroHIV in both the preclinical and adult human literatures, including in vitro studies, animal models, clinical neuroimaging research, and studies examining the cognitive effects of cannabis. We discuss the limitations of existing research, including methodological challenges involved with clinical research with human subjects. We identify gaps in the field and propose critical research questions to advance our understanding of how cannabis use affects neuroHIV. Graphical Abstract.
Collapse
Affiliation(s)
- Sheri L Towe
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Christina S Meade
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Christine C Cloak
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Room 1161, Baltimore, MD, 21201, USA
| | - Ryan P Bell
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Julian Baptiste
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Room 1161, Baltimore, MD, 21201, USA
| | - Linda Chang
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Room 1161, Baltimore, MD, 21201, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA.
| |
Collapse
|
13
|
Wang HA, Liang HJ, Ernst TM, Oishi K, Chang L. Microstructural brain abnormalities in HIV+ individuals with or without chronic marijuana use. J Neuroinflammation 2020; 17:230. [PMID: 32758262 PMCID: PMC7409464 DOI: 10.1186/s12974-020-01910-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Cognitive deficits and microstructural brain abnormalities are well documented in HIV-positive individuals (HIV+). This study evaluated whether chronic marijuana (MJ) use contributes to additional cognitive deficits or brain microstructural abnormalities that may reflect neuroinflammation or neuronal injury in HIV+. METHOD Using a 2 × 2 design, 44 HIV+ participants [23 minimal/no MJ users (HIV+), 21 chronic active MJ users (HIV + MJ)] were compared to 46 seronegative participants [24 minimal/no MJ users (SN) and 22 chronic MJ users (SN + MJ)] on neuropsychological performance (7 cognitive domains) and diffusion tensor imaging metrics, using an automated atlas to assess fractional anisotropy (FA), axial (AD), radial (RD), and mean (MD) diffusivities, in 18 cortical and 4 subcortical brain regions. RESULTS Compared to SN and regardless of MJ use, the HIV+ group had lower FA and higher diffusivities in multiple white matter and subcortical structures (p < 0.001-0.050), as well as poorer cognition in Fluency (p = 0.039), Attention/Working Memory (p = 0.009), Learning (p = 0.014), and Memory (p = 0.028). Regardless of HIV serostatus, MJ users had lower AD in uncinate fasciculus (p = 0.024) but similar cognition as nonusers. HIV serostatus and MJ use showed an interactive effect on mean diffusivity in the right globus pallidus but not on cognitive function. Furthermore, lower FA in left anterior internal capsule predicted poorer Fluency across all participants and worse Attention/Working Memory in all except SN subjects, while higher diffusivities in several white matter tracts also predicted lower cognitive domain Z-scores. Lastly, MJ users with or without HIV infection showed greater than normal age-dependent FA declines in superior longitudinal fasciculus, external capsule, and globus pallidus. CONCLUSIONS Our findings suggest that, except in the globus pallidus, chronic MJ use had no additional negative influence on brain microstructure or neurocognitive deficits in HIV+ individuals. However, lower AD in the uncinate fasciculus of MJ users suggests axonal loss in this white matter tract that connects to cannabinoid receptor rich brain regions that are involved in verbal memory and emotion. Furthermore, the greater than normal age-dependent FA declines in the white matter tracts and globus pallidus in MJ users suggest that older chronic MJ users may eventually have lesser neuronal integrity in these brain regions.
Collapse
Affiliation(s)
- Hannah A. Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD 21201 USA
| | - Hua-Jun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD 21201 USA
| | - Thomas M. Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD 21201 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Medicine, University of Hawaii, John A. Burns School of Medicine, Honolulu, HI USA
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD 21201 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Medicine, University of Hawaii, John A. Burns School of Medicine, Honolulu, HI USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
14
|
Quint JJ, Tashkin DP, McKay HS, Plankey MW, Stosor V, Friedman MR, Detels R. Marijuana use and pneumonia risk in a cohort of HIV-infected and HIV-uninfected men. Ann Epidemiol 2020; 52:64-70.e2. [PMID: 32763342 DOI: 10.1016/j.annepidem.2020.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/09/2020] [Accepted: 07/28/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND The prevalence of marijuana use is increasing in the United States. Marijuana smoking has been shown to impair the microbicidal activity of alveolar macrophages and decrease the number of ciliated epithelial cells in the bronchi with a parallel increase in the number of mucus-secreting surface epithelial cells, which may increase the risk of pneumonia. However, it remains unclear whether there is an association between smoking marijuana and pneumonia. METHODS Using data from the Multicenter AIDS Cohort Study (MACS), a long-term observational cohort study of men who have sex with men in the United States, we used Cox proportional hazards models to estimate the risk of pneumonia among HIV-infected (n = 2784) and HIV-uninfected (n = 2665) men from 1984 to 2013, adjusted for time-varying and fixed baseline covariates. RESULTS Weekly or daily marijuana use was not significantly associated with increased risk of pneumonia among HIV-uninfected men (adjusted hazard ratio; 95% confidence limits: 0.83, 0.56-1.23). In the disaggregated dose-response analysis, daily use (0.68, 0.34-1.35) was associated with a lower point estimate than weekly use [0.99, 0.79-1.25]. CONCLUSION Marijuana smoking was not associated with a significant increase in risk of pneumonia among HIV-infected or HIV-uninfected men.
Collapse
Affiliation(s)
- Joshua J Quint
- Department of Epidemiology, UCLA School of Public Health, Los Angeles, CA.
| | - Donald P Tashkin
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Heather S McKay
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD
| | - Michael W Plankey
- Department of Medicine, Division of Infectious Diseases, Georgetown University, Washington, DC
| | - Valentina Stosor
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Roger Detels
- Department of Epidemiology, UCLA School of Public Health, Los Angeles, CA
| |
Collapse
|
15
|
Chaillon A, Nakazawa M, Anderson C, Christensen-Quick A, Ellis RJ, Franklin D, Morris SR, Gianella S. Effect of Cannabis Use on Human Immunodeficiency Virus DNA During Suppressive Antiretroviral Therapy. Clin Infect Dis 2020; 70:140-143. [PMID: 31074488 PMCID: PMC6912153 DOI: 10.1093/cid/ciz387] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Cannabis use is frequent among people living with human immunodeficiency virus (HIV) and is associated with reduced systemic inflammation. We observed a faster HIV DNA decay during antiretroviral therapy among cannabis users, compared to those with no drug use. No cannabis effect was observed on cellular HIV RNA transcription.
Collapse
Affiliation(s)
- Antoine Chaillon
- The Division of Infectious Diseases and Global Public Health, San Diego, La Jolla
| | - Masato Nakazawa
- The Division of Infectious Diseases and Global Public Health, San Diego, La Jolla
| | - Christy Anderson
- The Division of Infectious Diseases and Global Public Health, San Diego, La Jolla
| | | | - Ronald J Ellis
- Department of Neurosciences, University of California, San Diego, La Jolla
| | - Donald Franklin
- Department of Neurosciences, University of California, San Diego, La Jolla
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Sheldon R Morris
- The Division of Infectious Diseases and Global Public Health, San Diego, La Jolla
| | - Sara Gianella
- The Division of Infectious Diseases and Global Public Health, San Diego, La Jolla
| |
Collapse
|
16
|
Magrone T, Jirillo E. Drugs of Abuse Induced-Subversion of the Peripheral Immune Response and Central Glial Activity: Focus on Novel Therapeutic Approaches. Endocr Metab Immune Disord Drug Targets 2019; 19:281-291. [PMID: 30488804 DOI: 10.2174/1871530319666181129104329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Drugs of abuse affect both central nervous system (CNS) and peripheral immune function. Besides the involvement of dopamine and glutamate systems, chronic exposure to drugs of abuse alters immune homeostasis, promoting a pro-inflammatory status. At the same time, impaired peripheral immunity leads to an increased susceptibility to infections in drug abusers. DISCUSSION There is evidence that certain drugs, such as opioids, activate microglial cells and astrocytes which, in turn, provoke central neuroinflammation. Particularly, opioids bind the Toll-like receptor (TLR)-4 with increased expression of nuclear factor kappa-light-chain-enhancer of activated B cells and release of pro-inflammatory cytokines. Peripheral mediators released by immune cells also contribute to aggravate central neuroinflammation. CONCLUSION These are based either on the inhibition of TLR-4 activation by drugs of abuse or on the correction of dopamine and glutamate pathways. Finally, a hypothetic nutraceutical intervention with polyphenols in view of their anti-inflammatory and anti-oxidant properties will be outlined as an adjuvant treatment for drugs of abuse-related disorders.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
17
|
Dong C, Chen J, Harrington A, Vinod KY, Hegde ML, Hegde VL. Cannabinoid exposure during pregnancy and its impact on immune function. Cell Mol Life Sci 2019; 76:729-743. [PMID: 30374520 PMCID: PMC6632091 DOI: 10.1007/s00018-018-2955-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
Cannabinoids are the most commonly abused illicit drugs worldwide. While cannabis can be beneficial for certain heath conditions, abuse of potent synthetic cannabinoids has been on the rise. Exposure to cannabinoids is also prevalent in women of child-bearing age and pregnant women. These compounds can cross the placental barrier and directly affect the fetus. They mediate their effects primarily through G-protein coupled cannabinoid receptors, CB1 and CB2. In addition to significant neurological effects, cannabinoids can trigger robust immunomodulation by altering cytokine levels, causing apoptosis of lymphoid cells and inducing suppressor cells of the immune system. Profound effects of cannabinoids on the immune system as discussed in this review, suggest that maternal exposure during pregnancy could lead to dysregulation of innate and adaptive immune system of developing fetus and offspring potentially leading to weakening of immune defenses against infections and cancer later in life. Emerging evidence also indicates the underlying role of epigenetic mechanisms causing long-lasting impact following cannabinoid exposure in utero.
