1
|
Maksimoski AN, Levenson TA, Zhao C, Riters LV. Evidence that flocking behavior is rewarded by singing, flock mates, and mu opioid receptors in the nucleus accumbens. PLoS One 2025; 20:e0318340. [PMID: 39874370 PMCID: PMC11774370 DOI: 10.1371/journal.pone.0318340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
It has been proposed that social groups are maintained both by reward resulting from positive social interactions and by the reduction of a negative state that would otherwise be caused by social separation. European starlings, Sturnus vulgaris, develop strong conditioned place preferences for places associated with the production of song in flocks outside the breeding season (gregarious song) and singers are motivated to rejoin the flock following removal. This indicates that the act of singing in flocks is associated with a positive affective state and raises the possibility that reward induced by song in flocks may play a role in flock maintenance. The goal of this study was to begin to test this hypothesis. We found that birds that sang full songs developed stronger conditioned place preferences than non-singing birds for places associated with flock mates, indicating that singers find the presence of flock mates to be rewarding. Regardless of song rate, the presence of flock mates also induced analgesia (a reflection of the reduction of a negative state). This form of analgesia has been shown to be an indirect measure of opioid release, suggesting that the presence of flock mates may induce opioid-mediated reward. Consistent with this possibility, the numbers of mu opioid receptor immunolabeled cells in the nucleus accumbens correlated positively with measurements of gregarious song and other social behaviors. Results suggest that both gregarious song and social contact promote flock cohesion and that opioids released onto mu opioid receptors in the nucleus accumbens may play an important role.
Collapse
Affiliation(s)
- Alyse N. Maksimoski
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Taviah A. Levenson
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Chang L, He Y, Tian T, Li B. Nucleus accumbens ghrelin signaling controls anxiety-like behavioral response to acute stress. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:18. [PMID: 38965529 PMCID: PMC11225390 DOI: 10.1186/s12993-024-00244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Anxiety disorders are one of the most common mental disorders. Ghrelin is a critical orexigenic brain-gut peptide that regulates food intake and metabolism. Recently, the ghrelin system has attracted more attention for its crucial roles in psychiatric disorders, including depression and anxiety. However, the underlying neural mechanisms involved have not been fully investigated. METHODS In the present study, the effect and underlying mechanism of ghrelin signaling in the nucleus accumbens (NAc) core on anxiety-like behaviors were examined in normal and acute stress rats, by using immunofluorescence, qRT-PCR, neuropharmacology, molecular manipulation and behavioral tests. RESULTS We reported that injection of ghrelin into the NAc core caused significant anxiolytic effects. Ghrelin receptor growth hormone secretagogue receptor (GHSR) is highly localized and expressed in the NAc core neurons. Antagonism of GHSR blocked the ghrelin-induced anxiolytic effects. Moreover, molecular knockdown of GHSR induced anxiogenic effects. Furthermore, injection of ghrelin or overexpression of GHSR in the NAc core reduced acute restraint stress-induced anxiogenic effects. CONCLUSIONS This study demonstrates that ghrelin and its receptor GHSR in the NAc core are actively involved in modulating anxiety induced by acute stress, and raises an opportunity to treat anxiety disorders by targeting ghrelin signaling system.
Collapse
Affiliation(s)
- Leilei Chang
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yecheng He
- Department of Preclinical Medicine, Suzhou Vocational Health College, Suzhou, 215009, China
| | - Tian Tian
- Department of Child Health Care, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bin Li
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Da Silva JT, Hernandez-Rojas LG, Mekonen HK, Hanson S, Melemedjian O, Scott AJ, Ernst RK, Seminowicz DA, Traub RJ. Sex differences in visceral sensitivity and brain activity in a rat model of comorbid pain: a longitudinal study. Pain 2024; 165:698-706. [PMID: 37756658 PMCID: PMC10859847 DOI: 10.1097/j.pain.0000000000003074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023]
Abstract
ABSTRACT Temporomandibular disorder (TMD) and irritable bowel syndrome (IBS) are 2 chronic overlapping pain conditions (COPCs) that present with significant comorbidity. Both conditions are more prevalent in women and are exacerbated by stress. While peripheral mechanisms might contribute to pain hypersensitivity for each individual condition, mechanisms underlying the comorbidity are poorly understood, complicating pain management when multiple conditions are involved. In this study, longitudinal behavioral and functional MRI-based brain changes have been identified in an animal model of TMD-like pain (masseter muscle inflammation followed by stress) that induces de novo IBS-like comorbid visceral pain hypersensitivity in rats. In particular, data indicate that increased activity in the insula and regions of the reward and limbic systems are associated with more pronounced and longer-lasting visceral pain behaviors in female rats, while the faster pain resolution in male rats may be due to increased activity in descending pain inhibitory pathways. These findings suggest the critical role of brain mechanisms in chronic pain conditions and that sex may be a risk factor of developing COPCs.
Collapse
Affiliation(s)
- Joyce T. Da Silva
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
| | - Luis G. Hernandez-Rojas
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
- Department of Computing, School of Engineering and Sciences, Tecnologico de Monterrey, Zapopan, Mexico
| | - Hayelom K. Mekonen
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
| | - Shelby Hanson
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Ohannes Melemedjian
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
| | - Alison J. Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, United States
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, the Netherlands
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - David A. Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Richard J. Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
| |
Collapse
|
4
|
LeCocq MR, Chander P, Chaudhri N. Blocking μ-opioid receptors attenuates reinstatement of responding to an alcohol-predictive conditioned stimulus through actions in the ventral hippocampus. Neuropsychopharmacology 2023; 48:1484-1491. [PMID: 37393348 PMCID: PMC10425465 DOI: 10.1038/s41386-023-01640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/04/2023] [Accepted: 06/16/2023] [Indexed: 07/03/2023]
Abstract
The µ-opioid system is involved in the reinstatement of responding that is immediately evoked by alcohol-predictive cues. The extent of its involvement in reinstatement observed in a new model that evaluates the delayed effects of re-exposure to alcohol, however, is unclear. The current study investigated the role of µ-opioid receptors (MORs) in the delayed reinstatement of an extinguished, Pavlovian conditioned response that was evoked 24 h after alcohol re-exposure. Female and male Long-Evans rats received Pavlovian conditioning in which a conditioned stimulus (CS) was paired with the delivery of an appetitive unconditioned stimulus (US; Experiments 1, 2, 4: 15% v/v alcohol; Experiment 3: 10% w/v sucrose) that was delivered into a fluid port for oral intake. During subsequent extinction sessions, the CS was presented as before but without the US. Next, the US was delivered but without the CS. A reinstatement test was conducted 24 h later, during which the CS was presented in the absence of the US. Silencing MORs via systemic naltrexone (0.3 or 1.0 mg/kg) attenuated reinstatement of port entries elicited by an alcohol-CS, but not those elicited by a sucrose-CS. Finally, blocking MORs in the ventral hippocampus via bilateral microinfusion of D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 2.5 or 5.0 µg/hemisphere) prevented reinstatement of port alcohol-CS port entries. These data show that MORs are involved in the delayed reinstatement of a Pavlovian conditioned response in an alcohol-specific manner. Importantly, these data illustrate, for the first time, that MORs in the ventral hippocampus are necessary for responding to an alcohol-predictive cue.
Collapse
Affiliation(s)
- Mandy Rita LeCocq
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.
| | - Priya Chander
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Nadia Chaudhri
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
5
|
Alipour V, Shojaei A, Rezaei M, Mirnajafi-Zadeh J, Azizi H. Intergenerational consequences of adolescent morphine exposure on learning and memory. Neurosci Lett 2023; 808:137303. [PMID: 37196975 DOI: 10.1016/j.neulet.2023.137303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/01/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Drug addiction is a worldwide social and medical disorder. More than 50 percent of drug abusers start their substance abuse in adolescence between the ages of 15-19. Adolescence is a sensitive and crucial period for the development and maturity of the brain. Chronic exposure to morphine, particularly during this period, lead to long-lasting effects, including effects that extend to the next generation. The current study examined the intergenerational effects of paternal morphine exposure during adolescence on learning and memory. In this study, male Wistar rats were exposed to increasing doses of morphine (5-25 mg/kg, s.c.) or saline for 10 days at postnatal days (PND) 30-39 during adolescence. Following a 20-day drug-free period, the treated male rats were mated with naïve females. Adult male offspring (PND 60-80) were tested for working memory, novel object recognition memory, spatial memory, and passive avoidance memory using the Y-Maze, novel object recognition, Morris water maze, and shuttle box tests, respectively. The spontaneous alternation (as measured in the Y-Maze test) was significantly less in the morphine-sired group compared to the saline-sired one. The offspring showed significantly less discrimination index in the novel object recognition test when compared to the control group. Morphine-sired offspring tended to spend significantly more time in the target quadrant and less escape latency in the Morris water maze on probe day when compared to the saline-sired ones. The offspring showed significantly less step-through latency to enter the dark compartment compared to the control group when measured in the shuttle box test. Paternal exposure to morphine during adolescence impaired working, novel object recognition, and passive avoidance memory in male offspring. Spatial memory changed in the morphine-sired group compared to the saline-sired one.
