1
|
Bekheit M, Kamera B, Colacino L, Dropmann A, Delibegovic M, Almadhoob F, Hanafy N, Bermano G, Hammad S. Mechanisms underpinning the effect of exercise on the non-alcoholic fatty liver disease: review. EXCLI JOURNAL 2025; 24:238-266. [PMID: 40071029 PMCID: PMC11895063 DOI: 10.17179/excli2024-7718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025]
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) - whose terminology was recently replaced by metabolic liver disease (MAFLD) - is an accumulation of triglycerides in the liver of >5 % of its weight. Epidemiological studies indicated an association between NAFLD and reduced physical activity. In addition, exercise has been shown to improve NAFLD independently of weight loss. In this paper, we aim to systematically review molecular changes in sedentary experimental NAFLD models vs. those subjected to exercise. We utilized the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist and standard review techniques. Studies were considered for inclusion if they addressed the primary question: the mechanisms by which exercise influenced NAFLD. This review summarized experimental evidence of improvements in NAFLD with exercise in the absence of weight loss. The pathways involved appeared to have AMPK as a common denominator. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohamed Bekheit
- Department of Surgery, NHS Grampian, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
- Institute of Medical Sciences, Medical School, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
| | - Blessed Kamera
- Department of Surgery, NHS Grampian, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
- Institute of Medical Sciences, Medical School, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
| | - Laura Colacino
- Department of Surgery, NHS Grampian, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
- Institute of Medical Sciences, Medical School, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
| | - Anne Dropmann
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Mirela Delibegovic
- Department of Surgery, NHS Grampian, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
- Institute of Medical Sciences, Medical School, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
| | - Fatema Almadhoob
- St. Helens and Knowsley Teaching Hospitals NHS Trust, Prescot, Prescot, UK
| | - Nemany Hanafy
- Group of Bionanotechnology and Molecular Cell Biology, Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Sir Ian Wood Building, Garthdee Road, Aberdeen AB10 7GJ, UK
| | - Seddik Hammad
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| |
Collapse
|
2
|
Mentzinger J, Teixeira GF, Monnerat JADS, Velasco LL, Lucchetti BB, Martins MAC, Costa V, Andrade GPD, Magliano DC, Rocha HNM, da Nóbrega ACL, Medeiros RF, Rocha NG. Prenatal stress induces sex- and tissue-specific alterations in insulin pathway of Wistar rats offspring. Am J Physiol Heart Circ Physiol 2024; 327:H1055-H1066. [PMID: 39212771 DOI: 10.1152/ajpheart.00243.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Prenatal stress may lead to tissue and sex-specific cardiometabolic disorders in the offspring through imbalances in the insulin signaling pathway. Therefore, we aimed to determine the sex-specific adaptations of prenatal stress on the insulin signaling pathway of cardiac and hepatic tissue of adult offspring Wistar rats. METHODS Wistar pregnant rats were divided into control and stress groups. Unpredictable stress protocol was performed from the 14th to the 21st day of pregnancy. After lactation, the dams were euthanized and blood was collected for corticosterone measurement and the offspring were separated into four groups according to sex and intervention (n=8/group). At 90 days old, the offspring were submitted to an oral glucose tolerance test (OGTT) and an insulin tolerance test (ITT). After euthanasia blood collection was used for biochemical analysis and the left ventricle and liver were used for protein expression and histological analysis. RESULTS Stress increased maternal corticosterone levels, and in the offspring, decreased glucose concentration in both OGTT and ITT, reduced insulin receptor (Irβ) and insulin receptor substrate-1 (IRS1) activation and reduced insulin receptor inhibition (PTP1B) in the liver of male offspring at 90 days old, without repercussions in cardiac tissue. Moreover, female offspring submitted to prenatal stress exhibited reduced fatty acid uptake, with lower hepatic CD36 expression, reduced high density lipoprotein (cHDL) and increased Castelli risk indexes I and II. CONCLUSIONS Unpredictable prenatal stress evoked reduced insulin sensitivity and liver-specific impairment in insulin signaling activation in male while increasing markers of cardiovascular risk in females.