Collapse
Affiliation(s)
- Catherine Dong
- School of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Jingwen Chen
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29208, USA
| | - Amy Harrington
- School of Pharmacy, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - K Yaragudri Vinod
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Emotional Brain Institute, Orangeburg, NY, 10962, USA
- Child and Adolescent Psychiatry, New York School of Medicine, New York, NY, 10016, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Institute for Academic Medicine and Research Institute, The Houston Methodist Research Institute (HMRI), 6550 Fannin St, Smith 08-077, Houston, TX, 77030, USA
| | - Venkatesh L Hegde
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29208, USA.
- Department of Radiation Oncology, Institute for Academic Medicine and Research Institute, The Houston Methodist Research Institute (HMRI), 6550 Fannin St, Smith 08-077, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Henriquez JE, Rizzo MD, Crawford RB, Gulick P, Kaminski NE. Interferon- α-Mediated Activation of T Cells from Healthy and HIV-Infected Individuals Is Suppressed by Δ 9-Tetrahydrocannabinol. J Pharmacol Exp Ther 2018; 367:49-58. [PMID: 30026298 PMCID: PMC6123667 DOI: 10.1124/jpet.118.250308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Patients with HIV routinely use medicinal cannabinoids to treat neuropathic pain, anxiety, and human immunodeficiency virus (HIV)-associated wasting. However, Δ9-tetrahydrocannabinol (THC), the primary psychoactive cannabinoid in cannabis, suppresses T-cell function and secretion of interferons, both critically important in the antiviral immune response. Interferon-α (IFNα), a key cytokine in T-cell activation and peripheral control of HIV infection, can potentiate responsiveness to interleukin-7 (IL-7), a crucial homeostatic cytokine for peripheral T-cell maintenance. The objective of this investigation was to compare the response of T cells to stimulation by IFNα and IL-7 in T cells from healthy and HIV+ donors in the absence and presence of THC. To compare T-cell responses between healthy and HIV+ donors signaling through IFNα receptor, IFNα-induced expression of IL-7α receptor (IL-7Rα), cognate signaling through IL-7R, and on IL-7-mediated T-cell proliferation were measured by flow cytometry and real-time quantitative polymerase chain reaction. CD8+ T cells from HIV+ donors showed a diminished response to IFNα-induced phosphorylated signal transducer and activator of transcription-1 activation compared with CD8+ T cells from healthy donors, whereas CD4+ T cells from HIV+ donors and healthy donors were comparable. Treatment with IFNα promoted IL-7R expression and potentiated IL-7-induced STAT5 phosphorylation to augment IL-7-mediated proliferation by T cells from healthy and HIV+ donors. Finally, HIV+ donors exhibited reduced sensitivity to THC-mediated suppression by IFNα- and IL-7-mediated stimulation compared with healthy donors. These results further support THC as being immune suppressive while identifying putatively beneficial aspects of cannabinoid-based therapies in HIV+ patients.
Collapse
Affiliation(s)
- Joseph E Henriquez
- Departments of Pharmacology and Toxicology (J.E.H., N.E.K.), Cell and Molecular Biology (M.D.R.), and Osteopathic Medicine (P.G.), and Institute for Integrative Toxicology (J.E.H., M.D.R., R.B.C., N.E.K.), Michigan State University, East Lansing, Michigan
| | - Michael D Rizzo
- Departments of Pharmacology and Toxicology (J.E.H., N.E.K.), Cell and Molecular Biology (M.D.R.), and Osteopathic Medicine (P.G.), and Institute for Integrative Toxicology (J.E.H., M.D.R., R.B.C., N.E.K.), Michigan State University, East Lansing, Michigan
| | - Robert B Crawford
- Departments of Pharmacology and Toxicology (J.E.H., N.E.K.), Cell and Molecular Biology (M.D.R.), and Osteopathic Medicine (P.G.), and Institute for Integrative Toxicology (J.E.H., M.D.R., R.B.C., N.E.K.), Michigan State University, East Lansing, Michigan
| | - Peter Gulick
- Departments of Pharmacology and Toxicology (J.E.H., N.E.K.), Cell and Molecular Biology (M.D.R.), and Osteopathic Medicine (P.G.), and Institute for Integrative Toxicology (J.E.H., M.D.R., R.B.C., N.E.K.), Michigan State University, East Lansing, Michigan
| | - Norbert E Kaminski
- Departments of Pharmacology and Toxicology (J.E.H., N.E.K.), Cell and Molecular Biology (M.D.R.), and Osteopathic Medicine (P.G.), and Institute for Integrative Toxicology (J.E.H., M.D.R., R.B.C., N.E.K.), Michigan State University, East Lansing, Michigan
| |
Collapse
|
19
|
The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders. Biochem Pharmacol 2018; 157:122-133. [PMID: 30138623 DOI: 10.1016/j.bcp.2018.08.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
The skin is the largest organ of the body and has a complex and very active structure that contributes to homeostasis and provides the first line defense against injury and infection. In the past few years it has become evident that the endocannabinoid system (ECS) plays a relevant role in healthy and diseased skin. Specifically, we review how the dysregulation of ECS has been associated to dermatological disorders such as atopic dermatitis, psoriasis, scleroderma and skin cancer. Therefore, the druggability of the ECS could open new research avenues for the treatment of the pathologies mentioned. Numerous studies have reported that phytocannabinoids and their biological analogues modulate a complex network pharmacology involved in the modulation of ECS, focusing on classical cannabinoid receptors, transient receptor potential channels (TRPs), and peroxisome proliferator-activated receptors (PPARs). The combined targeting of several end-points seems critical to provide better chances of therapeutically success, in sharp contrast to the one-disease-one-target dogma that permeates current drug discovery campaigns.
Collapse
|
20
|
Kiertscher SM, Gangalum PR, Ibrahim G, Tashkin DP, Roth MD. A Prospective Study of Humoral and Cellular Immune Responses to Hepatitis B Vaccination in Habitual Marijuana Smokers. J Neuroimmune Pharmacol 2018; 13:219-229. [PMID: 29340893 DOI: 10.1007/s11481-018-9776-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/02/2018] [Indexed: 01/05/2023]
Abstract
Exposure to Δ9-tetrahydrocannabinol (THC) in vitro and in animal models can significantly impair the differentiation, activation and function of dendritic cells, T cells and B cells. However, studies directly assessing the impact of marijuana smoking on human immunity are lacking. A prospective study of immune responses to a standard hepatitis B vaccination was therefore carried out in a matched cohort of 9 marijuana smokers (MS) and 9 nonsmokers (NS). In addition to their regular marijuana use, MS smoked four marijuana cigarettes in a monitored setting on the day of each vaccination. Blood samples were collected over time to assess the development of hepatitis B-specific immunity. The majority of subjects from both the NS (8) and MS (6) groups developed positive hepatitis B surface antibody titers (>10 IU/L) and of these 6 NS and 5 MS were classified as high antibody (good) responders (>100 IU/L). The development of a good response correlated with the presence of hepatitis B-specific T cell proliferation and cytokine production, resulting in a clear distinction regarding the immune status of good responders versus non-responders. However, even though there were slighter more non-responders in the MS cohort, there were no significant differences between MS and NS with respect to peripheral blood cell phenotypes or vaccination-related changes in hepatitis B responses. While a larger cohort may be required to rule out a small suppressive effect, our findings do not suggest that habitual marijuana smoking exerts a major impact on the development of systemic immunity to hepatitis B vaccination.