Collapse
Affiliation(s)
- Vida Alipour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Rezaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Shahidani S, Jokar Z, Alaei H, Reisi P. Effects of treadmill exercise and chronic stress on anxiety-like behavior, neuronal activity, and oxidative stress in basolateral amygdala in morphine-treated rats. Synapse 2023; 77:e22256. [PMID: 36200789 DOI: 10.1002/syn.22256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023]
Abstract
The basolateral amygdala (BLA), which is sensitive to stress, is necessary for reward-seeking behavior and addiction. Regular exercise can produce various positive effects by affecting the BLA. Therefore, we aimed to investigate the effects of chronic stress and treadmill running (TR) on anxiety-like behavior, neuronal activity, lipid peroxidation (measured by malondialdehyde (MDA) levels, a marker for oxidative stress), and total thiol in BLA, in morphine-treated rats. Male Wistar rats were restricted in restraint stress and/or ran on the treadmill and treated with morphine (5 mg/kg) for 21 days. Anxiety-like behavior was evaluated using an elevated plus maze (EPM) and open field tests (OFTs), on day 22. On day 23, neuronal activity in BLA was assessed via single-unit recording. Finally, MDA and total thiol were assessed in BLA. Our results showed that chronic administration of morphine (5 mg/kg) did not affect anxiety-like behavior. However, the morphine-treated rats, subjected to chronic stress and exercise, showed fewer anxiety-like behaviors. Morphine increased BLA's MDA levels but it was prevented by TR. Glutamatergic and GABAergic basal neuronal activities were low in morphine-treated rats but after acute morphine application, there was a significant decrease in GABAergic neuronal activities in the morphine-exercise-stress (Mor-Exe-St) group. The results of this study showed that in morphine-treated rats, stress and exercise or their combination could have either co-directional or opposite effects to the chronic effects of morphine. These results indicate the existence of common pathways similar to endogenous opioids.
Collapse
Affiliation(s)
- Somayeh Shahidani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Jokar
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Zhang LM, Zhang DX, Song RX, Lv JM, Wang LY, Wu ZY, Miao HT, Zhou YB, Zhang W, Xin Y, Li Y. IL-18BP Alleviates Anxiety-Like Behavior Induced by Traumatic Stress via Inhibition of the IL-18R-NLRP3 Signaling Pathway in a Mouse Model of Hemorrhagic Shock and Resuscitation. Mol Neurobiol 2022; 60:382-394. [PMID: 36269543 DOI: 10.1007/s12035-022-03085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022]
Abstract
Psychological distress and posttraumatic stress, including anxiety, severely influence life quality. Previously, we reported that interleukin-18 (IL-18) was involved in pyroptosis-induced emotional changes in a rodent model of hemorrhagic shock and resuscitation (HSR). Here, we aimed to continue our investigation on the role of IL-18 binding protein (IL-18BP), which exhibits excellent anti-inflammatory effects as an IL-18 negative regulator. Mice were administered with an intraperitoneal injection of IL-18BP after HSR exposure and anxiety-like behavior was examined using the open-field test and elevated plus maze test. Moreover, the following variables post-HSR were measured: (1) the activation of astrocytes; (2) pyroptosis-associated factors including cleaved caspase-1, GSDMD, IL-18; (3) the roles of IL-18 receptor (IL-18R)-NOD-like receptor pyrin domain-containing-3 (NLRP3) signal with the application of the NLRP3 specific agonist or astrocyte-specific NLRP3 knockout mice. IL-18BP administration remarkably alleviated HSR-induced anxiety-like behavior, astrocytic activation, and increases in pyroptosis-associated factors, while NLRP3 agonist nigericin partially reversed IL-18BP-induced neuroprotective effects. Astrocyte-specific NLRP3 knockout mice exhibited relatively less anxiety-like behavior. Similarly, IL-18BP exhibited an anti-pyroptosis effect in astrocytes in an in vitro model of low oxygen-glucose deprivation. These findings offer unique perspectives on HSR-induced posttraumatic stress and indicate that inhibition of IL-18R-NLRP3 signal via IL-18BP can attenuate astrocytic activation and pyroptosis, broadening the therapeutic landscape for patients with psychological distress and posttraumatic stress.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China.
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Jin-Meng Lv
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Lu-Ying Wang
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Zhi-You Wu
- Department of Neurosurgery, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Hui-Tao Miao
- Department of Neurosurgery, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Yan-Bo Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Xin
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| |
Collapse
|
8
|
Polzin BJ, Maksimoski AN, Stevenson SA, Zhao C, Riters LV. Mu opioid receptor stimulation in the medial preoptic area or nucleus accumbens facilitates song and reward in flocking European starlings. Front Physiol 2022; 13:970920. [PMID: 36171974 PMCID: PMC9510710 DOI: 10.3389/fphys.2022.970920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
It has been proposed that social cohesion in gregarious animals is reinforced both by a positive affective state induced by social interactions and by the prevention of a negative state that would be caused by social separation. Opioids that bind to mu opioid receptors (MORs) act in numerous brain regions to induce positive and to reduce negative affective states. Here we explored a potential role for MORs in affective states that may impact flocking behavior in mixed-sex flocks of nonbreeding European starlings, Sturnus vulgaris. Singing behavior, which is considered central to flock cohesion, and other social behaviors were quantified after infusions of the MOR agonist D-Ala2, N-Me-Phe4, glycinol5-ENK (DAMGO) into either the medial preoptic area (POM) or the nucleus accumbens (NAC), regions previously implicated in affective state and flock cohesion. We focused on beak wiping, a potential sign of stress or redirected aggression in this species, to provide insight into a presumed negative state. We also used conditioned place preference (CPP) tests to provide insight into the extent to which infusions of DAMGO into POM or NAC that stimulated song might be rewarding. We found that MOR stimulation in either POM or NAC dose-dependently promoted singing behavior, reduced beak wiping, and induced a CPP. Subtle differences in responses to MOR stimulation between NAC and POM also suggest potential functional differences in the roles of these two regions. Finally, because the location of NAC has only recently been identified in songbirds, we additionally performed a tract tracing study that confirmed the presence of dopaminergic projections from the ventral tegmental area to NAC, suggesting homology with mammalian NAC. These findings support the possibility that MORs in POM and NAC play a dual role in reinforcing social cohesion in flocks by facilitating positive and reducing negative affective states.
Collapse
|
9
|
Substance use, microbiome and psychiatric disorders. Pharmacol Biochem Behav 2022; 219:173432. [PMID: 35905802 DOI: 10.1016/j.pbb.2022.173432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Accumulating evidence from several studies has shown association between substance use, dysregulation of the microbiome and psychiatric disorders such as depression, anxiety, and psychosis. Many of the abused substances such as cocaine and alcohol have been shown to alter immune signaling pathways and cause inflammation in both the periphery and the central nervous system (CNS). In addition, these substances of abuse also alter the composition and function of the gut microbiome which is known to play important roles such as the synthesis of neurotransmitters and metabolites, that affect the CNS homeostasis and consequent behavioral outcomes. The emerging interactions between substance use, microbiome and CNS neurochemical alterations could contribute to the development of psychiatric disorders. This review provides an overview of the associative effects of substance use such as alcohol, cocaine, methamphetamine, nicotine and opioids on the gut microbiome and psychiatric disorders involving anxiety, depression and psychosis. Understanding the relationship between substance use, microbiome and psychiatric disorders will provide insights for potential therapeutic targets, aimed at mitigating these adverse outcomes.
