1
|
Silva CNDF, Bessa ADSMD, Costa JMD, Lopes PR, Neves ÂR, Teles Bombardelli MML, Colugnati DB, Pedrino GR, Mendes EP, Santos RASD, Biancardi MF, Santos FCAD, Castro CH. Mas receptor blockade impairs exercise-induced cardiac hypertrophy. Peptides 2024; 181:171296. [PMID: 39265810 DOI: 10.1016/j.peptides.2024.171296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Exercise training leads to physiological cardiac hypertrophy and the protective axis of the renin-angiotensin system composed of angiotensin-converting enzyme 2, angiotensin-(1-7), and Mas receptor seems involved in this process. However, the role of the basal activity of the Mas receptor in exercise-induced physiological cardiac hypertrophy is still unclear. We evaluated the effects of the Mas receptor blockade on the left ventricular structure and function of rats submitted to running training. Rats were assigned to 4 groups: sedentary (S), sedentary + A-779 (Mas receptor antagonist, 120 µg/kg/day, i.p.; SA), trained (60-minute treadmill running sessions, five days a week, 8 weeks; T), and trained + A-779 (TA). Systolic blood pressure was higher in sedentary and trained rats treated with A-779 at the end of the experimental period. The A-779 treatment prevented the left ventricular hypertrophy evoked by physical exercise and increased collagen deposition in sedentary and trained rats. Cardiomyocytes from the SA group presented increased length and thickness of the sarcomeres, elongated mitochondria, glycogen deposits, and enlarged cisterns of the sarcoplasmic reticulum. TA group presented a reduced sarcomere thickness and cytoplasm with a degenerative aspect. These findings show that the basal activity of the Mas receptor is essential for the proper turnover of the extracellular matrix in the myocardium and the maintenance of the sarcomeric structure of cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | - Paulo Ricardo Lopes
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Ângela Ribeiro Neves
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Derkachev IA, Popov SV, Maslov LN, Mukhomedzyanov AV, Naryzhnaya NV, Gorbunov AS, Kan A, Krylatov AV, Podoksenov YK, Stepanov IV, Gusakova SV, Fu F, Pei JM. Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart-The signaling mechanism. Fundam Clin Pharmacol 2024; 38:489-501. [PMID: 38311344 DOI: 10.1111/fcp.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The high mortality rate of patients with acute myocardial infarction (AMI) remains the most pressing issue of modern cardiology. Over the past 10 years, there has been no significant reduction in mortality among patients with AMI. It is quite obvious that there is an urgent need to develop fundamentally new drugs for the treatment of AMI. Angiotensin 1-7 has some promise in this regard. OBJECTIVE The objective of this article is analysis of published data on the cardioprotective properties of angiotensin 1-7. METHODS PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart. Angiotensin 1-7 can prevent not only ischemic but also reperfusion cardiac injury. The activation of the Mas receptor plays a key role in these effects of angiotensin 1-7. Angiotensin 1-7 alleviates Ca2+ overload of cardiomyocytes and reactive oxygen species production in ischemia/reperfusion (I/R) of the myocardium. It is possible that both effects are involved in angiotensin 1-7-triggered cardiac tolerance to I/R. Furthermore, angiotensin 1-7 inhibits apoptosis of cardiomyocytes and stimulates autophagy of cells. There is also indirect evidence suggesting that angiotensin 1-7 inhibits ferroptosis in cardiomyocytes. Moreover, angiotensin 1-7 possesses anti-inflammatory properties, possibly achieved through NF-kB activity inhibition. Phosphoinositide 3-kinase, Akt, and NO synthase are involved in the infarct-reducing effect of angiotensin 1-7. However, the specific end-effector of the cardioprotective impact of angiotensin 1-7 remains unknown. CONCLUSION The molecular nature of the end-effector of the infarct-limiting effect of angiotensin 1-7 has not been elucidated. Perhaps, this end-effector is the sarcolemmal KATP channel or the mitochondrial KATP channel.
Collapse
Affiliation(s)
- Ivan A Derkachev
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Sergey V Popov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Leonid N Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | | | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Alexander S Gorbunov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Artur Kan
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Andrey V Krylatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Yuri K Podoksenov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Ivan V Stepanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Svetlana V Gusakova
- Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russia
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jian-Ming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Ávila-Martínez DV, Mixtega-Ruiz WK, Hurtado-Capetillo JM, Lopez-Franco O, Flores-Muñoz M. Counter-regulatory RAS peptides: new therapy targets for inflammation and fibrotic diseases? Front Pharmacol 2024; 15:1377113. [PMID: 38666016 PMCID: PMC11044688 DOI: 10.3389/fphar.2024.1377113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
The renin-angiotensin system (RAS) is an important cascade of enzymes and peptides that regulates blood pressure, volume, and electrolytes. Within this complex system of reactions, its counter-regulatory axis has attracted attention, which has been associated with the pathophysiology of inflammatory and fibrotic diseases. This review article analyzes the impact of different components of the counter-regulatory axis of the RAS on different pathologies. Of these peptides, Angiotensin-(1-7), angiotensin-(1-9) and alamandine have been evaluated in a wide variety of in vitro and in vivo studies, where not only they counteract the actions of the classical axis, but also exhibit independent anti-inflammatory and fibrotic actions when binding to specific receptors, mainly in heart, kidney, and lung. Other functional peptides are also addressed, which despite no reports associated with inflammation and fibrosis to date were found, they could represent a potential target of study. Furthermore, the association of agonists of the counter-regulatory axis is analyzed, highlighting their contribution to the modulation of the inflammatory response counteracting the development of fibrotic events. This article shows an overview of the importance of the RAS in the resolution of inflammatory and fibrotic diseases, offering an understanding of the individual components as potential treatments.
Collapse
Affiliation(s)
- Diana V Ávila-Martínez
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Wendy K Mixtega-Ruiz
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | | - Oscar Lopez-Franco
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Mónica Flores-Muñoz
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
4
|
Deng Y, Ding W, Peng Q, Wang W, Duan R, Zhang Y. Advancement in Beneficial Effects of AVE 0991: A Brief Review. Mini Rev Med Chem 2024; 24:139-158. [PMID: 36998128 DOI: 10.2174/1389557523666230328134932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 04/01/2023]
Abstract
AVE 0991, a non-peptide analogue of Angiotensin-(1-7) [Ang-(1-7)], is orally active and physiologically well tolerated. Several studies have demonstrated that AVE 0991 improves glucose and lipid metabolism, and contains anti-inflammatory, anti-apoptotic, anti-fibrosis, and anti-oxidant effects. Numerous preclinical studies have also reported that AVE 0991 appears to have beneficial effects on a variety of systemic diseases, including cardiovascular, liver, kidney, cancer, diabetes, and nervous system diseases. This study searched multiple literature databases, including PubMed, Web of Science, EMBASE, Google Scholar, Cochrane Library, and the ClinicalTrials.gov website from the establishment to October 2022, using AVE 0991 as a keyword. This literature search revealed that AVE 0991 could play different roles via various signaling pathways. However, the potential mechanisms of these effects need further elucidation. This review summarizes the benefits of AVE 0991 in several medical problems, including the COVID-19 pandemic. The paper also describes the underlying mechanisms of AVE 0991, giving in-depth insights and perspectives on the pharmaceutical value of AVE 0991 in drug discovery and development.
Collapse
Affiliation(s)
- Yang Deng
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wangli Ding
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Wei Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| |
Collapse
|
5
|
Cohen-Segev R, Nativ O, Kinaneh S, Aronson D, Kabala A, Hamoud S, Karram T, Abassi Z. Effects of Angiotensin 1-7 and Mas Receptor Agonist on Renal System in a Rat Model of Heart Failure. Int J Mol Sci 2023; 24:11470. [PMID: 37511227 PMCID: PMC10380355 DOI: 10.3390/ijms241411470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Congestive heart failure (CHF) is often associated with impaired kidney function. Over- activation of the renin-angiotensin-aldosterone system (RAAS) contributes to avid salt/water retention and cardiac hypertrophy in CHF. While the deleterious effects of angiotensin II (Ang II) in CHF are well established, the biological actions of angiotensin 1-7 (Ang 1-7) are not fully characterized. In this study, we assessed the acute effects of Ang 1-7 (0.3, 3, 30 and 300 ng/kg/min, IV) on urinary flow (UF), urinary Na+ excretion (UNaV), glomerular filtration rate (GFR) and renal plasma flow )RPF) in rats with CHF induced by the placement of aortocaval fistula. Additionally, the chronic effects of Ang 1-7 (24 µg/kg/h, via intra-peritoneally implanted osmotic minipumps) on kidney function, cardiac hypertrophy and neurohormonal status were studied. Acute infusion of either Ang 1-7 or its agonist, AVE 0991, into sham controls, but not CHF rats, increased UF, UNaV, GFR, RPF and urinary cGMP. In the chronic protocols, untreated CHF rats displayed lower cumulative UF and UNaV than their sham controls. Chronic administration of Ang 1-7 and AVE 0991 exerted significant diuretic, natriuretic and kaliuretic effects in CHF rats, but not in sham controls. Serum creatinine and aldosterone levels were significantly higher in vehicle-treated CHF rats as compared with controls. Treatment with Ang 1-7 and AVE 0991 reduced these parameters to comparable levels observed in sham controls. Notably, chronic administration of Ang 1-7 to CHF rats reduced cardiac hypertrophy. In conclusion, Ang 1-7 exerts beneficial renal and cardiac effects in rats with CHF. Thus, we postulate that ACE2/Ang 1-7 axis represents a compensatory response to over-activity of ACE/AngII/AT1R system characterizing CHF and suggest that Ang 1-7 may be a potential therapeutic agent in this disease state.