Collapse
Affiliation(s)
- Sylvia M Kiertscher
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, CHS 37-131, Los Angeles, CA, 90095-1690, USA
| | - Pallavi R Gangalum
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, CHS 37-131, Los Angeles, CA, 90095-1690, USA
| | - Grace Ibrahim
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, CHS 37-131, Los Angeles, CA, 90095-1690, USA
| | - Donald P Tashkin
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, CHS 37-131, Los Angeles, CA, 90095-1690, USA
| | - Michael D Roth
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, CHS 37-131, Los Angeles, CA, 90095-1690, USA.
| |
Collapse
|
21
|
Oláh A, Szekanecz Z, Bíró T. Targeting Cannabinoid Signaling in the Immune System: "High"-ly Exciting Questions, Possibilities, and Challenges. Front Immunol 2017; 8:1487. [PMID: 29176975 PMCID: PMC5686045 DOI: 10.3389/fimmu.2017.01487] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the "phytocannabinoids" [pCBs; e.g., (-)-trans-Δ9-tetrahydrocannabinol (THC), (-)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances ["endocannabinoids" (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.]. These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes. The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc. Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and "recreational" marijuana consumption. Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.
Collapse
Affiliation(s)
- Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szekanecz
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
22
|
Wei Q, Liu L, Cong Z, Wu X, Wang H, Qin C, Molina P, Chen Z. Chronic Δ(9)-Tetrahydrocannabinol Administration Reduces IgE(+)B Cells but Unlikely Enhances Pathogenic SIVmac251 Infection in Male Rhesus Macaques of Chinese Origin. J Neuroimmune Pharmacol 2016; 11:584-591. [PMID: 27109234 DOI: 10.1007/s11481-016-9674-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/19/2016] [Indexed: 11/24/2022]
Abstract
Delta9-tetrahydrocannabinol (Δ(9)-THC) is the major psychoactive component of the cannabis plant. Δ(9)-THC has been used in the active ingredient of Marinol as an appetite stimulant for AIDS patients. Its impact on progression of HIV-1 infection, however, remains debatable. Previous studies indicated that Δ(9)-THC administration enhanced HIV-1 infection in huPBL-SCID mice but seemingly decreased early mortality in simian immunodeficiency virus (SIV) infected male Indian-derived rhesus macaques. Here, we determine the chronic effect of Δ(9)-THC administration using 0.32 mg/kg or placebo (PBO), i.m., twice daily for 428 days on SIVmac251 infected male Chinese-derived rhesus macaques. Sixteen animals were divided into four study groups: Δ(9)-THC(+)SIV(+), Δ(9)-THC(+)SIV(-), PBO/SIV(+) and PBO/SIV(-) (n = 4/group). One-month after daily Δ(9)-THC or PBO administrations, macaques in groups one and three were challenged intravenously with pathogenic SIVmac251/CNS, which was isolated from the brain of a Chinese macaque with end-staged neuroAIDS. No significant differences in peak and steady state plasma viral loads were seen between Δ(9)-THC(+)SIV(+) and PBO/SIV(+) macaques. Regardless of Δ(9)-THC, all infected macaques displayed significant drop of CD4/CD8 T cell ratio, loss of CD4(+) T cells and higher persistent levels of Ki67(+)CD8(+) T cells compared with uninfected animals. Moreover, long-term Δ(9)-THC treatment reduced significantly the frequency of circulating IgE(+)B cells. Only one Δ(9)-THC(+)SIV(+) macaque died of simian AIDS with paralyzed limbs compared with two deaths in the PBO/SIV(+) group during the study period. These findings indicate that chronic Δ(9)-THC administration resulted in reduction of IgE(+)B cells, yet it unlikely enhanced pathogenic SIVmac251/CNS infection in male Rhesus macaques of Chinese origin.
Collapse
Affiliation(s)
- Qiang Wei
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, No.5, Panjiayuan, Nanli, Chaoyang District, Beijing, People's Republic of China
| | - Li Liu
- AIDS Institute and Research Center for Infection and Immunology, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, People's Republic of China.,HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Lab of Emerging Infectious Diseases and Shenzhen Key Lab of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, 518112, People's Republic of China
| | - Zhe Cong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, No.5, Panjiayuan, Nanli, Chaoyang District, Beijing, People's Republic of China
| | - Xiaoxian Wu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, No.5, Panjiayuan, Nanli, Chaoyang District, Beijing, People's Republic of China
| | - Hui Wang
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Lab of Emerging Infectious Diseases and Shenzhen Key Lab of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, 518112, People's Republic of China
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, No.5, Panjiayuan, Nanli, Chaoyang District, Beijing, People's Republic of China
| | - Patricia Molina
- Department of Physiology, The Louisiana State University Health Sciences Center at New Orleans, 1901 Perdido Street, New Orleans, LA 70112, United States of America
| | - Zhiwei Chen
- AIDS Institute and Research Center for Infection and Immunology, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, People's Republic of China.,HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Lab of Emerging Infectious Diseases and Shenzhen Key Lab of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, 518112, People's Republic of China
| |
Collapse
|
23
|
Baum MK, Campa A, Page JB, Lai S, Tsalaile L, Martinez SS, Burns P, Williams O, Li Y, van Widenfelt E, Bussmann H, Sikhulele M, Makhema J, Essex M, Marlink R. Recruitment, Follow-Up and Characteristics of HIV Infected Adults who Use Illicit Drugs in Southern Africa. ACTA ACUST UNITED AC 2015; 1. [PMID: 26855969 DOI: 10.21767/2471-853x.10007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND With one of the worst HIV prevalence rates in the world, Botswana has made great strides in addressing AIDS. Nevertheless, to fully contain the epidemic, outreach to marginalized groups, including illicit drug users, is critical. OBJECTIVE To conduct targeted outreach within an intervention trial to recruit HIV-infected drug users and assess HIV disease and nutritional status. METHOD Recruitment strategies included safeguarding confidentiality, involving ocal health-care professionals, advertising, and participation incentives. Urine toxicology, CD4 cell count, HIV viral load, blood chemistry, plasma micronutrients, dietary history, drug use and morbidity were assessed for two years. RESULTS Targeted outreach identified 138 HIV-infected persons who used marijuana; 18.1% had CD4 cell counts ≤ 350 cells/μL and 39.9% had low BMI. Eligible marijuana users (N=52) had significantly lower BMI (21.8 3.7 vs. 24.3 ± 5.3 kg/m2, P=0.001), higher HIV viral load (4.36 ± 0.89 vs. 4.09 ± 0.89 log10, P=0.018), and higher kilocalorie intake (1924 ± 1055 vs. 1620 ± 926 Kcalories, P=0.025) than those who did not use marijuana (N=748) with similar CD4 cell count. Marijuana users ≥ 40 years old had more opportunistic diseases (P=0.020) than non-users of the same age. Benzodiazepine use was detected among 57 participants and they had higher BMI than marijuana users (24.4 ± 6.8 vs. 21.8 ± 3.7 kg/m2, P= 0.017). CONCLUSION A population stigmatized by illicit drug use and HIV-infection can be brought into a clinical research setting in Africa. HIV-infected marijuana users were at a risk for higher HIV viral load, lower BMI and more comorbidities than nonusers. Outreach to this marginalized group is important for containing the HIV epidemic.