Collapse
|
10
|
Deji C, Yan P, Ji Y, Yan X, Feng Y, Liu J, Liu Y, Wei S, Zhu Y, Lai J. The Basolateral Amygdala to Ventral Hippocampus Circuit Controls Anxiety-Like Behaviors Induced by Morphine Withdrawal. Front Cell Neurosci 2022; 16:894886. [PMID: 35726232 PMCID: PMC9205755 DOI: 10.3389/fncel.2022.894886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Anxiety is one of the most common comorbid conditions reported in people with opioid dependence. The basolateral amygdala (BLA) and ventral hippocampus (vHip) are critical brain regions for fear and anxiety. The kappa opioid receptor (KOR) is present in the mesolimbic regions involved in emotions and addiction. However, the precise circuits and molecular basis underlying anxiety associated with chronic opioid use are poorly understood. Using a mouse model, we demonstrated that anxiety-like behaviors appeared in the first 2 weeks after morphine withdrawal. Furthermore, the BLA and vHip were activated in mice experiencing anxiety after morphine withdrawal (Mor-A). KORs in the BLA to vHip projections were significantly increased in the Mor-A group. Optogenetic/chemogenetic inhibition of BLA inputs ameliorated anxiety-like behaviors and facilitated conditioned place preference (CPP) extinction in Mor-A mice. Knockdown of the BLA to vHip circuit KOR alleviated the anxiety-like behaviors but did not affect CPP extinction or reinstatement. Furthermore, combined treatment of inhibition of the BLA to vHip circuit and KOR antagonists mitigated anxiety-like behaviors and prevented stress-induced CPP reinstatement after morphine withdrawal. These results revealed a previously unknown circuit associated with the emotional component of opioid withdrawal and indicated that restoration of synaptic deficits with KOR antagonists might be effective in the treatment of anxiety associated with morphine withdrawal.
Collapse
|
11
|
Simmons SJ, Oliver CF, McCloskey NS, Reitz AB, Nayak SU, Watson MN, Rawls SM. Paradoxical anxiolytic effect of the 'bath salt' synthetic cathinone MDPV during early abstinence is inhibited by a chemokine CXCR4 or CCR5 receptor antagonist. Drug Alcohol Depend 2022; 230:109204. [PMID: 34871976 PMCID: PMC8729820 DOI: 10.1016/j.drugalcdep.2021.109204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Chemokine CXCR4 and CCR5 receptors are best known as HIV co-entry receptors, but evidence that CXCR4 or CCR5 blockade reduces rewarding and locomotor-stimulant effects of psychostimulants in rats suggests a role in psychostimulant use disorders. We investigated the impact of CXCR4 or CCR5 receptor antagonism on anxiety-related effects of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) in the elevated zero-maze (EZM) assay. Rats exposed to a 4-day MDPV binge dosing paradigm and tested 24 or 72 h post-treatment spent more time in the open compartment at the 24-h time point but less time at the 72-h post-binge time point. Daily administration of AMD 3100, a CXCR4 antagonist (10 mg/kg), or maraviroc, a CCR5 antagonist (2.5 mg/kg), during MDPV treatment inhibited the MDPV-induced increase in time spent in the open compartment. Neither antagonist affected the MDPV-induced reduction in time spent in the open compartment at the 72-h post-binge time point. Cocaine, administered in the same paradigm as MDPV, did not increase time spent in the open compartment 24-h post-binge, suggesting specificity to MDPV. The present results identify a surprising anxiolytic-like effect of MDPV 24 h after cessation of repeated exposure that is sensitive to chemokine CXCR4 and CCR5 receptor activity.
Collapse
Affiliation(s)
- Steven J. Simmons
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Chicora F. Oliver
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Nicholas S. McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Allen B. Reitz
- Fox Chase Chemical Diversity Center Inc., Doylestown, PA, USA
| | - Sunil U. Nayak
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mia N. Watson
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Scott M. Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA,Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Zeng Q, Shan W, Zhang H, Yang J, Zuo Z. Paraventricular thalamic nucleus plays a critical role in consolation and anxious behaviors of familiar observers exposed to surgery mice. Am J Cancer Res 2021; 11:3813-3829. [PMID: 33664863 PMCID: PMC7914349 DOI: 10.7150/thno.45690] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Consolation behaviors toward the sick are common in humans. Anxiety in the relatives of the sick is also common. Anxiety can cause detrimental effects on multiple systems. However, our understanding on the neural mechanisms of these behaviors is limited because of the lack of small animal models. Methods: Five of 6- to 8-week-old CD-1 male mice were housed in a cage. Among them, 2 mice had right common artery exposure (surgery) and the rest were without surgery. Allo-grooming and performance in light and dark box and elevated plus maze tests of the mice were determined. Results: Mice without surgery had increased allo-grooming toward mice with surgery but decreased allo-grooming toward non-surgery intruders. This increased allo-grooming toward surgery mice was higher in familiar observers of surgery mice than that of mice that were not cage-mates of surgery mice before the surgery. Familiar observers developed anxious behavior after being with surgery mice. Surgery mice with familiar observers had less anxious behavior than surgery mice without interacting with familiar observers. Multiple brain regions including paraventricular thalamic nucleus (PVT) were activated in familiar observers. The activated cells in PVT contained orexin receptors. Injuring the neurons with ibotenic acid, antagonizing orexin signaling with an anti-orexin antibody or inhibiting neurons by chemogenetic approach in PVT abolished the consolation and anxious behaviors of familiar observers. Conclusions: Mice show consolation behavior toward the sick. This behavior attenuates the anxious behavior of surgery mice. The orexin signaling in the PVT neurons play a critical role in the consolation of familiar observers toward surgery mice and their anxious behavior. Considering that about 50 million patients have surgery annually in the United States, our study represents the initial attempt to understand neural mechanisms for consolation and anxiety of a large number of people.
Collapse
|
13
|
Zhou W, Li Y, Meng X, Liu A, Mao Y, Zhu X, Meng Q, Jin Y, Zhang Z, Tao W. Switching of delta opioid receptor subtypes in central amygdala microcircuits is associated with anxiety states in pain. J Biol Chem 2021; 296:100277. [PMID: 33428940 PMCID: PMC7948800 DOI: 10.1016/j.jbc.2021.100277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Anxiety is often comorbid with pain. Delta opioid receptors (DORs) are promising targets for the treatment of pain and mental disorders with little addictive potential. However, their roles in anxiety symptoms at different stages of pain are unclear. In the current study, mice with inflammatory pain at the fourth hour following complete Freund’s adjuvant (CFA) injection displayed significant anxiety-like behavior, which disappeared at the seventh day. Combining electrophysiology, optogenetics, and pharmacology, we found that activation of delta opioid receptor 1 (DOR1) in the central nucleus amygdala (CeA) inhibited both the anxiolytic excitatory input from the basolateral amygdala (BLA) and the anxiogenic excitatory input from the parabrachial nucleus (PBN). In contrast, activation of delta opioid receptor 2 (DOR2) did not affect CeA excitatory synaptic transmission in normal and 4-h CFA mice but inhibited the excitatory projection from the PBN rather than the BLA in 7-day CFA mice. Furthermore, the function of both DOR1 and DOR2 was downregulated to the point of not being detectable in the CeA of mice at the 21st day following CFA injection. Taken together, these results suggest that functional switching of DOR1 and DOR2 is associated with anxiety states at different stages of pain via modulating the activity of specific pathways (BLA-CeA and PBN-CeA).
Collapse
Affiliation(s)
- Wenjie Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China
| | - Yanhua Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China
| | - Xiaojing Meng
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - An Liu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yu Mao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China; Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xia Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China
| | - Qian Meng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China; Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China.
| | - Wenjuan Tao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China; Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
14
|
Bryant KG, Barker JM. Arbitration of Approach-Avoidance Conflict by Ventral Hippocampus. Front Neurosci 2020; 14:615337. [PMID: 33390895 PMCID: PMC7773818 DOI: 10.3389/fnins.2020.615337] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022] Open
Abstract
When environmental cues or stimuli that represent both rewarding and aversive outcomes are presented, complex computations must be made in order to determine whether approach or avoidance is the better behavioral strategy. In many neuropsychiatric illnesses these computations can be skewed. In some instances, circumstances that may normally warrant avoidance instead promote approach, thus producing compulsive-like behavioral strategies that are inflexible in response to new or conflicting information. Alternatively, high sensitivity to aversion or low sensitivity to reward can result in the failure to achieve goals and loss of resilience that characterizes depressive disorders. Increases in compulsive-like behavior have been found to be associated with disrupted signaling in regions that regulate response to conflicting stimuli, including the hippocampus. Classic behavioral inhibition theories of hippocampus function in anxiety suggest that the hippocampus blocks aberrant behavior in response to anxiety related cues or stimuli. The hippocampus may act to block approach in the face of conflicting stimuli. Dysregulations of hippocampal function, as may be present in neuropsychiatric disorders, may therefore promote aberrant approach behavior. The ventral hippocampus (vHPC) subregion is key for coordinating this approach/avoidance conflict resolution, likely through its participation with cortico-striatal and mesolimbic circuits. We revisit Gray's behavioral inhibition theory of HPC function, first posited in the 1980s, and interpret in the context of new knowledge on vHPC function gained through modern technology. Taken together with the extant, classical literature on hippocampal function, we propose that these new findings suggest that vHPC circuits balance behavioral response to conflicting stimuli in a manner that is both state- and context-dependent and, further, that disruption of specific vHPC circuits tips the balance in favor of biased approach or avoidance behavioral strategies.
