1
|
Han X, Zhang M, Liu Y, Huang Y, Yang X, Wang R, Sun WY, So KF, Chiu K, He RR, Xu Y. Lycium barbarum extract improves brain and visual functions in mice models of Alzheimer's disease through activating WNT pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156523. [PMID: 40007341 DOI: 10.1016/j.phymed.2025.156523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is the leading cause of dementia in the elderly, characterized by visual deficits and cognitive impairment. However, current therapies have limited efficacy. PURPOSE This study aims to investigate whether Lycium barbarum extract (LBE) can mitigate the decline in brain and visual function in mouse models of AD during the middle and late stages. METHODS The chemical constituents of LBE were identified using Liquid Chromatography-Mass Spectrometry. LBE was administered daily to 5xFAD mice for one month and to 3xTG mice for two months, via the intragastric route, until the middle and late stages of AD. Visual and brain functions were assessed through behavioral tests and electrophysiological recordings. The structure of the hippocampal region and retina was evaluated using immunostaining. RNA sequencing and western blotting were performed to explore potential mechanisms. RESULTS Sixteen compounds were identified in LBE, with lycibarbarspermidines and rutin being the major components. Functionally, LBE significantly improved memory and light responses of retinal ganglion cells in both 5xFAD and 3xTG mice. It also enhanced long-term potentiation in the hippocampus of 5xFAD mice and cortical visual function in 3xTG mice. Structurally, LBE reduced hippocampal Aβ deposits in 5xFAD mice and Tau phosphorylation in 3xTG mice. In the retinas of 3xTG mice, LBE increased ganglion cell survival and inhibited inflammation and oxidative stress. Mechanistically, LBE restored the expression of WNT5a/b and KRAS, and inhibited GSK3β activation in the retinas of 3xTG mice. CONCLUSION Our findings suggest that LBE can alleviate visual and brain function deterioration in various AD mouse models, even at the middle or late stages, possibly through the activation of the WNT pathway leading to the inhibition of Tau phosphorylation. This study reveals a novel mechanism of LBE action and proposes a promising strategy for treating AD patients using natural plant extracts, even at advanced stages.
Collapse
Affiliation(s)
- Xiu Han
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs(Jinan University) / Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University / Key Laboratory of CNS Regeneration (Jinan University) Ministry of Education / Guangdong Key Laboratory of Non-human Primate Research, Guangzhou 510632, China
| | - Mengrong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs(Jinan University) / Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University / Key Laboratory of CNS Regeneration (Jinan University) Ministry of Education / Guangdong Key Laboratory of Non-human Primate Research, Guangzhou 510632, China
| | - Yajing Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs(Jinan University) / Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University / Key Laboratory of CNS Regeneration (Jinan University) Ministry of Education / Guangdong Key Laboratory of Non-human Primate Research, Guangzhou 510632, China
| | - Yongxia Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs(Jinan University) / Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University / Key Laboratory of CNS Regeneration (Jinan University) Ministry of Education / Guangdong Key Laboratory of Non-human Primate Research, Guangzhou 510632, China
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Rong Wang
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products, Jinan University, Guangzhou 510632, China
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products, Jinan University, Guangzhou 510632, China
| | - Kwok-Fai So
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs(Jinan University) / Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University / Key Laboratory of CNS Regeneration (Jinan University) Ministry of Education / Guangdong Key Laboratory of Non-human Primate Research, Guangzhou 510632, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Psychology, The University of Hong Kong, Hong Kong SAR, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| | - Kin Chiu
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Psychology, The University of Hong Kong, Hong Kong SAR, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products, Jinan University, Guangzhou 510632, China.