Collapse
Affiliation(s)
- Marianna K Baum
- Florida International University, Robert Stempel College of Public Health and Social Work, Miami, Florida, USA
| | - Adriana Campa
- Florida International University, Robert Stempel College of Public Health and Social Work, Miami, Florida, USA
| | - J Bryan Page
- University of Miami, School of Medicine, Miami, Florida, USA
| | - Shenghan Lai
- Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | | | - Sabrina Sales Martinez
- Florida International University, Robert Stempel College of Public Health and Social Work, Miami, Florida, USA
| | - Patricia Burns
- Harvard School of Public Health, Boston, Massachusetts, USA
| | - O'Dale Williams
- Florida International University, Robert Stempel College of Public Health and Social Work, Miami, Florida, USA
| | - Yinghui Li
- Florida International University, Robert Stempel College of Public Health and Social Work, Miami, Florida, USA
| | | | | | | | | | - Myron Essex
- Harvard School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|
24
|
Tahamtan A, Tavakoli-Yaraki M, Rygiel TP, Mokhtari-Azad T, Salimi V. Effects of cannabinoids and their receptors on viral infections. J Med Virol 2015; 88:1-12. [DOI: 10.1002/jmv.24292] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Alireza Tahamtan
- Departmentof Virology; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry; Faculty of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Tomasz P. Rygiel
- Department of Immunology; Medical University of Warsaw; Center of Biostructure Research; Warsaw Poland
| | - Talat Mokhtari-Azad
- Departmentof Virology; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Vahid Salimi
- Departmentof Virology; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
25
|
Effects of Cannabinoids on T-cell Function and Resistance to Infection. J Neuroimmune Pharmacol 2015; 10:204-16. [PMID: 25876735 DOI: 10.1007/s11481-015-9603-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/13/2015] [Indexed: 02/08/2023]
Abstract
This review examines the effects of cannabinoids on immune function, with a focus on effects on T-cells, as well as on resistance to infection. The paper considers the immune modulating capacity of marijuana, of ∆(9)-THC extracted from the marijuana plant, and synthetic cannabinoids. Of particular interest are synthetic compounds that are CB2 receptor (CB2R) selective agonists. As the CB2R is principally expressed on cells of the immune system, agonists that target this receptor, and not CB1 (which is mainly expressed on neurons), have the possibility of altering immune function without psychoactive effects. The overall conclusion of the studies discussed in this review is that cannabinoids that bind to the CB2 receptor, including ∆(9)-THC and CB2 selective agonists are immunosuppressive. The studies provide objective evidence for potentially beneficial effects of marijuana and ∆(9)-THC on the immune system in conditions where it is desirable to dampen immune responses. Evidence is also reviewed supporting the conclusion that these same compounds can sensitize to some infections through their immunosuppressive activities, but not to others. An emerging area of investigation that is reviewed is evidence to support the conclusion that CB2 selective agonists are a new class of immunosuppressive and anti-inflammatory compounds that may have exceptional beneficial effects in a variety of conditions, such as autoimmune diseases and graft rejection, where it is desirable to dampen the immune response without psychoactive effects.
Collapse
|
26
|
Suárez-Pinilla P, López-Gil J, Crespo-Facorro B. Immune system: a possible nexus between cannabinoids and psychosis. Brain Behav Immun 2014; 40:269-82. [PMID: 24509089 DOI: 10.1016/j.bbi.2014.01.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Endocannabinoid system is involved in the regulation of the brain-immune axis. Cannabis consumption is related with the development, course, and severity of psychosis. The epidemiological evidence for increased occurrence of immunological alterations in patients with psychosis has not been sufficiently addressed. The aim of this review is to establish whether there is any scientific evidence of the influence of cannabinoids on aspects of immunity that affect susceptibility to psychotic disorder induction. METHODS A comprehensive search of PubMed/MEDLINE, EMBASE and ISI Web of Knowledge was performed using combinations of key terms distributed into three blocks: "immune", "cannabinoid", and "endocannabinoid receptor". Studies were considered to be eligible for the review if they were original articles, they reported a quantitative or qualitative relation between cannabinoid ligands, their receptors, and immune system, and they were carried out in vitro or in mammals, included humans. All the information was systematically extracted and evaluated. RESULTS We identified 122 articles from 446 references. Overall, endocannabinoids enhanced immune response, whereas exogenous cannabinoids had immunosuppressant effects. A general change in the immune response from Th1 to Th2 was also demonstrated for cannabinoid action. Endogenous and synthetic cannabinoids also modulated microglia function and neurotransmitter secretion. CONCLUSION The actions of cannabinoids through the immune system are quite regular and predictable in the peripheral but remain fuzzy in the central nervous system. Despite this uncertainty, it may be hypothesized that exposure to exocannabinoids, in particular during adolescence might prompt immunological dysfunctions that potentially cause a latent vulnerability to psychosis. Further investigations are warranted to clarify the relationship between the immunological effects of cannabis and psychosis.
Collapse
Affiliation(s)
- Paula Suárez-Pinilla
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain.
| | - José López-Gil
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Benedicto Crespo-Facorro
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
| |
Collapse
|
27
|
Blumstein GW, Parsa A, Park AK, McDowell BLP, Arroyo-Mendoza M, Girguis M, Adler-Moore JP, Olson J, Buckley NE. Effect of Delta-9-tetrahydrocannabinol on mouse resistance to systemic Candida albicans infection. PLoS One 2014; 9:e103288. [PMID: 25057822 PMCID: PMC4110019 DOI: 10.1371/journal.pone.0103288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/30/2014] [Indexed: 11/29/2022] Open
Abstract
Delta-9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, is known to suppress the immune responses to bacterial, viral and protozoan infections, but its effects on fungal infections have not been studied. Therefore, we investigated the effects of chronic Δ9-THC treatment on mouse resistance to systemic Candida albicans (C. albicans) infection. To determine the outcome of chronic Δ9-THC treatment on primary, acute systemic candidiasis, c57BL/6 mice were given vehicle or Δ9-THC (16 mg/kg) in vehicle on days 1–4, 8–11 and 15–18. On day 19, mice were infected with 5×105C. albicans. We also determined the effect of chronic Δ9-THC (4–64 mg/kg) treatment on mice infected with a non-lethal dose of 7.5×104C. albicans on day 2, followed by a higher challenge with 5×105C. albicans on day 19. Mouse resistance to the infection was assessed by survival and tissue fungal load. Serum cytokine levels were determine to evaluate the immune responses. In the acute infection, chronic Δ9-THC treatment had no effect on mouse survival or tissue fungal load when compared to vehicle treated mice. However, Δ9-THC significantly suppressed IL-12p70 and IL-12p40 as well as marginally suppressed IL-17 versus vehicle treated mice. In comparison, when mice were given a secondary yeast infection, Δ9-THC significantly decreased survival, increased tissue fungal burden and suppressed serum IFN-γ and IL-12p40 levels compared to vehicle treated mice. The data showed that chronic Δ9-THC treatment decreased the efficacy of the memory immune response to candida infection, which correlated with a decrease in IFN-γ that was only observed after the secondary candida challenge.
Collapse
Affiliation(s)
- Gideon W. Blumstein
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, United States of America
| | - Arya Parsa
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, United States of America
| | - Anthony K. Park
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, United States of America
| | - Beverly L. P. McDowell
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, United States of America
| | - Melissa Arroyo-Mendoza
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, United States of America
| | - Marie Girguis
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, United States of America
| | - Jill P. Adler-Moore
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, United States of America
| | - Jon Olson
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, United States of America
| | - Nancy E. Buckley
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ghosn J, Leruez-Ville M, Blanche J, Delobelle A, Beaudoux C, Mascard L, Lecuyer H, Canestri A, Landman R, Zucman D, Ponscarme D, Rami A, Viard JP, Spire B, Rouzioux C, Costagliola D, Suzan-Monti M, Ghosn J, Suzan-Monti M, Costagliola D, Leruez-Ville M, Rouzioux C, Spire B, Treluyer JM, Mascard L, Landman R, Zucman D, Ponscarme D, Rami A, Sellier P, Viard JP, Delobelle A, Beaudoux C, Point G, Marchand L, Couffin-Cadiergues S. HIV-1 DNA Levels in Peripheral Blood Mononuclear Cells and Cannabis Use are Associated With Intermittent HIV Shedding in Semen of Men Who Have Sex With Men on Successful Antiretroviral Regimens. Clin Infect Dis 2014; 58:1763-70. [DOI: 10.1093/cid/ciu187] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Shirazi J, Shah S, Sagar D, Nonnemacher MR, Wigdahl B, Khan ZK, Jain P. Epigenetics, drugs of abuse, and the retroviral promoter. J Neuroimmune Pharmacol 2013; 8:1181-96. [PMID: 24218017 PMCID: PMC3878082 DOI: 10.1007/s11481-013-9508-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/10/2013] [Indexed: 01/06/2023]
Abstract
Drug abuse alone has been shown to cause epigenetic changes in brain tissue that have been shown to play roles in addictive behaviors. In conjunction with HIV-1 infection, it can cause epigenetic changes at the viral promoter that can result in altered gene expression, and exacerbate disease progression overall. This review entails an in-depth look at research conducted on the epigenetic effects of three of the most widely abused drugs (cannabinoids, opioids, and cocaine), with a particular focus on the mechanisms through which these drugs interact with HIV-1 infection at the viral promoter. Here we discuss the impact of this interplay on disease progression from the point of view of the nature of gene regulation at the level of chromatin accessibility, chromatin remodeling, and nucleosome repositioning. Given the importance of chromatin remodeling and DNA methylation in controlling the retroviral promoter, and the high susceptibility of the drug abusing population of individuals to HIV infection, it would be beneficial to understand the way in which the host genome is modified and regulated by drugs of abuse.