Collapse
Affiliation(s)
- Ravit Cohen-Segev
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Omri Nativ
- Department of Urology, Rambam Health Center, Haifa 3109601, Israel
| | - Safa Kinaneh
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Doron Aronson
- Cardiology, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Aviva Kabala
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Shadi Hamoud
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Tony Karram
- Vascular Surgery, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
- Laboratory Medicine, Rambam Health Care Campus, Haifa 31096, Israel
| |
Collapse
|
6
|
Silva MVBD, Sousa Júnior CPD, Silva HVCD, Santos VMD, Feijao FIM, Bernardino ADO, Melo JACRTD. Evaluation of the cardioprotective and antihypertensive effect of AVE 0991 in normotensive and hypertensive rats. Rev Assoc Med Bras (1992) 2022; 68:xxx. [PMID: 35830019 PMCID: PMC9574952 DOI: 10.1590/1806-9282.20220259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | - Vanessa Maria Dos Santos
- Universidade Federal de Pernambuco, Departamento de Nutrição - Vitória de Santo Antão (PE), Brazil
| | | | | | | |
Collapse
|
7
|
Yamasan BE, Mercan T, Erkan O, Ozdemir S. Ellagic Acid Prevents Ca 2+ Dysregulation and Improves Functional Abnormalities of Ventricular Myocytes via Attenuation of Oxidative Stress in Pathological Cardiac Hypertrophy. Cardiovasc Toxicol 2021; 21:630-641. [PMID: 33909254 DOI: 10.1007/s12012-021-09654-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 01/25/2023]
Abstract
The aim of this study was to investigate whether ellagic acid (EA) treatment can prevent changes in contractile function and Ca2+ regulation of cardiomyocytes in pathologic cardiac hypertrophy. Groups were assigned as Con group; an ISO group in which the rats received isoproterenol alone (5 mg/kg/day); and an ISO + EA group in which the rats received isoproterenol and EA (20 mg/kg/day) for 4 weeks. Subsequently, fractional shortening, intracellular Ca2+ signals, and L-type Ca2+ currents of isolated ventricular myocytes were recorded. Protein expression levels were also determined by the Western blotting method. The survival rate was increased, and the upregulated cardiac hypertrophy markers were significantly attenuated with the EA treatment. The fractional shortening and relaxation rate of myocytes was decreased in the ISO group, whereas EA significantly improved these changes. Ventricular myocytes of the ISO + EA rats displayed lower diastolic Ca2+ levels, higher Ca2+ transients, shorter Ca2+ decay, and higher L-type Ca2+ currents than those of ISO rats. Protein expression analyses indicated that the upregulated p-PLB and p-CaMKII expressions were restored by EA treatment, suggesting improved calcium handling in the ISO + EA rat heart. Moreover, ISO rats displayed significantly increased expression of p-22phox and p47phox subunits of NOX2 protein. Expression of the p22phox subunit was reduced with EA administration, while the decrease in p47phox did not reach a significant level. The increased ROS impairs Ca2+ homeostasis and contractile activity of cardiac myocytes, whereas chronic EA administration prevents Ca2+ dysregulation and functional abnormalities associated with pathological cardiac hypertrophy via the diminution of oxidative stress.
Collapse
Affiliation(s)
- Bilge E Yamasan
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Tanju Mercan
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Orhan Erkan
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Semir Ozdemir
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| |
Collapse
|
8
|
Szeiffova Bacova B, Viczenczova C, Andelova K, Sykora M, Chaudagar K, Barancik M, Adamcova M, Knezl V, Egan Benova T, Weismann P, Slezak J, Tribulova N. Antiarrhythmic Effects of Melatonin and Omega-3 Are Linked with Protection of Myocardial Cx43 Topology and Suppression of Fibrosis in Catecholamine Stressed Normotensive and Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9060546. [PMID: 32580481 PMCID: PMC7346184 DOI: 10.3390/antiox9060546] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiac β-adrenergic overstimulation results in oxidative stress, hypertrophy, ischemia, lesion, and fibrosis rendering the heart vulnerable to malignant arrhythmias. We aimed to explore the anti-arrhythmic efficacy of the anti-oxidative and anti-inflammatory compounds, melatonin, and omega-3, and their mechanisms of actions in normotensive and hypertensive rats exposed to isoproterenol (ISO) induced β-adrenergic overdrive. Eight-month-old, male SHR, and Wistar rats were injected during 7 days with ISO (cumulative dose, 118 mg/kg). ISO rats were either untreated or concomitantly treated with melatonin (10 mg/kg/day) or omega-3 (Omacor, 1.68 g/kg/day) until 60 days of ISO withdrawal and compared to non-ISO controls. Findings showed that both melatonin and omega-3 increased threshold current to induce ventricular fibrillation (VF) in ISO rats regardless of the strain. Prolonged treatment with these compounds resulted in significant suppression of ISO-induced extracellular matrix alterations, as indicated by reduced areas of diffuse fibrosis and decline of hydroxyproline, collagen-1, SMAD2/3, and TGF-β1 protein levels. Importantly, the highly pro-arrhythmic ISO-induced disordered cardiomyocyte distribution of electrical coupling protein, connexin-43 (Cx43), and its remodeling (lateralization) were significantly attenuated by melatonin and omega-3 in Wistar as well as SHR hearts. In parallel, both compounds prevented the post-ISO-related increase in Cx43 variant phosphorylated at serine 368 along with PKCε, which are known to modulate Cx43 remodeling. Melatonin and omega-3 increased SOD1 or SOD2 protein levels in ISO-exposed rats of both strains. Altogether, the results indicate that anti-arrhythmic effects of melatonin and omega-3 might be attributed to the protection of myocardial Cx43 topology and suppression of fibrosis in the setting of oxidative stress induced by catecholamine overdrive in normotensive and hypertensive rats.
Collapse
Affiliation(s)
- Barbara Szeiffova Bacova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Csilla Viczenczova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Katarina Andelova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | | | - Miroslav Barancik
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Vladimir Knezl
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Peter Weismann
- Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia;
| | - Jan Slezak
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Narcisa Tribulova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Correspondence: ; Tel.: +00421-2-32295423
| |
Collapse
|
9
|
Xiao H, Liu X, Wang Y, Wang G, Yin C. Angiotensin‑(1‑7) prevents lipopolysaccharide‑induced hepatocellular inflammatory response by inhibiting the p38MAPK/AP‑1 signaling pathway. Mol Med Rep 2018; 17:5492-5497. [PMID: 29393446 DOI: 10.3892/mmr.2018.8527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/26/2017] [Indexed: 11/06/2022] Open
Abstract
The pathological mechanism of lipopolysaccharide (LPS)‑induced liver injury involves a number of inflammatory mediators and cytokines. Angiotensin (Ang)‑(1‑7), a ligand for the proto‑oncogene Mas (Mas) receptor, antagonizes the actions of Ang II in the renin angiotensin system and exerts an anti‑inflammatory effect on LPS‑induced macrophages. The present study investigated the potential role of Ang‑(1‑7) in the regulation of inflammatory responses in LPS‑induced hepatocytes using the rat liver BRL cell line. The results of the present study demonstrated that the inflammatory mediator, tumor necrosis factor (TNF)‑α, its upstream transcriptional regulatory factor activator protein (AP)‑1 and p38 mitogen activated protein kinase (MAPK) which were detected by reverse transcription‑quantitative polymerase chain reaction and western blotting were upregulated in LPS‑induced hepatic cells in a time‑dependent manner, peaking 12 h following LPS stimulation. By contrast, treatment with Ang‑(1‑7) significantly attenuated the expression of TNF‑α, AP‑1 and p38MAPK in a concentration‑dependent manner. The anti‑inflammatory effect of Ang‑(1‑7) was reversed by the Mas receptor selective antagonist, A779, in BRL cells. Furthermore, the p38MAPK inhibitor, SB 203580, abolished the protective effects of Ang‑(1‑7), suggesting the involvement of the p38MAPK pathway in the anti‑inflammatory activity of Ang‑(1‑7). The results of the present study indicated that Ang‑(1‑7) may serve an anti‑inflammatory role in LPS‑induced hepatocyte injury via the regulation of the p38MAPK/AP‑1 signaling pathway.
Collapse
Affiliation(s)
- Hongli Xiao
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xiaoya Liu
- Department of Internal Medicine, Beijing Obstetrics and Gynaecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Yan Wang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Guoxing Wang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Chenghong Yin
- Department of Internal Medicine, Beijing Obstetrics and Gynaecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| |
Collapse
|
10
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 774] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
11
|
Kittana N. Angiotensin-converting enzyme 2-Angiotensin 1-7/1-9 system: novel promising targets for heart failure treatment. Fundam Clin Pharmacol 2017; 32:14-25. [DOI: 10.1111/fcp.12318] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/17/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Naim Kittana
- Department of Biomedical Sciences; An-Najah National University; New Campus, Pharmacy Building, 2nd Floor, Akademia Street, PO Box: 7 Nablus West-Bank Palestine
| |
Collapse
|
12
|
Lin S, Pan H, Wu H, Ren D, Lu J. Role of the ACE2‑Ang‑(1‑7)‑Mas axis in blood pressure regulation and its potential as an antihypertensive in functional foods (Review). Mol Med Rep 2017; 16:4403-4412. [PMID: 28791402 DOI: 10.3892/mmr.2017.7168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/08/2017] [Indexed: 11/05/2022] Open
Abstract
The renin‑angiotensin system (RAS) serves a critical role in blood pressure regulation and prevention of cardiovascular diseases. Efforts to develop functional foods that enhance the RAS have focused on inhibition of angiotensin‑converting enzyme (ACE) activity in the ACE‑angiotensin II (Ang II)‑Ang II type 1 receptor axis. ACE2 and the Mas receptor are important components of this axis. ACE2 catalyzes Ang II into Ang‑(1‑7), which then binds to the G‑protein‑coupled receptor Mas. In addition, it induces nitric oxide release from endothelial cells and exerts antiproliferative, vasodilatory and antihypertensive effects. The present review examined recent findings regarding the physiological and biological roles of the ACE2‑Ang‑(1‑7)‑Mas axis in the cardiovascular system, discussed potential food‑derived ACE2‑activating agents, and highlighted initiatives, based on this axis, that aim to develop functional foods for the treatment of hypertension.
