1
|
Speretta GF, Giuriato G, Dorelli G, Barbi C, Pedrinolla A, Venturelli M. Cold pressor-induced sympathetic activation blunts the femoral but not carotid artery vascular responsiveness. Physiol Rep 2025; 13:e70281. [PMID: 40110909 PMCID: PMC11923985 DOI: 10.14814/phy2.70281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/11/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
Vascular responsiveness due to passive leg movement (PLM) on the brain remains unknown. This study aimed to evaluate the effects of cold-induced sympathetic activation (CPT) on femoral and ipsilateral and contralateral carotid arteries' vascular responsiveness evoked by PLM. Thirteen participants (seven males and six females; age: 27.0 ± 2.3 years) undertook a randomized session in which PLM was performed on the right leg at rest and during CPT. Right femoral (fBF) and right (ipsilateral) and left (contralateral) carotid (cBF) blood flows were measured by ultrasounds, and heart hemodynamics were assessed via photoplethysmography and impedance cardiograph. Systolic arterial pressure (SAP) time series were used to infer sympathetic modulation to the vessels. Femoral (fVC) and carotid (cVC) vascular conductance (BF/MAP) were calculated. CPT evoked changes in PLM on cBF, fBF, and fVC (interaction and time effect). cBF peak and cBF and cVC area under the curve were higher in the contralateral carotid in the two interventions. Low-frequency power of SAP was higher in PLM-CPT than in PLM; all p < 0.05. These results suggest that the CPT-induced increases in sympathetic modulation attenuate the vascular responsiveness in the femoral, but not the carotid, arteries. Also, the contralateral carotid increased blood flow during PLM, regardless of the CPT.
Collapse
Affiliation(s)
- Guilherme F Speretta
- Department of Physiological Sciences, Biological Sciences Center, Federal University of Santa Catarina, Florianopólis, Brazil
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gaia Giuriato
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluigi Dorelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Barbi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Pedrinolla
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Damasceno de Lima R, Fudoli Lins Vieira R, Rosetto Muñoz V, Chaix A, Azevedo Macedo AP, Calheiros Antunes G, Felonato M, Rosseto Braga R, Castelo Branco Ramos Nakandakari S, Calais Gaspar R, Ramos da Silva AS, Esper Cintra D, Pereira de Moura L, Mekary RA, Rochete Ropelle E, Pauli JR. Time-restricted feeding combined with resistance exercise prevents obesity and improves lipid metabolism in the liver of mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2023; 325:E513-E528. [PMID: 37755454 PMCID: PMC10864020 DOI: 10.1152/ajpendo.00129.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a condition characterized by the accumulation of fat in the liver, is estimated to be the most common liver disease worldwide. Obesity is a major risk factor and contributor, and, accordingly, weight loss can improve NAFLD. Previous studies in preclinical models of diet-induced obesity and fatty liver disease have shown the independent benefits of resistance exercise training (RT) and time-restricted feeding (TRF) in preventing weight gain and hepatic build-up of fat. Here, we tested the combined effect of TRF and RT on obesity and NAFLD in mice fed a high-fat diet. Our results showed that both TRF-8-h food access in the active phase-and RT-consisting of three weekly sessions of ladder climbing-attenuated body weight gain, improved glycemic homeostasis, and decreased the accumulation of lipids in the liver. TRF combined with RT improved the respiratory exchange rate, energy expenditure, and mitochondrial respiration in the liver. Furthermore, gene expression analysis in the liver revealed lower mRNA expression of lipogenesis and inflammation genes along with increased mRNA of fatty acid oxidation genes in the TRF + RT group. Importantly, combined TRF + RT was shown to be more efficient in preventing obesity and metabolic disorders. In conclusion, TRF and RT exert complementary actions compared with isolated interventions, with significant effects on metabolic disorders and NAFLD in mice.NEW & NOTEWORTHY Whether time-restricted feeding (TRF) combined with resistance exercise training (RT) may be more efficient compared with these interventions alone is still unclear. We show that when combined with RT, TRF provided additional benefits, being more effective in increasing energy expenditure, preventing weight gain, and regulating glycemic homeostasis than each intervention alone. Thus, our results demonstrate that TRF and RT have complementary actions on some synergistic pathways that prevented obesity and hepatic liver accumulation.
Collapse
Affiliation(s)
- Robson Damasceno de Lima
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Ana Paula Azevedo Macedo
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Gabriel Calheiros Antunes
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Maíra Felonato
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Renata Rosseto Braga
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | | | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, and Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LabGeN), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Rania A Mekary
- Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, Massachusetts, United States
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| |
Collapse
|
3
|
da Costa Fernandes CJ, da Cruz Rodrigues KC, de Melo DG, de Campos TDP, Dos Santos Canciglieri R, Simabuco FM, da Silva ASR, Cintra DE, Ropelle ER, Pauli JR, de Moura LP. Short-term strength exercise reduces the macrophage M1/M2 ratio in white adipose tissue of obese animals. Life Sci 2023; 329:121916. [PMID: 37419412 DOI: 10.1016/j.lfs.2023.121916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Obesity can exacerbate the systemic inflammatory process, leading to increased infiltration of monocytes in white adipose tissue (WAT) and polarization of these cells into pro-inflammatory M1 macrophages, while reducing the population of anti-inflammatory M2 macrophages. Aerobic exercise has been shown to be effective in reducing the pro-inflammatory profile. However, the impact of strength training and the duration of training on macrophage polarization in the WAT of obese individuals have not been widely studied. Therefore, our aim was to investigate the effects of resistance exercise on macrophage infiltration and polarization in the epididymal and subcutaneous adipose tissue of obese mice. We compared the following groups: Control (CT), Obese (OB), Obese 7-day strength training (STO7d), and Obese 15-day strength training (STO15d). Macrophage populations were evaluated by flow cytometry: total macrophages (F4/80+), M1 (CD11c), and M2 (CD206) macrophages. Our results demonstrated that both training protocols improved peripheral insulin sensitivity by increasing AKT phosphorylation (Ser473). Specifically, the 7-day training regimen reduced total macrophage infiltration and M2 macrophage levels without altering M1 levels. In the STO15d group, significant differences were observed in total macrophage levels, M1 macrophages, and the M1/M2 ratio compared to the OB group. In the epididymal tissue, a reduction in the M1/M2 ratio was observed in the STO7d group. Overall, our data demonstrate that 15 days of strength exercise can reduce the M1/M2 ratio of macrophages in white adipose tissue.
Collapse
Affiliation(s)
- Célio Junior da Costa Fernandes
- Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Kellen Cristina da Cruz Rodrigues
- Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Diego Gomes de Melo
- Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Thais Dantis Pereira de Campos
- Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Raphael Dos Santos Canciglieri
- Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Department of Biochemistry, Federal University of São Paulo (UNIFESP), Brazil
| | | | - Dennys Esper Cintra
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Eduardo Rochete Ropelle
- Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - José Rodrigo Pauli
- Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Leandro Pereira de Moura
- Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil.
| |
Collapse
|
4
|
Meng J, Geng Q, Jin S, Teng X, Xiao L, Wu Y, Tian D. Exercise protects vascular function by countering senescent cells in older adults. Front Physiol 2023; 14:1138162. [PMID: 37089434 PMCID: PMC10118010 DOI: 10.3389/fphys.2023.1138162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Blood vessels are key conduits for the transport of blood and circulating factors. Abnormalities in blood vessels promote cardiovascular disease (CVD), which has become the most common disease as human lifespans extend. Aging itself is not pathogenic; however, the decline of physiological and biological function owing to aging has been linked to CVD. Although aging is a complex phenomenon that has not been comprehensively investigated, there is accumulating evidence that cellular senescence aggravates various pathological changes associated with aging. Emerging evidence shows that approaches that suppress or eliminate cellular senescence preserve vascular function in aging-related CVD. However, most pharmacological therapies for treating age-related CVD are inefficient. Therefore, effective approaches to treat CVD are urgently required. The benefits of exercise for the cardiovascular system have been well documented in basic research and clinical studies; however, the mechanisms and optimal frequency of exercise for promoting cardiovascular health remain unknown. Accordingly, in this review, we have discussed the changes in senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) that occur in the progress of CVD and the roles of physical activity in CVD prevention and treatment.
Collapse
Affiliation(s)
- Jinqi Meng
- Department of Sports, Hebei Medical University, Shijiazhuang, China
| | - Qi Geng
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Nogueira ME, Sousa Neto IV, Motta-Santos D, Cantuária APDC, Lima SMDF, Rezende TMB, Santana HADP, Petriz BA, Marqueti RDC, Almeida JA. High-protein diet associated with resistance training reduces cardiac TNF-α levels and up-regulates MMP-2 activity in rats. Arch Physiol Biochem 2022; 128:1630-1636. [PMID: 32686511 DOI: 10.1080/13813455.2020.1787456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The consumption of high-protein diets (HPD) is associated with resistance training (RT) due to effects on metabolism. However, little is known about these effects on cardiac tissue. This study aimed to investigate effects of HPD and RT on cardiac biomarkers. 18 rats were divided into normo-protein (NPD), and HPD groups: NPD-Control, NPD-RT, HPD-Control, and HPD-RT. Interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-a), nitric oxide (NO), activity of metalloproteinase-2 (MMP-2), and vascular factor (VEGF) were analysed. RT was effective in regulating body weight, increasing strength, and reducing food consumption (p < .05). HPD induces higher levels of interleukin 6 (p = .0169), and lowers NO (p < .0001). When associated with RT, the HPD decreases levels of tumour necrosis factor alpha, while enhances NO, and MMP activity (p < .05). The association of RT with HDP decreases inflammatory parameters and indicates an enhancement in the molecular parameters of cardiac tissue.