| | - Ying Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs(Jinan University) / Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University / Key Laboratory of CNS Regeneration (Jinan University) Ministry of Education / Guangdong Key Laboratory of Non-human Primate Research, Guangzhou 510632, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
2
|
Lee E, Lee Y, Yang S, Gong EJ, Kim J, Ha NC, Jo DG, Mattson MP, Lee J. Akt-activated GSK3β inhibitory peptide effectively blocks tau hyperphosphorylation. Arch Pharm Res 2024; 47:812-828. [PMID: 39325351 DOI: 10.1007/s12272-024-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Tau hyperphosphorylation and accumulation in neurofibrillary tangles are closely associated with cognitive deficits in Alzheimer's disease (AD). Glycogen synthase kinase 3β (GSK3β) overexpression has been implicated in tau hyperphosphorylation, and many GSK3β inhibitors have been developed as potential therapeutic candidates for AD. However, the potent GSK3β inhibitors produced are prone to side effects because they can interfere with the basic functions of GSK3β. We previously found that when the phosphorylated PPPSPxS motifs in Wnt coreceptor LRP6 can directly inhibit GSK3β, and thus, we produced a novel GSK3β inhibitory peptide (GIP), specifically activated by Akt, by combining the PPPSPxS motif of LRP6 and the Akt targeted sequence (RxRxxS) of GSK3β. GIP effectively blocked GSK3β-induced tau phosphorylation in hippocampal homogenates and, when fused with a cell-permeable sequence, attenuated Aβ-induced tau phosphorylation in human neuroblastoma cells and inhibited cell death. An in vivo study using a 3 × Tg-AD mouse model revealed that intravenous GIP significantly reduced tau phosphorylation in the hippocampus without affecting Aβ plaque levels or neuroinflammation and ameliorated memory defects. The study provides a novel neuroprotective drug development strategy targeting tau hyperphosphorylation in AD.
Collapse
Affiliation(s)
- Eunjin Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Yujeong Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Seonguk Yang
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun Ji Gong
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehoon Kim
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
3
|
Rezaee N, Hone E, Sohrabi HR, Johnson S, Zhong L, Chatur P, Gunzburg S, Martins RN, Fernando WMADB. Sorghum Grain Polyphenolic Extracts Demonstrate Neuroprotective Effects Related to Alzheimer's Disease in Cellular Assays. Foods 2024; 13:1716. [PMID: 38890943 PMCID: PMC11171927 DOI: 10.3390/foods13111716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Sorghum grain contains high levels and a diverse profile of polyphenols (PPs), which are antioxidants known to reduce oxidative stress when consumed in the diet. Oxidative stress leading to amyloid-β (Aβ) aggregation, neurotoxicity, and mitochondrial dysfunction is implicated in the pathogenesis of Alzheimer's disease (AD). Thus, PPs have gained attention as possible therapeutic agents for combating AD. This study aimed to (a) quantify the phenolic compounds (PP) and antioxidant capacities in extracts from six different varieties of sorghum grain and (b) investigate whether these PP extracts exhibit any protective effects on human neuroblastoma (BE(2)-M17) cells against Aβ- and tau-induced toxicity, Aβ aggregation, mitochondrial dysfunction, and reactive oxygen species (ROS) induced by Aβ and tert-butyl hydroperoxide (TBHP). PP and antioxidant capacity were quantified using chemical assays. Aβ- and tau-induced toxicity was determined using the 3-(4,5-dimenthylthiazol-2-yl)-2,5-dimethyltetrazolium bromide (MTS) assay. The thioflavin T (Th-T) assay assessed anti-Aβ aggregation. The dichlorodihydrofluorescein diacetate (DCFDA) assay determined the levels of general ROS and the MitoSOX assay determined the levels of mitochondrial superoxide. Sorghum varieties Shawaya short black-1 and IS1311C possessed the highest levels of total phenolics, total flavonoids, and antioxidant capacity, and sorghum varieties differed significantly in their profile of individual PPs. All extracts significantly increased cell viability compared to the control (minus extract). Variety QL33 (at 2000 µg sorghum flour equivalents/mL) showed the strongest protective effect with a 28% reduction in Aβ-toxicity cell death. The extracts of all sorghum varieties significantly reduced Aβ aggregation. All extracts except that from variety B923296 demonstrated a significant (p ≤ 0.05) downregulation of Aβ-induced and TBHP-induced ROS and mitochondrial superoxide relative to the control (minus extract) in a dose- and variety-dependent manner. We have demonstrated for the first time that sorghum polyphenolic extracts show promising neuroprotective effects against AD, which indicates the potential of sorghum foods to exert a similar beneficial property in the human diet. However, further analysis in other cellular models and in vivo is needed to confirm these effects.