Collapse
Affiliation(s)
- Shiqi Lin
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Huanglei Pan
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Hongli Wu
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Difeng Ren
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jun Lu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, P.R. China
| |
Collapse
|
13
|
Simões E Silva AC, Teixeira MM. ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol Res 2016; 107:154-162. [PMID: 26995300 DOI: 10.1016/j.phrs.2016.03.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
The Renin Angiotensin System (RAS) is a pivotal physiological regulator of heart and kidney homeostasis, but also plays an important role in the pathophysiology of heart and kidney diseases. Recently, new components of the RAS have been discovered, including angiotensin converting enzyme 2 (ACE2), Angiotensin(Ang)-(1-7), Mas receptor, Ang-(1-9) and Alamandine. These new components of RAS are formed by the hydrolysis of Ang I and Ang II and, in general, counteract the effects of Ang II. In experimental models of heart and renal diseases, Ang-(1-7), Ang-(1-9) and Alamandine produced vasodilation, inhibition of cell growth, anti-thrombotic, anti-inflammatory and anti-fibrotic effects. Recent pharmacological strategies have been proposed to potentiate the effects or to enhance the formation of Ang-(1-7) and Ang-(1-9), including ACE2 activators, Ang-(1-7) in hydroxypropyl β-cyclodextrin, cyclized form of Ang-(1-7) and nonpeptide synthetic Mas receptor agonists. Here, we review the role and effects of ACE2, ACE2 activators, Ang-(1-7) and synthetic Mas receptor agonists in the control of inflammation and fibrosis in cardiovascular and renal diseases and as counter-regulators of the ACE-Ang II-AT1 axis. We briefly comment on the therapeutic potential of the novel members of RAS, Ang-(1-9) and alamandine, and the interactions between classical RAS inhibitors and new players in heart and kidney diseases.
Collapse
Affiliation(s)
- Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica, Unidade de Nefrologia Pediátrica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil.
| | - Mauro Martins Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, UFMG, Brazil
| |
Collapse
|
14
|
Bernardi S, Michelli A, Zuolo G, Candido R, Fabris B. Update on RAAS Modulation for the Treatment of Diabetic Cardiovascular Disease. J Diabetes Res 2016; 2016:8917578. [PMID: 27652272 PMCID: PMC5019930 DOI: 10.1155/2016/8917578] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Since the advent of insulin, the improvements in diabetes detection and the therapies to treat hyperglycemia have reduced the mortality of acute metabolic emergencies, such that today chronic complications are the major cause of morbidity and mortality among diabetic patients. More than half of the mortality that is seen in the diabetic population can be ascribed to cardiovascular disease (CVD), which includes not only myocardial infarction due to premature atherosclerosis but also diabetic cardiomyopathy. The importance of renin-angiotensin-aldosterone system (RAAS) antagonism in the prevention of diabetic CVD has demonstrated the key role that the RAAS plays in diabetic CVD onset and development. Today, ACE inhibitors and angiotensin II receptor blockers represent the first line therapy for primary and secondary CVD prevention in patients with diabetes. Recent research has uncovered new dimensions of the RAAS and, therefore, new potential therapeutic targets against diabetic CVD. Here we describe the timeline of paradigm shifts in RAAS understanding, how diabetes modifies the RAAS, and what new parts of the RAAS pathway could be targeted in order to achieve RAAS modulation against diabetic CVD.
Collapse
Affiliation(s)
- Stella Bernardi
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
- Division of Medicina Clinica, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
- *Stella Bernardi:
| | - Andrea Michelli
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
| | - Giulia Zuolo
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
| | - Riccardo Candido
- Diabetes Centre, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Via Puccini, 34100 Trieste, Italy
| | - Bruno Fabris
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
- Division of Medicina Clinica, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
| |
Collapse
|
15
|
AVE 0991 attenuates cardiac hypertrophy through reducing oxidative stress. Biochem Biophys Res Commun 2015; 474:621-625. [PMID: 26403967 DOI: 10.1016/j.bbrc.2015.09.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 09/09/2015] [Indexed: 11/21/2022]
Abstract
AVE 0991, the nonpeptide angiotensin-(1-7) (Ang-(1-7)) analog, is recognized as having beneficial cardiovascular effects. However, the mechanisms have not been fully elucidated. This study was designed to investigate the effects of AVE 0991 on cardiac hypertrophy and the mechanisms involved. Mice were underwent aortic banding to induce cardiac hypertrophy followed by the administration of AVE 0991 (20 mg kg·day (-1)) for 4 weeks. It was shown that AVE 0991 reduced left ventricular hypertrophy and improved heart function, characterized by decreases in left ventricular weight and left ventricular end-diastolic diameter, and increases in ejection fraction. Moreover, AVE 0991 significantly down-regulated mean myocyte diameter and attenuate the gene expression of the hypertrophic markers. Furthermore, AVE 0991 inhibited the expression of NOX 2 and NOX 4, meaning that AVE 0991 reduced oxidative stress of cardiac hypertrophy mice. Our data showed that AVE 0991 treatment could attenuate cardiac hypertrophy and improve heart function, which may be due to reduce oxidative stress.
Collapse
|
16
|
Sevá Pessôa B, Becher PM, Van Veghel R, De Vries R, Tempel D, Sneep S, Van Beusekom H, Van Der Velden VHJ, Westermann D, Danser AHJ, Roks AJM. Effect of a stable Angiotensin-(1-7) analogue on progenitor cell recruitment and cardiovascular function post myocardial infarction. J Am Heart Assoc 2015; 4:jah3823. [PMID: 25655571 PMCID: PMC4345874 DOI: 10.1161/jaha.114.001510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Angiotensin‐(1–7) improves cardiac function and remodeling after myocardial infarction (MI). This may involve recruitment of hematopoietic progenitor cells that support angiogenesis. However, angiotensin‐(1–7) is rapidly metabolized in plasma and tissue. The authors investigated in mice the effect of a metabolically stable angiotensin‐(1–7) analogue, cyclic angiotensin‐(1–7), on progenitor cell recruitment and on the heart post MI, when given in the angiogenesis phase of remodeling. Methods and Results Angiogenic progenitor cell recruitment was measured by using flow cytometry 24 and 72 hours after a daily bolus injection of cyclic angiotensin‐(1–7) in healthy C57BL/6 mice. Further, mice underwent MI or sham surgery and subsequently received saline or 2 different doses of cyclic angiotensin‐(1–7) for 3 or 9 weeks. Cyclic angiotensin‐(1–7) increased circulating hematopoietic progenitor cells at 24 hours but not 72 hours. Post MI, cyclic angiotensin‐(1–7) diminished cardiomyocyte hypertrophy and reduced myogenic tone, without altering cardiovascular function or cardiac histology at 9 weeks. Importantly, cyclic angiotensin‐(1–7)–treated mice had reduced cardiac capillary density at 3 weeks after MI but not after 9 weeks. Finally, cyclic angiotensin‐(1–7) decreased tube formation by cultured human umbilical vein endothelial cells. Conclusions Our results suggest that cyclic angiotensin‐(1–7), when given early after MI, recruits progenitor cells but does not lead to improved angiogenesis, most likely because it simultaneously exerts antiangiogenic effect in adult endothelial cells. Apparently, optimal treatment with cyclic angiotensin‐(1–7) depends on the time point of onset of application after MI.
Collapse
Affiliation(s)
- Bruno Sevá Pessôa
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - Peter Moritz Becher
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Germany (P.M.B., D.W.)
| | - Richard Van Veghel
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - René De Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - Dennie Tempel
- Division of Cardiology and Pulmonology, Department of Interventional Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (D.T.)
| | - Stefan Sneep
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (S.S., H.V.B.)
| | - Heleen Van Beusekom
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (S.S., H.V.B.)
| | - Vincent H J Van Der Velden
- Department of Immunology, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (V.J.V.D.V.)
| | - Dirk Westermann
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Germany (P.M.B., D.W.)
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| |
Collapse
|
17
|
Bader M, Alenina N, Andrade-Navarro MA, Santos RA. MAS and its related G protein-coupled receptors, Mrgprs. Pharmacol Rev 2014; 66:1080-105. [PMID: 25244929 DOI: 10.1124/pr.113.008136] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Mas-related G protein-coupled receptors (Mrgprs or Mas-related genes) comprise a subfamily of receptors named after the first discovered member, Mas. For most Mrgprs, pruriception seems to be the major function based on the following observations: 1) they are relatively promiscuous in their ligand specificity with best affinities for itch-inducing substances; 2) they are expressed in sensory neurons and mast cells in the skin, the main cellular components of pruriception; and 3) they appear in evolution first in tetrapods, which have arms and legs necessary for scratching to remove parasites or other noxious substances from the skin before they create harm. Because parasites coevolved with hosts, each species faced different parasitic challenges, which may explain another striking observation, the multiple independent duplication and expansion events of Mrgpr genes in different species as a consequence of parallel adaptive evolution. Their predominant expression in dorsal root ganglia anticipates additional functions of Mrgprs in nociception. Some Mrgprs have endogenous ligands, such as β-alanine, alamandine, adenine, RF-amide peptides, or salusin-β. However, because the functions of these agonists are still elusive, the physiologic role of the respective Mrgprs needs to be clarified. The best studied Mrgpr is Mas itself. It was shown to be a receptor for angiotensin-1-7 and to exert mainly protective actions in cardiovascular and metabolic diseases. This review summarizes the current knowledge about Mrgprs, their evolution, their ligands, their possible physiologic functions, and their therapeutic potential.
Collapse
Affiliation(s)
- Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| | - Miguel A Andrade-Navarro
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| | - Robson A Santos
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| |
Collapse
|
18
|
Rodrigues-Machado MG, Magalhães GS, Cardoso JA, Kangussu LM, Murari A, Caliari MV, Oliveira ML, Cara DC, Noviello MLM, Marques FD, Pereira JM, Lautner RQ, Santos RAS, Campagnole-Santos MJ. AVE 0991, a non-peptide mimic of angiotensin-(1-7) effects, attenuates pulmonary remodelling in a model of chronic asthma. Br J Pharmacol 2014; 170:835-46. [PMID: 23889691 DOI: 10.1111/bph.12318] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/20/2013] [Accepted: 07/17/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE AVE 0991 (AVE) is a non-peptide compound, mimic of the angiotensin (Ang)-(1-7) actions in many tissues and pathophysiological states. Here, we have investigated the effect of AVE on pulmonary remodelling in a murine model of ovalbumin (OVA)-induced chronic allergic lung inflammation. EXPERIMENTAL APPROACH We used BALB/c mice (6-8 weeks old) and induced chronic allergic lung inflammation by OVA sensitization (20 μg·mouse(-1) , i.p., four times, 14 days apart) and OVA challenge (1%, nebulised during 30 min, three times per·week, for 4 weeks). Control and AVE groups were given saline i.p and challenged with saline. AVE treatment (1 mg·kg(-1) ·per day, s.c.) or saline (100 μL·kg(-1) ·per day, s.c.) was given during the challenge period. Mice were anaesthetized 72 h after the last challenge and blood and lungs collected. In some animals, primary bronchi were isolated to test contractile responses. Cytokines were evaluated in bronchoalveolar lavage (BAL) and lung homogenates. KEY RESULTS Treatment with AVE of OVA sensitised and challenged mice attenuated the altered contractile response to carbachol in bronchial rings and reversed the increased airway wall and pulmonary vasculature thickness and right ventricular hypertrophy. Furthermore, AVE reduced IL-5 and increased IL-10 levels in the BAL, accompanied by decreased Ang II levels in lungs. CONCLUSIONS AND IMPLICATIONS AVE treatment prevented pulmonary remodelling, inflammation and right ventricular hypertrophy in OVA mice, suggesting that Ang-(1-7) receptor agonists are a new possibility for the treatment of pulmonary remodelling induced by chronic asthma.