Collapse
Affiliation(s)
- Murilo Esteves Nogueira
- Graduate Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Ivo Vieira Sousa Neto
- Graduate Program of Sciences and Technology of Health, University of Brasilia, Distrito Federal, Brazil
| | - Daisy Motta-Santos
- Sports Science Postgraduate Program, Sports Department, EEFFTO, UFMG, Belo Horizonte, Brazil
| | - Ana Paula de Castro Cantuária
- Graduate Program in Genomics Science and Biotechnology, Catholic University of Brasilia, Brasília, Brazil
- Post graduation of Health Sciences, University of Brasilia, Distrito Federal, Brazil
| | - Stella Maris de Freitas Lima
- Graduate Program in Genomics Science and Biotechnology, Catholic University of Brasilia, Brasília, Brazil
- Dental course, Catholic University of Brasilia, Brasília, Brazil
| | - Taia Maria Berto Rezende
- Graduate Program in Genomics Science and Biotechnology, Catholic University of Brasilia, Brasília, Brazil
- Post graduation of Health Sciences, University of Brasilia, Distrito Federal, Brazil
- Dental course, Catholic University of Brasilia, Brasília, Brazil
| | - Hugo Alexandre de Paula Santana
- Research in Exercise and Nutrition in Health and Sports Performance - PENSARE, Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Bernardo Assis Petriz
- Graduate Program in Genomics Science and Biotechnology, Catholic University of Brasilia, Brasília, Brazil
- Laboratory of Molecular Exercise Physiology, University Center - UDF, Brasília, Brazil
- Graduate Program in Health Promotion, University of Franca - UNIFRAN, Franca, Brazil
| | - Rita de Cássia Marqueti
- Graduate Program of Sciences and Technology of Health, University of Brasilia, Distrito Federal, Brazil
- Graduate Program of Rehabilitation Sciences, University of Brasilia, Distrito Federal, Brazil
| | - Jeeser Alves Almeida
- Graduate Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
- Research in Exercise and Nutrition in Health and Sports Performance - PENSARE, Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| |
Collapse
|
6
|
Xue B, Yu Y, Beltz TG, Guo F, Wei SG, Johnson AK. Voluntary Exercise Eliminates Maternal Gestational Hypertension-Induced Hypertensive Response Sensitization to Postweaning High-Fat Diet in Male Adult Offspring. Hypertension 2022; 79:2016-2027. [PMID: 35730432 PMCID: PMC9378552 DOI: 10.1161/hypertensionaha.122.19608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Exercise has profound effects on cardiovascular function and metabolism in both physiological and pathophysiological states. The present study tested whether voluntary exercise would protect male offspring against maternal gestational hypertension-induced hypertensive response sensitization elicited by post-weaning high-fat diet (HFD). METHODS AND RESULTS On low-lard-fat diet, offspring of both normotensive and hypertensive dams had comparable resting blood pressure, but HFD feeding elicited an enhanced increase in blood pressure (ie, hypertensive response sensitization) in sedentary offspring of hypertensive dams when compared with sedentary offspring of normotensive dams. The HFD fed sedentary offspring of hypertensive dams displayed greater sympathetic activity, enhanced pressor responses to centrally administered ANG II (angiotensin II) or leptin, and greater mRNA expression of proinflammatory cytokines, leptin, and a marker of blood-brain barrier leakage in the hypothalamic paraventricular nucleus. The enhanced blood pressure and central sympathetic activity in HFD-fed sedentary offspring of hypertensive dams were significantly reduced by exercise but fell only to levels comparable to HFD-fed exercising offspring of normotensive dams. HFD-induced increases in plasma IL-6 (interleukin-6) and sympathetic activity and greater pressor responses to central TNF (tumor necrosis factor)-α in offspring from both normotensive and hypertensive dams were also maintained after exercise. Nevertheless, exercise had remarkably beneficial effects on metabolic and autonomic function, brain reactivity to ANG II and leptin and gene expression of brain prohypertensive factors in all offspring. CONCLUSIONS Voluntary exercise plays a beneficial role in preventing maternal hypertension-induced hypertensive response sensitization, and that this is associated with attenuation of enhanced brain reactivity and centrally driven sympathetic activity.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Yang Yu
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Terry G. Beltz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Fang Guo
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Shun-Guang Wei
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
- François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
- François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
7
|
Marcantonio CC, Lopes MES, Mofatto LS, Salmon CR, Deschner J, Nociti-Junior FH, Cirelli JA, Nogueira AVB. Obesity affects the proteome profile of periodontal ligament submitted to mechanical forces induced by orthodontic tooth movement in rats. J Proteomics 2022; 263:104616. [PMID: 35595054 DOI: 10.1016/j.jprot.2022.104616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022]
Abstract
The prevalence of obesity has increased significantly worldwide. Therefore, this study aimed to evaluate the influence of obesity on the proteomic profile of periodontal ligament (PDL) tissues of rat first maxillary molars (1 M) submitted to orthodontic tooth movement (OTM). Ten Holtzman rats were distributed into two groups (n = 5): the M group (OTM), and the OM group (obesity induction plus OTM). Obesity was induced by a high-fat diet for the entire experimental periods After that period, the animals were euthanized and the hemimaxillae removed and processed for laser capture microdissection of the PDL tissues of the 1 M. Peptide extracts were obtained and analyzed by LC-MS/MS. Data are available via ProteomeXchange with identifier PXD033647. Out of the 109 proteins with differential abundance, 49 were identified in the OM group, including Vinculin, Cathepsin D, and Osteopontin, which were selected for in situ localization by immunohistochemistry analysis (IHC). Overall, Gene Ontology (GO) analysis indicated that enriched proteins were related to the GO component cellular category. IHC validated the trends for selected proteins. Our study highlights the differences in the PDL proteome profiling of healthy and obese subjects undergoing OTM. These findings may provide valuable information needed to better understand the mechanisms involved in tissue remodeling in obese patients submitted to orthodontic treatment. SIGNIFICANCE: The prevalence of obesity is increasing worldwide. Emerging findings in the field of dentistry suggest that obesity influences the tissues around the teeth, especially those in the periodontal ligament. Therefore, evaluation of the effect of obesity on periodontal tissues remodeling during orthodontic tooth movement is a relevant research topic. To our knowledge, this is the first study to evaluate proteomic changes in periodontal ligament tissue in response to the association between orthodontic tooth movement and obesity. Our study identified a novel protein profile associated with obesity by using laser microdissection and proteomic analysis, providing new information to increase understanding of the mechanisms involved in obese patients undergoing orthodontic treatment which can lead to a more personalized orthodontic treatment approach.
Collapse
Affiliation(s)
- Camila Chierici Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil.
| | - Maria Eduarda Scordamaia Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil.
| | - Luciana Souto Mofatto
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Cristiane Ribeiro Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Francisco Humberto Nociti-Junior
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil; São Leopoldo Mandic Research Center, Campinas, São Paulo, Brazil.
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil.
| | - Andressa Vilas Boas Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil; Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
8
|
Ferreira ARO, Ribeiro MVG, Peres MNC, Piovan S, Gonçalves GD, Saavedra LPJ, Martins JNDL, Junior MDF, Cavalcante KVN, Lopes GKG, Carneiro M, Almeida DL, Gomes RM, Comar JF, Armitage JA, Mathias PCDF, Palma-Rigo K. Protein Restriction in the Peri-Pubertal Period Induces Autonomic Dysfunction and Cardiac and Vascular Structural Changes in Adult Rats. Front Physiol 2022; 13:840179. [PMID: 35574445 PMCID: PMC9095958 DOI: 10.3389/fphys.2022.840179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
Perturbations to nutrition during critical periods are associated with changes in embryonic, fetal or postnatal developmental patterns that may render the offspring more likely to develop cardiovascular disease in later life. The aim of this study was to evaluate whether autonomic nervous system imbalance underpins in the long-term hypertension induced by dietary protein restriction during peri-pubertal period. Male Wistar rats were assigned to groups fed with a low protein (4% protein, LP) or control diet (20.5% protein; NP) during peri-puberty, from post-natal day (PN) 30 until PN60, and then all were returned to a normal protein diet until evaluation of cardiovascular and autonomic function at PN120. LP rats showed long-term increased mean arterial pressure (p = 0.002) and sympathetic arousal; increased power of the low frequency (LF) band of the arterial pressure spectral (p = 0.080) compared with NP animals. The depressor response to the ganglion blocker hexamethonium was increased in LP compared with control animals (p = 0.006). Pulse interval variability showed an increase in the LF band and LF/HF ratio (p = 0.062 and p = 0.048) in LP animals. The cardiac response to atenolol and/or methylatropine and the baroreflex sensitivity were similar between groups. LP animals showed ventricular hypertrophy (p = 0.044) and increased interstitial fibrosis (p = 0.028) compared with controls. Reduced protein carbonyls (PC) (p = 0.030) and catalase activity (p = 0.001) were observed in hearts from LP animals compared with control. In the brainstem, the levels of PC (p = 0.002) and the activity of superoxide dismutase and catalase (p = 0.044 and p = 0.012) were reduced in LP animals, while the levels of GSH and total glutathione were higher (p = 0.039 and p = 0.038) compared with NP animals. Protein restriction during peri-pubertal period leads to hypertension later in life accompanied by sustained sympathetic arousal, which may be associated with a disorganization of brain and cardiac redox state and structural cardiac alteration.
Collapse
Affiliation(s)
- Anna Rebeka Oliveira Ferreira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Maria Natalia Chimirri Peres
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Silvano Piovan
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Géssica Dutra Gonçalves
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Juliana Nunes de Lima Martins
- Laboratory of Liver Metabolism and Radioisotopes, Department of Biochemistry, State University of Maringa, Maringa, Brazil
| | - Marcos Divino Ferreira Junior
- Laboratory of Endocrine Physiology and Metabolism, Department of Physiological Sciences, Federal University of Goias, Goiania, Brazil
| | - Keilah Valeria Naves Cavalcante
- Laboratory of Endocrine Physiology and Metabolism, Department of Physiological Sciences, Federal University of Goias, Goiania, Brazil
| | - Gabriel kian Guimarães Lopes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Mariane Carneiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Douglas Lopes Almeida
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Rodrigo Mello Gomes
- Laboratory of Endocrine Physiology and Metabolism, Department of Physiological Sciences, Federal University of Goias, Goiania, Brazil
| | - Jurandir Fernando Comar
- Laboratory of Liver Metabolism and Radioisotopes, Department of Biochemistry, State University of Maringa, Maringa, Brazil
| | | | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
- Adventist College of Parana, Ivatuba, Brazil
- *Correspondence: Kesia Palma-Rigo,
| |
Collapse
|
9
|
Strength training alters the tissue fatty acids profile and slightly improves the thermogenic pathway in the adipose tissue of obese mice. Sci Rep 2022; 12:6913. [PMID: 35484170 PMCID: PMC9050661 DOI: 10.1038/s41598-022-10688-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
Obesity is a disease characterized by the exacerbated increase of adipose tissue. A possible way to decrease the harmful effects of excessive adipose tissue is to increase the thermogenesis process, to the greater energy expenditure generated by the increase in heat in the body. In adipose tissue, the thermogenesis process is the result of an increase in mitochondrial work, having as substrate H+ ions, and which is related to the increased activity of UCP1. Evidence shows that stress is responsible for increasing the greater induction of UCP1 expression via β-adrenergic receptors. It is known that physical exercise is an important implement for sympathetic stimulation promoting communication between norepinephrine/epinephrine with membrane receptors. Thus, the present study investigates the influence of short-term strength training (STST) on fatty acid composition, lipolysis, lipogenesis, and browning processes in the subcutaneous adipose tissue (sWAT) of obese mice. For this, Swiss mice were divided into three groups: lean control, obesity sedentary, and obese strength training (OBexT). Obese animals were fed a high-fat diet for 14 weeks. Trained obese animals were submitted to 7 days of strength exercise. It was demonstrated that STST sessions were able to reduce fasting glycemia. In the sWAT, the STST was able to decrease the levels of the long-chain fatty acids profile, saturated fatty acid, and palmitic fatty acid (C16:0). Moreover, it was showed that STST did not increase protein levels responsible for lipolysis, the ATGL, ABHD5, pPLIN1, and pHSL. On the other hand, the exercise protocol decreased the expression of the lipogenic enzyme SCD1. Finally, our study demonstrated that the STST increased browning process-related genes such as PGC-1α, PRDM16, and UCP1 in the sWAT. Interestingly, all these biomolecular mechanisms have been observed independently of changes in body weight. Therefore, it is concluded that short-term strength exercise can be an effective strategy to initiate morphological changes in sWAT.