Collapse
Affiliation(s)
- Kathleen G Bryant
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, United States
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Nummenmaa L, Karjalainen T, Isojärvi J, Kantonen T, Tuisku J, Kaasinen V, Joutsa J, Nuutila P, Kalliokoski K, Hirvonen J, Hietala J, Rinne J. Lowered endogenous mu-opioid receptor availability in subclinical depression and anxiety. Neuropsychopharmacology 2020; 45:1953-1959. [PMID: 32473595 PMCID: PMC7608336 DOI: 10.1038/s41386-020-0725-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 11/09/2022]
Abstract
Major depressive disorder is associated with lowered mood, anxiety, anhedonia, sleep problems, and cognitive impairments. Many of these functions are regulated by μ-opioid receptor (MOR) system. Preclinical, in vivo, and post-mortem studies have however yielded inconclusive results regarding the role of the MOR in depression and anxiety. Moreover, it is not known whether alterations in MOR are already present in subclinical depression and anxiety. In a large-scale retrospective cross-sectional study we pooled data from 135 (113 males and 22 females) healthy subjects whose brain's MOR availability was measured with positron emission tomography (PET) using an agonist radioligand [11C]carfentanil that has high affinity for MORs. Depressive and anxious symptomology was addressed with BDI-II and STAI-X questionnaires, respectively. Both anxiety and depression scores in the subclinical range were negatively associated with MOR availability in cortical and subcortical areas, notably in amygdala, hippocampus, ventral striatum, and orbitofrontal and cingulate cortices. We conclude that dysregulated MOR availability is involved in altered mood and pathophysiology of depression and anxiety disorders.
Collapse
Affiliation(s)
- Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland.
- Department of Psychology, University of Turku, Turku, Finland.
- Turku University Hospital University of Turku, Turku, Finland.
| | | | | | - Tatu Kantonen
- Turku PET Centre, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku and Turku University Hospital, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku, Turku, Finland
| | - Valtteri Kaasinen
- Turku PET Centre, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku and Turku University Hospital, Turku, Finland
| | - Juho Joutsa
- Turku PET Centre, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku and Turku University Hospital, Turku, Finland
- Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | | | - Jussi Hirvonen
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Jarmo Hietala
- Turku University Hospital University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha Rinne
- Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Elorette C, Aguilar BL, Novak V, Forcelli PA, Malkova L. Dysregulation of behavioral and autonomic responses to emotional and social stimuli following bidirectional pharmacological manipulation of the basolateral amygdala in macaques. Neuropharmacology 2020; 179:108275. [PMID: 32835765 DOI: 10.1016/j.neuropharm.2020.108275] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/24/2020] [Accepted: 08/13/2020] [Indexed: 11/28/2022]
Abstract
The amygdala is a key component of the neural circuits mediating the processing and response to emotionally salient stimuli. Amygdala lesions dysregulate social interactions, responses to fearful stimuli, and autonomic functions. In rodents, the basolateral and central nuclei of the amygdala have divergent roles in behavioral control. However, few studies have selectively examined these nuclei in the primate brain. Moreover, the majority of non-human primate studies have employed lesions, which only allow for unidirectional manipulation of amygdala activity. Thus, the effects of amygdala disinhibition on behavior in the primate are unknown. To address this gap, we pharmacologically inhibited by muscimol or disinhibited by bicuculline methiodide the basolateral complex of the amygdala (BLA; lateral, basal, and accessory basal) in nine awake, behaving male rhesus macaques (Macaca mulatta). We examined the effects of amygdala manipulation on: (1) behavioral responses to taxidermy snakes and social stimuli, (2) food competition and social interaction in dyads, (3) autonomic arousal as measured by cardiovascular response, and (4) prepulse inhibition of the acoustic startle (PPI) response. All modalities were impacted by pharmacological inhibition and/or disinhibition. Amygdala inhibition decreased fear responses to snake stimuli, increased examination of social stimuli, reduced competitive reward-seeking in dominant animals, decreased heart rate, and increased PPI response. Amygdala disinhibition restored fearful response after habituation to snakes, reduced competitive reward-seeking behavior in dominant animals, and lowered heart rate. Thus, both hypoactivity and hyperactivity of the basolateral amygdala can lead to dysregulated behavior, suggesting that a narrow range of activity is necessary for normal functions.
Collapse
Affiliation(s)
- Catherine Elorette
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA
| | - Brittany L Aguilar
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA
| | - Vera Novak
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA; Department of Neuroscience, Georgetown University Medical Center, USA.
| | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA.
| |
Collapse
|
17
|
Synergistic effect between citalopram and citicoline on anxiolytic effect in non-sensitized and morphine-sensitized mice: An isobologram analysis. Brain Res 2020; 1734:146701. [PMID: 32070686 DOI: 10.1016/j.brainres.2020.146701] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 11/21/2022]
Abstract
In the present study, the effects of intraperitoneal (i.p.) injections of citalopram and citicoline on morphine-induced anxiolytic effects were investigated in non-sensitized and morphine-sensitized mice using elevated plus-maze (EPM). Subcutaneous (s.c.) administration morphine (5 mg/kg) increased the percentage of open arm time (%OAT, in morphine-sensitized mice), and open arm entries (%OAE, in non-sensitized mice), but not a locomotor activity, indicating an anxiolytic response to morphine. On the other hand, i.p. administration of naloxone decreased %OAT (morphine-sensitized mice), and %OAE (non-sensitized and morphine-sensitized mice), but not a locomotor activity, showing an anxiogenic effect to naloxone. Moreover, i.p.co-administration of citalopram (5 and 10 mg/kg) and citicoline (75 mg/kg) induced the anxiolytic effect. Interestingly, i.p. co-administration of low doses of citalopram (0.5, 1 and 2.5 mg/kg) and citicoline (25 mg/kg) significantly increased %OAT and %OAE in non-sensitized as well as %OAT in morphine-sensitized mice, indicating an anxiolytic effect. An isobolographic analysis of data was performed, presenting a synergistic interaction between citalopram and citicoline upon the production of anxiolytic effect in non-sensitized and morphine-sensitized mice. In conclusion, it seems that (1) morphine sensitization affects the anxiety behavior in the EPM, (2) μ-opioid receptors play an important role in morphine anxiolytic effect, (3) citalopram and citicoline induced anti-anxiety effect, (4) a synergistic effect of citalopram and citicoline upon induction of anti-anxiety behavior in non-sensitized and morphine-sensitized mice.