Collapse
Affiliation(s)
- M G Rodrigues-Machado
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-NANOBIOFAR), Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gavioli M, Lara A, Almeida PWM, Lima AM, Damasceno DD, Rocha-Resende C, Ladeira M, Resende RR, Martinelli PM, Melo MB, Brum PC, Fontes MAP, Souza Santos RA, Prado MAM, Guatimosim S. Cholinergic signaling exerts protective effects in models of sympathetic hyperactivity-induced cardiac dysfunction. PLoS One 2014; 9:e100179. [PMID: 24992197 PMCID: PMC4081111 DOI: 10.1371/journal.pone.0100179] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 05/23/2014] [Indexed: 12/17/2022] Open
Abstract
Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i) the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO), and ii) the α2A/α2C-adrenergic receptor knockout (KO) mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease.
Collapse
Affiliation(s)
- Mariana Gavioli
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aline Lara
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro W. M. Almeida
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Augusto Martins Lima
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Denis D. Damasceno
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cibele Rocha-Resende
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina Ladeira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo R. Resende
- Department of Biochemistry, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patricia M. Martinelli
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcos Barrouin Melo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Patricia C. Brum
- School of Physical Education and Sport, Universidade de São Paulo, São Paulo, Brazil
| | - Marco Antonio Peliky Fontes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Robson A. Souza Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco A. M. Prado
- Robarts Research Institute, University of Western Ontario, Department of Physiology and Pharmacology, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
20
|
Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and vascular remodelling. Clin Sci (Lond) 2014; 126:815-27. [PMID: 24593683 DOI: 10.1042/cs20130436] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RAS (renin-angiotensin system) is integral to cardiovascular physiology; however, dysregulation of this system largely contributes to the pathophysiology of CVD (cardiovascular disease). It is well established that AngII (angiotensin II), the main effector of the RAS, engages the AT1R (angiotensin type 1 receptor) and promotes cell growth, proliferation, migration and oxidative stress, all processes which contribute to remodelling of the heart and vasculature, ultimately leading to the development and progression of various CVDs, including heart failure and atherosclerosis. The counter-regulatory axis of the RAS, which is centred on the actions of ACE2 (angiotensin-converting enzyme 2) and the resultant production of Ang-(1-7) [angiotensin-(1-7)] from AngII, antagonizes the actions of AngII via the receptor Mas, thereby providing a protective role in CVD. More recently, another ACE2 metabolite, Ang-(1-9) [angiotensin-(1-9)], has been reported to be a biologically active peptide within the counter-regulatory axis of the RAS. The present review will discuss the role of the counter-regulatory RAS peptides Ang-(1-7) and Ang-(1-9) in the cardiovascular system, with a focus on their effects in remodelling of the heart and vasculature.
Collapse
|
21
|
Bertagnolli M, Casali KR, De Sousa FB, Rigatto K, Becker L, Santos SHS, Dias LD, Pinto G, Dartora DR, Schaan BD, Milan RDS, Irigoyen MC, Santos RAS. An orally active angiotensin-(1-7) inclusion compound and exercise training produce similar cardiovascular effects in spontaneously hypertensive rats. Peptides 2014; 51:65-73. [PMID: 24262271 DOI: 10.1016/j.peptides.2013.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/10/2013] [Accepted: 11/11/2013] [Indexed: 12/19/2022]
Abstract
Low angiotensin-(1-7) (Ang-(1-7)) concentration is observed in some cardiovascular diseases and exercise training seems to restore its concentration in the heart. Recently, a novel formulation of an orally active Ang-(1-7) included in hydroxy-propyl-beta-cyclodextrin (HPB-CD) was developed and chronically administered in experimental models of cardiovascular diseases. The present study examined whether chronic administration of HPB-CD/Ang-(1-7) produces beneficial cardiovascular effects in spontaneously hypertensive rats (SHR), as well as to compare the results obtained with those produced by exercise training. Male SHR (15-week old) were divided in control (tap water) or treated with HPB-CD/Ang-(1-7) (corresponding to 30μgkg(-1)day(-1) of Ang-(1-7)) by gavage, concomitantly or not to exercise training (treadmill, 10 weeks). After chronic treatment, hemodynamic, morphometric and molecular analysis in the heart were performed. Chronic HPB-CD/Ang-(1-7) decreased arterial blood pressure (BP) and heart rate in SHR. The inclusion compound significantly improved left ventricular (LV) end-diastolic pressure, restored the maximum and minimum derivatives (dP/dT) and decreased cardiac hypertrophy index in SHR. Chronic treatment improved autonomic control by attenuating sympathetic modulation on heart and vessels and the SAP variability, as well as increasing parasympathetic modulation and HR variability. Overall results were similar to those obtained with exercise training. These results show that chronic treatment with the HPB-CD/Ang-(1-7) inclusion compound produced beneficial effects in SHR resembling the ones produced by exercise training. This observation reinforces the potential cardiovascular therapeutic effect of this novel peptide formulation.
Collapse
Affiliation(s)
- Mariane Bertagnolli
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, 395 Av. Princesa Isabel, Porto Alegre, Rio Grande do Sul 90620-001, Brazil; INCT-Nanobiofar-Universidade Federal de Minas Gerais, 6627 Av. Antônio Carlos, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Karina R Casali
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, 395 Av. Princesa Isabel, Porto Alegre, Rio Grande do Sul 90620-001, Brazil
| | - Frederico B De Sousa
- Instituto de Física e Química, Universidade Federal de Itajubá, 1303 Av. BPS, Itajubá, Minas Gerais 37500-903, Brazil; INCT-Nanobiofar-Universidade Federal de Minas Gerais, 6627 Av. Antônio Carlos, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Katya Rigatto
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, 395 Av. Princesa Isabel, Porto Alegre, Rio Grande do Sul 90620-001, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Rua Sarmento Leite, Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Lenice Becker
- INCT-Nanobiofar-Universidade Federal de Minas Gerais, 6627 Av. Antônio Carlos, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Sergio H S Santos
- INCT-Nanobiofar-Universidade Federal de Minas Gerais, 6627 Av. Antônio Carlos, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Lucinara D Dias
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, 395 Av. Princesa Isabel, Porto Alegre, Rio Grande do Sul 90620-001, Brazil
| | - Graziela Pinto
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, 395 Av. Princesa Isabel, Porto Alegre, Rio Grande do Sul 90620-001, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Rua Sarmento Leite, Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Daniela R Dartora
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, 395 Av. Princesa Isabel, Porto Alegre, Rio Grande do Sul 90620-001, Brazil
| | - Beatriz D Schaan
- Endocrine Division, Hospital de Clínicas de Porto Alegre, and Department of Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, 2350 Rua Ramiro Barcelos, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Ruben Dario Sinisterra Milan
- INCT-Nanobiofar-Universidade Federal de Minas Gerais, 6627 Av. Antônio Carlos, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Maria Claudia Irigoyen
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, 395 Av. Princesa Isabel, Porto Alegre, Rio Grande do Sul 90620-001, Brazil; Heart Institute/Universidade de São Paulo, 44 Av. Dr. Enéas de Carvalho Aguiar, São Paulo, São Paulo, 05403-900, Brazil; INCT-Nanobiofar-Universidade Federal de Minas Gerais, 6627 Av. Antônio Carlos, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Robson A S Santos
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, 395 Av. Princesa Isabel, Porto Alegre, Rio Grande do Sul 90620-001, Brazil; INCT-Nanobiofar-Universidade Federal de Minas Gerais, 6627 Av. Antônio Carlos, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
22
|
Clarke C, Flores-Muñoz M, McKinney CA, Milligan G, Nicklin SA. Regulation of cardiovascular remodeling by the counter-regulatory axis of the renin-angiotensin system. Future Cardiol 2013; 9:23-38. [PMID: 23259473 DOI: 10.2217/fca.12.75] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The counter-regulatory axis of the renin-angiotensin system (RAS) is a novel therapeutic target in cardiovascular disease. Pathophysiological effects mediated via angiotensin II (Ang II) are well established in regulation of blood pressure, cardiac and vascular remodeling, and renal sodium handling, which lead to disorders such as hypertension and associated end-organ damage, atherosclerosis and heart failure. The counter-regulatory axis of the RAS is centered on the angiotensin-converting enzyme 2/angiotensin-1-7 (Ang-[1-7])/Mas receptor axis and has been shown to inhibit many detrimental phenotypes in cardiovascular disease. More recently, an alternative peptide, angiotensin-(1-9) (Ang-[1-9]), has been reported as a potential new member of this axis. This review will discuss the cardiovascular regulatory roles of Ang-(1-7) and Ang-(1-9) in the counter-regulatory axis of the RAS, and the potential for new therapeutic approaches in cardiovascular disease.
Collapse
Affiliation(s)
- Carolyn Clarke
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, University of Glasgow, G12 8TA, UK
| | | | | | | | | |
Collapse
|
23
|
Fraga-Silva RA, Ferreira AJ, Dos Santos RAS. Opportunities for targeting the angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor pathway in hypertension. Curr Hypertens Rep 2013; 15:31-8. [PMID: 23212695 DOI: 10.1007/s11906-012-0324-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is well known that the renin-angiotensin system (RAS) plays a pivotal role in the pathophysiology of cardiovascular diseases. This is well illustrated by the great success of ACE inhibitors and angiotensin (Ang) II AT(1) blockers in the treatment of hypertension and its complications. In the past decade, the classical concept of RAS orchestrated by a series of enzymatic reactions culminating in the linear generation and action of Ang II has expanded and become more complex. From the discoveries of new components such as the angiotensin converting enzyme 2 and the receptor Mas emerged a novel concept of dual opposite branches of the RAS: one vasoconstrictor and pro-hypertensive composed of ACE/Ang II/AT1; and other vasodilator and anti-hypertensive composed of ACE2/Ang-(1-7)/Mas. In this review we will discuss recent findings concerning the biological role of the ACE2/Ang-(1-7)/Mas arm in the cardiovascular system and highlight the initiatives to develop potential therapeutic strategies based on this axis for treating hypertension.