Collapse
|
10
|
Lopes MES, Marcantonio CC, de Molon RS, Cerri PS, Salmon CR, Mofatto LS, Nociti Junior FH, Deschner J, Cirelli JA, Nogueira AVB. Obesity influences the proteome of periodontal ligament tissues following periodontitis induction in rats. J Periodontal Res 2022; 57:545-557. [PMID: 35246839 DOI: 10.1111/jre.12983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Many studies have been conducted to better understand the molecular mechanism involved with periodontitis progression. There has been growing interest in the potential impact of obesity on periodontitis onset and progression, but the mechanisms involved remain to be elucidated. The present study was designed to determine the impact of obesity on experimentally induced periodontitis in rats and identify novel pathways involved. METHODS Sixteen Holtzman rats were distributed into two groups (n = 8): ligature-induced periodontitis (P) and obesity plus ligature-induced periodontitis (OP). Obesity was induced by a high-fat diet for 70 days, whereas periodontitis was induced for 20 days, with a cotton thread placed around the upper first molars bilaterally. Alveolar bone loss was measured by microtomographic analysis and histologically by histometry on the hemimaxillae. The protein composition of the periodontal ligament was evaluated by proteomic analysis. RESULTS Data analysis (body weight, adipose tissue weight, and blood test) confirmed obesity induction, whereas bone loss was confirmed by micro-CT and histologic analyses. Proteome analysis from the periodontal ligament tissues (PDL) identified 819 proteins, 53 exclusive to the P group, 28 exclusive to the OP group, and 738 commonly expressed. Validation was performed by immunohistochemistry for selected proteins (spondin1, vinculin, and TRAP). CONCLUSION Histologically, it was found that obesity did not significantly affect bone loss resulting from periodontitis. However, the present study's findings indicated that obesity affects the proteome of PDL submitted to experimental periodontitis, allowing for identifying potential targets for personalized approaches.
Collapse
Affiliation(s)
- Maria Eduarda Scordamaia Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Camila Chierici Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Rafael Scaf de Molon
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Paulo Sérgio Cerri
- Department of Morphology, School of Dentistry at Araraquara, São Paulo State University, Araraquara, Brazil
| | - Cristiane Ribeiro Salmon
- Division of Periodontics, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Luciana Souto Mofatto
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Francisco Humberto Nociti Junior
- Division of Periodontics, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil.,São Leopoldo Mandic Research Center, Campinas, Brazil
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Andressa Vilas Boas Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil.,Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
11
|
AÇIKEL ELMAS M, BİNGÖL ÖZAKPINAR Ö, KOLGAZİ M, ŞENER G, ERCAN F. Morphological and Biochemical Investigation of the Healing Effects of Exercise on High Fat Diet Induced Kidney and Bladder Damage. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.1027516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective: The aim of this study was to assess the preventive effects of swimming exercise on kidney and bladder damage caused by a high-fat diet (HFD) using morphological and biochemical measures.
Methods: Sprague Dawley rats were fed either standard chow (CONT, 6% fat) or HFD (45% fat) for 18 weeks, these rats were divided into two subgroups at the last 6 weeks of the experiment. The exercise groups (CONT+EXC, HFD+EXC) were trained daily swimming sessions (1 h per day for 5 days/week) during the last 6 weeks. Kidney and bladder samples were prepared for light and electron microscopic examination at the end of experiment. Malondialdehyde, glutathione, interleukin-6, and tumor necrosis factor-α were measured by biochemically.Results: Regular morphology of renal cortex and urinary bladder mucosa were observed in the CONT and CONT+EXC groups. Degenerated renal corpuscles and proximal tubules in kidney and degenerated urothelium with leaky tight junctions and increase of mast cells in bladder mucosa were observed in the HFD group. Ameliorated renal cortex and bladder mucosa were observed in the HFD+EXC group. Moreover, malondialdehyde, glutathione, interleukin-6 and tumor necrosis factor- α levels were compatible with histological findings.
Conclusion: HFD induced kidney and bladder damage may have linked to increased oxidative damage. It was observed that histological damage and altered oxidative stress parameters were reversed with swimming exercise, and it is thought that moderate swimming exercise may have a role in the regulation of oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Göksel ŞENER
- FENERBAHÇE ÜNİVERSİTESİ, SAĞLIK HİZMETLERİ MESLEK YÜKSEKOKULU
| | | |
Collapse
|
12
|
Nagelkirk PR, Soave K, Altherr C, Del Pozzi A. Regular Resistance Training Enhances Fibrinolytic Potential but Does Not Affect Coagulation. Med Sci Sports Exerc 2021; 53:2318-2323. [PMID: 34115732 DOI: 10.1249/mss.0000000000002724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to identify effects of an 8-wk, whole-body RT program on coagulation and fibrinolysis. METHODS Sixteen healthy women and men (23 ± 5 yr) completed an RT program three times per week for 8 wk. Exercises included 2-3 sets of 8-12 repetitions performed at approximately 60%-80% of a one repetition maximum. Strength, body composition, and body circumferences were assessed before and after training. Plasma samples were obtained before and after training, and analyzed for active tissue plasminogen activator (tPA activity), total tissue plasminogen activator (tPA antigen), active plasminogen activator inhibitor-1 (PAI-1 activity), total plasminogen activator inhibitor-1 (PAI-1 antigen), fibrinogen, and coagulation factors VII (FVII) and VIII (FVIII). RESULTS Significant increases in lean mass, arm and thigh circumferences, maximal chest press (PRE: 57.8 ± 37.5 kg, POST: 73.3 ± 43.2 kg), and leg press (PRE: 189.5 ± 96.0 kg, POST: 256.7 ± 97.9 kg) were observed (P < 0.05 for all). PAI-1 activity (PRE: 20.3 ± 32.5 IU·mL-1, POST 9.5 ± 20.9 IU·mL-1) and PAI-1 antigen decreased (PRE: 10.2 ± 9.0 ng·dL-1, POST: 7.2 ± 5.7 ng·dL-1; both, P < 0.05). No change in tPA activity or tPA antigen occurred. Fibrinogen, FVII, and FVIII did not change after training. CONCLUSIONS Inhibition of fibrinolysis was decreased after training, and coagulation was unaffected. These results suggest that regular RT may beneficially influence the risk of a thrombotic event. More research is warranted to understand the mechanisms through which RT affects hemostasis.
Collapse
Affiliation(s)
- Paul R Nagelkirk
- Integrative Exercise Physiology Laboratory, Ball State University, Muncie, IN
| | - Kayla Soave
- Integrative Exercise Physiology Laboratory, Ball State University, Muncie, IN
| | | | - Andrew Del Pozzi
- Integrative Exercise Physiology Laboratory, Ball State University, Muncie, IN
| |
Collapse
|
13
|
Pozzi R, Fernandes L, Cavalcante da Silva V, D'Almeida V. Nandrolone decanoate and resistance exercise affect body composition and energy metabolism. Steroids 2021; 174:108899. [PMID: 34358557 DOI: 10.1016/j.steroids.2021.108899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
Our aim was to evaluate the independent and associated effects of nandrolone decanoate (DECA) and resistance exercise (REx) on central and peripheral hormones and neuropeptides related to energy balance in male rats. The experimental protocol was performed for eight weeks and comprised four groups: control (C) - exposed to vehicle 3x/wk; trained (T) - REx 5x/wk and vehicle 3x/wk; decanoate (D) - exposed to DECA (5 mg/kg) 3x/wk, and REx with DECA (TD) - submitted to REx 5x/wk and DECA (5 mg/kg) 3x/wk. Cross-sectional area analysis of the gastrocnemius muscle was higher in the T and TD groups compared to the C group. Biometrical analyses showed a decrease in body weight only in the TD compared to the C group, however, a reduction in total fat mass was observed in both the T and TD when compared to the C group. In respect of hypothalamic mRNA expression, there was an increase in prepro-orexin in the T compared to the C group. In mesenteric fat there was a decrease in leptin expression in the T and TD compared to the C group. Plasma evaluations showed reduced leptin concentrations in D, T and TD compared to C, and an increase in orexin-A in the D group compared to the C and T groups. Our data showed that REx was related to central and peripheral changes in energy metabolism, while DECA changed only peripheral components. REx associated with DECA promoted peripheral changes in energy metabolism and decreased body and fat weights.
Collapse
Affiliation(s)
- Renan Pozzi
- Department of Psychobiology, Federal University of São Paulo, UNIFESP, São Paulo, SP, Brazil; Department of Biosciences, Federal University of São Paulo, UNIFESP, São Paulo, SP, Brazil
| | - Leandro Fernandes
- Department of Psychobiology, Federal University of São Paulo, UNIFESP, São Paulo, SP, Brazil
| | | | - Vânia D'Almeida
- Department of Psychobiology, Federal University of São Paulo, UNIFESP, São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Costa LR, de Castro CA, Marine DA, Fabrizzi F, Furino VDO, Malavazi I, Anibal FDF, Duarte ACGDO. High-Intensity Interval Training Does Not Change Vaspin and Omentin and Does Not Reduce Visceral Adipose Tissue in Obese Rats. Front Physiol 2021; 12:564862. [PMID: 33716759 PMCID: PMC7952996 DOI: 10.3389/fphys.2021.564862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
This study aimed to determine the expression of omentin and vaspin, inflammatory markers, body composition, and lipid profile in diet-induced obese rats and high-intensity interval training (HIIT). Forty Wistar rats were divided into four groups: untrained normal diet, trained normal diet (T-ND), untrained high-fat diet (Unt-HFD), and trained high-fat diet (T-HFD). For the animals of the Unt-HFD and T-HFD groups, a high-fat diet was offered for 4 weeks. After that, all the animals in the T-ND and T-HFD groups were submitted to HITT, three times per week, for 10 weeks (2 weeks of adaptation and 8 weeks of HIIT). Muscle (gastrocnemius), liver, epididymal adipose tissue, retroperitoneal adipose tissue, visceral adipose tissue (VAT), and serum were collected to analyze TNF-α, IL-6, PCR, IL-8, IL-10, IL-4, vaspin, and omentin. A body composition analysis was performed before adaptation to HIIT protocol and after the last exercise session using dual-energy X-ray absorptiometry. Omentin and vaspin in the VAT were quantified using Western blotting. The results showed that, when fed a high-fat diet, the animals obtained significant gains in body fat and elevated serum concentrations of vaspin and blood triglycerides. The HIIT was able to minimize body fat gain but did not reduce visceral fat despite the increase in maximum exercise capacity. Moreover, there was a reduction in the serum levels of adiponectin, IL-6, and IL-10. Finally, we concluded that, although the training protocol was able to slow down the weight gain of the animals, there was no reduction in visceral fat or an improvement in the inflammatory profile, including no changes in omentin and vaspin.