Collapse
|
18
|
Khakpay R, Khakpai F. Modulation of anxiety behavior in gonadectomized animals. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Health Care System, Columbia, SC, United States
| | - Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
20
|
Seiglie MP, Huang L, Cottone P, Sabino V. Role of the PACAP system of the extended amygdala in the acoustic startle response in rats. Neuropharmacology 2019; 160:107761. [PMID: 31493466 PMCID: PMC6842120 DOI: 10.1016/j.neuropharm.2019.107761] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022]
Abstract
Anxiety-related disorders are the most prevalent mental disorders in the world and they are characterized by abnormal responses to stressors. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide highly expressed in the extended amygdala, a brain macrostructure involved in the response to threat that includes the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST). The aim of this series of experiments was to systematically elucidate the role of the PACAP system of the CeA and BNST under both control, unstressed conditions and after the presentation of a stressor in rats. For this purpose, we used the acoustic startle response (ASR), an unconscious response to sudden acoustic stimuli sensitive to changes in stress which can be used as an operationalization of the hypervigilance present in anxiety- and trauma-related disorders. We found that infusion of PACAP, but not the related peptide vasoactive intestinal peptide (VIP), into either the CeA or the BNST causes a dose-dependent increase in ASR. In addition, while infusion of the antagonist PACAP(6-38) into either the CeA or the BNST does not affect ASR in non-stressed conditions, it prevents the sensitization of ASR induced by an acute footshock stress. Finally, we found that footshock stress induces a significant increase in PACAP, but not VIP, levels in both of these brain areas. Altogether, these data show that the PACAP system of the extended amygdala contributes to stress-induced hyperarousal and suggest it as a potential novel target for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Mariel P Seiglie
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Lillian Huang
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
21
|
Evaluation of the Anxiolytic Effect of Vitex agnus-castus on Female Mice and Possible Role of Estrogen Receptors. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.63570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Chronic consumption of purple grape juice in gestational-lactation and post lactation promotes anxiolity effect and antioxidant defense improvement in brain from Wistar male offsprings. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2018.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
23
|
Zhao C, Gammie SC. The circadian gene Nr1d1 in the mouse nucleus accumbens modulates sociability and anxiety-related behaviour. Eur J Neurosci 2018; 48:1924-1943. [PMID: 30028550 DOI: 10.1111/ejn.14066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/11/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Nuclear receptor subfamily 1, group D, member 1 (Nr1d1) (also known as Rev-erb alpha) has been linked to circadian rhythm regulation, mood-related behaviour and disorders associated with social deficits. Recent work from our laboratory found striking decreases in Nr1d1 in the nucleus accumbens (NAc) in the maternal condition and indirect evidence that Nr1d1 was interacting with numerous addiction and reward-related genes to modulate social reward. In this study, we applied our insights from the maternal state to nonparental adult mice to determine whether decreases in Nr1d1 expression in the NAc via adeno-associated viral (AAV) vectors and short hairpin RNA (shRNA)-mediated gene knockdown were sufficient to modulate social behaviours and mood-related behaviours. Knockdown of Nr1d1 in the NAc enhanced sociability and reduced anxiety, but did not affect depressive-like traits in female mice. In male mice, Nr1d1 knockdown had no significant behavioural effects. Microarray analysis of Nr1d1 knockdown in females identified changes in circadian rhythm and histone deacetylase genes and suggested possible drugs, including histone deacetylase inhibitors, that could mimic actions of Nr1d1 knockdown. Quantitative real-time PCR (qPCR) analysis confirmed expression upregulation of gene period circadian clock 1 (Per1) and period circadian clock 2 (Per2) with Nr1d1 knockdown. The evidence for roles for opioid-related genes opioid receptor, delta 1 (Oprd1) and preproenkephalin (Penk) was also found. Together, these results suggest that Nr1d1 in the NAc modulates sociability and anxiety-related behaviour in a sex-specific manner, and circadian, histone deacetylase and opioid-related genes may be involved in the expression of these behavioural phenotypes.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
24
|
Nummenmaa L, Tuominen L. Opioid system and human emotions. Br J Pharmacol 2018; 175:2737-2749. [PMID: 28394427 PMCID: PMC6016642 DOI: 10.1111/bph.13812] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/07/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
Emotions are states of vigilant readiness that guide human and animal behaviour during survival-salient situations. Categorical models of emotions posit neurally and physiologically distinct basic human emotions (anger, fear, disgust, happiness, sadness and surprise) that govern different survival functions. Opioid receptors are expressed abundantly in the mammalian emotion circuit, and the opioid system modulates a variety of functions related to arousal and motivation. Yet, its specific contribution to different basic emotions has remained poorly understood. Here, we review how the endogenous opioid system and particularly the μ receptor contribute to emotional processing in humans. Activation of the endogenous opioid system is consistently associated with both pleasant and unpleasant emotions. In general, exogenous opioid agonists facilitate approach-oriented emotions (anger, pleasure) and inhibit avoidance-oriented emotions (fear, sadness). Opioids also modulate social bonding and affiliative behaviour, and prolonged opioid abuse may render both social bonding and emotion recognition circuits dysfunctional. However, there is no clear evidence that the opioid system is able to affect the emotions associated with surprise and disgust. Taken together, the opioid systems contribute to a wide array of positive and negative emotions through their general ability to modulate the approach versus avoidance motivation associated with specific emotions. Because of the protective effects of opioid system-mediated prosociality and positive mood, the opioid system may constitute an important factor contributing to psychological and psychosomatic resilience. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Lauri Nummenmaa
- Turku PET Centre and Department of PsychologyUniversity of TurkuTurkuFinland
| | - Lauri Tuominen
- Department of PsychiatryMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
25
|
Roversi K, Pase CS, Roversi K, Vey LT, Dias VT, Metz VG, Burger ME. Trans fat intake across gestation and lactation increases morphine preference in females but not in male rats: Behavioral and biochemical parameters. Eur J Pharmacol 2016; 788:210-217. [DOI: 10.1016/j.ejphar.2016.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
|
26
|
Logan RW, Wynne O, Maglakelidze G, Zhang C, O'Connell S, Boyadjieva NI, Sarkar DK. β-Endorphin neuronal transplantation into the hypothalamus alters anxiety-like behaviors in prenatal alcohol-exposed rats and alcohol-non-preferring and alcohol-preferring rats. Alcohol Clin Exp Res 2016; 39:146-57. [PMID: 25623413 DOI: 10.1111/acer.12611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/22/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol exposure has adverse effects on stress physiology and behavioral reactivity. This is suggested to be due, in part, to the effect of alcohol on β-endorphin (β-EP)-producing neurons in the hypothalamus. In response to stress, β-EP normally provides negative feedback to the hypothalamic-pituitary-adrenal axis and interacts with other neurotransmitter systems in the amygdala to regulate behavior. We examined whether β-EP neuronal function in the hypothalamus reduces the corticosterone response to acute stress, attenuates anxiety-like behaviors, and modulates alcohol drinking in rats. METHODS To determine whether β-EP neuronal transplants modulate the stress response, anxiety behavior, and alcohol drinking, we implanted differentiated β-EP neurons into the paraventricular nucleus (PVN) of the hypothalamus of normal, prenatal alcohol-exposed, and alcohol-preferring (P) and alcohol-non-preferring (NP) rats. We then assessed corticosterone levels in response to acute restraint stress and other markers of stress response in the brain and anxiety-like behaviors in the elevated plus maze and open-field assays. RESULTS We showed that β-EP neuronal transplants into the PVN reduced the peripheral corticosterone response to acute stress and attenuated anxiety-like behaviors. Similar transplants completely reduced the hypercorticosterone response and elevated anxiety behaviors in prenatal alcohol-exposed adult rats. Moreover, we showed that β-EP reduced anxiety behavior in P rats with minimal effects on alcohol drinking during and following restraint stress. CONCLUSIONS These data further establish a role of β-EP neurons in the hypothalamus for regulating physiological stress response and anxiety behavior and resemble a potential novel therapy for treating stress-related psychiatric disorders in prenatal alcohol-exposed children and those genetically predisposed to increased alcohol consumption.
Collapse
Affiliation(s)
- Ryan W Logan
- Endocrine Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; University of Pittsburgh Medical Center, Department of Psychiatry, Translational Neuroscience Program, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
27
|
Smith CJW, Wilkins KB, Mogavero JN, Veenema AH. Social Novelty Investigation in the Juvenile Rat: Modulation by the μ-Opioid System. J Neuroendocrinol 2015. [PMID: 26212131 DOI: 10.1111/jne.12301] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The drive to approach and explore novel conspecifics is inherent to social animals and may promote optimal social functioning. Juvenile animals seek out interactions with novel peers more frequently and find these interactions to be more rewarding than their adult counterparts. In the present study, we aimed to establish a behavioural paradigm to measure social novelty-seeking in juvenile rats and to determine the involvement of the opioid, dopamine, oxytocin and vasopressin systems in this behaviour. To this end, we developed the social novelty preference test to assess the preference of a juvenile rat to investigate a novel over a familiar (cage mate) conspecific. We show that across the juvenile period both male and female rats spend more time investigating a novel conspecific than a cage mate, independent of subject sex or repeated exposure to the test. We hypothesised that brain systems subserving social information processing and social motivation/reward (i.e. the opioid, dopamine, oxytocin, vasopressin systems) might support social novelty preference. To test this, receptor antagonists of each of these systems were administered i.c.v. prior to exposure to the social novelty preference test and, subsequently, to the social preference test, to examine the specificity of these effects. We find that μ-opioid receptor antagonism reduces novel social investigation in both the social novelty preference and social preference tests while leaving the investigation of a cage mate (social novelty preference test) or an object (social preference test) unaffected. In contrast, central blockade of dopamine D2 receptors (with eticlopride), oxytocin receptors (with des-Gly-NH2,d(CH2)5[Tyr(Me)2,Thr4]OVT) or vasopressin V1a receptors [with (CH2)5Tyr(Me2)AVP] failed to alter social novelty preference or social preference. Overall, we have established a new behavioural test to study social novelty-seeking behaviour in the juvenile rat and show that the μ-opioid system facilitates this behaviour, possibly by reducing risk avoidance and enhancing the hedonic and/or motivational value of social novelty.