Collapse
Affiliation(s)
- Jasmine Shirazi
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sonia Shah
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Divya Sagar
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Zafar K. Khan
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
30
|
Castaneda JT, Harui A, Kiertscher SM, Roth JD, Roth MD. Differential expression of intracellular and extracellular CB(2) cannabinoid receptor protein by human peripheral blood leukocytes. J Neuroimmune Pharmacol 2013; 8:323-32. [PMID: 23299999 PMCID: PMC3587044 DOI: 10.1007/s11481-012-9430-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/16/2012] [Indexed: 01/07/2023]
Abstract
mRNA encoding for the CB(2) cannabinoid receptor is expressed by many subsets of human peripheral blood leukocytes (PBL), but little is known about the resulting protein expression and function. Employing clones from the A549 and 293T cell lines that were constructed to express both full-length human CB(2) and GFP, we developed a flow cytometry assay for characterizing CB(2) protein expression. A monoclonal antibody directed against human CB(2) selectively stained the surface of transduced but not parental cell lines. When cells were fixed and permeabilized, imaging flow cytometry identified large stores of intracellular protein. Total cellular staining for CB(2) corresponded closely with the level of GFP expression. When exposed to Δ(9)-tetrahydrocannabinol, CB(2)-expressing cells internalized cell surface CB(2) receptors in a time- and dose-dependent manner. Applying these approaches to human PBL, CB(2) protein was identified on the surface of human B cells but not on T cells or monocytes. In contrast, when PBL were fixed and permeabilized, intracellular CB(2) expression was readily detected in all three subsets by both conventional and imaging flow cytometry. Similar to the protein expression pattern observed in fixed and permeabilized PBL, purified B cells, T cells, and monocytes expressed relatively equal levels of CB(2) mRNA by quantitative real-time RT-PCR. Our findings confirm that human PBL express CB(2) protein but that its distribution is predominantly intracellular with only B cells expressing CB(2) protein at the extracellular membrane. The differential role of intracellular and extracellular CB(2) receptors in mediating ligand signaling and immune function remains to be determined.
Collapse
Affiliation(s)
- Julie T Castaneda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, CHS 37-131, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
| | | | | | | | | |
Collapse
|
31
|
Kaplan BLF. The role of CB1 in immune modulation by cannabinoids. Pharmacol Ther 2012; 137:365-74. [PMID: 23261520 DOI: 10.1016/j.pharmthera.2012.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 11/26/2022]
Abstract
There is clear evidence that CB(2), historically referred to as the peripheral cannabinoid receptor, mediates many of the immune modulatory effects of cannabinoids. However, cannabinoid receptors cannot be classified simply as central or peripheral since CB(2) has been shown to play a role in the central nervous system (CNS) and CB(1) mediates many immune system effects. Although Cnr1 mRNA and CB(1) protein expression is lower than Cnr2 mRNA or CB(2) protein expression in cells of the immune system, several studies have shown direct modulation of immune function via CB(1) by endogenous and exogenous cannabinoids in T cells, innate cells, and to a lesser extent, B cells. In addition, indirect, but CB(1)-dependent, mechanisms of immune modulation exist. In fact, the mechanism by which cannabinoids attenuate neuroinflammation via CB(1) is likely a combination of immune suppression and neuroprotection. Although many studies demonstrate that agonists for CB(1) are immune suppressive and anti-inflammatory, CB(1) antagonists also exhibit anti-inflammatory properties. Overall, the data demonstrate that many of the immune modulatory effects of cannabinoids are mediated via CB(1).
Collapse
Affiliation(s)
- Barbara L F Kaplan
- Center for Integrative Toxicology, Department of Pharmacology and Toxicology, and Neuroscience Program, Michigan State University, 1129 Farm Lane, Room 313, East Lansing, MI 48824-1630, United States.
| |
Collapse
|
32
|
Schuster RM, Gonzalez R. Substance Abuse, Hepatitis C, and Aging in HIV: Common Cofactors that Contribute to Neurobehavioral Disturbances. ACTA ACUST UNITED AC 2012; 2012:15-34. [PMID: 24014165 DOI: 10.2147/nbhiv.s17408] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although the prevalence of neurocognitive disturbances among individuals with HIV has decreased in recent years, rates of impairment still remain high. This review presents findings from comorbid conditions that may contribute to further neurocognitive impairments in this already vulnerable population. We will focus on three co-factors that have received substantial attention in the neuroAIDS literature: drug use, hepatitis C co-infection (HCV), and aging. All three conditions commonly co-occur with HIV and likely interact with HIV in complex ways. Collectively, the extant literature suggests that drug use, HCV, and aging serve to worsen the neurocognitive profile of HIV through several overlapping mechanisms. A better understanding of how specific comorbidities interact with HIV may reveal specific phenotypes of HIV-associated neurocognitive disorder that may aid in the development of more targeted behavioral and pharmacological treatment efforts.
Collapse
|
33
|
Lombard C, Hegde VL, Nagarkatti M, Nagarkatti PS. Perinatal exposure to Δ9-tetrahydrocannabinol triggers profound defects in T cell differentiation and function in fetal and postnatal stages of life, including decreased responsiveness to HIV antigens. J Pharmacol Exp Ther 2011; 339:607-17. [PMID: 21831965 PMCID: PMC3199982 DOI: 10.1124/jpet.111.181206] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 08/08/2011] [Indexed: 01/04/2023] Open
Abstract
Marijuana abuse is very prominent among pregnant women. Although marijuana cannabinoids have been shown to exert immunosuppression in adults, virtually nothing is known about the effects of marijuana use during pregnancy on the developing immune system of the fetus and during postnatal life. We noted that murine fetal thymus expressed high levels of the cannabinoid receptors CB1 and CB2. Moreover, perinatal exposure to Δ(9)-tetrahydrocannabinol (THC) had a profound effect on the fetus as evidenced by a decrease in thymic cellularity on gestational days 16, 17, and 18 and postgestational day 1 and marked alterations in T cell subpopulations. These outcomes were reversed by CB1/CB2 antagonists, suggesting that THC-mediated these effects through cannabinoid receptors. Thymic atrophy induced in the fetus correlated with caspase-dependent apoptosis in thymocytes. Thymic atrophy was the result of direct action of THC and not based on maternal factors inasmuch as THC was able to induce T cell apoptosis in vitro in fetal thymic organ cultures. It is noteworthy that perinatal exposure to THC also had a profound effect on the immune response during postnatal life. Peripheral T cells from such mice showed decreased proliferative response to T cell mitogen as well as both T cell and antibody response to HIV-1 p17/p24/gp120 antigens. Together, our data demonstrate for the first time that perinatal exposure to THC triggers profound T cell dysfunction, thereby suggesting that the offspring of marijuana abusers who have been exposed to THC in utero may be at a higher risk of exhibiting immune dysfunction and contracting infectious diseases including HIV.