Collapse
Affiliation(s)
- Leandro Ribeiro Costa
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Cynthia Aparecida de Castro
- Department of Morphology and Pathology – Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Diego Adorna Marine
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Fernando Fabrizzi
- Faculty of Philosophy, Sciences and Letters of Penápolis-Brazil, Penápolis, Brazil
| | - Vanessa de Oliveira Furino
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Iran Malavazi
- Department of Genetics and Evolution – Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Fernanda de Freitas Anibal
- Department of Morphology and Pathology – Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Ana Cláudia Garcia de Oliveira Duarte
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| |
Collapse
|
15
|
Marcantonio CC, Nogueira AVB, Leguizamón NDP, de Molon RS, Lopes MES, Silva RCL, Cerri PS, Deschner J, Cirelli JA. Effects of obesity on periodontal tissue remodeling during orthodontic movement. Am J Orthod Dentofacial Orthop 2021; 159:480-490. [PMID: 33563505 DOI: 10.1016/j.ajodo.2019.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 11/01/2019] [Accepted: 12/01/2019] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Orthodontic movement triggers a sequence of cellular and molecular events that may be affected by different systemic conditions. This study evaluated the effect of obesity on rat periodontal tissue remodeling induced by mechanical orthodontic force. METHODS Thirty-two Holtzman rats were distributed into 4 groups: control, obesity induction (O), orthodontic movement (M), and obesity induction and orthodontic movement (OM). Obesity was induced by a high-fat diet for 90 days. After 15 days of orthodontic movement, the animals were killed. Obesity induction was confirmed by animal body weight, adipose tissue weight, and serologic analysis. Periodontal tissue remodeling was evaluated using microcomputed tomography and histologic analysis. The gene expression of adipokines and cytokines in gingival tissues was evaluated. RESULTS An increase in body and adipose tissue weight was observed in the obesity induction groups. The O group presented an increase in lipids and blood glucose. The OM group showed a decrease in bone volume fraction and bone mineral density compared with all other groups and a tendency for more rapid tooth movement than the M group. The OM group showed a higher quantity of inflammatory cells and higher Mmp1 expression than the O group. The O and OM groups showed higher Nampt expression than the control group and lower Nampt expression than the M group. CONCLUSIONS Obesity modulates periodontal tissue remodeling during orthodontic movement and results in more inflammation and bone loss than in nonobese animals.
Collapse
Affiliation(s)
- Camila Chierici Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Andressa Vilas Boas Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University, Araraquara, São Paulo, Brazil; Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Natalia Da Ponte Leguizamón
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Rafael Scaf de Molon
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Maria Eduarda Scordamaia Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Renata Cristina Lima Silva
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Paulo Sergio Cerri
- Department of Morphology, School of Dentistry at Araraquara, São Paulo State University, Araraquara, São Paulo, Brazil
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University, Araraquara, São Paulo, Brazil.
| |
Collapse
|
16
|
Linear periodization of strength training in blocks attenuates hypertension and diastolic dysfunction with normalization of myocardial collagen content in spontaneously hypertensive rats. J Hypertens 2020; 38:73-81. [PMID: 31335510 DOI: 10.1097/hjh.0000000000002188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND METHOD This study evaluated the effects of a linear block strength training programme on the parameters of cardiac remodelling in spontaneously hypertensive rats. Thirty-nine rats were equally distributed in four groups: normotensive sedentary, normotensive trained, hypertensive sedentary and hypertensive trained. The strength training protocol was organized in three mesocycles of 4 weeks, with an increase in the training load organized in a linear fashion for each block, considering the weight established in the maximum loaded load test. The following parameters were evaluated: ventricular function assessed by echocardiogram, caudal blood pressure, ventricular haemodynamics and cardiac masses. Two-way analysis of variance was used to determine the differences between the group and time. RESULTS After 12 weeks of training, the hypertensive trained group presented the following results: increased muscle strength, reduced blood pressure, reduced heart rate, isovolumetric relaxation time and total collagen content, with increased cardiac function, without promoting changes in the mass and nuclear volume of cardiomyocytes. Also, blood pressure reduction seems to be associated with both muscle strength adjustments and total load progress. CONCLUSION The findings of this study showed that the training programme carried out attenuated systemic arterial pressure and preserved the ventricular function of spontaneously hypertensive rats without cardiac mass change.
Collapse
|
17
|
Nikroo H, Hosseini SRA, Fathi M, Sardar MA, Khazaei M. The effect of aerobic, resistance, and combined training on PPAR-α, SIRT1 gene expression, and insulin resistance in high-fat diet-induced NAFLD male rats. Physiol Behav 2020; 227:113149. [DOI: 10.1016/j.physbeh.2020.113149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
|
18
|
Batschauer T, Cordeiro JM, Simas BB, Brunetta HS, Souza RM, Nunes EA, Reis WL, Moreira ELG, Crestani CC, Santos ARS, Speretta GF. Behavioral, cardiovascular and endocrine alterations induced by chronic stress in rats fed a high-fat diet. Physiol Behav 2020; 223:113013. [PMID: 32540332 DOI: 10.1016/j.physbeh.2020.113013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022]
Abstract
Chronic stress is a risk factor for cardiovascular diseases (CVD) and anxiety disorders (AD). Obesity also increases the risk of CVD and AD. The modern lifestyle commonly includes high-fat diet (HFD) intake and daily exposure to stressful events. However, it is not completely understood whether chronic stress exacerbates HFD-induced behavioral and physiological changes. Thus, this study aimed to evaluate the effects of the exposure to chronic variable stress (CVS) on behavioral, cardiovascular, and endocrine parameters in rats fed an HFD. Male Wistar rats were divided into four groups: control-standard chow diet (control-SD), control-HFD, CVS-SD, and CVS-HFD. The control-HFD and CVS-HFD groups were fed with HFD for six weeks. The CVS-HFD and CVS-SD groups were exposed to a CVS protocol in the last ten days of the six weeks. The behavioral analysis revealed that CVS decreased the open-arm exploration time during the elevated plus-maze test (p < 0.05). HFD promoted metabolic disorders and increased angiotensin II and leptin blood levels (p < 0.05). CVS or HFD increased blood pressure and the sympathetic nervous system (SNS) modulation of the heart and vessels and decreased baroreflex activity (p < 0.05). Combining CVS and HFD exacerbated the cardiac SNS response and increased basal heart rate (HR) (p < 0.05). CVS or HFD did not affect vascular function and aorta nitrate (p > 0.05). Taken together, these data indicate a synergism between HFD and CVS on the HR and cardiac SNS responses, suggesting an increased cardiovascular risk. Besides, neuroendocrine and anxiogenic disturbers may contribute to the cardiovascular changes induced by HFD and CVS, respectively.
Collapse
Affiliation(s)
- Tiago Batschauer
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Postgraduate Program in Neuroscience, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Júlio M Cordeiro
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Bruna B Simas
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Henver S Brunetta
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Raul M Souza
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Postgraduate Program in Neuroscience, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Everson A Nunes
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Wagner L Reis
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Eduardo L G Moreira
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Postgraduate Program in Neuroscience, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Adair R S Santos
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Postgraduate Program in Neuroscience, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Guilherme F Speretta
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Postgraduate Program in Neuroscience, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
19
|
Short-Term Combined Exercise Improves Inflammatory Profile in the Retina of Obese Mice. Int J Mol Sci 2020; 21:ijms21176099. [PMID: 32847099 PMCID: PMC7503303 DOI: 10.3390/ijms21176099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Excess of adipose tissue increases the concentration of proinflammatory cytokines, triggering a subclinical inflammatory condition. This inflammatory profile contributes to retina damage, which can lead to retinal dysfunction and reduced vision. Regularly practicing both aerobic and strength exercises is well known for promoting anti-inflammatory effects on different organs in the peripheral and central regions. However, the effects of combined physical exercise (CPE; strength + aerobic) on the inflammatory process in the retina tissue are not yet known. This study aimed to investigate the effects of CPE on the inflammatory profile of the retina in obese mice. Swiss mice were distributed into control, sedentary obese, and trained obese groups. The trained obese group was subjected to short-term CPE, 1 h/day, for 7 days. The CPE was composed of aerobic and strength exercises in the same exercise session. The strength exercise protocol consisted of 10 climbing series, with 12 ± 1 dynamic climbing movements at 70% of the maximum voluntary carrying capacity (MVCC), and the aerobic exercise protocol consisted of 30 min of treadmill running, with an intensity of 75% of the exhaust velocity. Subsequently, the retina was excised and analyzed by Western blot. Obese animals presented impairment on glucose homeostasis and elevated levels of proinflammatory proteins in the serum and retina; however, CPE was effective in reversing these parameters, independently of changes in body adiposity. Therefore, for the first time, we have shown that short-term CPE can be an important strategy to treat an inflammatory profile in the retina.
Collapse
|
20
|
Gauda EB, Conde S, Bassi M, Zoccal DB, Almeida Colombari DS, Colombari E, Despotovic N. Leptin: Master Regulator of Biological Functions that Affects Breathing. Compr Physiol 2020; 10:1047-1083. [PMID: 32941688 DOI: 10.1002/cphy.c190031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is a global epidemic in developed countries accounting for many of the metabolic and cardiorespiratory morbidities that occur in adults. These morbidities include type 2 diabetes, sleep-disordered breathing (SDB), obstructive sleep apnea, chronic intermittent hypoxia, and hypertension. Leptin, produced by adipocytes, is a master regulator of metabolism and of many other biological functions including central and peripheral circuits that control breathing. By binding to receptors on cells and neurons in the brainstem, hypothalamus, and carotid body, leptin links energy and metabolism to breathing. In this comprehensive article, we review the central and peripheral locations of leptin's actions that affect cardiorespiratory responses during health and disease, with a particular focus on obesity, SDB, and its effects during early development. Obesity-induced hyperleptinemia is associated with centrally mediated hypoventilation with decrease CO2 sensitivity. On the other hand, hyperleptinemia augments peripheral chemoreflexes to hypoxia and induces sympathoexcitation. Thus, "leptin resistance" in obesity is relative. We delineate the circuits responsible for these divergent effects, including signaling pathways. We review the unique effects of leptin during development on organogenesis, feeding behavior, and cardiorespiratory responses, and how undernutrition and overnutrition during critical periods of development can lead to cardiorespiratory comorbidities in adulthood. We conclude with suggestions for future directions to improve our understanding of leptin dysregulation and associated clinical diseases and possible therapeutic targets. Lastly, we briefly discuss the yin and the yang, specifically the contribution of relative adiponectin deficiency in adults with hyperleptinemia to the development of metabolic and cardiovascular disease. © 2020 American Physiological Society. Compr Physiol 10:1047-1083, 2020.