Collapse
|
24
|
Savergnini SQ, Ianzer D, Carvalho MBL, Ferreira AJ, Silva GAB, Marques FD, Peluso AAB, Beiman M, Cojocaru G, Cohen Y, Almeida AP, Rotman G, Santos RAS. The novel Mas agonist, CGEN-856S, attenuates isoproterenol-induced cardiac remodeling and myocardial infarction injury in rats. PLoS One 2013; 8:e57757. [PMID: 23469229 PMCID: PMC3585977 DOI: 10.1371/journal.pone.0057757] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/24/2013] [Indexed: 11/19/2022] Open
Abstract
CGEN-856S is a novel Mas agonist. Herein, we examined the effects of this peptide on isoproterenol (ISO)-induced cardiac remodeling and myocardial infarction (MI) injury. We also sought to determine whether CGEN-856S activates the underlying mechanisms related to Mas receptor activation. Heart hypertrophy and fibrosis were induced by ISO (2 mg·kg(-1)·day(-1)) in Wistar rats. After a 7-day treatment period with CGEN-856S (90 µg·kg(-1)·day(-1)) or vehicle, the cardiomyocyte diameter was evaluated in left ventricular sections stained with hematoxylin and eosin, and immunofluorescence labeling and quantitative confocal microscopy were used to quantify the deposition of type I and III collagen and fibronectin in the left ventricles. MI was induced by coronary artery ligation, and CGEN-856S (90 µg·kg(-1)·day(-1)) or saline was administered for 14 days. The Langendorff technique was used to evaluate cardiac function, and left ventricular sections were stained with Masson's trichrome dye to quantify the infarct area. Using Chinese hamster ovary cells stably transfected with Mas cDNA, we evaluated whether CGEN-856S alters AKT and endothelial nitric oxide synthase (eNOS) phosphorylation. CGEN-856S reduced the degree of ISO-induced hypertrophy (13.91±0.17 µm vs. 12.41±0.16 µm in the ISO+CGEN-856S group). In addition, the Mas agonist attenuated the ISO-induced increase in collagen I, collagen III, and fibronectin deposition. CGEN-856S markedly attenuated the MI-induced decrease in systolic tension, as well as in +dT/dt and -dT/dt. Furthermore, CGEN-856S administration significantly decreased the infarct area (23.68±2.78% vs. 13.95±4.37% in the MI+CGEN-856S group). These effects likely involved the participation of AKT and NO, as CGEN-856S administration increased the levels of p-AKT and p-eNOS. Thus, our results indicate that CGEN-856S exerts cardioprotective effects on ISO-induced cardiac remodeling and MI-mediated heart failure in rats through a mechanism likely involving the eNOS/AKT pathway.
Collapse
Affiliation(s)
- Sílvia Q. Savergnini
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle Ianzer
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariana B. L. Carvalho
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anderson J. Ferreira
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gerluza A. B. Silva
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fúlvia D. Marques
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Augusto B. Peluso
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Alvair P. Almeida
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Robson A. S. Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
25
|
The nonpeptide ANG-(1–7) mimic AVE 0991 attenuates cardiac remodeling and improves baroreflex sensitivity in renovascular hypertensive rats. Life Sci 2013; 92:266-75. [DOI: 10.1016/j.lfs.2012.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/11/2012] [Accepted: 12/21/2012] [Indexed: 01/30/2023]
|
26
|
Santos RAS, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. J Endocrinol 2013; 216:R1-R17. [PMID: 23092879 DOI: 10.1530/joe-12-0341] [Citation(s) in RCA: 383] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Angiotensin (Ang)-(1-7) is now recognized as a biologically active component of the renin-angiotensin system (RAS). Ang-(1-7) appears to play a central role in the RAS because it exerts a vast array of actions, many of them opposite to those attributed to the main effector peptide of the RAS, Ang II. The discovery of the Ang-converting enzyme (ACE) homolog ACE2 brought to light an important metabolic pathway responsible for Ang-(1-7) synthesis. This enzyme can form Ang-(1-7) from Ang II or less efficiently through hydrolysis of Ang I to Ang-(1-9) with subsequent Ang-(1-7) formation by ACE. In addition, it is now well established that the G protein-coupled receptor Mas is a functional binding site for Ang-(1-7). Thus, the axis formed by ACE2/Ang-(1-7)/Mas appears to represent an endogenous counterregulatory pathway within the RAS, the actions of which are in opposition to the vasoconstrictor/proliferative arm of the RAS consisting of ACE, Ang II, and AT(1) receptor. In this brief review, we will discuss recent findings related to the biological role of the ACE2/Ang-(1-7)/Mas arm in the cardiovascular and renal systems, as well as in metabolism. In addition, we will highlight the potential interactions of Ang-(1-7) and Mas with AT(1) and AT(2) receptors.
Collapse
Affiliation(s)
- Robson A S Santos
- Departments of Physiology and Biophysics Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
27
|
Ferreira AJ, Bader M, Santos RAS. Therapeutic targeting of the angiotensin-converting enzyme 2/Angiotensin-(1-7)/Mas cascade in the renin-angiotensin system: a patent review. Expert Opin Ther Pat 2012; 22:567-74. [PMID: 22510001 DOI: 10.1517/13543776.2012.682572] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The renin-angiotensin system (RAS) is a main therapeutic target for cardiovascular diseases. Within the last two decades, novel components of the RAS have been discovered, opening new opportunities to interfere with its activity. Angiotensin(Ang)-(1-7) is synthesized by angiotensin-converting enzyme 2 (ACE2), and interacts with the G-protein-coupled receptor Mas. The axis formed by ACE2/Ang-(1-7)/Mas represents an endogenous counter regulatory pathway within the RAS. AREAS COVERED In this review, the authors discuss patents and recent initiatives to develop therapeutic strategies based on the ACE2/Ang-(1-7)/Mas axis. EXPERT OPINION Many publications and patents support a strategy to interfere with the activity of the RAS by stimulating its counter-regulatory axis mainly in two different ways: i) To increase the activity of ACE2, which will impact the system by increasing the inactivation of Ang II and the production of Ang-(1-7); ii) To stimulate Mas, taking advantage of nanostructured formulations of the natural peptide or analogues of Ang-(1-7). Although the preclinical studies are compelling, the possible impact of these novel therapeutic tools for the treatment of cardiometabolic diseases will only be known after completion of the ongoing clinical studies.
Collapse
Affiliation(s)
- Anderson J Ferreira
- Federal University of Minas Gerais, Biological Sciences Institute, Department of Morphology, Belo Horizonte, MG, 31.270-901, Brazil
| | | | | |
Collapse
|
28
|
AVE0991, a Nonpeptide Compound, Attenuates Angiotensin II-Induced Vascular Smooth Muscle Cell Proliferation via Induction of Heme Oxygenase-1 and Downregulation of p-38 MAPK Phosphorylation. Int J Hypertens 2012; 2012:958298. [PMID: 22518299 PMCID: PMC3299313 DOI: 10.1155/2012/958298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/24/2011] [Accepted: 11/11/2011] [Indexed: 12/21/2022] Open
Abstract
The nonpeptide AVE0991 is an agonist of the angiotensin-(1–7) (Ang-(1–7)) Mas receptor and is expected to be a putative new drug for treatment of cardiovascular disease. However, the mechanisms involved in the antiproliferative effects of AVE0991 are not fully understood. We saw that the compound attenuated proliferation in an angiotensin II-induced rat vascular smooth muscle cells (VSMC) proliferation model. Moreover, treatment with AVE0991 (10−5 mol/L or 10−7 mol/L) significantly attenuated reactive oxygen species (ROS) production, phosphorylation of p38 MAPK, and dose-dependently (10−8 to 10−5 mol/L) inhibited Ang II-induced VSMC proliferation. Meanwhile, heme oxygenase-1 (HO-1) expression increased in the AVE0991 + Ang II group (10−5 mol/L or 10−6 mol/L). However, the beneficial effects of AVE0991 were completely abolished when the VSMC were pretreated with A-779 (10−6 mol/L). Furthermore, treatment with the HO-1 inhibitor ZnPPIX attenuated the inhibitory effect of AVE0991 on Ang II-induced p38MAPK phosphorylation. These results suggest that AVE0991 attenuates Ang II-induced VSMC proliferation in a dose-dependent fashion and that this effect is associated with the Mas/HO-1/p38 MAPK signaling pathway.
Collapse
|
29
|
Gava E, de Castro CH, Ferreira AJ, Colleta H, Melo MB, Alenina N, Bader M, Oliveira LA, Santos RAS, Kitten GT. Angiotensin-(1-7) receptor Mas is an essential modulator of extracellular matrix protein expression in the heart. ACTA ACUST UNITED AC 2012; 175:30-42. [PMID: 22285513 DOI: 10.1016/j.regpep.2012.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/15/2011] [Accepted: 01/10/2012] [Indexed: 12/12/2022]
Abstract
In this study we investigated the effects of genetic deletion of the Angiotensin-(1-7) receptor Mas or the Angiotensin II receptor AT(2) on the expression of specific extracellular matrix (ECM) proteins in atria, right ventricles and atrioventricular (AV) valves of neonatal and adult mice. Quantification of collagen types I, III and VI and fibronectin was performed using immunofluorescence-labeling and confocal microscopy. Picrosirius red staining was used for the histological assessment of the overall collagen distribution pattern. ECM proteins, metalloproteinases (MMP), ERK1/2 and p38 levels were quantified by western blot analysis. Gelatin zymography was used to evaluate the activity of MMP-2 and MMP-9. We observed that the relative levels of collagen types I and III and fibronectin are significantly higher in both the right ventricle and AV valves of neonatal Mas(-/-) mouse hearts (e.g., collagen type I: 85.28±6.66 vs 43.50±4.41 arbitrary units in the right ventricles of Mas(+/+) mice). Conversely, the level of collagen type VI was lower in the right ventricle and AV valves of Mas(-/-) mice. Adult Mas(-/-) mouse hearts presented similar patterns as observed in neonates. No significant differences in ECM protein level were detected in atria. Likewise, no changes in ECM levels were observed in AT(2) knockout mouse hearts. Although deletion of Mas induced a significant reduction in the level of the active form of MMP-2 in neonate hearts and a reduction of both MMP-2 and MMP-9 in adult Mas(-/-) mice, no significant differences were observed in MMP enzymatic activities when compared to controls. The levels of the active, phosphorylated forms of ERK1/2 and p38 were higher in hearts of both neonatal and adult Mas(-/-) mice. These observations suggest that Mas is involved in the selective expression of specific ECM proteins within both the ventricular myocardium and AV valves. The changes in the ECM profile may alter the connective tissue framework and contribute to the decreased cardiac performance observed in Mas(-/-) mice.