Collapse
Affiliation(s)
- Catherine Lombard
- Department of Pathology and Microbiology, University of South Carolina School of Medicine, 6311 Garners Ferry Road, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
34
|
Hu S, Sheng WS, Rock RB. Immunomodulatory properties of kappa opioids and synthetic cannabinoids in HIV-1 neuropathogenesis. J Neuroimmune Pharmacol 2011; 6:528-39. [PMID: 21850403 DOI: 10.1007/s11481-011-9306-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/03/2011] [Indexed: 12/22/2022]
Abstract
Anti-retroviral therapy (ART) has had a tremendous impact on the clinical outcomes of HIV-1 infected individuals. While ART has produced many tangible benefits, chronic, long-term consequences of HIV infection have grown in importance. HIV-1-associated neurocognitive disorder (HAND) represents a collection of neurological syndromes that have a wide range of functional cognitive impairments. HAND remains a serious threat to AIDS patients, and there currently remains no specific therapy for the neurological manifestations of HIV-1. Based upon work in other models of neuroinflammation, kappa opioid receptors (KOR) and synthetic cannabinoids have emerged as having neuroprotective properties and the ability to dampen pro-inflammatory responses of glial cells; properties that may have a positive influence in HIV-1 neuropathogenesis. The ability of KOR ligands to inhibit HIV-1 production in human microglial cells and CD4 T lymphocytes, demonstrate neuroprotection, and dampen chemokine production in astrocytes provides encouraging data to suggest that KOR ligands may emerge as potential therapeutic agents in HIV neuropathogenesis. Based upon findings that synthetic cannabinoids inhibit HIV-1 expression in human microglia and suppress production of inflammatory mediators such as nitric oxide (NO) in human astrocytes, as well as a substantial literature demonstrating neuroprotective properties of cannabinoids in other systems, synthetic cannabinoids have also emerged as potential therapeutic agents in HIV neuropathogenesis. This review focuses on these two classes of compounds and describes the immunomodulatory and neuroprotective properties attributed to each in the context of HIV neuropathogenesis.
Collapse
Affiliation(s)
- Shuxian Hu
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | | |
Collapse
|
35
|
Molina PE, Amedee A, LeCapitaine NJ, Zabaleta J, Mohan M, Winsauer P, Vande Stouwe C. Cannabinoid neuroimmune modulation of SIV disease. J Neuroimmune Pharmacol 2011; 6:516-27. [PMID: 21830069 DOI: 10.1007/s11481-011-9301-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/25/2011] [Indexed: 01/05/2023]
Abstract
Marijuana is one of the most commonly used and abused drugs. Δ-9-tetrahydrocannabinol (Δ-9-THC), the primary psychoactive component in marijuana, is FDA-approved to ameliorate AIDS-associated wasting. Because cannabinoid receptors are expressed on cells of the immune system, it is possible that chronic Δ-9-THC use may impact HIV disease progression. Until recently, longitudinal, controlled, systems-approach studies on the effects of cannabinoids on disease progression were lacking. Data from our controlled studies in non-human primates show chronic Δ-9-THC administration prior to and during simian immunodeficiency virus (SIV) infection ameliorates disease progression, attenuates viral load and tissue inflammation, significantly reducing morbidity and mortality of SIV-infected macaques. Identification of possible mechanisms responsible for this modulation of disease progression is complicated due to the multiplicity of cannabinoid-mediated effects, tissue-specific responses to the viral infection, multiple cellular mechanisms involved in inflammatory responses, coordinated neuroendocrine and localized responses to infection, and kinetics of viral replication. Emerging results from our studies reveal that the overall mechanisms mediating the protective effects of cannabinoids involve novel epigenomic regulatory mechanisms in need of systematic investigation. Here, we review the evidence supporting an immunomodulatory role for cannabinoids and its impact on disease progression with focus on HIV/SIV infection.
Collapse
Affiliation(s)
- Patricia E Molina
- Department of Physiology, LSUHSC at New Orleans, 1901 Perdido Street, Medical Education Building, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Wang X, Ho WZ. Drugs of abuse and HIV infection/replication: implications for mother-fetus transmission. Life Sci 2011; 88:972-9. [PMID: 21056582 PMCID: PMC3100448 DOI: 10.1016/j.lfs.2010.10.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 10/11/2010] [Accepted: 10/27/2010] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) infection and progression of acquired immunodeficiency syndrome (AIDS) can be modulated by a number of cofactors, including drugs of abuse. Opioids, cocaine, cannabinoids, methamphetamine (METH), alcohol, and other substances of abuse have been implicated as risk factors for HIV infection, as they all have the potential to compromise host immunity and facilitate viral replication. Although epidemiologic evidence regarding the impact of drugs of abuse on HIV disease progression is mixed, in vitro studies as well as studies using in vivo animal models have indicated that drugs of abuse have the ability to enhance HIV infection/replication. Drugs of abuse may also be a risk factor for perinatal transmission of HIV. Because high levels of viral load in maternal blood are associated with increased risk of HIV vertical transmission, it is likely that drugs of abuse play an important role in promoting mother-fetus transmission. Furthermore, because the neonatal immune system differs qualitatively from the adult system, it is possible that maternal exposure to drugs of abuse would exacerbate neonatal immunity defects, facilitating HIV infection of neonate immune cells and promoting HIV vertical transmission. The availability and use of antiretroviral therapy for women infected with HIV increase, there is an increasing interest in determining the impact of drug abuse on efficacy of AIDS Clinical Trials Group (ACTG)-standardized treatment regimens for woman infected with HIV in the context of HIV vertical transmission.
Collapse
Affiliation(s)
- Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan, Hubei, 430071, P.R. China
| |
Collapse
|
37
|
Zheng W, Ouyang H, Zheng X, Liu S, Mata M, Fink DJ, Hao S. Glial TNFα in the spinal cord regulates neuropathic pain induced by HIV gp120 application in rats. Mol Pain 2011; 7:40. [PMID: 21599974 PMCID: PMC3121595 DOI: 10.1186/1744-8069-7-40] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/20/2011] [Indexed: 01/21/2023] Open
Abstract
Background HIV-associated sensory neuropathy (HIV-SN) is one of the most common forms of peripheral neuropathy, affecting about 30% of people with acquired immune deficiency syndrome (AIDS). The symptoms of HIV-SN are dominated by neuropathic pain. Glia activation in the spinal cord has become an attractive target for attenuating chronic pain. This study will investigate the role of spinal TNFα released from glia in HIV-related neuropathic pain. Results Peripheral gp120 application into the rat sciatic nerve induced mechanical allodynia for more than 7 weeks, and upregulated the expression of spinal TNFα in the mRNA and the protein levels at 2 weeks after gp120 application. Spinal TNFα was colocalized with GFAP (a marker of astrocytes) and Iba1 (a marker of microglia) in immunostaining, suggesting that glia produce TNFα in the spinal cord in this model. Peripheral gp120 application also increased TNFα in the L4/5 DRG. Furthermore, intrathecal administration of TNFα siRNA or soluble TNF receptor reduced gp120 application-induced mechanical allodynia. Conclusions Our results indicate that TNFα in the spinal cord and the DRG are involved in neuropathic pain, following the peripheral HIV gp120 application, and that blockade of the glial product TNFα reverses neuropathic pain induced by HIV gp120 application.
Collapse
Affiliation(s)
- Wenwen Zheng
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Purohit V, Rapaka RS, Schnur P, Shurtleff D. Potential impact of drugs of abuse on mother-to-child transmission (MTCT) of HIV in the era of highly active antiretroviral therapy (HAART). Life Sci 2011; 88:909-16. [DOI: 10.1016/j.lfs.2011.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 03/19/2011] [Indexed: 11/16/2022]
|
39
|
Purohit V, Rapaka RS, Shurtleff D. Mother-to-child transmission (MTCT) of HIV and drugs of abuse in post-highly active antiretroviral therapy (HAART) era. J Neuroimmune Pharmacol 2010; 5:507-15. [PMID: 20838913 DOI: 10.1007/s11481-010-9242-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
In the pre-highly active antiretroviral therapy (HAART) era, prenatal "vertical" mother-to-child transmission (MTCT) of HIV was about 25% and exposure of pregnant mothers to drugs of abuse (illicit drugs and tobacco smoking) was a significant contributory factor of MTCT. However, with the introduction of HAART, the rate of MTCT of HIV has decreased to less that 2%. But, it is estimated that currently about 5.1% of pregnant women use illicit drugs and 16.4% smoke tobacco. The residual prevalence of MTCT is of concern and may be related to this continued prevalence of substance use among pregnant mothers. In this report, we review and present evidence that supports the hypothesis that drugs of abuse do have the potential to increase MTCT of HIV in the presence of HAART. Exposure to drugs of abuse during pregnancy may increase MTCT of HIV through a variety of mechanisms that are addressed in detail including possible damage to the placenta, induction of preterm birth, and increasing maternal plasma viral load though a variety of putative mechanisms such as: (a) promoting HIV replication in monocyte/macrophages; (b) increasing the expression of CCR5 receptors; (c) decreasing the expression of CCR5 receptor ligands; (d) increasing the expression of CXCR4 receptors; (e) increasing the expression of DC-SIGN; (f) impairing the efficacy of HAART through drug-drug interaction; and (g) promoting HIV mutation and replication through non-adherence to HAART.