Collapse
Affiliation(s)
- Juliana Mentzinger
- Department of Physiology and Pharmacology, Universidade Federal Fluminense, Niteroi, Brazil
| | | | | | | | | | | | - Viviane Costa
- Department of Physiology and Pharmacology, Fluminense Federal University, Brazil
| | | | | | | | | | | | | |
Collapse
|
3
|
Zhang Z, Wang H, Chen Y. Association between composite dietary antioxidant index and metabolic dysfunction associated steatotic liver disease: result from NHANES, 2017-2020. Front Nutr 2024; 11:1412516. [PMID: 39104752 PMCID: PMC11299214 DOI: 10.3389/fnut.2024.1412516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Background The development of metabolic dysfunction associated steatotic liver disease (MASLD) has been associated with lipid accumulation, oxidative stress, endoplasmic reticulum stress, and lipotoxicity. The Composite Dietary Antioxidant Index (CDAI) is a comprehensive score representing an individual intake of various dietary antioxidants, including vitamin A, vitamin C, vitamin E, selenium, zinc, and carotenoids. This study investigated the association between CDAI and MASLD. Materials and methods Clinical and demographic data, as well as ultrasound transient elastography measurements at baseline, were collected from the National Health and Nutrition Examination Survey 2017-2020 (NHANES 2017-2020). The controlled attenuation parameter was utilized to diagnose the presence of hepatic steatosis and to categorize individuals into those with and without MASLD. Liver stiffness was measured by ultrasound transient elastography, and subjects were classified as those with and without advanced liver fibrosis. Results This study included 5,884 adults, of whom 3,433 were diagnosed with MASLD, resulting in a weighted prevalence of 57.3%. After adjusting for covariates, the odds ratios for MASLD were 0.96 (95% CI: 0.82, 1.12) in the second quartile, 0.80 (95% CI: 0.68, 0.95) in the third quartile and 0.60 (95% CI: 0.49, 0.73) in the fourth quartile, respectively. CDAI, however, was not significantly associated with advanced liver fibrosis. Conclusion These findings suggested that scores on the CDAI were linearly and negatively associated with the prevalence of MASLD in the United States adults.
Collapse
Affiliation(s)
| | | | - Youpeng Chen
- Department of Infectious Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Besqueut‐Rougerie C, Chavanelle V, Michaux A, Otero YF, Sirvent P, King JA, Ennequin G. Voluntary exercise fails to prevent metabolic dysfunction-associated steatotic liver disease progression in male rats fed a high-fat high-cholesterol diet. Physiol Rep 2024; 12:e15993. [PMID: 38627215 PMCID: PMC11021195 DOI: 10.14814/phy2.15993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health issue with a worldwide prevalence of 30%-32%. In animal models, voluntary exercise may be an alternative to forced physical activity, avoiding stress, potential injuries, and being logistically simpler. Here, we assessed voluntary exercise (Vex) in Sprague-Dawley rats fed a high-fat, high-cholesterol diet for 18 weeks to induce MASLD. We quantified workload (speed and distance) using exercise wheels and evaluated energy expenditure using calorimetric cages. MASLD progression was assessed using circulating and hepatic biochemical and gene markers of steatosis, inflammation, and fibrosis. The animals ran an average of 301 km during the study period, with the average daily distance peaking at 4937 m/day during Weeks 3-4 before decreasing to 757 m/day by the end of the study. Rats exposed to Vex showed no improvement in any of the MASLD-associated features, such as steatosis, inflammation, or fibrosis. Rats exposed to Vex exhibited a higher total energy expenditure during the night phase (+0.35 kcal/h; p = 0.003) without resulting in any effect on body composition. We conclude that, in our experimental conditions, Vex failed to prevent MASLD progression in male Sprague-Dawley rats exposed to a high-fat high-cholesterol diet for 18 weeks.
Collapse
Affiliation(s)
| | | | | | | | | | - James A. King
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | - Gaël Ennequin
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), CRNH Auvergne, Chaire Santé en MouvementClermont Auvergne UniversityClermont‐FerrandFrance
| |
Collapse
|
5
|
Yu L, Li J, Bian J, Yu Y. EXERCISE IMPROVES ALVEOLAR BONE LOSS AND THE INFLAMMATORY PROFILE OF PERIODONTAL DISEASE. REV BRAS MED ESPORTE 2023. [DOI: 10.1590/1517-8692202329012021_0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