Collapse
Affiliation(s)
- Elisandra Gava
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
New cardiovascular and pulmonary therapeutic strategies based on the Angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor axis. Int J Hypertens 2012; 2012:147825. [PMID: 22319643 PMCID: PMC3272817 DOI: 10.1155/2012/147825] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/12/2011] [Indexed: 12/27/2022] Open
Abstract
Angiotensin (Ang)-(1–7) is now recognized as a biologically active component of the renin-angiotensin system (RAS). The discovery of the angiotensin-converting enzyme homologue ACE2 revealed important metabolic pathways involved in the Ang-(1–7) synthesis. This enzyme can form Ang-(1–7) from Ang II or less efficiently through hydrolysis of Ang I to Ang-(1–9) with subsequent Ang-(1–7) formation. Additionally, it is well established that the G protein-coupled receptor Mas is a functional ligand site for Ang-(1–7). The axis formed by ACE2/Ang-(1–7)/Mas represents an endogenous counter regulatory pathway within the RAS whose actions are opposite to the vasoconstrictor/proliferative arm of the RAS constituted by ACE/Ang II/AT1 receptor. In this review we will discuss recent findings concerning the biological role of the ACE2/Ang-(1–7)/Mas arm in the cardiovascular and pulmonary system. Also, we will highlight the initiatives to develop potential therapeutic strategies based on this axis.
Collapse
|
31
|
Iwata M, Cowling RT, Yeo SJ, Greenberg B. Targeting the ACE2-Ang-(1-7) pathway in cardiac fibroblasts to treat cardiac remodeling and heart failure. J Mol Cell Cardiol 2011; 51:542-7. [PMID: 21147120 PMCID: PMC3085048 DOI: 10.1016/j.yjmcc.2010.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 01/11/2023]
Abstract
Fibroblasts play a pivotal role in cardiac remodeling and the development of heart failure through the deposition of extra-cellular matrix (ECM) proteins and also by affecting cardiomyocyte growth and function. The renin-angiotensin system (RAS) is a key regulator of the cardiovascular system in health and disease and many of its effects involve cardiac fibroblasts. Levels of angiotensin II (Ang II), the main effector molecule of the RAS, are elevated in the failing heart and there is a substantial body of evidence indicating that this peptide contributes to changes in cardiac structure and function which ultimately lead to progressive worsening in heart failure. A pathway involving angiotensin converting enzyme 2 (ACE2) has the capacity to break down Ang II while generating angiotensin-(1-7) (Ang-(1-7)), a heptapeptide, which in contrast to Ang II, has cardioprotective and anti-remodeling effects. Many Ang-(1-7) actions involve cardiac fibroblasts and there is information indicating that it reduces collagen production and also may protect against cardiac hypertrophy. This report describes the effects of ACE2 and Ang-(1-7) that appear to be relevant in cardiac remodeling and heart failure and explores potential therapeutic strategies designed to increase ACE2 activity and Ang-(1-7) levels to treat these conditions. This article is part of a special issue entitled ''Key Signaling Molecules in Hypertrophy and Heart Failure.''
Collapse
Affiliation(s)
- Michikado Iwata
- Department of Medicine/Cardiology Division, University of California, San Diego, San Diego, CA, USA
| | | | | | | |
Collapse
|
32
|
Oudit GY, Penninger JM. Recombinant Human Angiotensin-Converting Enzyme 2 as a New Renin-Angiotensin System Peptidase for Heart Failure Therapy. Curr Heart Fail Rep 2011; 8:176-83. [DOI: 10.1007/s11897-011-0063-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Ferreira AJ, Moraes PL, Foureaux G, Andrade AB, Santos RAS, Almeida AP. The angiotensin-(1-7)/Mas receptor axis is expressed in sinoatrial node cells of rats. J Histochem Cytochem 2011; 59:761-8. [PMID: 21606202 DOI: 10.1369/0022155411411712] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The authors' previous studies have indicated that angiotensin(Ang)-(1-7) protects the heart against reperfusion arrhythmias. The aim of this study was to determine whether a functional angiotensin-converting enzyme2 (ACE2)/Ang-(1-7)/Mas receptor axis is present in the sinoatrial node (SAN) of Wistar rats. SAN cells were identified by Masson's trichrome staining, HCN4 expression, and lack of connexin43 expression. Immunohistochemistry technique was used to detect the expression of ACE2, Ang-(1-7), and Mas in the SAN. To evaluate the role of this axis in the SAN function, atrial tachyarrhythmias (ATs) were induced in isolated rat atria perfused with Krebs-Ringer solution (KRS) alone (control) or KRS containing Ang-(1-7). The specific Mas antagonist, A-779, was used to evaluate the role of Mas in the Ang-(1-7) effects. The findings showed that all components of the ACE2/Ang-(1-7)/Mas branch are present in the SAN of rats. Importantly, it was found that this axis is functional because perfusion of atria with Ang-(1-7) significantly reduced the duration of ATs. Additionally, this anti-arrhythmogenic effect was attenuated by A-779. No significant changes were observed in heart rate, contractile tension, or ±dT/dt. These observations demonstrate that the ACE2/Ang-(1-7)/Mas axis is expressed in SAN cells of rats. They provide the morphological support to the anti-arrhythmogenic effect of Ang-(1-7).
Collapse
Affiliation(s)
- Anderson J Ferreira
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | | | | | | |
Collapse
|
34
|
Marques FD, Ferreira AJ, Sinisterra RDM, Jacoby BA, Sousa FB, Caliari MV, Silva GAB, Melo MB, Nadu AP, Souza LE, Irigoyen MCC, Almeida AP, Santos RAS. An oral formulation of angiotensin-(1-7) produces cardioprotective effects in infarcted and isoproterenol-treated rats. Hypertension 2011; 57:477-83. [PMID: 21282558 DOI: 10.1161/hypertensionaha.110.167346] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study we evaluated the cardiac effects of a pharmaceutical formulation developed by including angiotensin (Ang)-(1-7) in hydroxypropyl β-cyclodextrin (HPβCD), in normal, infarcted, and isoproterenol-treated rats. Myocardial infarction was produced by left coronary artery occlusion. Isoproterenol (2 mg/kg, IP) was administered daily for 7 days. Oral administration of HPβCD/Ang-(1-7) started immediately before infarction or associated with the first dose of isoproterenol. After 7 days of treatment, the rats were euthanized, and the Langendorff technique was used to analyze cardiac function. In addition, heart function was chronically (15, 30, 50 days) analyzed by echocardiography. Cardiac sections were stained with hematoxylin/eosin and Masson trichrome to evaluate cardiac hypertrophy and damage, respectively. Pharmacokinetic studies showed that oral HPβCD/Ang-(1-7) administration significantly increased Ang-(1-7) on plasma whereas with the free peptide it was without effect. Oral administration of HPβCD/Ang-(1-7) (30 μg/kg) significantly reduced the deleterious effects induced by myocardial infarction on systolic and diastolic tension, ±dT/dt, perfusion pressure, and heart rate. Strikingly, a 50% reduction of the infarcted area was observed in HPβCD/Ang-(1-7)-treated rats. Furthermore, HPβCD/Ang-(1-7) attenuated the heart function impairment and cardiac remodeling induced by isoproterenol. In infarcted rats chronically treated with HPβCD/Ang-(1-7), the reduction of ejection fraction and fractional shorting and the increase in systolic and diastolic left ventricular volumes observed in infarcted rats were attenuated. Altogether, these findings further confirm the cardioprotective effects of Ang-(1-7). More importantly, our data indicate that the HPβCD/Ang-(1-7) is a feasible formulation for oral administration of Ang-(1-7), which can be used as a cardioprotective drug.
Collapse
Affiliation(s)
- Fúlvia D Marques
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xu P, Sriramula S, Lazartigues E. ACE2/ANG-(1-7)/Mas pathway in the brain: the axis of good. Am J Physiol Regul Integr Comp Physiol 2010; 300:R804-17. [PMID: 21178125 DOI: 10.1152/ajpregu.00222.2010] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The last decade has seen the discovery of several new components of the renin-angiotensin system (RAS). Among them, angiotensin converting enzyme-2 (ACE2) and the Mas receptor have forced a reevaluation of the original cascade and led to the emergence of a new arm of the RAS: the ACE2/ANG-(1-7)/Mas axis. Accordingly, the new system is now seen as a balance between a provasoconstrictor, profibrotic, progrowth axis (ACE/ANG-II/AT(1) receptor) and a provasodilatory, antifibrotic, antigrowth arm (ACE2/ANG-(1-7)/Mas receptor). Already, this simplistic vision is evolving and new components are branching out upstream [ANG-(1-12) and (pro)renin receptor] and downstream (angiotensin-IV and other angiotensin peptides) of the classical cascade. In this review, we will summarize the role of the ACE2/ANG-(1-7)/Mas receptor, focusing on the central nervous system with respect to cardiovascular diseases such as hypertension, chronic heart failure, and stroke, as well as neurological diseases. In addition, we will discuss the new pharmacological (antagonists, agonists, activators) and genomic (knockout and transgenic animals) tools that are currently available. Finally, we will review the latest data regarding the various signaling pathways downstream of the Mas receptor.