Collapse
Affiliation(s)
- Nasim Rezaee
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia (E.H.)
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia (E.H.)
| | - Hamid R. Sohrabi
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia (E.H.)
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Stuart Johnson
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA 6845, Australia
| | - Leizhou Zhong
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA 6845, Australia
| | - Prakhar Chatur
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA 6845, Australia
| | | | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia (E.H.)
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - W. M. A. D. Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia (E.H.)
| |
Collapse
|
4
|
Kim Y, Kim J, Kang S, Chang KA. Depressive-like Behaviors Induced by mGluR5 Reduction in 6xTg in Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:13010. [PMID: 37629191 PMCID: PMC10455602 DOI: 10.3390/ijms241613010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is one representative dementia characterized by the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain, resulting in cognitive decline and memory loss. AD is associated with neuropsychiatric symptoms, including major depressive disorder (MDD). Recent studies showed a reduction in mGluR5 expression in the brains of stress-induced mice models and individuals with MDD compared to controls. In our study, we identified depressive-like behavior and memory impairment in a mouse model of AD, specifically in the 6xTg model with tau and Aβ pathologies. In addition, we investigated the expression of mGluR5 in the brains of 6xTg mice using micro-positron emission tomography (micro-PET) imaging, histological analysis, and Western blot analysis, and we observed a decrease in mGluR5 levels in the brains of 6xTg mice compared to wild-type (WT) mice. Additionally, we identified alterations in the ERK/AKT/GSK-3β signaling pathway in the brains of 6xTg mice. Notably, we identified a significant negative correlation between depressive-like behavior and the protein level of mGluR5 in 6xTg mice. Additionally, we also found a significant positive correlation between depressive-like behavior and AD pathologies, including phosphorylated tau and Aβ. These findings suggested that abnormal mGluR5 expression and AD-related pathologies were involved in depressive-like behavior in the 6xTg mouse model. Further research is warranted to elucidate the underlying mechanisms and explore potential therapeutic targets in the intersection of AD and depressive-like symptoms.
Collapse
Affiliation(s)
- Youngkyo Kim
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Jinho Kim
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Shinwoo Kang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, VT 55905, USA
| | - Keun-A Chang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
5
|
Manet C, Mansuroglu Z, Conquet L, Bortolin V, Comptdaer T, Segrt H, Bourdon M, Menidjel R, Stadler N, Tian G, Herit F, Niedergang F, Souès S, Buée L, Galas MC, Montagutelli X, Bonnefoy E. Zika virus infection of mature neurons from immunocompetent mice generates a disease-associated microglia and a tauopathy-like phenotype in link with a delayed interferon beta response. J Neuroinflammation 2022; 19:307. [PMID: 36539803 PMCID: PMC9764315 DOI: 10.1186/s12974-022-02668-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) infection at postnatal or adult age can lead to neurological disorders associated with cognitive defects. Yet, how mature neurons respond to ZIKV remains substantially unexplored. METHODS The impact of ZIKV infection on mature neurons and microglia was analyzed at the molecular and cellular levels, in vitro using immunocompetent primary cultured neurons and microglia, and in vivo in the brain of adult immunocompetent mice following intracranial ZIKV inoculation. We have used C57BL/6 and the genetically diverse Collaborative Cross mouse strains, displaying a broad range of susceptibility to ZIKV infection, to question the correlation between the effects induced by ZIKV infection on neurons and microglia and the in vivo susceptibility to ZIKV. RESULTS As a result of a delayed induction of interferon beta (IFNB) expression and response, infected neurons displayed an inability to stop ZIKV replication, a trait that was further increased in neurons from susceptible mice. Alongside with an enhanced expression of ZIKV RNA, we observed in vivo, in the brain of susceptible mice, an increased level of active Iba1-expressing microglial cells occasionally engulfing neurons and displaying a gene expression profile close to the molecular signature of disease-associated microglia (DAM). In vivo as well as in vitro, only neurons and not microglial cells were identified as infected, raising the question of the mechanisms underlying microglia activation following brain ZIKV infection. Treatment of primary cultured microglia with conditioned media from ZIKV-infected neurons demonstrated that type-I interferons (IFNs-I) secreted by neurons late after infection activate non-infected microglial cells. In addition, ZIKV infection induced pathological phosphorylation of Tau (pTau) protein, a hallmark of neurodegenerative tauopathies, in vitro and in vivo with clusters of neurons displaying pTau surrounded by active microglial cells. CONCLUSIONS We show that ZIKV-infected mature neurons display an inability to stop viral replication in link with a delayed IFNB expression and response, while signaling microglia for activation through IFNs-I secreted at late times post-infection. In the brain of ZIKV-infected susceptible mice, uninfected microglial cells adopt an active morphology and a DAM expression profile, surrounding and sometimes engulfing neurons while ZIKV-infected neurons accumulate pTau, overall reflecting a tauopathy-like phenotype.