ABSTRACT Periodontal disease (PD) is an inflammatory oral disease and alveolar bone loss is the most important sign of PD. However, the effects of exercise on inflammatory factors and alveolar bone loss in individuals with PD have been little studied. This meta-analysis assesses the effect of physical exercise on alveolar bone loss (ABL) and the inflammatory profile of PD in animal models. Relevant studies published through July 2020 in PubMed, Medline, Embase and Web of Science were searched after developing a PICOS statement. Quality assessment and risk of bias were analyzed according to the SYRCLE protocol. A total of 52 references were retrieved, 4 of which were considered eligible for inclusion. A total of thirty-four male Wistar rats from the included studies were evaluated for alveolar bone loss and assessed for inflammatory profile. The results indicated that physical exercise could reduce alveolar bone loss (95% CI -2.85 to -0.82, p = 0.002) and the pro-inflammatory tumor necrosis factor–α (TNF-α) in serum or gingival tissue (95% CI -0.45 to -0.24, p < 0.00001). Inversely, exercise increased anti-inflammatory interleukin–10 (IL-10) in serum or gingival tissue (95% CI 0.28 to 0.69, p < 0.00001). However, one study reported a negative result in the expression of TNF-α and IL-10. Current evidence indicates that physical exercise contributes to ameliorate PD by reducing alveolar bone loss and inflammation in animal PD models, which suggests that moderate exercise can be implemented in clinical practice to maintain periodontal health. Level of Evidence I; Systematic Review and Meta-analysis
Collapse
Affiliation(s)
- Lina Yu
- Affiliated Stomatology Hospital of Guangzhou Medical University, China
| | - Jiang Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, China
| | | | - Yang Yu
- Guangzhou Sport University, China
| |
Collapse
|
6
|
Davari F, Alimanesh Z, Alimanesh Z, Salehi O, Hosseini SA. Effect of training and crocin supplementation on mitochondrial biogenesis and redox-sensitive transcription factors in liver tissue of type 2 diabetic rats. Arch Physiol Biochem 2022; 128:1215-1220. [PMID: 32401063 DOI: 10.1080/13813455.2020.1762663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Present study investigated the effect of continued training (CT) and interval training (IT) with crocin (C) supplementation on mitochondrial biogenesis and redox-sensitive transcription factors in liver tissue of type 2 diabetes (T2D) rats. Forty-eight high fat diet and streptozotocin- induced diabetic rats (mean age: 20 weeks, mean weight: 360.12 ± 12.11 g) were randomly divided into six groups including: (1) sham (Sh), (2) CT, (3) IT, (4) C (25 mg/kg/day), (5) CT + C, and (6) IT + C. IT and CT were performed 8 weeks for five sessions per week on treadmill with 80-85% and 50-55% of maximum speed running respectively. IT, CT and C decreased AP1 and increased LCAD (p ≤ .05); C increased SIRT1 (p ≤ .05); IT + C and CT + C decreased AP1 as well as increased NF-κB and LCAD (p ≤ .05); IT + C increased SIRT1, SIRST3 and PGC1-α (p ≤ .05). It appears that IT along with C compared to CT and C have favourable effect on mitochondrial biogenesis factors.
Collapse
Affiliation(s)
- Fatemeh Davari
- Department of Sport Physiology, Yasouj Branch, Islamic Azad University, Yasouj, Iran
| | - Zeynab Alimanesh
- Department of Nursing, Medical University of Yasouj, Yasouj, Iran
| | - Zahra Alimanesh
- Department of Physical Education and Sport Sciences, Ministry of Education, Yasouj, Iran
| | - Omidreza Salehi
- Department of Physical Education and Sport Sciences, University of Kurdistan, Sanandaj, Iran
| | - Seyed Ali Hosseini
- Department of Sport Physiology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
7
|
Arabzadeh E, Shirvani H, Ebadi Zahmatkesh M, Riyahi Malayeri S, Meftahi GH, Rostamkhani F. Irisin/FNDC5 influences myogenic markers on skeletal muscle following high and moderate-intensity exercise training in STZ-diabetic rats. 3 Biotech 2022; 12:193. [PMID: 35910290 PMCID: PMC9325938 DOI: 10.1007/s13205-022-03253-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/03/2022] [Indexed: 11/29/2022] Open
Abstract
In the present study, we investigated the effects of high-intensity interval training (HIIT) versus moderate-intensity continuous training (MICT) on irisin and expression of myogenic markers (paired box 7 (Pax7), myogenic differentiation 1 (MyoD), myogenin) in skeletal muscle of diabetic rats. Eighty-four male Wistar rats (6 weeks of age) were randomly divided into seven groups (n = 12): basic control (Co Basic), 8 weeks control (Co 8w), diabetes mellitus (DM), HIIT, DM + HIIT, MICT, and DM + MICT groups. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ). TheV ˙ o 2 max protocol was characterized by running on a rodent treadmill with moderate intensity (60-70%V ˙ o 2 max ), 60 min per session, 5 days/week, for 6 weeks. HIIT consisted of six 3-min runs at a high intensity (80-90%V ˙ o 2 max ) alternated with 2-min running at low intensity (50%V ˙ o 2 max ), 30 min per session, 5 days/week, for 6 weeks. Results showed that DM decreased myoblast markers compared to Co Basic and Co 8w groups. Fibronectin type III domain-containing protein 5 (FNDC5) mRNA decrease was correlated with myoblast markers (Pax7 r = 0.632, p = 0.027; MyoD r = 0.999, p = 0.001; myogenin r = 1.000, p = 0.001) in DM group. DM + MICT significantly increased gene expression of MyoD, myogenin, and FNDC5 compared to DM and DM + HIIT. The results also showed that the intensity and duration of exercise on the treadmill were effective in stimulating irisin and myogenic markers after DM.