Collapse
Affiliation(s)
- Ping Xu
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
36
|
Zeng WT, Chen WY, Leng XY, Tang LL, Sun XT, Li CL, Dai G. Impairment of cardiac function and remodeling induced by myocardial infarction in rats are attenuated by the nonpeptide angiotensin-(1-7) analog AVE 0991. Cardiovasc Ther 2010; 30:152-61. [PMID: 21167013 DOI: 10.1111/j.1755-5922.2010.00255.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS We evaluated effects of the nonpeptide angiotensin (ANG)-(1-7) analog AVE 0991 (AVE) on cardiac function and remodeling as well as transforming growth factor-beta1 (TGF-β1)/tumor necrosis factor-alpha (TNF-α) expression in myocardial infarction rat models. METHODS AND RESULTS Sprague-Dawley rats underwent either sham surgery or coronary ligation. They were divided into four groups: sham, control, AVE, and AVE+A-779 [[D-Ala(7) ]-ANG-(1-7), a selective antagonist for the ANG-(1-7)] group. After 4 weeks of treatment, the AVE group displayed a significant elevation in left ventricular fractional shorting (LVFS) (25.5 ± 7.3% vs. 18.4 ± 3.3%, P < 0.05) and left ventricular ejection fraction (LVEF) (44.8 ± 7.6% vs. 32.7 ± 6.5%, P < 0.05) when compared to the control group, but no effects on the left ventricular end-diastolic and end-systolic diameters (LVDd and LVDs, respectively) were observed. In addition, we found that the myocyte diameter (18 ± 2 μm vs. 22 ± 4 μm, P < 0.05), infarct size (42.6 ± 3.6% vs. 50.9 ± 4.4%, P < 0.001) and collagen volume fraction (CVF) (16.4 ± 2.2% vs. 25.3 ± 3.2%, P < 0.001) were significantly reduced in the AVE group when compared to the control group. There were no differences in LVFS, LVEF, myocyte diameter, and infarct size between the control and AVE+A-779 groups. AVE also markedly attenuated the increased mRNA expression of collagen I (P < 0.001) and collagen III (P < 0.001) and inhibited the overexpression of TGF-β1 (P < 0.05) and TNF-α (P < 0.05) compared to the control group. CONCLUSION AVE could improve cardiac function and attenuate ventricular remodeling in MI rat models. It may involve the inhibition of inflammatory factors TGF-β1/TNF-α overexpression and the action on the specific receptor Mas of ANG-(1-7).
Collapse
Affiliation(s)
- Wu-tao Zeng
- Cardiovascular Medical Department, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Zuo YM, Wang XH, Gao S, Zhang Y. Oligomerized grape seed proanthocyanidins ameliorates isoproterenol-induced cardiac remodeling in rats: role of oxidative stress. Phytother Res 2010; 25:732-9. [DOI: 10.1002/ptr.3331] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 09/16/2010] [Accepted: 09/28/2010] [Indexed: 01/08/2023]
|
38
|
Ding B, Gibbs PEM, Brookes PS, Maines MD. The coordinated increased expression of biliverdin reductase and heme oxygenase-2 promotes cardiomyocyte survival: a reductase-based peptide counters β-adrenergic receptor ligand-mediated cardiac dysfunction. FASEB J 2010; 25:301-13. [PMID: 20876213 DOI: 10.1096/fj.10-166454] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HO-2 oxidizes heme to CO and biliverdin; the latter is reduced to bilirubin by biliverdin reductase (BVR). In addition, HO-2 is a redox-sensitive K/Ca(2)-associated protein, and BVR is an S/T/Y kinase. The two enzymes are components of cellular defense mechanisms. This is the first reporting of regulation of HO-2 by BVR and that their coordinated increase in isolated myocytes and intact heart protects against cardiotoxicity of β-adrenergic receptor activation by isoproterenol (ISO). The induction of BVR mRNA, protein, and activity and HO-2 protein was maintained for ≥ 96 h; increase in HO-1 was modest and transient. In isolated cardiomyocytes, experiments with cycloheximide, proteasome inhibitor MG-132, and siBVR suggested BVR-mediated stabilization of HO-2. In both models, activation of BVR offered protection against the ligand's stimulation of apoptosis. Two human BVR-based peptides known to inhibit and activate the reductase, KKRILHC(281) and KYCCSRK(296), respectively, were tested in the intact heart. Perfusion of the heart with the inhibitory peptide blocked ISO-mediated BVR activation and augmented apoptosis; conversely, perfusion with the activating peptide inhibited apoptosis. At the functional level, peptide-mediated inhibition of BVR was accompanied by dysfunction of the left ventricle and decrease in HO-2 protein levels. Perfusion of the organ with the activating peptide preserved the left ventricular contractile function and was accompanied by increased levels of HO-2 protein. Finding that BVR and HO-2 levels, myocyte apoptosis, and contractile function of the heart can be modulated by small human BVR-based peptides offers a promising therapeutic approach for treatment of cardiac dysfunctions.
Collapse
Affiliation(s)
- Bo Ding
- University of Rochester School of Medicine and Dentistry, Department of Biochemistry and Biophysics, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
39
|
Dysautonomia due to reduced cholinergic neurotransmission causes cardiac remodeling and heart failure. Mol Cell Biol 2010; 30:1746-56. [PMID: 20123977 DOI: 10.1128/mcb.00996-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Overwhelming evidence supports the importance of the sympathetic nervous system in heart failure. In contrast, much less is known about the role of failing cholinergic neurotransmission in cardiac disease. By using a unique genetically modified mouse line with reduced expression of the vesicular acetylcholine transporter (VAChT) and consequently decreased release of acetylcholine, we investigated the consequences of altered cholinergic tone for cardiac function. M-mode echocardiography, hemodynamic experiments, analysis of isolated perfused hearts, and measurements of cardiomyocyte contraction indicated that VAChT mutant mice have decreased left ventricle function associated with altered calcium handling. Gene expression was analyzed by quantitative reverse transcriptase PCR and Western blotting, and the results indicated that VAChT mutant mice have profound cardiac remodeling and reactivation of the fetal gene program. This phenotype was attributable to reduced cholinergic tone, since administration of the cholinesterase inhibitor pyridostigmine for 2 weeks reversed the cardiac phenotype in mutant mice. Our findings provide direct evidence that decreased cholinergic neurotransmission and underlying autonomic imbalance cause plastic alterations that contribute to heart dysfunction.
Collapse
|
40
|
Ferreira AJ, Castro CH, Guatimosim S, Almeida PW, Gomes ER, Dias-Peixoto MF, Alves MN, Fagundes-Moura CR, Rentzsch B, Gava E, Almeida AP, Guimarães AM, Kitten GT, Reudelhuber T, Bader M, Santos RA. Attenuation of isoproterenol-induced cardiac fibrosis in transgenic rats harboring an angiotensin-(1-7)-producing fusion protein in the heart. Ther Adv Cardiovasc Dis 2010; 4:83-96. [DOI: 10.1177/1753944709353426] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Objective: It has been shown that Ang-(1-7) has cardioprotective actions. To directly investigate the effects of Ang-(1-7) specifically in the heart, we generated and characterized transgenic (TG) rats which express an Ang-(1-7)-producing fusion protein driven by the α-MHC promoter. Methods and Results: After microinjection of the transgene into fertilized rat zygotes, we obtained four different transgenic lines. Homozygous animals were analyzed with regard to the expression profile of the transgene by ribonuclease protection assay. Transgene expression was detected mainly in the heart with weak or no expression in other organs. Heterozygous TG(hA-1-7)L7301 rats presented a significant increase in cardiac Ang-(1-7) concentration compared with control rats (17.1±2.1 versus 3.9±1.4 pg/mg protein in SD rats). Radiotelemetry analysis revealed that TG rats presented no significant changes in blood pressure and heart rate compared with normal rats. Overexpression of Ang-(1-7) in the heart produced slight improvement in resting cardiac function (+ dT/dt: 81530±1305.0 versus 77470±345.5 g/s bpm in SD rats, p < 0.05), which was in keeping with the enhanced [Ca2+] handling observed in cardiomyocytes of TG rats. TG(hA-1-7)L7301 rats also showed a greater capacity to withstand stress since TG rats showed a less pronounced deposition of collagen type III and fibronectin induced by isoproterenol treatment in the subendocardial area than in corresponding controls. In addition, hearts from TG rats showed reduced incidence and duration of reperfusion arrhythmias in comparison with SD rats. Conclusion: These results indicate that Ang-(1-7) has blood pressure-independent, antifibrotic effects, acting directly in the heart.
Collapse
Affiliation(s)
- Anderson J. Ferreira
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carlos H. Castro
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pedro W.M. Almeida
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Enéas R.M. Gomes
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Márcia N.M. Alves
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Brit Rentzsch
- Max-Delbruck Center for Molecular Medicine Berlin, Germany
| | - Elisandra Gava
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alvair P. Almeida
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre M. Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gregory T. Kitten
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Timothy Reudelhuber
- Laboratory of Molecular Biochemistry of Hypertension, Clinical Research Institute of Montréal, Québec, Canada
| | - Michael Bader
- Max-Delbruck Center for Molecular Medicine Berlin, Germany
| | - Robson A.S. Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazi, l
| |
Collapse
|
41
|
Ferrario CM, Ahmad S, Joyner J, Varagic J. Advances in the renin angiotensin system focus on angiotensin-converting enzyme 2 and angiotensin-(1-7). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 59:197-233. [PMID: 20933203 PMCID: PMC5863743 DOI: 10.1016/s1054-3589(10)59007-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The contribution of the renin angiotensin system to physiology and pathology is undergoing a rapid reconsideration of its mechanisms from emerging new concepts implicating angiotensin-converting enzyme 2 and angiotensin-(1-7) as new elements negatively influencing the vasoconstrictor, trophic, and pro-inflammatory actions of angiotensin II. This component of the system acts to oppose the vasoconstrictor and proliferative effects on angiotensin II through signaling mechanisms mediated by the mas receptor. In addition, a reduced expression of the vasodepressor axis composed by angiotensin-converting enzyme 2 and angiotensin-(1-7) may contribute to the expression of essential hypertension, the remodeling of heart and renal function associated with this disease, and even the physiology of pregnancy and the development of eclampsia.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Hypertension and Vascular Disease Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | | | | | | |
Collapse
|
42
|
Zhang J, Noble NA, Border WA, Huang Y. Infusion of angiotensin-(1-7) reduces glomerulosclerosis through counteracting angiotensin II in experimental glomerulonephritis. Am J Physiol Renal Physiol 2009; 298:F579-88. [PMID: 20032116 DOI: 10.1152/ajprenal.00548.2009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recent identification of a counterregulatory axis of the renin-angiotensin system, called angiotensin-converting enzyme 2-angiotensin-(1-7) [ANG-(1-7)]-Mas receptor, may offer new targets for the treatment of renal fibrosis. We hypothesized that therapy with ANG-(1-7) would improve glomerulosclerosis through counteracting ANG II in experimental glomerulonephritis. Disease was induced in rats with the monoclonal anti-Thy-1 antibody, OX-7. Based on a three-dose pilot study, 576 microg x kg(-1) x day(-1) ANG-(1-7) was continuously infused from day 1 using osmotic pumps. Measures of glomerulosclerosis include semiquantitative scoring of matrix proteins stained for periodic acid Schiff, collagen I, and fibronectin EDA+ (FN). ANG-(1-7) treatment reduced disease-induced increases in proteinuria by 75%, glomerular periodic acid Schiff staining by 48%, collagen I by 24%, and FN by 25%. The dramatic increases in transforming growth factor-beta1, plasminogen activator inhibitor-1, FN, and collagen I mRNAs seen in disease control animals compared with normal rats were all significantly reduced by ANG-(1-7) administration (P < 0.05). These observations support our hypothesis that ANG-(1-7) has therapeutic potential for reversing glomerulosclerosis. Several results suggest ANG-(1-7) acts by counteracting ANG II effects: 1) renin expression in ANG-(1-7)-treated rats was dramatically increased as it is with ANG II blockade therapy; and 2) in vitro data indicate that ANG II-induced increases in mesangial cell proliferation and plasminogen activator inhibitor-1 overexpression are inhibited by ANG-(1-7) via its binding to a specific receptor known as Mas.