Collapse
Affiliation(s)
- Estelle B Gauda
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Silvia Conde
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Lisboa, Portugal
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Debora Simoes Almeida Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Nikola Despotovic
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Damiani APL, Caldas LC, Melo AB, Contreiro CDE, Estevam WM, Nogueira BV, Ferreira LG, Leopoldo AS, Leopoldo APL. RESISTANCE TRANING PROTOCOLS PROMOTE STRENGTH INCREASE WITHOUT MORPHOLOGICAL CHANGES. REV BRAS MED ESPORTE 2020. [DOI: 10.1590/1517-869220202603209955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction Resistance training (RT) has been related to increased protein synthesis, and in the myocardium it triggers morphological adaptations that result in improved cardiac contractility. In skeletal muscle, RT promotes an improvement in functional capacity and in sarcopenia caused by aging. However, the efficacy of this training method in the cardiac and skeletal systems has not yet been clarified. Objective To investigate the effect of different vertical ladder RT protocols on cardiac and skeletal structure and morphology. Materials and Methods: Wistar rats (n = 28) were randomized into four groups: sedentary (C); RT protocol with 4 to 9 climbs, 3 sessions/week, 120 second interval and intensity of 50% to 100% of the maximum load (ML) with progressive addition of 30 g (RT1); RT protocol with 4 to 5 climbs, 3 sessions/week, 60 second interval and intensity of 50% to 100% of the ML, where a 30 g overload was added in the 5th climb (RT2); RT protocol with 4 to 5 climbs, 5 sessions/week, 60 second interval and intensity of 50% to 100% of the ML; the animals that completed the 4th climb underwent the 5th climb with 100% ML plus 30 g (RT3). RT protocols were performed for 9 weeks with a duration of 30 to 45 minutes/day. The nutritional profile and cardiac/skeletal muscle morphology were evaluated along with the cross sectional area and collagen fraction. Results RT did not promote adaptations in cardiac and musculoskeletal structure and morphology, nor was it able to reduce body weight and body fat deposits. However, RT brought about an increase in absolute and relative strength. Conclusion Vertical ladder RT protocols, regardless of weekly frequency, lead to increased muscle strength without cardiac and skeletal structural adaptations. Level of evidence I, Therapeutic studies - Investigating treatment results.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - André Soares Leopoldo
- Universidade Federal do Espírito Santo, Brazil; Universidade Federal do Espírito Santo, Brazil
| | - Ana Paula Lima Leopoldo
- Universidade Federal do Espírito Santo, Brazil; Universidade Federal do Espírito Santo, Brazil
| |
Collapse
|
22
|
Sun ZG, Tian G, Zheng XC, Liu WY, Luo XT, Xiao J, Song H, Xu X. AMPKα2 Deficiency Does Not Affect the Exercise-Induced Improvements in Glucose Tolerance and Metabolic Disorders in Mice Fed a High-Fat Diet. J Nutr Sci Vitaminol (Tokyo) 2020; 65:491-497. [PMID: 31902862 DOI: 10.3177/jnsv.65.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Exercise can improve obesity and metabolic disorders in mice fed a high-fat diet (HFD), but the role of AMPKα2 in the process remains unclear. The aim of this study was to investigate the role of AMPKα2 in the exercise-induced improvements in glucose tolerance and metabolic turnover in obesity mice. Male wild-type mice (n=12) and AMPKα2 knockout (AMPKα2 KO) mice (n=12) were fed a HFD for 16 wk and were then randomly divided into four groups: WT HFD group (WT HF), AMPKα2 KO HFD group (AMPKα2 KO HF), WT HFD exercise group (WT HE), and AMPK HFD exercise group (AMPKα2 KO HE). The HF groups continue to be fed a HFD from 16 wk to 24 wk, and the HE groups were fed a HFD and performed exercise training. After 8 wk of exercise, all mice were placed in an energy metabolism chamber to test their metabolic turnover, include locomotor activity, food intake, oxygen consumption (VO2), carbon dioxide production (VCO2), energy expenditure (EE) and respiratory exchange ratio (RER), over a period of 3 d. Exercise improved glucose tolerance, VO2, VCO2 and EE in mice fed a HFD (p<0.05). The VO2, VCO2 and EE in AMPKα2 KO HE group were lower than these in WT HE group (p<0.05). Our findings revealed exercise improved glucose tolerance and metabolic disorders in C57 and AMPKα2 KO mice fed a HFD. AMPKα2 is not essential for exercise-induced improvements in glucose tolerance and metabolic disorders.
Collapse
Affiliation(s)
- Zhong-Guang Sun
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Ge Tian
- Beijing Xian Nong Tan Sports Technical College
| | - Xiao-Ci Zheng
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Wen-Ying Liu
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Xue-Ting Luo
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Jing Xiao
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Hui Song
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Xin Xu
- Department of Exercise Rehabilitation, Shanghai University of Sport
| |
Collapse
|
23
|
Melo AB, Damiani APL, Coelho PM, de Assis ALEM, Nogueira BV, Guimarães Ferreira L, Leite RD, Ribeiro Júnior RF, Lima-Leopoldo AP, Leopoldo AS. Resistance training promotes reduction in Visceral Adiposity without improvements in Cardiomyocyte Contractility and Calcium handling in Obese Rats. Int J Med Sci 2020; 17:1819-1832. [PMID: 32714085 PMCID: PMC7378665 DOI: 10.7150/ijms.42612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/23/2020] [Indexed: 11/05/2022] Open
Abstract
Resistance training (RT) improves the cardiomyocyte calcium (Ca2+) cycling during excitation-contraction coupling. However, the role of RT in cardiomyocyte contractile function associated with Ca2+ handling in obesity is unclear. Wistar rats were distributed into four groups: control, sedentary obese, control plus RT, and obesity plus RT. The 10-wk RT protocol was used (4-5 vertical ladder climbs, 60-second interval, 3× a week, 50-100% of maximum load). Metabolic, hormonal, cardiovascular and biochemical parameters were determined. Reduced leptin levels, epididymal, retroperitoneal and visceral fat pads, lower body fat, and adiposity index were observed in RT. Obesity promoted elevation of collagen, but RT did not promote modifications of LV collagen in ObRT. RT induced elevation in maximum rates of contraction and relaxation, and reduction of time to 50% relaxation. ObRT group did not present improvement in the cardiomyocyte contractile function in comparison to Ob group. Reduced cardiac PLB serine16 phosphorylation (pPLB Ser16) and pPLB Ser16/PLB ratio with no alterations in sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) and phospholamban (PLB) expression were observed in Ob groups. Resistance training improved body composition reduced fat pads and plasma leptin levels but did not promote positive alterations in cardiomyocyte contractile function, Ca2+ handling and phospholamban phosphorylation.
Collapse
Affiliation(s)
- Alexandre Barroso Melo
- Centre for Physical Education and Sports, Department of Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Andressa Prata Leite Damiani
- Centre for Health Sciences, Department of Nutrition, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Priscila Murucci Coelho
- Centre for Health Sciences, Department of Nutrition, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Breno Valentim Nogueira
- Center of Health Sciences, Department of Morphology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Lucas Guimarães Ferreira
- Centre for Physical Education and Sports, Department of Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Richard Diego Leite
- Centre for Physical Education and Sports, Department of Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Rogério Faustino Ribeiro Júnior
- Center of Health Sciences, Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ana Paula Lima-Leopoldo
- Centre for Physical Education and Sports, Department of Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - André Soares Leopoldo
- Centre for Physical Education and Sports, Department of Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
24
|
Cavalcante RGS, de Albuquerque TMR, de Luna Freire MO, Ferreira GAH, Carneiro Dos Santos LA, Magnani M, Cruz JC, Braga VA, de Souza EL, de Brito Alves JL. The probiotic Lactobacillus fermentum 296 attenuates cardiometabolic disorders in high fat diet-treated rats. Nutr Metab Cardiovasc Dis 2019; 29:1408-1417. [PMID: 31640890 DOI: 10.1016/j.numecd.2019.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/11/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM High-fat (HF) diet consumption has been associated with gut dysbiosis and increased risk of dyslipidemia, type 2 diabetes mellitus and hypertension. Probiotic administration has been suggested as a safe therapeutic strategy for the treatment of cardiometabolic disorders. This study was designed to assess the effects of probiotic Lactobacillus (L.) fermentum 296, a fruit-derived bacteria strain, against cardiometabolic disorders induced by HF diet. METHODS AND RESULTS Male Wistar rats were divided into control diet (CTL); HF diet; and HF diet treated with Lactobacillus fermentum 296 (HF + Lf 296). The L. fermentum 296 strain at 1 × 109 colony forming units (CFU)/ml were daily administered by oral gavage for 4 weeks. The results showed that rats fed with HF diet displayed insulin resistance, reduced Lactobacillus spp. counts in feces, serum lipids, and oxidative profile. Rats fed on HF diet also demonstrated augmented blood pressure associated with sympathetic hyperactivity and impaired baroreflex control. The administration of L. fermentum 296 for 4 weeks recovered fecal Lactobacillus sp. counts and alleviated hyperlipidemia, sympathetic hyperactivity, and reduced systolic blood pressure in HF rats without affecting baroreflex sensibility. CONCLUSION Our results suggest the ability of L. fermentum 296 improve biochemical and cardiovascular parameters altered in cardiometabolic disorders.