Collapse
Affiliation(s)
- Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Shahin Riyahi Malayeri
- Department of Physical Education and Sport Sciences, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Fatemeh Rostamkhani
- Department of Biology, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Pinto AP, Rocha ALD, Marafon BB, Nogueira JE, Branco LGS, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, da Silva ASR. Chronic rapamycin treatment decreases hepatic
IL
‐6 protein but increases autophagy markers as a protective effect against the overtraining‐induced tissue damage. Clin Exp Pharmacol Physiol 2022; 49:893-902. [PMID: 35637552 DOI: 10.1111/1440-1681.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Ana P. Pinto
- Postgraduate Program in Rehabilitation and Functional Performance Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto São Paulo Brazil
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto São Paulo Brazil
| | - Bruno B. Marafon
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto São Paulo Brazil
| | - Jonatas E. Nogueira
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto São Paulo Brazil
| | - Luiz G. S. Branco
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences, University of Campinas (UNICAMP), Limeira São Paulo Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences, University of Campinas (UNICAMP), Limeira São Paulo Brazil
| | - Dennys E. Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences, University of Campinas (UNICAMP), Limeira São Paulo Brazil
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences, University of Campinas (UNICAMP), Limeira São Paulo Brazil
| | - Adelino S. R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto São Paulo Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto São Paulo Brazil
| |
Collapse
|
9
|
Passos E, Pereira C, Gonçalves IO, Faria A, Ascensão A, Monteiro R, Magalhães J, Martins MJ. Physical exercise positively modulates nonalcoholic steatohepatitis-related hepatic endoplasmic reticulum stress. J Cell Biochem 2022; 123:1647-1662. [PMID: 35467032 DOI: 10.1002/jcb.30250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Obesity is a predictive factor for the development of nonalcoholic steatohepatitis (NASH). Although some of the mechanisms associated with NASH development are still elusive, its pathogenesis relies on a complex broad spectrum of (interconnected) metabolic-based disorders. We analyzed the effects of voluntary physical activity (VPA) and endurance training (ET), as preventive and therapeutic nonpharmacological strategies, respectively, against hepatic endoplasmic reticulum (ER) stress, ER-related proapoptotic signaling, and oxidative stress in an animal model of high-fat diet (HFD)-induced NASH. Adult male Sprague-Dawley rats were divided into standard control liquid diet (SCLD) or HFD groups, with sedentary, VPA, and ET subgroups in both (sedentary animals with access to SCLD [SS], voluntarily physically active animals with access to SCLD [SV], and endurance-trained animals with access to SCLD [ST] in the former and sedentary animals with access to liquid HFD [HS], voluntarily physically active animals with access to liquid HFD [HV], and endurance-trained animals with access to liquid HFD [HT] in the latter, respectively). Hepatic ER stress and ER-related proapoptotic signaling were evaluated by Western blot and reverse transcriptase-polymerase chain reaction; redox status was evaluated through quantification of lipid peroxidation, protein carbonyls groups, and glutathione levels as well as antioxidant enzymes activity. In SCLD-treated animals, VPA significantly decreased eukaryotic initiation factor-2 alpha (eIF2α). In HFD-treated animals, VPA significantly decreased eIF2α and phospho-inositol requiring enzyme-1 alpha (IRE1α) but ET significantly decreased eIF2α and significantly increased both spliced X-box binding protein 1 (sXBP1) and unspliced X-box binding protein 1; a significant increase of phosphorylated-eIF2α (p-eIF2α) to eIF2α ratio occurred in ET versus VPA. HS compared to SS disclosed a significant increase of total and reduced glutathione, HV compared to SV a significant increase of oxidized glutathione, HT compared to ST a significant increase of p-eIF2α to eIF2α ratio and sXBP1. Physical exercise counteracts NASH-related ER stress and its associated deleterious consequences through a positive and dynamical modulation of the hepatic IRE1α-X-box binding protein 1 pathway.