Collapse
Affiliation(s)
- C J W Smith
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - K B Wilkins
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - J N Mogavero
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - A H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
28
|
Recent advances in stress research: Focus on nitric oxide. Eur J Pharmacol 2015; 765:406-14. [DOI: 10.1016/j.ejphar.2015.08.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 12/29/2022]
|
29
|
Desjardins JK, Becker L, Fernald RD. The effect of observers on behavior and the brain during aggressive encounters. Behav Brain Res 2015; 292:174-83. [PMID: 26097004 DOI: 10.1016/j.bbr.2015.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 12/22/2022]
Abstract
What effect does an audience have on an animal's behavior and where is this influence registered in the brain? To answer these questions, we analyzed male cichlid fish fighting in the presence of audiences of various compositions and measured expression of immediate early genes in the brain as a proxy for neural activity. We hypothesized their behavior would change depending on who was watching them. We measured behavioral responses from both the "watchers" and the "watched" during aggressive encounters and found that males fighting in the presence of an audience were more aggressive than males fighting without an audience. Depending on the nature of the audience, immediate early gene expression in key brain nuclei was differentially influenced. Both when an audience of larger males watched fighting males, and when they were watching larger males fighting, nuclei in the brain considered homologous with mammalian nuclei known to be associated with anxiety showed increased activity. When males were in the presence of any audience or when males saw any other males fighting, nuclei in the brain known to be involved in reproduction and aggression were differentially activated relative to control animals. In all cases, there was a close relationship between patterns of brain gene expression between fighters and observers. This suggests that the network of brain regions known as the social behavior network, common across vertebrates, are activated not only in association with the expression of social behavior but also by the reception of social information.
Collapse
Affiliation(s)
- Julie K Desjardins
- Department of Biology Gilbert Building, Rm. 316 Stanford University Stanford, CA 94305-5020, USA
| | - Lisa Becker
- Department of Biology Gilbert Building, Rm. 316 Stanford University Stanford, CA 94305-5020, USA
| | - Russell D Fernald
- Department of Biology Gilbert Building, Rm. 316 Stanford University Stanford, CA 94305-5020, USA.
| |
Collapse
|
30
|
Gibula-Bruzda E, Marszalek-Grabska M, Witkowska E, Izdebski J, Kotlinska JH. Enkephalin analog, cyclo[N(ε),N(β)-carbonyl-D-Lys(2),Dap(5)] enkephalinamide (cUENK6), inhibits the ethanol withdrawal-induced anxiety-like behavior in rats. Alcohol 2015; 49:229-36. [PMID: 25716198 DOI: 10.1016/j.alcohol.2015.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 01/08/2023]
Abstract
An analog of enkephalin, cyclo[N(ε),N(β)-carbonyl-D-Lys(2),Dap(5)] enkephalinamide (cUENK6), is predominantly a functional agonist of μ-opioid receptors (MOPr) and, to a lesser extent, of δ-opioid receptors (DOPr) in vitro. The aim of the present study was to determine whether cUENK6 could affect ethanol withdrawal-induced anxiety-like behavior in the elevated plus maze (EPM) test in rats. An anxiety-like effect of withdrawal was predicted to occur in the EPM test 24 h after the last ethanol administration (2 g/kg, intraperitoneally [i.p.]; 15% w/v once daily for 9 days). Ethanol withdrawal decreased the percent of time spent by rats in the open arms and the percent of open-arms entries. cUENK6 (0.25 nmol), given by intracerebroventricular (i.c.v.) injection, significantly reversed these anxiety-like effects of ethanol withdrawal and elevated the percent of time spent by rats in the open arms and the percent of open-arms entries. These effects of cUENK6 were significantly inhibited by the DOPr antagonist naltrindole (NTI) (5 nmol, i.c.v.), but not by the MOPr antagonist β-funaltrexamine (β-FNA) (5 nmol, i.c.v.). The preferential DOPr agonist [Leu(5)]-enkephalin (LeuEnk) (2.7 and 5.4 nmol, i.c.v.) and the MOPr agonist morphine (6.5 and 13 nmol, i.c.v.) reduced the anxiety-like effects of ethanol withdrawal. cUENK6 at the dose of 0.25 nmol did not disturb locomotor activity in the EPM, in contrast to cUENK6 at the dose of 0.5 nmol, and morphine at 6.5 and 13 nmol. However, similarly to LeuEnk, cUENK6 induced the anxiolytic-like effects in naïve rats. Thus, our study suggests that cUENK6 reduced ethanol withdrawal-induced anxiety-like behavior by activation of δ-opioid receptors rather than μ-opioid receptors.
Collapse
|
31
|
Damián JP, Acosta V, Da Cuña M, Ramírez I, Oddone N, Zambrana A, Bervejillo V, Benech JC. Effect of resveratrol on behavioral performance of streptozotocin-induced diabetic mice in anxiety tests. Exp Anim 2015; 63:277-87. [PMID: 25077757 PMCID: PMC4206731 DOI: 10.1538/expanim.63.277] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to evaluate with anxiety tests the effect of resveratrol (RSV)
on streptozotocin (STZ)-induced diabetic mouse behavioral performance at the second and
fourth week of treatment. Confirmed diabetic mice (>250 mg/dl of glucose in blood after
STZ injection) were treated with RSV (RDM, n=12) or control treated (DM, n=12) for 4
weeks. DM and RDM were tested in the Open Field Test (OFT) and Elevated Plus Maze (EPM).
In the second week of RSV treatment, a higher grooming frequency
(P<0.05) and a lower defecation and rearing frequency
(P<0.05) were detected in the OFT in the RDM group compared with the
DM. There was a higher grooming frequency (P<0.05) and higher
percentage of entries in open arms (P<0.05) in the RDM group than in
the DM group in the EPM. However, in the fourth week of RSV treatment, the only effect
observed was a higher grooming frequency in the RDM group than in the DM group
(P<0.05) in the EPM. In conclusion, RSV treatment in diabetic mice
provoked anxiolytic-like effects in both tests (OFT and EPM), and these effects were
observed in a short time window (2 weeks). It is suggested that RSV may help diabetic
animals to adapt to new stressing and anxiety situations and thus to improve their
welfare.
Collapse
Affiliation(s)
- Juan P Damián
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11600 Montevideo, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Joshi JC, Ray A, Gulati K. Effects of morphine on stress induced anxiety in rats: Role of nitric oxide and Hsp70. Physiol Behav 2015; 139:393-6. [DOI: 10.1016/j.physbeh.2014.11.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
|
33
|
Papini S, Sullivan GM, Hien DA, Shvil E, Neria Y. Toward a translational approach to targeting the endocannabinoid system in posttraumatic stress disorder: a critical review of preclinical research. Biol Psychol 2014; 104:8-18. [PMID: 25448242 DOI: 10.1016/j.biopsycho.2014.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/18/2014] [Accepted: 10/27/2014] [Indexed: 12/12/2022]
Abstract
Despite the lack of clinical research, marijuana and synthetic cannabinoids have been approved to treat posttraumatic stress disorder (PTSD) in several states in the United States. This review critically examines preclinical research on the endocannabinoid system (ECS) in order to evaluate three key questions that are relevant to PTSD: (1) Does ECS dysfunction impact fear extinction? (2) Can stress-related symptoms be prevented by ECS modulation? (3) Is the ECS a potential target for enhancing PTSD treatment? Disruption of the ECS impaired fear extinction in rodents, and ECS abnormalities have been observed in PTSD. Targeting fear memories via the ECS had mixed results in rodents, whereas augmented cannabinoid receptor activation typically facilitated extinction. However, the translational value of these findings is limited by the paucity and inconsistency of human research. Further investigation is necessary to determine whether incorporating cannabinoids in treatment would benefit individuals with PTSD, with cautious attention to risks.