Collapse
Affiliation(s)
- Vishnudutt Purohit
- Division of Basic Neuroscience & Behavioral Research, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Bethesda, MD 20892-9555, USA.
| | | | | |
Collapse
|
40
|
Reiss CS. Cannabinoids and Viral Infections. Pharmaceuticals (Basel) 2010; 3:1873-1886. [PMID: 20634917 PMCID: PMC2903762 DOI: 10.3390/ph3061873] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 05/28/2010] [Accepted: 06/09/2010] [Indexed: 12/22/2022] Open
Abstract
Exogenous cannabinoids or receptor antagonists may influence many cellular and systemic host responses. The anti-inflammatory activity of cannabinoids may compromise host inflammatory responses to acute viral infections, but may be beneficial in persistent infections. In neurons, where innate antiviral/pro-resolution responses include the activation of NOS-1, inhibition of Ca(2+) activity by cannabinoids, increased viral replication and disease. This review examines the effect(s) of cannabinoids and their antagonists in viral infections.
Collapse
Affiliation(s)
- Carol Shoshkes Reiss
- Department of Biology, Center for Neural Science, NYU Cancer Institute and Department of Microbiology, New York University, 100 Washington Square East, New York, NY, 10003, USA; ; Tel.: +1-212-998-8269
| |
Collapse
|
41
|
Nicoletti F, Lapenta C, Lamenta C, Donati S, Spada M, Ranazzi A, Cacopardo B, Mangano K, Belardelli F, Perno C, Aquaro S. Inhibition of human immunodeficiency virus (HIV-1) infection in human peripheral blood leucocytes-SCID reconstituted mice by rapamycin. Clin Exp Immunol 2009; 155:28-34. [PMID: 19076826 DOI: 10.1111/j.1365-2249.2008.03780.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The capacity of the immunomodulatory drug rapamycin (RAPA) to inhibit replication of the CCR5 strain of human immunodeficiency virus (HIV) in vitro prompted us to test its effects in a murine preclinical model of HIV infection. RAPA (0.6 or 6 mg/kg body weight) or its vehicle were administered daily, per os, to SCID mice reconstituted with human peripheral blood leucocytes (hu-PBL) starting 2 days before the intraperitoneal challenge with the R5 tropic SF162 strain of HIV-1 (1000 50% tissue culture infective dose/ml). Relative to hu-PBL-SCID mice that received no treatment, HIV-infected hu-PBL-SCID mice treated with the vehicle control for 3 weeks exhibited a severe depletion of CD4(+) cells (90%), an increase in CD8(+) cells and an inversion of the CD4(+)/CD8(+) cell ratio. In contrast, treatment of HIV-infected mice with RAPA prevented a decrease in CD4(+) cells and the increase of CD8(+) cells, thereby preserving the original CD4(+):CD8(+) cell ratio. Viral infection also resulted in the detection of HIV-DNA within peritoneal cells and spleen, and lymph node tissues of the vehicle-treated mice within 3 weeks of the viral challenge. In contrast, treatment with RAPA decreased cellular provirus integration and reduced HIV-RNA levels in the blood. Furthermore, in co-cultivation assays, spleens from RAPA-treated mice exhibited a reduced capacity for infecting allogeneic T cells which was dose-dependent. These data show that RAPA possesses powerful anti-viral activity against R5 strains of HIV in vivo and support the use of additional studies to evaluate the potential application of this drug in the management of HIV patients.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Biomedical Sciences, Section of Clinical Pathology and Molecular Oncology, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chao C, Jacobson LP, Jenkins FJ, Tashkin D, Martínez-Maza O, Roth MD, Ng L, Margolick JB, Chmiel JS, Zhang ZF, Detels R. Recreational drug use and risk of Kaposi's sarcoma in HIV- and HHV-8-coinfected homosexual men. AIDS Res Hum Retroviruses 2009; 25:149-56. [PMID: 19108691 PMCID: PMC2981355 DOI: 10.1089/aid.2008.0196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Experimental data suggested that exposure to recreational drugs might adversely affect antitumor immunity, which led us to examine the hypothesis that use of marijuana, cocaine, poppers, and amphetamines might increase the risk of Kaposi's sarcoma (KS) in HIV- and HHV-8-coinfected homosexual men. We analyzed data prospectively collected from the Multicenter AIDS Cohort Study (MACS) between 1984 and 2002. Among the 1335 HIV- and HHV-8-coinfected white men, 401 KS cases were identified. Multivariable Cox regression models were used to estimate the effects of time-varying recreational drug use on KS risk adjusting for potential confounders. The effects of both recent use (6 months prior) of recreational drugs and lagged exposure (i.e., use from 3 and 5 years prior) were examined. We did not observe any clear association with KS for recent use of any of the four drugs. In the analyses using lagged exposures, KS risk was associated with use of poppers 3-5 years prior [hazard ratio (HR)(3 years prior) = 1.27, 95% CI (0.97-1.67), HR(5 years prior) = 1.46 (1.01-2.13)]. However, no clear dose-response relationship was observed. These findings do not support a biological association between use of these substances and KS development in HIV- and HHV-8-coinfected homosexual men.
Collapse
Affiliation(s)
- Chun Chao
- Department of Epidemiology and Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California 90095
| | - Lisa P. Jacobson
- Department of Epidemiology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Frank J. Jenkins
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Donald Tashkin
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095
| | - Otoniel Martínez-Maza
- Departments of Obstetrics and Gynecology and Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Michael D. Roth
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095
| | - Leslie Ng
- Department of Epidemiology and Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California 90095
| | - Joseph B. Margolick
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Joan S. Chmiel
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Zuo-Feng Zhang
- Department of Epidemiology and Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California 90095
| | - Roger Detels
- Department of Epidemiology and Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California 90095
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095
| |
Collapse
|
43
|
Gonzalez R, Cherner M. Co-factors in HIV neurobehavioural disturbances: substance abuse, hepatitis C and aging. Int Rev Psychiatry 2008; 20:49-60. [PMID: 18240062 DOI: 10.1080/09540260701872028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neurocognitive disturbances associated with HIV infection may be modulated or confounded by coexisting and comorbid conditions that reflect the changing populations affected by the disease. HIV infection is often accompanied by substance dependence and/or hepatitis C co-infection. Both of these cofactors that may lead to brain dysfunction on their own, and therefore can affect the nature and course neurocognitive functioning in HIV. Improvements in antiretroviral therapies translate into greater longevity for people infected with HIV, many of whom are now entering their 6th and 7th decade of life and beyond. The increasing proportion of older persons with HIV is also the result of new infections in this age group. As aging confers additional metabolic, neurologic, and neuropsychiatric vulnerability, it is important to understand how this constellation of changes affects neurocognitive functioning in the context of HIV.
Collapse
Affiliation(s)
- Raul Gonzalez
- Department of Psychiatry, University of Illinois, Chicago, IL, USA
| | | |
Collapse
|
44
|
Zhang X, Wang JF, Kunos G, Groopman JE. Cannabinoid modulation of Kaposi's sarcoma-associated herpesvirus infection and transformation. Cancer Res 2007; 67:7230-7. [PMID: 17671191 DOI: 10.1158/0008-5472.can-07-0960] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV; also named human herpesvirus 8) is necessary but not sufficient for the development of Kaposi's sarcoma. A variety of factors may contribute to the pathogenesis of Kaposi's sarcoma in addition to KSHV. Marijuana is a widely used recreational agent, and Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the major active component of marijuana, is prescribed for medicinal use. To evaluate how cannabinoids may affect the pathogenesis of Kaposi's sarcoma, we studied primary human dermal microvascular endothelial cells (HMVEC) exposed to KSHV. There was an increased efficiency of KSHV infection in the presence of low doses of Delta(9)-THC. We also found that Delta(9)-THC increased the viral load in KSHV-infected HMVEC through activation of the KSHV lytic switch gene, the open reading frame 50. Furthermore, we observed that Delta(9)-THC stimulated expression of the KSHV-encoded viral G protein-coupled receptor and Kaposi's sarcoma cell proliferation. Our results indicate that Delta(9)-THC can enhance KSHV infection and replication and foster KSHV-mediated endothelial transformation. Thus, use of cannabinoids may place individuals at greater risk for the development and progression of Kaposi's sarcoma.