Collapse
Affiliation(s)
- Emanuel Passos
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,National Anti-Doping Organization of Cape Verde, Praia, Cabo Verde.,Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Cidália Pereira
- School of Health Sciences, Polytechnic of Leiria, Leiria, Portugal.,CiTechCare-Centre for Innovative Care and Health Technology, Polytechnic of Leiria, Leiria, Portugal
| | - Inês O Gonçalves
- Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Ana Faria
- Nutrition and Metabolism, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal.,CINTESIS-Center for Health Technology Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Comprehensive Health Research Centre, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - António Ascensão
- Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Rosário Monteiro
- CINTESIS-Center for Health Technology Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Unidade de Saúde Familiar Homem do Leme, Agrupamento de Centros de Saúde Porto Ocidental, ARS Norte, Porto, Portugal.,MEDCIDS-Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Magalhães
- Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Maria J Martins
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
da Cruz Rodrigues KC, Martins Pereira R, Peruca GF, Torres Barbosa LW, Ramos Sant’Ana M, Rosetto Muñoz V, Morelli AP, Moreira Simabuco F, Sanchez Ramos da Silva A, Esper Cintra D, Rochete Ropelle E, Pauli JR, de Moura LP. Short-Term Strength Exercise Reduces Hepatic Insulin Resistance in Obese Mice by Reducing PTP1B Content, Regardless of Changes in Body Weight. Int J Mol Sci 2021; 22:6402. [PMID: 34203825 PMCID: PMC8232771 DOI: 10.3390/ijms22126402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Obesity is closely related to insulin resistance and type 2 diabetes genesis. The liver is a key organ to glucose homeostasis since insulin resistance in this organ increases hepatic glucose production (HGP) and fasting hyperglycemia. The protein-tyrosine phosphatase 1B (PTP1B) may dephosphorylate the IR and IRS, contributing to insulin resistance in this organ. Aerobic exercise is a great strategy to increase insulin action in the liver by reducing the PTP1B content. In contrast, no study has shown the direct effects of strength training on the hepatic metabolism of PTP1B. Therefore, this study aims to investigate the effects of short-term strength exercise (STSE) on hepatic insulin sensitivity and PTP1B content in obese mice, regardless of body weight change. To achieve this goal, obese Swiss mice were submitted to a strength exercise protocol lasting 15 days. The results showed that STSE increased Akt phosphorylation in the liver and enhanced the control of HGP during the pyruvate tolerance test. Furthermore, sedentary obese animals increased PTP1B content and decreased IRS-1/2 tyrosine phosphorylation; however, STSE was able to reverse this scenario. Therefore, we conclude that STSE is an important strategy to improve the hepatic insulin sensitivity and HGP by reducing the PTP1B content in the liver of obese mice, regardless of changes in body weight.
Collapse
Affiliation(s)
- Kellen Cristina da Cruz Rodrigues
- Exercise Cell Biology Lab, Faculty of Applied Sciences, State University of Campinas, 1300 Pedro Zaccaria Street, Limeira 13484-350, SP, Brazil; (K.C.d.C.R.); (R.M.P.); (G.F.P.)
| | - Rodrigo Martins Pereira
- Exercise Cell Biology Lab, Faculty of Applied Sciences, State University of Campinas, 1300 Pedro Zaccaria Street, Limeira 13484-350, SP, Brazil; (K.C.d.C.R.); (R.M.P.); (G.F.P.)
| | - Guilherme Francisco Peruca
- Exercise Cell Biology Lab, Faculty of Applied Sciences, State University of Campinas, 1300 Pedro Zaccaria Street, Limeira 13484-350, SP, Brazil; (K.C.d.C.R.); (R.M.P.); (G.F.P.)
| | - Lucas Wesley Torres Barbosa
- Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira 13484-350, SP, Brazil; (L.W.T.B.); (V.R.M.); (E.R.R.); (J.R.P.)
| | - Marcella Ramos Sant’Ana
- Laboratory of Nutritional Genomics, School of Applied Sciences, State University of Campinas, 1300 Pedro Zaccaria Street, Limeira 13484-350, SP, Brazil; (M.R.S.); (D.E.C.)
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira 13484-350, SP, Brazil; (L.W.T.B.); (V.R.M.); (E.R.R.); (J.R.P.)
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health, Faculty of Applied Sciences (FCA), State University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil; (A.P.M.); (F.M.S.)
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health, Faculty of Applied Sciences (FCA), State University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil; (A.P.M.); (F.M.S.)
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto 14040-907, SP, Brazil;
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics, School of Applied Sciences, State University of Campinas, 1300 Pedro Zaccaria Street, Limeira 13484-350, SP, Brazil; (M.R.S.); (D.E.C.)
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira 13484-350, SP, Brazil; (L.W.T.B.); (V.R.M.); (E.R.R.); (J.R.P.)