Collapse
Affiliation(s)
- Raíssa G S Cavalcante
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | - Georgianna A H Ferreira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Marciane Magnani
- Department of Food Engineering, Technology Center, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Josiane C Cruz
- Biotechnology Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Valdir A Braga
- Biotechnology Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Evandro L de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - José L de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
25
|
Padilha CS, Cella PS, Ribeiro AS, Voltarelli FA, Testa MT, Marinello PC, Iarosz KC, Guirro PB, Deminice R. Moderate vs high-load resistance training on muscular adaptations in rats. Life Sci 2019; 238:116964. [DOI: 10.1016/j.lfs.2019.116964] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/18/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
|
26
|
de Araújo EV, Carneiro dos Santos LA, Speretta GFF, Ferreira GDAH, de Luna Freire MO, de Santana DF, Carvalho‐Galvão A, Cruz JC, Costa-Silva JHD, Braga V, Brito Alves JL. Short‐ and long‐term effects of maternal dyslipidaemia on blood pressure and baroreflex sensitivity in male rat offspring. Clin Exp Pharmacol Physiol 2019; 47:27-37. [DOI: 10.1111/1440-1681.13174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Guilherme Fleury Fina Speretta
- Department of Physiological Sciences Biological Sciences Centre Federal University of Santa Catarina (UFSC) Florianopolis Brazil
| | | | | | - David Filipe de Santana
- Department of Physical Education and Sport Sciences Federal University of Pernambuco Vitória de Santo Antão Brazil
| | - Alynne Carvalho‐Galvão
- Biotechnology Department Biotechnology Centre Federal University of Paraíba João Pessoa Brazil
| | - Josiane Campos Cruz
- Biotechnology Department Biotechnology Centre Federal University of Paraíba João Pessoa Brazil
| | - João Henrique da Costa-Silva
- Department of Physical Education and Sport Sciences Federal University of Pernambuco Vitória de Santo Antão Brazil
| | - Valdir Braga
- Biotechnology Department Biotechnology Centre Federal University of Paraíba João Pessoa Brazil
| | - José Luiz Brito Alves
- Department of Nutrition Health Sciences Centre Federal University of Paraíba João Pessoa Brazil
- Biotechnology Department Biotechnology Centre Federal University of Paraíba João Pessoa Brazil
| |
Collapse
|
27
|
Dos Santos CMM, Diniz VLS, Bachi ALL, Dos Santos de Oliveira LC, Ghazal T, Passos MEP, de Oliveira HH, Murata G, Masi LN, Martins AR, Levada-Pires AC, Curi R, Hirabara SM, Sellitti DF, Pithon-Curi TC, Gorjão R. Moderate physical exercise improves lymphocyte function in melanoma-bearing mice on a high-fat diet. Nutr Metab (Lond) 2019; 16:63. [PMID: 31528182 PMCID: PMC6739998 DOI: 10.1186/s12986-019-0394-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/06/2019] [Indexed: 02/16/2023] Open
Abstract
Background Obesity can lead to a chronic systemic inflammatory state that increases the risk of cancer development. Therefore, this study aimed to evaluate the alterations in tumor non-infiltrated lymphocytes function and melanoma growth in animals maintained on a high-fat diet and/or moderate physical exercise program in a murine model of melanoma. Methods Female mice were randomly divided into eight groups: 1) normolipidic control (N), 2) normolipidic + melanoma (NM), 3) high-fat control (H), 4) high-fat + melanoma (HM), 5) normolipidic control + physical exercise (NE), 6) normolipidic melanoma + physical exercise (NEM), 7) high-fat control + physical exercise (HE), and 8) high-fat melanoma + physical exercise (HEM). After 8 weeks of diet treatment and/or moderate physical exercise protocol, melanoma was initiated by explanting B16F10 cells into one-half of the animals. Results Animals fed a high-fat diet presented high-energy consumption (30%) and body weight gain (H and HE vs N and NE, 37%; HM and HEM vs NM and NEM, 73%, respectively), whether or not they carried melanoma explants. Although the tumor growth rate was higher in animals from the HM group than in animals from any other sedentary group, it was reduced by the addition of a physical exercise regimen. We also observed an increase in stimulated peripheral lymphocyte proliferation and a decrease in the T-helper 1 response in the HEM group. Conclusions The results of the present study support the hypothesis that altering function of tumor non-infiltrated lymphocytes via exercise-related mechanisms can slow melanoma progression, indicating that the incorporation of a regular practice of moderate-intensity exercises can be a potential strategy for current therapeutic regimens in treating advanced melanoma.
Collapse
Affiliation(s)
- Cesar Miguel Momesso Dos Santos
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Vinicius Leonardo Sousa Diniz
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - André Luis Lacerda Bachi
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil.,2Department of Otorrhynolaringology, Federal University of São Paulo, São Paulo, Brazil.,Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São Paulo, Brazil
| | - Laiane Cristina Dos Santos de Oliveira
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Tamara Ghazal
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Maria Elizabeth Pereira Passos
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Heloisa Helena de Oliveira
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Gilson Murata
- 4Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, CEP: 05508-900, Butanta, São Paulo, Brazil
| | - Laureane Nunes Masi
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Amanda Roque Martins
- 4Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, CEP: 05508-900, Butanta, São Paulo, Brazil
| | - Adriana Cristina Levada-Pires
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Rui Curi
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Sandro Massao Hirabara
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Donald F Sellitti
- 5Department of Medicine, Uniformed Services University of Health Sciences, 4301 Jones Bridge Road, Bethesda, MD USA
| | - Tania Cristina Pithon-Curi
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Renata Gorjão
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| |
Collapse
|
28
|
Cardiovascular and hidroelectrolytic changes in rats fed with high-fat diet. Behav Brain Res 2019; 373:112075. [PMID: 31284013 DOI: 10.1016/j.bbr.2019.112075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/14/2019] [Accepted: 07/05/2019] [Indexed: 01/18/2023]
Abstract
Obesity activates the renin-angiotensin and sympathetic systems facilitating hypertension and changes in the hydroelectrolytic balance. In the present study, in rats fed with high-fat diet (HFD), we investigated daily water intake and urinary excretion, prandial consumption of water and the changes in blood pressure and water intake to intracerebroventricular (icv) angiotensin II (ANG II). Male Holtzman rats (290-320 g) were fed with standard diet (SD, 11% calories from fat) or HFD (45% calories from fat) for 6 weeks. Part of the animals received a stainless steel cannula in the lateral ventricle (LV) at the 6th week after the beginning of the diets and the experiments were performed at the 7th week. The pressor effect, but not the dipsogenic response to acute icv injection of ANG II, was potentiated in the HFD rats. Daily water intake and urinary volume were reduced in rats fed with HFD with no significant changes in sodium excretion. Prandial water consumption was also reduced in rats ingesting HFD, an effect almost totally reverted blocking salivation with atropine. These results show a potentiation of the pressor response to icv ANG II in HFD-fed rats, without changing icv ANG II-induced water intake. In addition, prandial and daily water intake and urinary volume were reduced in HFD-fed rats, without changing sodium excretion. Salivation in rats ingesting HFD may play a role in the reduced prandial and daily water intake.
Collapse
|
29
|
Pereira RM, Rodrigues KCDC, Anaruma CP, Sant'Ana MR, de Campos TDP, Gaspar RS, Canciglieri RDS, de Melo DG, Mekary RA, da Silva ASR, Cintra DE, Ropelle ER, Pauli JR, de Moura LP. Short-term strength training reduces gluconeogenesis and NAFLD in obese mice. J Endocrinol 2019; 241:59-70. [PMID: 30878016 DOI: 10.1530/joe-18-0567] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a positive correlation with obesity, insulin resistance and type 2 diabetes mellitus (T2D). The aerobic training is an important tool in combating NAFLD. However, no studies have demonstrated the molecular effects of short-term strength training on the accumulation of hepatic fat in obese mice. This study aimed to investigate the effects of short-term strength training on the mechanisms of oxidation and lipid synthesis in the liver of obese mice. The short duration protocol was used to avoid changing the amount of adipose tissue. Swiss mice were separated into three groups: lean control (CTL), sedentary obese (OB) and strength training obese (STO). The obese groups were fed a high-fat diet (HFD) and the STO group performed the strength training protocol 1 session/day for 15 days. The short-term strength training reduced hepatic fat accumulation, increasing hepatic insulin sensitivity and controlling hepatic glucose production. The obese animals increased the mRNA of lipogenic genes Fasn and Scd1 and reduced the oxidative genes Cpt1a and Ppara. On the other hand, the STO group presented the opposite results. Finally, the obese animals presented higher levels of lipogenic proteins (ACC and FAS) and proinflammatory cytokines (TNF-α and IL-1β), but the short-term strength training was efficient in reducing this condition, regardless of body weight loss. In conclusion, there was a reduction of obesity-related hepatic lipogenesis and inflammation after short-term strength training, independent of weight loss, leading to improvements in hepatic insulin sensitivity and glycemic homeostasis in obese mice. Key points: (1) Short-term strength training (STST) reduced fat accumulation and inflammation in the liver; (2) Hepatic insulin sensitivity and HPG control were increased with STST; (3) The content and activity of ACC and content of FAS were reduced with STST; (4) STST improved hepatic fat accumulation and glycemic homeostasis; (5) STST effects were observed independently of body weight change.
Collapse
Affiliation(s)
- Rodrigo Martins Pereira
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Chadi Pellegrini Anaruma
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Marcella Ramos Sant'Ana
- Laboratory of Nutritional Genomics, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Rodrigo Stellzer Gaspar
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Diego Gomes de Melo
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Rania A Mekary
- Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Social and Administrative Sciences, School of Pharmacy, MCPHS University, Boston, Massachusetts, USA
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
30
|
Tófolo LP, Rinaldi W, Gôngora AB, Matiusso CCI, Pavanello A, Malta A, de Almeida DL, Ribeiro TA, Oliveira AR, Peres MNC, Armitage JA, Mathias PCDF, Palma-Rigo K. Moderate Physical Training Ameliorates Cardiovascular Dysfunction Induced by High Fat Diet After Cessation of Training in Adult Rats. Front Physiol 2019; 10:170. [PMID: 30930783 PMCID: PMC6423496 DOI: 10.3389/fphys.2019.00170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
We aimed to test whether moderate physical training can induce long-lasting protection against cardiovascular risk factors induced by high fat diet (HFD) intake, even after cessation of training. 90-days-old Wistar rats were submitted to a sedentary lifestyle or moderate physical training, three times a week, for 30 days. Following this, at 120 days-of age, sedentary and trained rats received a hypercaloric diet (HFD) or a commercial diet normal fat diet (NFD) for 30 days. Body weight (BW) and food intake were evaluated weekly. At 150 days-of age, hemodynamic measures (systolic, diastolic, mean blood pressure, pulse pressure, pulse interval and heart rate) were made via an indwelling femoral artery catheter. Beat-to-beat data were analyzed to calculate power spectra of systolic blood pressure (SBP) and pulse interval. After euthanasia, mesenteric fat pads were removed and weighted and total blood was stored for later analysis of lipid profile. Consumption of a HFD increased blood pressure (BP), pulse pressure, low frequency BP variability, BW gain, fat pad stores and induced dyslipidemia. Interestingly, prior physical training was able to partially protect against this rise in BP and body fat stores. Prior physical training did not totally protect against the effects of HFD consumption but previously trained animals did demonstrate resistance to the development of cardiometabolic alterations, which illustrate that the benefits of physical training may be partially maintained even after 30 days of detraining period.