Collapse
Affiliation(s)
- Santiago Papini
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA; City College of New York, 160 Convent Avenue, New York, NY, 10031, USA; Columbia University Medical Center, W. 168th Street, New York, NY, 10032, USA
| | - Gregory M Sullivan
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA; Columbia University Medical Center, W. 168th Street, New York, NY, 10032, USA
| | - Denise A Hien
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA; City College of New York, 160 Convent Avenue, New York, NY, 10031, USA; Columbia University Medical Center, W. 168th Street, New York, NY, 10032, USA
| | - Erel Shvil
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA; Columbia University Medical Center, W. 168th Street, New York, NY, 10032, USA
| | - Yuval Neria
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA; Columbia University Medical Center, W. 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
34
|
Hazim AI, Ramanathan S, Parthasarathy S, Muzaimi M, Mansor SM. Anxiolytic-like effects of mitragynine in the open-field and elevated plus-maze tests in rats. J Physiol Sci 2014; 64:161-9. [PMID: 24464759 PMCID: PMC10717818 DOI: 10.1007/s12576-014-0304-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/08/2014] [Indexed: 01/13/2023]
Abstract
The effects of mitragynine on anxiety-related behaviours in the open-field and elevated plus-maze tests were evaluated. Male Sprague-Dawley rats were orally treated with mitragynine (10, 20 and 40 mg/kg) or diazepam (10 mg/kg) 60 min before behavioural testing. Mitragynine doses used in this study were selected on the basis of approximately human equivalent doses with reference to our previous literature reports. Acute administration of mitragynine (10, 20 and 40 mg/kg) or diazepam (10 mg/kg) increased central zone and open arms exploration in the open-field and elevated plus-maze tests respectively. These anxiolytic-like effects of mitragynine were effectively antagonized by intraperitoneal administration of naloxone (2 mg/kg), flumazenil (10 mg/kg), sulpiride (0.5 mg/kg) or SCH 23390 (0.02 mg/kg) 15 min before mitragynine treatments. These findings reveal that the acute administration of mitragynine produces anxiolytic-like effects and this could be possibly attributed to the interactions among opioidergic, GABAergic and dopaminergic systems in brain regions involved in anxiety.
Collapse
Affiliation(s)
- Ammar Imad Hazim
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia,
| | | | | | | | | |
Collapse
|
35
|
Bérubé P, Poulin JF, Laforest S, Drolet G. Enkephalin knockdown in the basolateral amygdala reproduces vulnerable anxiety-like responses to chronic unpredictable stress. Neuropsychopharmacology 2014; 39:1159-68. [PMID: 24213354 PMCID: PMC3957109 DOI: 10.1038/npp.2013.316] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/29/2022]
Abstract
The endogenous enkephalins (ENKs) are potential candidates participating in the naturally occurring variations in coping styles and determining the individual capacities for adaptation during chronic stress exposure. Here we demonstrate that there is a large variance in individual behavioral, as well as in physiological outcomes, in a population of Sprague-Dawley rats subjected to 3 weeks of chronic unpredictable stress (CUS). Separation of resilient and vulnerable subpopulations reveals specific long-term neuroadaptation in the ENKergic brain circuits. ENK mRNA expression was greatly reduced in the posterior basolateral nucleus of amygdala (BLAp) in vulnerable individuals. In contrast, ENK mRNA levels were similar in resilient and control (unstressed) individuals. Another group of rats were used for lentiviral-mediated knockdown of ENK to assess whether a decrease of ENK expression in the BLAp reproduces the behavioral disturbances found in vulnerable individuals. ENK knockdown specifically located in the BLAp was sufficient to increase anxiety in the behavioral tests, such as social interaction and elevated plus maze when compared with control individuals. These results show that specific neuroadaptation mediated by the ENKergic neurotransmission in the BLAp is a key regulator of resilience, whereas a decrease of the ENK in the BLAp is a maladaptation mechanism, which mediates the behavioral dichotomy observed between vulnerable and resilient following 3 weeks of CUS.
Collapse
Affiliation(s)
- Patrick Bérubé
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval, Quebec, QC, Canada
| | - Jean-François Poulin
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval, Quebec, QC, Canada
| | - Sylvie Laforest
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval, Quebec, QC, Canada
| | - Guy Drolet
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval, Quebec, QC, Canada,Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval, CHUL P-09800, 2705 Laurier, Québec, QC, Canada G1V 4G2. Tel: +418 525 4444, ext. 47979, Fax: +418 654 2753, E-mail:
| |
Collapse
|
36
|
Joshi JC, Ray A, Gulati K. Differential modulatory effects of morphine on acute and chronic stress induced neurobehavioral and cellular markers in rats. Eur J Pharmacol 2014; 729:17-21. [PMID: 24508522 DOI: 10.1016/j.ejphar.2014.01.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 01/08/2014] [Accepted: 01/26/2014] [Indexed: 11/30/2022]
Abstract
The present study evaluated the effects of morphine treatments on elevated plus maze test parameters, oxidative stress markers and Hsp70 expression in normal and stressed rats. Acute and chronic stress caused neurobehavioral suppression, altered prooxidant-antioxidant balance and increased Hsp70 expression in brain homogenates in a differential manner. Morphine (1 and 5mg/kg) attenuated RS induced anxiogenesis, changes in MDA and GSH but further enhanced Hsp70 expression. Similar anxiolytic and Hsp70 enhancing effects were seen after morphine in normal rats (no RS). Exposure to chronic RS did not elicit any appreciable neurobehavioral response in EPM but enhanced MDA, lowered GSH and exaggerated the Hsp70 expression. Pretreatment with morphine did not affect the neurobehavioral response to chronic RS, but reverted the GSH and Hsp70 expression. The results suggest that morphine differentially influences acute and chronic stress induced changes in anxiety behavior and complex interactions between oxidative stress markers and Hsp70 expression which may contribute to these effects.
Collapse
Affiliation(s)
- Jagdish C Joshi
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Arunabha Ray
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Kavita Gulati
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India.
| |
Collapse
|
37
|
Khakpai F. The effect of opiodergic system and testosterone on anxiety behavior in gonadectomized rats. Behav Brain Res 2014; 263:9-15. [PMID: 24468308 DOI: 10.1016/j.bbr.2014.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 01/09/2014] [Accepted: 01/15/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIM Removal of the testes (gonadectomy; GDX), the primary source of androgens, increases anxiety behavior in several tasks. Opioids are known to play a role in mediating the effects of androgen. In the present study, the effect of testosterone and opioidergic system on anxiety behavior was investigated. METHODS Adult male Wistar rats were bilaterally castrated. The elevated plus maze which is a useful test to investigate the effects of anxiogenic or anxiolytic drugs in rodents was used. RESULTS The data indicated that there is a decrease, 10 days after castration, in the percentage of OAT (the ratio of time spent in the open arms to total times spent in any arms × 100) and OAE (the ratio of entries into open arms to total entries × 100) but not locomotor activity, showing anxiogenic-like effects of gonadectomy. Intraperitoneal injection of testosterone (200, 300 and 450 mg/kg) and morphine (2.5, 5 and 7.5mg/kg), before testing 10 days after castration, showed an increase in OAT and OAE. Furthermore, injection of naloxone (5 and 7.5mg/kg, i.p.), 5 min before testing 10 days after castration, decreased OAT and OAE. Also, injection of a significant dose of testosterone (300 mg/kg, i.p.), 1h before the injection of different doses of morphine (1, 2.5, 5 and 7.5mg/kg, i.p.), 10 days after castration, did not significantly alter OAT, OAE and locomotor activity. While, administration of a significant dose of testosterone (300 mg/kg, i.p.), 1h before the infusion of different doses of naloxone (1, 2.5, 5 and 7.5mg/kg, i.p.), 10 days after castration, decreased OAT and OAE. CONCLUSION The results show the involvement of testosterone and opioidergic system in anxiogenic-like behaviors induced by gonadectomy.
Collapse
Affiliation(s)
- Fatemeh Khakpai
- Department of Biology, Faculty of Biological Sciences, Tarbiat Moallem (Kharazmi) University, Tehran, Iran.