Collapse
MESH Headings
- Blotting, Western
- Cell Adhesion
- Cell Proliferation/drug effects
- Cell Transformation, Neoplastic/drug effects
- Cells, Cultured
- DNA, Viral/analysis
- Dronabinol/analogs & derivatives
- Dronabinol/pharmacology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Endothelium, Vascular/virology
- Herpesvirus 8, Human/drug effects
- Herpesvirus 8, Human/physiology
- Humans
- Immediate-Early Proteins/metabolism
- Receptors, Chemokine/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Skin/blood supply
- Trans-Activators/metabolism
- Transfection
- Viral Load
- Viral Proteins/metabolism
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Xuefeng Zhang
- Division of Experimental Medicine and Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
45
|
Cabral GA. Drugs of abuse, immune modulation, and AIDS. J Neuroimmune Pharmacol 2006; 1:280-95. [PMID: 18040805 DOI: 10.1007/s11481-006-9023-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 05/16/2006] [Indexed: 11/29/2022]
Abstract
Illicit drugs such as amphetamines, cocaine, marijuana, and opiates alter immune function and decrease host resistance to microbes in vitro and in experimental animal models. Effects on the immune system may be mediated indirectly as a result of drug interactions in the central nervous system (CNS) or directly through activation of cognate receptors on various immune cell types. For marijuana and opioids, seven-transmembranal G protein-coupled receptors have been identified in the CNS and in the immune system that may play a functionally relevant role in immune modulation. There is accumulating evidence that sigma(1) receptors play a comparable role in cocaine-mediated alteration of immune responses. A mode by which these exogenously introduced substances affects immunity and host resistance may be by perturbing the balance of Th(1) proinflammatory versus Th(2) anti-inflammatory cytokines and lipid bioeffectors. However, while illicit drugs have been documented to alter immune functions in vitro and in animal models, there is a paucity of controlled longitudinal epidemiological studies that definitively correlate immunosuppressive effects with increased incidence of infections or immune disorders in humans, including infection with the human immunodeficiency virus (HIV) or disease progression to AIDS.
Collapse
Affiliation(s)
- Guy A Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University, School of Medicine, 1101 E. Marshall Street, Richmond, VA 23298-0678, USA.
| |
Collapse
|
46
|
Roth MD, Whittaker KM, Choi R, Tashkin DP, Baldwin GC. Cocaine and sigma-1 receptors modulate HIV infection, chemokine receptors, and the HPA axis in the huPBL-SCID model. J Leukoc Biol 2005; 78:1198-203. [PMID: 16204638 DOI: 10.1189/jlb.0405219] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cocaine is associated with an increased risk for, and progression of, clinical disease associated with human immunodeficiency virus (HIV) infection. A human xenograft model, in which human peripheral blood mononuclear cells were implanted into severe combined immunodeficiency mice (huPBL-SCID) and infected with a HIV reporter virus, was used to investigate the biological interactions between cocaine and HIV infection. Systemic administration of cocaine (5 mg/kg/d) significantly increased the percentage of HIV-infected PBL (two- to threefold) and viral load (100- to 300-fold) in huPBL-SCID mice. Despite the capacity for cocaine to increase corticosterone and adrenocorticotropic hormone levels in control mice, the hypothalamic-pituitary-adrenal axis was suppressed in HIV-infected animals, and corticosterone levels were further decreased when animals were exposed to HIV and cocaine. Activating huPBL in vitro in the presence of 10(-8) M cocaine increased expression of CC chemokine receptor 5 (CCR5) and CXC chemokine receptor 4 (CXCR4) coreceptors. Expression of CCR5 was also increased at early time-points in the huPBL-SCID model following systemic exposure to cocaine (54.1+/-9.4% increase over control, P<0.01). This effect preceded the boost in viral infection and waned as HIV infection progressed. Cocaine has been shown to mediate immunosuppressive effects by activating sigma-1 receptors in immune cells in vitro and in vivo. Consistent with these reports, a selective sigma-1 antagonist, BD1047, blocked the effects of cocaine on HIV replication in the huPBL-SCID mouse. Our results suggest that systemic exposure to cocaine can enhance HIV infection in vivo by activating sigma-1 receptors and by modulating the expression of HIV coreceptors.
Collapse
MESH Headings
- Animals
- Cocaine/toxicity
- Cocaine-Related Disorders/complications
- Cocaine-Related Disorders/immunology
- Cocaine-Related Disorders/physiopathology
- Disease Models, Animal
- Ethylenediamines/pharmacology
- Female
- HIV/immunology
- HIV Infections/immunology
- HIV Infections/physiopathology
- Humans
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/immunology
- Hypothalamo-Hypophyseal System/physiopathology
- Immune Tolerance/drug effects
- Immune Tolerance/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/transplantation
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Pituitary-Adrenal System/drug effects
- Pituitary-Adrenal System/immunology
- Pituitary-Adrenal System/physiopathology
- Receptors, CCR5/drug effects
- Receptors, CCR5/immunology
- Receptors, CXCR4/drug effects
- Receptors, CXCR4/immunology
- Receptors, Chemokine/drug effects
- Receptors, Chemokine/immunology
- Receptors, sigma/drug effects
- Receptors, sigma/immunology
- Transplantation, Heterologous
- Viral Load
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Michael D Roth
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1678, USA
| | | | | | | | | |
Collapse
|
47
|
Rao GK, Kaminski NE. Induction of intracellular calcium elevation by Δ9-tetrahydrocannabinol in T cells involves TRPC1 channels. J Leukoc Biol 2005; 79:202-13. [PMID: 16244107 DOI: 10.1189/jlb.0505274] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have reported previously that Delta9-tetrahydrocannabinol (Delta9-THC) treatment of resting human and murine splenic T cells robustly elevated intracellular calcium ([Ca2+]i). The objective of the present investigation was to examine the putative role of [Ca2+]i store depletion and store-operated calcium (SOC) and receptor-operated cation (ROC) channels in the mechanism by which Delta9-THC increases [Ca2+]i in the cannabinoid-2 receptor-expressing human peripheral blood-acute lymphoid leukemia (HPB-ALL) human T cell line. By using the smooth endoplasmic reticulum Ca2+-ATPase pump inhibitor, thapsigargin, and the ryanodine receptor antagonist, 8-bromo-cyclic adenosine diphosphate ribose, we demonstrate that the Delta9-THC-mediated elevation in [Ca2+]i occurs independently of [Ca2+]i store depletion. Furthermore, the ROC channel inhibitor, SK&F 96365 was more efficacious at attenuating the Delta9-THC-mediated elevation in [Ca2+]i than SOC channel inhibitors, 2-aminoethoxydiphenyl borate and La3+. Recently, several members of the transient receptor potential canonical (TRPC) channel subfamily have been suggested to operate as SOC or ROC channels. In the present studies, treatment of HPB-ALL cells with 1-oleoyl-2-acetyl-sn-glycerol (OAG), a cell-permeant analog of diacylglycerol (DAG), which gates several members of the TRPC channel subfamily, rapidly elevated [Ca2+]i, as well as prevented a subsequent, additive elevation in [Ca2+]i by Delta9-THC, independent of protein kinase C. Reverse transcriptase-polymerase chain reaction analysis for TRPC1-7 showed that HPB-ALL cells express detectable mRNA levels of only TRPC1. Finally, small interference RNA knockdown of TRPC1 attenuated the Delta9-THC-mediated elevation of [Ca2+]i. Collectively, these results suggest that Delta9-THC-induced elevation in [Ca2+]i is attributable entirely to extracellular calcium influx, which is independent of [Ca2+]i store depletion, and is mediated, at least partially, through the DAG-sensitive TRPC1 channels.
Collapse
Affiliation(s)
- Gautham K Rao
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | | |
Collapse
|