Collapse
Affiliation(s)
- Laize Peron Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil.,Department of Physical Education, Faculty of Biomedical Sciences of Cacoal, Cacoal, Brazil
| | - Wilson Rinaldi
- Department of Physical Education, State University of Maringá, Maringá, Brazil
| | - Adriane Barreto Gôngora
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Camila Cristina Ianoni Matiusso
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Audrei Pavanello
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Douglas Lopes de Almeida
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Tatiane Aparecida Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | | | - Maria Natalia Chimirri Peres
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | | | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil.,Faculdade Adventista Paranaense, Ivatuba, Brazil
| |
Collapse
|
31
|
Importance of AT1 and AT2 receptors in the nucleus of the solitary tract in cardiovascular responses induced by a high-fat diet. Hypertens Res 2019; 42:439-449. [PMID: 30631157 PMCID: PMC7092339 DOI: 10.1038/s41440-018-0196-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/27/2018] [Accepted: 07/26/2018] [Indexed: 02/01/2023]
Abstract
A high-fat diet (HFD) induces an increase in arterial pressure and a decrease in baroreflex function, which may be associated with increased expression of angiotensin type 1 receptor (AT1R) and pro-inflammatory cytokine genes and reduced expression of the angiotensin type 2 receptor (AT2R) gene within the nucleus of the solitary tract (NTS), a key area of the brainstem involved in cardiovascular control. Thus, in the present study, we evaluated the changes in arterial pressure and gene expression of components of the renin-angiotensin system (RAS) and neuroinflammatory markers in the NTS of rats fed a HFD and treated with either an AT1R blocker or with virus-mediated AT2R overexpression in the NTS. Male Holtzman rats (300-320 g) were fed either a standard rat chow diet (SD) or HFD for 6 weeks before commencing the tests. AT1R blockade in the NTS of HFD-fed rats attenuated the increase in arterial pressure and the impairment of reflex bradycardia, whereas AT2R overexpression in the NTS only improved the baroreflex function. The HFD also increased the hypertensive and decreased the protective axis of the RAS and was associated with neuroinflammation within the NTS. The expression of angiotensin-converting enzyme and neuroinflammatory components, but not AT1R, in the NTS was reduced by AT2R overexpression in this site. Based on these data, AT1R and AT2R in the NTS are differentially involved in the cardiovascular changes induced by a HFD. Chronic inflammation and changes in the RAS in the NTS may also account for the cardiovascular responses observed in HFD-fed rats.
Collapse
|
32
|
Speretta GF, Lemes EV, Vendramini RC, Menani JV, Zoccal DB, Colombari E, Colombari DSA, Bassi M. High-fat diet increases respiratory frequency and abdominal expiratory motor activity during hypercapnia. Respir Physiol Neurobiol 2018; 258:32-39. [PMID: 30308245 PMCID: PMC6317333 DOI: 10.1016/j.resp.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 11/24/2022]
Abstract
Breathing disorders are commonly observed in association with obesity. Here we tested whether high-fat diet (HFD) impairs the chemoreflex ventilatory response. Male Holtzman rats (300-320 g) were fed with standard chow diet (SD) or HFD for 12 weeks. Then, tidal volume (VT), respiratory frequency (fR) and pulmonary ventilation (VE) were determined in conscious rats during basal condition, hypercapnia (7% or 10% CO2) or hypoxia (7% O2). The mean arterial pressure (MAP), heart rate (HR) and baroreflex sensitivity were also evaluated in conscious rats. A group of anesthetized rats was used for the measurements of the activity of inspiratory (diaphragm) and expiratory (abdominal) muscles under the same gas conditions. Baseline fR, VT and VE were similar between SD and HFD rats. During hypercapnia, the increase of fR was exacerbated in conscious HFD rats (60 ± 3, vs. SD: 47 ± 3 Δ breaths.min-1, P < 0.05). In anesthetized rats, hypercapnia strongly increased abdominal muscle activity in HFD group (238 ± 27, vs. basal condition: 100 ± 0.3%; P < 0.05), without significant change in SD group (129 ± 2.1, vs. basal condition: 100 ± 0.8%; P = 0.34). The ventilatory responses to hypoxia were similar between groups. In conscious HFD rats, MAP and HR were elevated and the baroreflex function was impaired (P < 0.05). These data demonstrated that 12 weeks of HFD exaggerate the ventilatory response activated by hypercapnia. The mechanisms involved in these responses need more investigation in future studies.
Collapse
Affiliation(s)
- Guilherme F Speretta
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| | - Eduardo Vieira Lemes
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Regina C Vendramini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, UNESP, Araraquara, SP, Brazil
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
33
|
Donghui T, Shuang B, Xulong L, Meng Y, Yujing G, Yujie H, Juan L, Dongsheng Y. Improvement of microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126 in obese adolescents. Microvasc Res 2018; 123:86-91. [PMID: 30472037 DOI: 10.1016/j.mvr.2018.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/24/2018] [Accepted: 10/25/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Microvascular endothelial dysfunction, which is at the early stage of atherosclerosis, precedes macrovascular endothelial dysfunction. The study is aimed to investigate the mechanism underlying the improvement of microvascular endothelial dysfunction by exercise and diet in obese adolescents. METHODS A quasi-randomized study was carried out with 2 cohorts: the experimental group (57 obese male adolescents; age: 15.38 ± 2.82 years, BMI: 33.21 ± 4.23 kg/m2) completed a 6-week exercise program with dietary intervention, and control group (10 normal weight adolescents; age: 15.38 ± 2.82 years, BMI: 23.21 ± 4.23 kg/m2) maintained sedentary. Clinical characteristics, circulating NO, ET-1 and microRNA-126 (miR-126) levels were measured before and after 6 weeks. The Reactive Hyperemia Index (RHI) was measured using EndoPAT-2000 system. RESULTS After 6-weeks intervention, obese adolescents' body circumferences and glucolipid metabolism are significantly improved. RHI (p < 0.01) and serum levels of NO/ET-1 (p < 0.01) are significantly increased, while microRNA-126 significantly decreased (p < 0.01). ΔMiR-126 were positive correlated with ΔBMI (r = 0.60, p < 0.01), ΔRHI (r = 0.69, p < 0.05), and ΔNO/ET-1 (r = -0.68, p < 0.05). CONCLUSIONS Combination of exercise and diet control can effectively improve glycolipid metabolism of obese adolescents, and thus their microvascular endothelial function, which might be related to changes in serum miRNA-126.
Collapse
Affiliation(s)
- Tang Donghui
- School of Physical Education and Sports, Beijing Normal University, Beijing, China.
| | - Bai Shuang
- School of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Li Xulong
- School of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Yao Meng
- School of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Gong Yujing
- School of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Hou Yujie
- School of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Li Juan
- College of Physical Education, Hebei Normal University, Shijiazhuang, China
| | - Yang Dongsheng
- Department of Physical Education, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
34
|
Simas BB, Nunes EA, Crestani CC, Speretta GF. Cardiovascular and metabolic consequences of the association between chronic stress and high-fat diet in rats. Stress 2018; 21:247-256. [PMID: 29429380 DOI: 10.1080/10253890.2018.1437413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Obesity and chronic stress are considered independent risk factors for the development of cardiovascular diseases and changes in autonomic system activity. However, the cardiovascular consequences induced by the association between high-fat diet (HFD) and chronic stress are not fully understood. We hypothesized that the association between HFD and exposure to a chronic variable stress (CVS) protocol for four weeks might exacerbate the cardiovascular and metabolic disturbances in rats when compared to these factors singly. To test this hypothesis, male Wistar rats were divided into four groups: control-standard chow diet (SD; n = 8); control-HFD (n = 8); CVS-SD (n = 8); and CVS-HFD (n = 8). The CVS consisted of repeated exposure of the rats to different inescapable and unpredictable stressors (restraint tress; damp sawdust, cold, swim stress and light cycle inversion). We evaluated cardiovascular function, autonomic activity, dietary intake, adiposity and metabolism. The HFD increased body weight, adiposity and blood glucose concentration (∼15%) in both control and CVS rats. The CVS-HFD rats showed decreased insulin sensitivity (25%) compared to CVS-SD rats. The control-HFD and CVS-HFD rats presented increased intrinsic heart rate (HR) values (∼8%). CVS increased cardiac sympathetic activity (∼65%) in both SD- and HFD-fed rats. The HFD increased basal HR (∼10%). Blood pressure and baroreflex analyzes showed no differences among the experimental groups. In conclusion, the present data indicate absence of interaction on autonomic imbalance evoked by either CVS or HFD. Additionally, HFD increased HR and evoked metabolic disruptions which are independent of stress exposure.
Collapse
Affiliation(s)
- Bruna B Simas
- a Department of Physiological Sciences, Biological Sciences Centre , Federal University of Santa Catarina (UFSC) , Florianópolis , Brazil
| | - Everson A Nunes
- a Department of Physiological Sciences, Biological Sciences Centre , Federal University of Santa Catarina (UFSC) , Florianópolis , Brazil
| | - Carlos C Crestani
- b Laboratory of Pharmacology , São Paulo State University (UNESP), School of Pharmaceutical Sciences , Araraquara , Brazil
| | - Guilherme F Speretta
- a Department of Physiological Sciences, Biological Sciences Centre , Federal University of Santa Catarina (UFSC) , Florianópolis , Brazil
| |
Collapse
|
35
|
Melo S, da Silva Júnior N, Barauna V, Oliveira E. Cardiovascular Adaptations Induced by Resistance Training in Animal Models. Int J Med Sci 2018; 15:403-410. [PMID: 29511376 PMCID: PMC5835711 DOI: 10.7150/ijms.23150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
In the last 10 years the number of studies showing the benefits of resistance training (RT) to the cardiovascular system, have grown. In comparison to aerobic training, RT-induced favorable adaptations to the cardiovascular system have been ignored for many years, thus the mechanisms of the RT-induced cardiovascular adaptations are still uncovered. The lack of animal models with comparable protocols to the RT performed by humans hampers the knowledge. We have used squat-exercise model, which is widely used by many others laboratories. However, to a lesser extent, other models are also employed to investigate the cardiovascular adaptations. In the subsequent sections we will review the information regarding cardiac morphological adaptations, signaling pathway of the cardiac cell, cardiac function and the vascular adaptation induced by RT using this animal model developed by Tamaki et al. in 1992. Furthermore, we also describe cardiovascular findings observed using other animal models of RT.