| |
Collapse
|
38
|
|
39
|
Differential mechanisms of opioidergic and dopaminergic systems of the ventral hippocampus (CA3) in anxiolytic-like behaviors induced by cholestasis in mice. Eur J Pharmacol 2013; 714:352-8. [DOI: 10.1016/j.ejphar.2013.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 07/09/2013] [Accepted: 07/16/2013] [Indexed: 11/20/2022]
|
40
|
Ahmadi H, Nasehi M, Rostami P, Zarrindast MR. Involvement of the nucleus accumbens shell dopaminergic system in prelimbic NMDA-induced anxiolytic-like behaviors. Neuropharmacology 2013; 71:112-23. [DOI: 10.1016/j.neuropharm.2013.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 01/21/2023]
|
41
|
Vieira LFDA, Reis MDDS, Brandão ARA, Viana IMM, da Silva JP, Barreto E, Smaniotto S. Anxiolytic-like effect of the extract from Bowdichia virgilioides in mice. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2013. [DOI: 10.1590/s0102-695x2013005000044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Evaluation of functional relationship between mouse hippocampal cholinergic and nitrergic systems in anxiogenic-like behavior. Behav Pharmacol 2013; 24:229-36. [DOI: 10.1097/fbp.0b013e3283618b16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Llano López LH, Caif F, Fraile M, Tinnirello B, Landa de Gargiulo AI, Lafuente JV, Baiardi GC, Gargiulo PA. Differential behavioral profile induced by the injection of dipotassium chlorazepate within brain areas that project to the nucleus accumbens septi. Pharmacol Rep 2013; 65:566-78. [DOI: 10.1016/s1734-1140(13)71034-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 02/01/2013] [Indexed: 10/25/2022]
|
44
|
Poulin JF, Bérubé P, Laforest S, Drolet G. Enkephalin knockdown in the central amygdala nucleus reduces unconditioned fear and anxiety. Eur J Neurosci 2013; 37:1357-67. [DOI: 10.1111/ejn.12134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/07/2012] [Accepted: 12/13/2012] [Indexed: 12/25/2022]
Affiliation(s)
- Jean-François Poulin
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval; Québec; QC; Canada
| | - Patrick Bérubé
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval; Québec; QC; Canada
| | - Sylvie Laforest
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval; Québec; QC; Canada
| | - Guy Drolet
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval; Québec; QC; Canada
| |
Collapse
|
45
|
Anxiolytic effects of ethanol are partially related to a reduced expression of adenylyl cyclase 5 but not to μ-opioid receptor activation in rat nucleus accumbens. Behav Brain Res 2012; 235:189-94. [DOI: 10.1016/j.bbr.2012.07.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/16/2012] [Accepted: 07/27/2012] [Indexed: 02/07/2023]
|
46
|
Rezayof A, Assadpour S, Alijanpour S. Morphine-induced anxiolytic-like effect in morphine-sensitized mice: involvement of ventral hippocampal nicotinic acetylcholine receptors. Pharmacol Biochem Behav 2012; 103:460-6. [PMID: 23067878 DOI: 10.1016/j.pbb.2012.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 10/01/2012] [Accepted: 10/06/2012] [Indexed: 10/27/2022]
Abstract
In the present study, the effects of repeated intra-ventral hippocampal (intra-VH) microinjections of nicotinic acetylcholine receptor agonist or antagonist on morphine-induced anxiolytic-like behavior were investigated in morphine-sensitized mice using elevated plus-maze. Intraperitoneal (i.p.) administration of different doses of morphine (5, 7.5 and 10mg/kg) increased the percentage of open arm time (%OAT), open arm entries (%OAE), but not locomotor activity, indicating an anxiolytic-like response to morphine. The maximum response was obtained by 7.5mg/kg of the opioid. The anxiety-like behavior which was induced by a lower dose of morphine (5mg/kg) was significantly increased in mice that had previously received once daily injections of morphine (10 and 20mg/kg, i.p.) for 3 days. It should be considered that this treatment also increased locomotor activity in morphine-sensitized mice. Furthermore, the response to an ineffective dose of morphine (5mg/kg, i.p.) in the EPM was significantly increased in the animals that had previously received nicotine for 3 days (0.1, 0.3, 0.5 and 0.7 μg/mouse; intra-VH), 5 min prior to the injections of morphine (5mg/kg/day × 3 days; i.p.). On the other hand, the increase of morphine-induced anxiolytic-like effect in animals that had previously received the 3-day morphine (20mg/kg) was dose dependently suppressed by once daily injections of mecamylamine (0.5, 1 and 2 μg/mouse/day × 3 days; intra-VH). It is important to note that repeated intra-VH administrations of the same doses of nicotine or mecamylamine alone caused no significant change in morphine (5mg/kg)-induced anxiety-like parameters in the EPM. In conclusion, it seems that morphine sensitization affects the anxiety-like behavior in the EPM and the cholinergic system in the ventral hippocampus, via nicotinic receptors, may play an important role in this effect.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| | | | | |
Collapse
|
47
|
Levita L, Hoskin R, Champi S. Avoidance of harm and anxiety: A role for the nucleus accumbens. Neuroimage 2012; 62:189-98. [DOI: 10.1016/j.neuroimage.2012.04.059] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 03/08/2012] [Accepted: 04/29/2012] [Indexed: 02/08/2023] Open
|
48
|
Corticotropin-releasing factor in the nucleus accumbens shell induces swim depression, anxiety, and anhedonia along with changes in local dopamine/acetylcholine balance. Neuroscience 2012; 206:155-66. [PMID: 22245501 DOI: 10.1016/j.neuroscience.2011.12.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/04/2011] [Accepted: 12/05/2011] [Indexed: 01/28/2023]
Abstract
The nucleus accumbens shell (NAcS) has been implicated in controlling stress responses through corticotropin-releasing factor (CRF). In addition to studies indicating that CRF in the NAcS increases appetitive motivation, there is indirect evidence suggesting that NAcS CRF may also cause aversive responses and that these behaviors may be mediated through local dopamine (DA) and acetylcholine (ACh) systems. To provide a direct test of this hypothesis, we used male Sprague-Dawley rats with implanted cannulas aimed at the NAcS. Experiment 1 showed local CRF injection (10 or 50 ng/side) to increase immobility in the forced swim test and a CRF antagonist D-Phe-CRF ((12-41)) to attenuate this depressive-like behavior. In Experiment 2, injection of CRF (250 ng/side) also decreased the rats' preference for sucrose, while in Experiment 3, CRF (50 or 250 ng/side) induced anxiety-like behaviors in an elevated plus maze and open field. These same doses of CRF in Experiment 4 failed to alter the rats' locomotor activity, indicating that these behavioral changes were not caused by deficits in activity. In Experiment 5, results from in vivo microdialysis revealed that CRF in the NAcS markedly increased local extracellular ACh, while also producing a small increase in DA. These results show that NAcS CRF can generate a variety of aversive behaviors, including swim depression, anhedonia, and anxiety, in addition to approach behavior. They suggest that these behaviors may occur, in part, through enhanced activation of ACh and DA in the NAcS, respectively, supporting a role for this brain area in mediating the dual effects of stress.
Collapse
|
49
|
Wand GS, Weerts EM, Kuwabara H, Frost JJ, Xu X, McCaul ME. Naloxone-induced cortisol predicts mu opioid receptor binding potential in specific brain regions of healthy subjects. Psychoneuroendocrinology 2011; 36:1453-9. [PMID: 21549509 PMCID: PMC3154371 DOI: 10.1016/j.psyneuen.2011.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/09/2011] [Accepted: 03/29/2011] [Indexed: 11/23/2022]
Abstract
Investigators have administered the opioid receptor antagonist, naloxone, to interrogate the hypothalamic-pituitary-adrenal (HPA) axis response under the assumption that this technique provides a measure of endogenous opioid activity. However it has never been tested whether provocation of the HPA axis with naloxone provides a surrogate marker for direct measurement of endogenous opioid activity using PET imaging as the gold standard. To test this hypothesis, eighteen healthy subjects underwent a PET scan with the mu-opioid receptor (MOR) selective ligand [(11)C]carfentanil (CFN). The following day ACTH and cortisol responses were assessed using a technique which allows administration of 5 incremental doses of naloxone (0, 25, 50, 100 and 250μg/kg) in a single session. Relationships between ACTH and cortisol responses and [(11)C]CFN binding potential (BP(ND)) were examined in 5 brain regions involved in the regulation of the HPA axis and/or regions with high concentrations of MOR. All subjects mounted graded ACTH and cortisol responses to naloxone administrations. There were significant negative relationships between cortisol response to naloxone and [(11)C]CFN BP(ND) in ventral striatum, putamen and caudate. When sex and smoking were added as covariates to the model, these correlations were strengthened and there was a significant correlation with the hypothalamus. There were no significant correlations between ACTH and any volumes of interest. The opioid receptor antagonist naloxone is not merely a non-specific pharmacologic activator of the HPA axis; it provides information about individual differences in opioid receptor availability.
Collapse
Affiliation(s)
- Gary S Wand
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The opioid system plays a crucial role in the neural modulation of anxiety. The involvement of opioid ligands and receptors in physiological and dysfunctional forms of anxiety is supported by findings from a wide range of preclinical and clinical studies, including clinical trials, experimental research, and neuroimaging, genetic, and epidemiological data. In this review we provide a summary of studies from a variety of research disciplines to elucidate the role of the opioid system in the neurobiology of anxiety. First, we report data from preclinical studies using animal models to examine the modulatory role of central opioid system on defensive responses conducive to fear and anxiety. Second, we summarize the human literature providing evidence that clinical and experimental human studies are consistent with preclinical models. The implication of these data is that activation of the opioid system leads to anxiolytic responses both in healthy subjects and in patients suffering from anxiety disorders. The role of opioids in suppressing anxiety may serve as an adaptive mechanism, collocated in the general framework of opioid neurotransmission blunting acute negative and distressing affective responses.
Collapse
Affiliation(s)
- A Colasanti
- Neuropsychopharmacology Unit, Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Imperial College London, London, UK.
| | | | | | | |
Collapse
|