Collapse
Affiliation(s)
- Caroline Manet
- grid.5842.b0000 0001 2171 2558Institut Pasteur, Mouse Genetics Laboratory, Université de Paris, 75015 Paris, France
| | - Zeyni Mansuroglu
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, Institut Cochin, Inserm, CNRS, 75014 Paris, France
| | - Laurine Conquet
- grid.5842.b0000 0001 2171 2558Institut Pasteur, Mouse Genetics Laboratory, Université de Paris, 75015 Paris, France
| | - Violaine Bortolin
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, Institut Cochin, Inserm, CNRS, 75014 Paris, France
| | - Thomas Comptdaer
- grid.503422.20000 0001 2242 6780University Lille, Inserm, CHU Lille, Inserm, LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France
| | - Helena Segrt
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, Institut Cochin, Inserm, CNRS, 75014 Paris, France
| | - Marie Bourdon
- grid.5842.b0000 0001 2171 2558Institut Pasteur, Mouse Genetics Laboratory, Université de Paris, 75015 Paris, France
| | - Reyene Menidjel
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, Institut Cochin, Inserm, CNRS, 75014 Paris, France
| | - Nicolas Stadler
- grid.508487.60000 0004 7885 7602Université Paris Cité, Inserm UMR1124, 75006 Paris, France
| | - Guanfang Tian
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, Institut Cochin, Inserm, CNRS, 75014 Paris, France
| | - Floriane Herit
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, Institut Cochin, Inserm, CNRS, 75014 Paris, France
| | - Florence Niedergang
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, Institut Cochin, Inserm, CNRS, 75014 Paris, France
| | - Sylvie Souès
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, Institut Cochin, Inserm, CNRS, 75014 Paris, France
| | - Luc Buée
- grid.503422.20000 0001 2242 6780University Lille, Inserm, CHU Lille, Inserm, LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France
| | - Marie-Christine Galas
- grid.503422.20000 0001 2242 6780University Lille, Inserm, CHU Lille, Inserm, LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France
| | - Xavier Montagutelli
- grid.5842.b0000 0001 2171 2558Institut Pasteur, Mouse Genetics Laboratory, Université de Paris, 75015 Paris, France
| | - Eliette Bonnefoy
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, Institut Cochin, Inserm, CNRS, 75014 Paris, France
| |
Collapse
|
6
|
IGF1R Deficiency Modulates Brain Signaling Pathways and Disturbs Mitochondria and Redox Homeostasis. Biomedicines 2021; 9:biomedicines9020158. [PMID: 33562061 PMCID: PMC7915200 DOI: 10.3390/biomedicines9020158] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF1R)-mediated signaling pathways modulate important neurophysiological aspects in the central nervous system, including neurogenesis, synaptic plasticity and complex cognitive functions. In the present study, we intended to characterize the impact of IGF1R deficiency in the brain, focusing on PI3K/Akt and MAPK/ERK1/2 signaling pathways and mitochondria-related parameters. For this purpose, we used 13-week-old UBC-CreERT2; Igf1rfl/fl male mice in which Igf1r was conditionally deleted. IGF1R deficiency caused a decrease in brain weight as well as the activation of the IR/PI3K/Akt and inhibition of the MAPK/ERK1/2/CREB signaling pathways. Despite no alterations in the activity of caspases 3 and 9, a significant alteration in phosphorylated GSK3β and an increase in phosphorylated Tau protein levels were observed. In addition, significant disturbances in mitochondrial dynamics and content and altered activity of the mitochondrial respiratory chain complexes were noticed. An increase in oxidative stress, characterized by decreased nuclear factor E2-related factor 2 (NRF2) protein levels and aconitase activity and increased H2O2 levels were also found in the brain of IGF1R-deficient mice. Overall, our observations confirm the complexity of IGF1R in mediating brain signaling responses and suggest that its deficiency negatively impacts brain cells homeostasis and survival by affecting mitochondria and redox homeostasis.