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira 13484-350, SP, Brazil; (L.W.T.B.); (V.R.M.); (E.R.R.); (J.R.P.)
| | - Leandro Pereira de Moura
- Exercise Cell Biology Lab, Faculty of Applied Sciences, State University of Campinas, 1300 Pedro Zaccaria Street, Limeira 13484-350, SP, Brazil; (K.C.d.C.R.); (R.M.P.); (G.F.P.)
| |
Collapse
|
11
|
Kwon I, Song W, Jang Y, Choi MD, Vinci DM, Lee Y. Elevation of hepatic autophagy and antioxidative capacity by endurance exercise is associated with suppression of apoptosis in mice. Ann Hepatol 2021; 19:69-78. [PMID: 31611063 DOI: 10.1016/j.aohep.2019.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Endurance exercise (EXE) has emerged as a potent inducer of autophagy essential in maintaining cellular homeostasis in various tissues; however, the functional significance and molecular mechanisms of EXE-induced autophagy in the liver remain unclear. Thus, the aim of this study is to examine the signaling nexus of hepatic autophagy pathways occurring during acute EXE and a potential crosstalk between autophagy and apoptosis. MATERIALS AND METHODS C57BL/6 male mice were randomly assigned to sedentary control group (CON, n=9) and endurance exercise (EXE, n=9). Mice assigned to EXE were gradually acclimated to treadmill running and ran for 60min per day for five consecutive days. RESULTS Our data showed that EXE promoted hepatic autophagy via activation of canonical autophagy signaling pathways via mediating microtubule-associated protein B-light chain 3 II (LC3-II), autophagy protein 7 (ATG7), phosphorylated adenosine mono phosphate-activated protein kinase (p-AMPK), CATHEPSIN L, lysosome-associated membrane protein 2 (LAMP2), and a reduction in p62. Interestingly, this autophagy promotion concurred with enhanced anabolic activation via AKT-mammalian target of rapamycin (mTOR)-p70S6K signaling cascade and enhanced antioxidant capacity such as copper zinc superoxide dismutase (CuZnSOD), glutathione peroxidase (GPX), and peroxiredoxin 3 (PRX3), known to be as antagonists of autophagy. Moreover, exercise-induced autophagy was inversely related to apoptosis in the liver. CONCLUSIONS Our findings indicate that improved autophagy and antioxidant capacity, and potentiated anabolic signaling may be a potent non-pharmacological therapeutic strategy against diverse liver diseases.
Collapse
Affiliation(s)
- Insu Kwon
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FLUSA
| | - Wankeun Song
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FLUSA
| | - Yongchul Jang
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FLUSA
| | - Myung D Choi
- Exercise Science, School of Health Sciences, Oakland University, Rochester, MIUSA
| | - Debra M Vinci
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FLUSA
| | - Youngil Lee
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FLUSA.
| |
Collapse
|
12
|
Reduced Oxidative Stress and Enhanced FGF21 Formation in Livers of Endurance-Exercised Rats with Diet-Induced NASH. Nutrients 2019; 11:nu11112709. [PMID: 31717358 PMCID: PMC6893460 DOI: 10.3390/nu11112709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023] Open
Abstract
Non-alcoholic fatty liver diseases (NAFLD) including the severe form with steatohepatitis (NASH) are highly prevalent ailments to which no approved pharmacological treatment exists. Dietary intervention aiming at 10% weight reduction is efficient but fails due to low compliance. Increase in physical activity is an alternative that improved NAFLD even in the absence of weight reduction. The underlying mechanisms are unclear and cannot be studied in humans. Here, a rat NAFLD model was developed that reproduces many facets of the diet-induced NAFLD in humans. The impact of endurance exercise was studied in this model. Male Wistar rats received control chow or a NASH-inducing diet rich in fat, cholesterol, and fructose. Both diet groups were subdivided into a sedentary and an endurance exercise group. Animals receiving the NASH-inducing diet gained more body weight, got glucose intolerant and developed a liver pathology with steatosis, hepatocyte hypertrophy, inflammation and fibrosis typical of NAFLD or NASH. Contrary to expectations, endurance exercise did not improve the NASH activity score and even enhanced hepatic inflammation. However, endurance exercise attenuated the hepatic cholesterol overload and the ensuing severe oxidative stress. In addition, exercise improved glucose tolerance possibly in part by induction of hepatic FGF21 production.