Collapse
Affiliation(s)
- Jiandong Zhang
- Division of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China.
| | | | | | | |
Collapse
|
43
|
|
44
|
Reduced isoproterenol-induced renin-angiotensin changes and extracellular matrix deposition in hearts of TGR(A1-7)3292 rats. ACTA ACUST UNITED AC 2008; 2:341-8. [PMID: 20409916 DOI: 10.1016/j.jash.2008.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 04/16/2008] [Accepted: 04/17/2008] [Indexed: 11/20/2022]
Abstract
We investigated the expression of specific extracellular matrix (ECM) proteins in cardiac hypertrophy induced by isoproterenol in TGR(A1-7)3292 rats. Additionally, changes in circulating and tissue renin-angiotensin system (RAS) were analyzed. Left ventricles (LV) were used for quantification of collagen type I, III, and fibronectin using immunofluorescence-labeling techniques. Angiotensin (Ang) II levels were measured by radioimmunoassay. Expression of RAS components was assessed by semi-quantitative polymerase chain reaction (PCR) or real-time PCR. Isoproterenol treatment induced an increase in the expression of collagen I, III, and fibronectin in normal rats. Collagen I and fibronectin expression were decreased in TGR(A1-7)3292 at basal conditions and both proteins increased by isoproterenol treatment; however, the levels achieved were still significantly lower than those observed in treated normal rats. The increase in collagen III observed in normal rats was completely blunted in TGR(A1-7)3292. Moreover, TGR(A1-7)3292 presented lower Ang II levels and angiotensinogen expression and a higher angiotensin-converting enzyme 2 (ACE2) expression in LV. Isoproterenol treatment increased cardiac Ang II concentration only in normal rats, which was associated with an increase in ACE2 and a decrease in Mas expression. These observations suggest that Ang-(1-7) specifically modulates the expression of RAS components and ECM proteins in LV.
Collapse
|
45
|
Varagic J, Trask AJ, Jessup JA, Chappell MC, Ferrario CM. New angiotensins. J Mol Med (Berl) 2008; 86:663-71. [PMID: 18437333 PMCID: PMC2713173 DOI: 10.1007/s00109-008-0340-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 12/22/2022]
Abstract
Accumulation of a large body of evidence during the past two decades testifies to the complexity of the renin-angiotensin system (RAS). The incorporation of novel enzymatic pathways, resulting peptides, and their corresponding receptors into the biochemical cascade of the RAS provides a better understanding of its role in the regulation of cardiovascular and renal function. Hence, in recent years, it became apparent that the balance between the two opposing effector peptides, angiotensin II and angiotensin-(1-7), may have a pivotal role in determining different cardiovascular pathophysiologies. Furthermore, our recent studies provide evidence for the functional relevance of a newly discovered rat peptide, containing two additional amino acid residues compared to angiotensin I, first defined as proangiotensin-12 [angiotensin-(1-12)]. This review focuses on angiotensin-(1-7) and its important contribution to cardiovascular function and growth, while introducing angiotensin-(1-12) as a potential novel angiotensin precursor.
Collapse
Affiliation(s)
- Jasmina Varagic
- The Hypertension and Vascular Research Center, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | |
Collapse
|
46
|
Are we poised to target ACE2 for the next generation of antihypertensives? J Mol Med (Berl) 2008; 86:685-90. [DOI: 10.1007/s00109-008-0339-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 01/16/2023]
|
47
|
Iusuf D, Henning RH, van Gilst WH, Roks AJ. Angiotensin-(1–7): Pharmacological properties and pharmacotherapeutic perspectives. Eur J Pharmacol 2008; 585:303-12. [DOI: 10.1016/j.ejphar.2008.02.090] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/23/2008] [Accepted: 02/06/2008] [Indexed: 11/30/2022]
|
48
|
Hernández Prada JA, Ferreira AJ, Katovich MJ, Shenoy V, Qi Y, Santos RAS, Castellano RK, Lampkins AJ, Gubala V, Ostrov DA, Raizada MK. Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension 2008; 51:1312-7. [PMID: 18391097 DOI: 10.1161/hypertensionaha.107.108944] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a key renin-angiotensin system enzyme involved in balancing the adverse effects of angiotensin II on the cardiovascular system, and its overexpression by gene transfer is beneficial in cardiovascular disease. Therefore, our objectives were 2-fold: to identify compounds that enhance ACE2 activity using a novel conformation-based rational drug discovery strategy and to evaluate whether such compounds reverse hypertension-induced pathophysiologies. We used a unique virtual screening approach. In vitro assays revealed 2 compounds (a xanthenone and resorcinolnaphthalein) that enhanced ACE2 activity in a dose-dependent manner. Acute in vivo administration of the xanthenone resulted in a dose-dependent transient and robust decrease in blood pressure (at 10 mg/kg, spontaneously hypertensive rats decreased 71+/-9 mm Hg and Wistar-Kyoto rats decreased 21+/-8 mm Hg; P<0.05). Chronic infusion of the xanthenone (120 microg/day) resulted in a modest decrease in the spontaneously hypertensive rat blood pressure (17 mm Hg; 2-way ANOVA; P<0.05), whereas it had no effect in Wistar-Kyoto rats. Strikingly, the decrease in blood pressure was also associated with improvements in cardiac function and reversal of myocardial, perivascular, and renal fibrosis in the spontaneously hypertensive rats. We conclude that structure-based screening can help identify compounds that activate ACE2, decrease blood pressure, and reverse tissue remodeling. Administration of ACE2 activators may be a valid strategy for antihypertensive therapy.
Collapse
Affiliation(s)
- José A Hernández Prada
- McKnight Brain Institute and Department of Physiology, College of Medicine, University of Florida, Gainesville, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ferreira AJ, Hernández Prada JA, Ostrov DA, Raizada MK. Cardiovascular protection by angiotensin-converting enzyme 2: a new paradigm. Future Cardiol 2008; 4:175-82. [DOI: 10.2217/14796678.4.2.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A novel angiotensin-converting enzyme (ACE) homolog, named ACE2, was recently described. ACE2 degrades Ang II, a peptide with vasoconstrictive and proliferative effects, to generate Ang-(1–7), which, acting through its receptor Mas, exerts vasodilatory and antiproliferative actions. In addition, ACE2 is a multifunctional enzyme and its actions on other vasoactive peptides can also contribute to its vasoactive effects. The discovery of ACE2 corroborates the establishment of two counter-regulatory arms within the renin–angiotensin system. The first arm is formed by the classical pathway involving the ACE–Ang II–AT1-receptor axis, and the second arm is constituted by the ACE2–Ang-(1–7)–Mas-receptor axis. Owing to its characteristics, the ACE2–Ang-(1–7)–Mas axis may represent new possibilities for developing novel therapeutic strategies for the treatment of hypertension and cardiovascular diseases. In this review, we will summarize the biochemical and pathophysiological aspects of ACE2 with particular focus on its role in the heart.
Collapse
Affiliation(s)
- Anderson J Ferreira
- University of Florida, Department of Physiology and Functional Genomics, College of Medicine, PO Box 100274, Gainesville, FL 32610, USA, and, Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - José A Hernández Prada
- University of Florida, Departments of Physiology and Functional Genomics, College of Medicine, Gainesville, FL, USA
| | - David A Ostrov
- University of Florida, Departments of Pathology, Immunology and Laboratory Medicine, College of Medicine, Gainesville, FL, USA
| | - Mohan K Raizada
- University of Florida, Department of Physiology and Functional Genomics, College of Medicine, PO Box 00274, Gainesville, FL 32610, USA
| |
Collapse
|
50
|
Santos RAS, Ferreira AJ, Simões E Silva AC. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis. Exp Physiol 2008; 93:519-27. [PMID: 18310257 DOI: 10.1113/expphysiol.2008.042002] [Citation(s) in RCA: 340] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the past few years, the classical concept of the renin-angiotensin system (RAS) has experienced substantial conceptual changes. The identification of: the renin/prorenin receptor; the angiotensin-converting enzyme homologue, ACE2, as an angiotensin peptide-processing enzyme and a virus receptor for severe acute respiratory syndrome, the Mas as a receptor for angiotensin (1-7) [Ang(1-7)], and the possibility of signaling through ACE have contributed to switch our understanding of the RAS from the classical limited-proteolysis linear cascade to a cascade with multiple mediators, multiple receptors and multifunctional enzymes. With regard to Ang(1-7), the identification of ACE2 and of Mas as a receptor implicated in its actions contributed to decisively establish this heptapeptide as a biologically active member of the RAS cascade. In this review, we will focus on the recent findings related to the ACE2-Ang(1-7)-Mas axis and, in particular, on its putative role as an ACE-Ang II-AT(1) receptor counter-regulatory axis within the RAS.
Collapse
Affiliation(s)
- Robson A S Santos
- Department of Physiology, Federal University of Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil.
| | | | | |
Collapse
|