Collapse
|
7
|
Galectin-3 Secreted by Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Reduces Aberrant Tau Phosphorylation in an Alzheimer Disease Model. Stem Cells Int 2020; 2020:8878412. [PMID: 32733573 PMCID: PMC7383310 DOI: 10.1155/2020/8878412] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
The formation of neurofibrillary tangles has been implicated as an important pathological marker for Alzheimer's disease (AD). Studies have revealed that the inhibition of abnormal hyperphosphorylation and aggregation of tau in the AD brain might serve as an important drug target. Using in vitro and in vivo experimental models, such as the AD mouse model (5xFAD mice), we investigated the inhibition of hyperphosphorylation of tau using the human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). Administration of hUCB-MSCs not only ameliorated the spatial learning and memory impairments but also mitigated the hyperphosphorylation of tau in 5xFAD mice. Furthermore, in vivo experiments in mice and in vitro ThT fluorescence assay validated galectin-3 (GAL-3) as an essential factor of hUCB-MSC. Moreover, GAL-3 was observed to be involved in the removal of aberrant forms of tau, by reducing hyperphosphorylation through decrements in the glycogen synthase kinase 3 beta (GSK-3β). Our results confirm that GAL-3, secreted by hUCB-MSC, regulates the abnormal accumulation of tau by protein-protein interactions. This study suggests that hUCB-MSCs mitigate hyperphosphorylation of tau through GAL-3 secretion. These findings highlight the potential role of hUCB-MSCs as a therapeutic agent for aberrant tau in AD.
Collapse
|
8
|
Stevens CH, Guthrie NJ, van Roijen M, Halliday GM, Ooi L. Increased Tau Phosphorylation in Motor Neurons From Clinically Pure Sporadic Amyotrophic Lateral Sclerosis Patients. J Neuropathol Exp Neurol 2020; 78:605-614. [PMID: 31131395 DOI: 10.1093/jnen/nlz041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of motor neurons. There is a pathological and genetic link between ALS and frontotemporal lobar degeneration (FTLD). Although FTLD is characterized by abnormal phosphorylated tau deposition, it is unknown whether tau is phosphorylated in ALS motor neurons. Therefore, this study assessed tau epitopes that are commonly phosphorylated in FTLD, including serine 396 (pS396), 214 (pS214), and 404 (pS404) in motor neurons from clinically pure sporadic ALS cases compared with controls. In ALS lower motor neurons, tau pS396 was observed in the nucleus or the nucleus and cytoplasm. In ALS upper motor neurons, tau pS396 was observed in the nucleus, cytoplasm, or both the nucleus and cytoplasm. Tau pS214 and pS404 was observed only in the cytoplasm of upper and lower motor neurons in ALS. The number of motor neurons (per mm2) positive for tau pS396 and pS214, but not pS404, was significantly increased in ALS. Furthermore, there was a significant loss of phosphorylated tau-negative motor neurons in ALS compared with controls. Together, our data identified a complex relationship between motor neurons positive for tau phosphorylated at specific residues and disease duration, suggesting that tau phosphorylation plays a role in ALS.