Collapse
|
13
|
Ou R, Liu J, Lv M, Wang J, Wang J, Zhu L, Zhao L, Xu Y. Neutrophil depletion improves diet-induced non-alcoholic fatty liver disease in mice. Endocrine 2017; 57:72-82. [PMID: 28508193 DOI: 10.1007/s12020-017-1323-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE Non-alcoholic fatty liver disease is highly associated with morbidity and mortality in population. Although studies have already demonstrated that the immune response plays a pivotal role in the development of non-alcoholic fatty liver disease, the comprehensive regulation is unclear. Therefore, present study was carried out to investigate the non-alcoholic fatty liver disease development under neutrophil depletion. METHODS To achieve the aim of the study, C57BL/6 J mice were fed with high fat diet for 6 weeks before treated with neutrophil deplete antibody 1A8 or isotype control (200 μg/ mouse every week) for another 4 weeks. RESULTS Treated with 1A8 antibody, obese mice exhibited better whole body metabolic parameters, including reduction of body weight gain and fasting blood glucose levels. Neutrophil depletion also effectively reduced hepatic structural disorders, dysfunction and lipid accumulation. Lipid β-oxidative markers, phosphorylated-AMP-activated protein kinase α and phosphorylated-acetyl-CoA carboxylase levels were increased in 1A8 antibody-treated obese mouse group. The mitochondrial number and function were also reversed after 1A8 antibody treatment, including increased mitochondrial number, reduced lipid oxidative damage and enhanced mitochondrial activity. Furthermore, the expression of inflammatory cytokines, tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1 were obviously reduced after neutrophil depletion, accompanied with decreased F4/80 mRNA level and macrophage percentage in liver. The decreased NF-κB signaling activity was also involved in the beneficial effect of neutrophil depletion. CONCLUSION Taken together, neutrophil depletion could attenuate metabolic syndromes and hepatic dysfunction.
Collapse
Affiliation(s)
- Rongying Ou
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia Liu
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mingfen Lv
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingying Wang
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinmeng Wang
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Zhu
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Zhao
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yunsheng Xu
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
14
|
Pillon Barcelos R, Freire Royes LF, Gonzalez-Gallego J, Bresciani G. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise. Free Radic Res 2017; 51:222-236. [PMID: 28166653 DOI: 10.1080/10715762.2017.1291942] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.
Collapse
Affiliation(s)
- Rômulo Pillon Barcelos
- a Instituto de Ciências Biológicas , Universidade de Passo Fundo , Passo Fundo , Brazil.,b Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTOx) , Universidade Federal de Santa Maria (UFSM) , Santa Maria , Brazil
| | - Luiz Fernando Freire Royes
- b Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTOx) , Universidade Federal de Santa Maria (UFSM) , Santa Maria , Brazil.,c Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos , Universidade Federal de Santa Maria (UFSM) , Santa Maria , Brazil
| | - Javier Gonzalez-Gallego
- d Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) , University of León , León , Spain
| | - Guilherme Bresciani
- e Grupo de Investigación en Rendimiento Físico y Salud (IRyS), Escuela de Educación Física , Pontificia Universidad Católica de Valparaiso , Valparaiso , Chile
| |
Collapse
|
15
|
Batatinha HAP, Lima EA, Teixeira AAS, Souza CO, Biondo LA, Silveira LS, Lira FS, Rosa Neto JC. Association Between Aerobic Exercise and Rosiglitazone Avoided the NAFLD and Liver Inflammation Exacerbated in PPAR-α Knockout Mice. J Cell Physiol 2016; 232:1008-1019. [PMID: 27216550 DOI: 10.1002/jcp.25440] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/20/2016] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the main liver diseases today, and may progress to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Some studies have shown the beneficial effects of aerobic exercise on reversing NAFLD. To verify whether chronic aerobic exercise improves the insulin resistance, liver inflammation, and steatohepatitis caused by a high fat diet (HF) and whether PPARα is involved in these actions. C57BL6 wild type (WT) and PPAR-α knockout (KO) mice were fed with a standard diet (SD) or HF during 12 weeks; the HF mice were trained on a treadmill during the last 8 weeks. Serum glucose and insulin tolerances, serum levels of aspartate aminotransferase, hepatic content of triacylglycerol, cytokines, gene expression, and protein expression were evaluated in all animals. Chronic exposure to HF diet increased triacylglycerol accumulation in the liver, leading to NAFLD, increased aminotransferase in the serum, increased peripheral insulin resistance, and higher adiposity index. Exercise reduced all these parameters in both animal genotypes. The liver lipid accumulation was not associated with inflammation; trained KO mice, however, presented a huge inflammatory response that was probably caused by a decrease in PPAR-γ expression. We conclude that exercise improved the damage caused by a HF independently of PPARα, apparently by a peripheral fatty acid oxidation in the skeletal muscle. We also found that the absence of PPARα together with exercise leads to a decrease in PPAR-γ and a huge inflammatory response. J. Cell. Physiol. 232: 1008-1019, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Helena A P Batatinha
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Edson A Lima
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Alexandre A S Teixeira
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Camila O Souza
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Luana A Biondo
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Loreana S Silveira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Univer. Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Fabio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Univer. Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| | - José C Rosa Neto
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Röhling M, Herder C, Stemper T, Müssig K. Influence of Acute and Chronic Exercise on Glucose Uptake. J Diabetes Res 2016; 2016:2868652. [PMID: 27069930 PMCID: PMC4812462 DOI: 10.1155/2016/2868652] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/31/2016] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance plays a key role in the development of type 2 diabetes. It arises from a combination of genetic predisposition and environmental and lifestyle factors including lack of physical exercise and poor nutrition habits. The increased risk of type 2 diabetes is molecularly based on defects in insulin signaling, insulin secretion, and inflammation. The present review aims to give an overview on the molecular mechanisms underlying the uptake of glucose and related signaling pathways after acute and chronic exercise. Physical exercise, as crucial part in the prevention and treatment of diabetes, has marked acute and chronic effects on glucose disposal and related inflammatory signaling pathways. Exercise can stimulate molecular signaling pathways leading to glucose transport into the cell. Furthermore, physical exercise has the potential to modulate inflammatory processes by affecting specific inflammatory signaling pathways which can interfere with signaling pathways of the glucose uptake. The intensity of physical training appears to be the primary determinant of the degree of metabolic improvement modulating the molecular signaling pathways in a dose-response pattern, whereas training modality seems to have a secondary role.