Collapse
Affiliation(s)
- S.F.S. Melo
- Laboratory of Molecular Physiology, Health Sciences Center, Federal University of Espírito Santo. Address: Av. Marechal Campos, 1468 Maruípe, Espírito Santo, Vitória, Brazil. Postal code: 29043900. Telephone number: (5527)996892407
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo. Address: Av. Prof. Mello Moraes, 65, Cidade Universitária, São Paulo, São Paulo, Brazil. Postal code: 05508-9000. Telephone number: (5511) 30913136
| | - N.D. da Silva Júnior
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo. Address: Av. Prof. Mello Moraes, 65, Cidade Universitária, São Paulo, São Paulo, Brazil. Postal code: 05508-9000. Telephone number: (5511) 30913136
| | - V.G. Barauna
- Laboratory of Molecular Physiology, Health Sciences Center, Federal University of Espírito Santo. Address: Av. Marechal Campos, 1468 Maruípe, Espírito Santo, Vitória, Brazil. Postal code: 29043900. Telephone number: (5527)996892407
| | - E.M. Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo. Address: Av. Prof. Mello Moraes, 65, Cidade Universitária, São Paulo, São Paulo, Brazil. Postal code: 05508-9000. Telephone number: (5511) 30913136
| |
Collapse
|
36
|
Fernandes CR, Kannen V, Mata KM, Frajacomo FT, Jordão Junior AA, Gasparotto B, Sakita JY, Elias Junior J, Leonardi DS, Mauad FM, Ramos SG, Uyemura SA, Garcia SB. High-Fat and Fat-Enriched Diets Impair the Benefits of Moderate Physical Training in the Aorta and the Heart in Rats. Front Nutr 2017; 4:21. [PMID: 28573134 PMCID: PMC5435813 DOI: 10.3389/fnut.2017.00021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/30/2017] [Indexed: 01/05/2023] Open
Abstract
AIM Millions of people die each year due to cardiovascular disease (CVD). A Western lifestyle not only fuses a significant intake of fat with physical inactivity and obesity but also promotes CVD. Recent evidence suggests that dietary fat intake impairs the benefits of physical training. We investigated whether aerobic training could reverse the adverse effects of a high-fat diet (HFD) on the aorta. Then, we explored whether this type of exercise could reverse the damage to the heart that is imposed by fat-enriched diet (FED). METHODS Rats were randomly assigned to two experiments, which lasted 8 weeks each. First, rats swam for 60 min and were fed either a regular diet [standard diet (STD)] or an HFD. After aortic samples had been collected, the rats underwent a histopathological analysis for different biomarkers. Another experiment subjected rats that were fed either an STD or an FED to swimming for 20 or 90 min. RESULTS The first experiment revealed that rats that were subjected to an HFD-endured increased oxidative damage in the aorta that exercises could not counteract. Together with increased cyclooxygenase 2 expression, an HFD in combination with physical training increased the number of macrophages. A reduction in collagen fibers with an increased number of positive α-actin cells and expression of matrix metalloproteinase-2 occurred concomitantly. Upon analyzing the second experiment, we found that physically training rats that were given an FED for 90 min/day decreased the cardiac adipose tissue density, although it did not protect the heart from fat-induced oxidative damage. Even though the physical training lowered cholesterol levels that were promoted by the FED, the levels were still higher than those in the animals that were given an STD. Feeding rats an FED impaired the swimming protocol's effects on lowering triglyceride concentration. Additionally, exercise was unable to reverse the fat-induced deregulation in hepatic antioxidant and lipid peroxidation activities. CONCLUSION Our findings reveal that an increased intake of fat undermines the potential benefits of physical exercise on the heart and the aorta.
Collapse
Affiliation(s)
| | - Vinicius Kannen
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | | | - Bianca Gasparotto
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Juliana Yumi Sakita
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | | | | | - Sergio Akira Uyemura
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | | |
Collapse
|
37
|
Guillemot-Legris O, Muccioli GG. Obesity-Induced Neuroinflammation: Beyond the Hypothalamus. Trends Neurosci 2017; 40:237-253. [PMID: 28318543 DOI: 10.1016/j.tins.2017.02.005] [Citation(s) in RCA: 370] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022]
|
38
|
Barbosa RM, Speretta GF, Dias DPM, Ruchaya PJ, Li H, Menani JV, Sumners C, Colombari E, Colombari DSA. Increased Expression of Macrophage Migration Inhibitory Factor in the Nucleus of the Solitary Tract Attenuates Renovascular Hypertension in Rats. Am J Hypertens 2017; 30:435-443. [PMID: 28158469 PMCID: PMC5861587 DOI: 10.1093/ajh/hpx001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/20/2016] [Accepted: 01/02/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is an intracellular inhibitory regulator of the actions of angiotensin II in the central nervous system. Renovascular hypertensive 2-kidney, 1-clip (2K1C) rats have an increased activity of the renin-angiotensin system and a decrease in baroreflex function compared to normotensive (NT) rats. In the present study, we tested the effects of MIF overexpression within the nucleus of the solitary tract (NTS), a key brainstem region for cardiovascular regulation, on the development of hypertension, on baroreflex function, and on water and food intake in 2K1C rats. METHODS Holtzman NT rats received a silver clip around the left renal artery to induce 2K1C hypertension. Three weeks later, rats were microinjected in the NTS with AAV2-CBA-MIF, to increase the expression of MIF, or with the control vector AAV2-CBA-enhanced green fluorescent protein. Mean arterial pressure (MAP) and heart rate were recorded by telemetry. Baroreflex function was tested, and water and food intake were also measured. RESULTS Increasing MIF expression in the NTS of 2K1C rats attenuated the development of hypertension, reversed the impairment of baroreflex function, and reduced the increase in water intake. In contrast to 2K1C rats, similar increases in MIF expression in the NTS of NT rats produced no changes in baseline MAP, baroreflex function, or water intake. CONCLUSIONS These results indicate that an increased expression of MIF within the NTS attenuates the development of hypertension and restores the baroreflex function in 2K1C rats.
Collapse
Affiliation(s)
- Rafaela Moreira Barbosa
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Guilherme F Speretta
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Daniel Penteado Martins Dias
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Prashant Jay Ruchaya
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Hongwei Li
- School of Biotechnology, Southern Medical University, Guangzhou, China
| | - José Vanderlei Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Colin Sumners
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| |
Collapse
|
39
|
Santos CY, Snyder PJ, Wu WC, Zhang M, Echeverria A, Alber J. Pathophysiologic relationship between Alzheimer's disease, cerebrovascular disease, and cardiovascular risk: A review and synthesis. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2017; 7:69-87. [PMID: 28275702 PMCID: PMC5328683 DOI: 10.1016/j.dadm.2017.01.005] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
As the population ages due to demographic trends and gains in life expectancy, the incidence and prevalence of dementia increases, and the need to understand the etiology and pathogenesis of dementia becomes ever more urgent. Alzheimer's disease (AD), the most common form of dementia, is a complex disease, the mechanisms of which are poorly understood. The more we learn about AD, the more questions are raised about our current conceptual models of disease. In the absence of a cure or the means by which to slow disease progress, it may be prudent to apply our current knowledge of the intersection between AD, cardiovascular disease, and cerebrovascular disease to foster efforts to delay or slow the onset of AD. This review discusses our current understanding of the epidemiology, genetics, and pathophysiology of AD, the intersection between AD and vascular causes of dementia, and proposes future directions for research and prevention.
Collapse
Affiliation(s)
- Cláudia Y. Santos
- Lifespan Clinical Research Center, Rhode Island Hospital, Providence, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Peter J. Snyder
- Lifespan Clinical Research Center, Rhode Island Hospital, Providence, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Wen-Chih Wu
- Division of Cardiology, Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Mia Zhang
- Griffith University School of Medicine, Gold Coast, Queensland, Australia
| | - Ana Echeverria
- University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jessica Alber
- Lifespan Clinical Research Center, Rhode Island Hospital, Providence, RI, USA
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
40
|
Silvestre JGO, Speretta GFF, Fabrizzi F, Moraes G, Duarte ACGDO. Acute effects of Resistance exercise performed on ladder on energy metabolism, stress, and muscle damage in rats. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700si0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Macedo FN, Mesquita TRR, Melo VU, Mota MM, Silva TLTB, Santana MN, Oliveira LR, Santos RV, Miguel Dos Santos R, Lauton-Santos S, Santos MRV, Barreto AS, Santana-Filho VJ. Increased Nitric Oxide Bioavailability and Decreased Sympathetic Modulation Are Involved in Vascular Adjustments Induced by Low-Intensity Resistance Training. Front Physiol 2016; 7:265. [PMID: 27445854 PMCID: PMC4923192 DOI: 10.3389/fphys.2016.00265] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/14/2016] [Indexed: 12/26/2022] Open
Abstract
Resistance training is one of the most common kind of exercise used nowadays. Long-term high-intensity resistance training are associated with deleterious effects on vascular adjustments. On the other hand, is unclear whether low-intensity resistance training (LI-RT) is able to induce systemic changes in vascular tone. Thus, we aimed to evaluate the effects of chronic LI-RT on endothelial nitric oxide (NO) bioavailability of mesenteric artery and cardiovascular autonomic modulation in healthy rats. Wistar animals were divided into two groups: exercised (Ex) and sedentary (SED) rats submitted to the resistance (40% of 1RM) or fictitious training for 8 weeks, respectively. After LI-RT, hemodynamic measurements and cardiovascular autonomic modulation by spectral analysis were evaluated. Vascular reactivity, NO production and protein expression of endothelial and neuronal nitric oxide synthase isoforms (eNOS and nNOS, respectively) were evaluated in mesenteric artery. In addition, cardiac superoxide anion production and ventricle morphological changes were also assessed. In vivo measurements revealed a reduction in mean arterial pressure and heart rate after 8 weeks of LI-RT. In vitro studies showed an increased acetylcholine (ACh)-induced vasorelaxation and greater NOS dependence in Ex than SED rats. Hence, decreased phenylephrine-induced vasoconstriction was found in Ex rats. Accordingly, LI-RT increased the NO bioavailability under basal and ACh stimulation conditions, associated with upregulation of eNOS and nNOS protein expression in mesenteric artery. Regarding autonomic control, LI-RT increased spontaneous baroreflex sensitivity, which was associated to reduction in both, cardiac and vascular sympathetic modulation. No changes in cardiac superoxide anion or left ventricle morphometric parameters after LI-RT were observed. In summary, these results suggest that RT promotes beneficial vascular adjustments favoring augmented endothelial NO bioavailability and reduction of sympathetic vascular modulation, without evidence of cardiac overload.
Collapse
Affiliation(s)
- Fabrício N Macedo
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe Sao Cristovao, Brazil
| | - Thassio R R Mesquita
- Laboratory of Cardiovascular Biology and Oxidative Stress, Department of Physiology, Federal University of Sergipe Sao Cristovao, Brazil
| | - Vitor U Melo
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe Sao Cristovao, Brazil
| | - Marcelo M Mota
- Department of Healthy Education, Estacio Faculty of Sergipe Aracaju, Brazil
| | | | - Michael N Santana
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe Sao Cristovao, Brazil
| | - Larissa R Oliveira
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe Sao Cristovao, Brazil
| | - Robervan V Santos
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe Sao Cristovao, Brazil
| | - Rodrigo Miguel Dos Santos
- Laboratory of Cardiovascular Biology and Oxidative Stress, Department of Physiology, Federal University of Sergipe Sao Cristovao, Brazil
| | - Sandra Lauton-Santos
- Laboratory of Cardiovascular Biology and Oxidative Stress, Department of Physiology, Federal University of Sergipe Sao Cristovao, Brazil
| | - Marcio R V Santos
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe Sao Cristovao, Brazil
| | - Andre S Barreto
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe Sao Cristovao, Brazil
| | - Valter J Santana-Filho
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe Sao Cristovao, Brazil
| |
Collapse
|