Collapse
Affiliation(s)
- Martin Röhling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich, 85764 Neuherberg, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich, 85764 Neuherberg, Germany
| | - Theodor Stemper
- Department Fitness and Health, University Wuppertal, 42119 Wuppertal, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich, 85764 Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Lee JK, Luchian T, Park Y. Effect of Regular Exercise on Inflammation Induced by Drug-resistant Staphylococcus aureus 3089 in ICR mice. Sci Rep 2015; 5:16364. [PMID: 26542343 PMCID: PMC4635399 DOI: 10.1038/srep16364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/06/2015] [Indexed: 12/18/2022] Open
Abstract
Obesity is often associated with irregular dietary habits and reduced physical activity. Regular exercise induces a metabolic response that includes increased expression of various cytokines, signaling proteins and hormones, and reduced adipocyte size. In this study, mice performed a swimming exercise for 10 min/day, 5 days/week for 3 weeks. We then investigated the effect of this exercise regimen on inflammation induced by infection with drug-resistant Staphylococcus aureus strain 3089 (DRSA). In humans, DRSA causes dermatitis and pneumonitis. Similarly, DRSA induced inflammatory pneumonitis in both no-exercise (No-EX) and swim-trained (SW-EX) ICR mice. Regular exercise increased levels of the pro-inflammatory cytokines TNF-α and IL-1β and nitric oxide in both serum and whole lung tissue in SW-EX, as compared to No-EX control mice. Moreover, levels of the antimicrobial peptide cathelicidin were significantly increased in visceral adipose tissue and whole lung tissue in the SW-EX group, and this was accompanied by a reduction in the size of visceral adipocytes. In addition, levels of the inflammation marker peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) were not increased in the lung tissue of SW-EX mice. These findings suggest that in these model mice, regular exercise strengthens immune system responses, potentially preventing or mitigating infectious disease.
Collapse
Affiliation(s)
- Jong-Kook Lee
- Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, Korea
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Yoonkyung Park
- Department of Biotechnology &BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
18
|
Passos E, Ascensão A, Martins MJ, Magalhães J. Endoplasmic Reticulum Stress Response in Non-alcoholic Steatohepatitis: The Possible Role of Physical Exercise. Metabolism 2015; 64:780-92. [PMID: 25838034 DOI: 10.1016/j.metabol.2015.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 02/06/2023]
Abstract
Sedentary lifestyle coupled with excessive consumption of high caloric food has been related to the epidemic increase of non-alcoholic fatty liver disease, which can progress from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and, eventually, may culminate in hepatocellular carcinoma. Although the precise mechanisms underlying the progression of NASH are not completely understood, endoplasmic reticulum (ER) dysfunction seems to play a key role in the process. Hepatic ER stress has been associated to hepatic steatosis, insulin resistance, inflammation, oxidative stress and hepatocyte death, contributing to liver dysfunction. Physical exercise seems to be the most effective preventive and therapeutic non-pharmacological strategy to mitigate several features related to NASH, possibly targeting most of the referred mechanisms associated with the pathophysiology of ER-related NASH. Nevertheless, little is known about the impact of physical exercise on NASH-related ER stress. In this review, we will discuss the ER stress associated to NASH conditions and highlight the possible benefits of physical exercise in the attenuation and/or reversion of NASH-related ER stress.
Collapse
Affiliation(s)
- Emanuel Passos
- Department of Biochemistry, Faculty of Medicine and Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal; Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - António Ascensão
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - Maria João Martins
- Department of Biochemistry, Faculty of Medicine and Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - José Magalhães
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal.
| |
Collapse
|