Collapse
Affiliation(s)
- Claire H Stevens
- School of Chemistry and Molecular Bioscience, University of Wollongong.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Natalie J Guthrie
- School of Chemistry and Molecular Bioscience, University of Wollongong.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | | | - Glenda M Halliday
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Lezanne Ooi
- School of Chemistry and Molecular Bioscience, University of Wollongong.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
9
|
Li S, Ren Q. Effects of Arsenic on wnt/β-catenin Signaling Pathway: A Systematic Review and Meta-analysis. Chem Res Toxicol 2020; 33:1458-1467. [PMID: 32307979 DOI: 10.1021/acs.chemrestox.0c00019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We aimed to systematically evaluate the regulatory effect of arsenic on wnt/β-catenin signaling pathway and to provide theoretical basis for revealing the mechanism of the relationship between arsenic and cell proliferation. The meta-analysis was carried out using Revman5.2 and Stata13.0 to describe the differences between groups with standard mean difference. We found in normal cells that the levels of wnt3a, β-catenin, glycogen synthase kinase-3β phosphorylated at serine 9 (p-GSK-3β(Ser9)), cyclinD1, proto-oncogene c-myc, and vascular endothelial growth factor (VEGF) in the arsenic intervention group were higher than those in the control group, and the level of glycogen synthase kinase-3β (GSK-3β) was lower than that in the control group (P < 0.05, respectively). Subgroup analysis showed that for a long time period (>24 h), the level of β-catenin in the arsenic intervention group was higher than that in the control group, and the level of GSK-3β of the same long-time period (>24 h) with low-dose (≤5 μM) intervention was lower than those in the control group (P < 0.05, respectively). In cancer cells, the levels of β-catenin, cyclinD1, c-myc, and VEGF in the arsenic intervention group were lower than those in the control group, while the level of GSK-3β in the arsenic intervention group was higher than that in the control group (P < 0.05, respectively). Subgroup analysis showed that the levels of β-catenin, cyclinD1, and c-myc in the high-dose (>5 μM) arsenic intervention group were lower than those in the control group, and the levels of β-catenin and cyclinD1 in the high-dose (>5 μM) arsenic intervention group were lower than those in the low-dose (≤5 μM) arsenic intervention group (P < 0.05, respectively). In addition, the regulation of arsenic on β-catenin was dose-dependent in the range of arsenic concentration from 0 to 7.5 μM. This study revealed that arsenic could upregulate wnt/β-catenin signaling pathway in normal cells and downregulate it in cancer cells, and its effect was affected by time and dose.
Collapse
Affiliation(s)
- Shugang Li
- Department of Child, Adolescent Health and Maternal Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qingxin Ren
- Department of Public Health, College of Medicine, Shihezi University, Shihezi 832000, Xinjiang China
| |
Collapse
|
10
|
Qi Y, Jing H, Cheng X, Yan T, Xiao F, Wu B, Bi K, Jia Y. Alpinia oxyphylla-Schisandra chinensis Herb Pair Alleviates Amyloid-β Induced Cognitive Deficits via PI3K/Akt/Gsk-3β/CREB Pathway. Neuromolecular Med 2020; 22:370-383. [PMID: 32140977 DOI: 10.1007/s12017-020-08595-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
Alzheimer's disease (AD), one of the most common neurodegenerative diseases, threatens people's health. Based on the theory of traditional Chinese medicine (TCM) efficacy and treatment theory, we first proposed the Alpinia oxyphylla-Schisandra chinensis herb pair (ASHP) for finding a candidate of AD treatment. This study aimed at exploring the effects of ASHP on improving the cognitive function and neurodegeneration, and revealing the possible mechanism. In this study, an amyloid-β (Aβ) induced AD model was established in mice via intracerebroventricular injection. The Y-maze test and Morris water maze test were carried out to observe the behavioral change of mice, which showed that ASHP significantly ameliorated cognitive impairment. In addition, ASHP reduced amyloid-β deposition and downregulated the hyperphosphorylation of tau via immunofluorescence assay and western blot analysis, respectively. Subsequently we focused on the PI3K/Akt pathway that is a classical pathway related to nervous system diseases. It also noticeably ASHP improved the histopathological changes in the hippocampus and cortex. Moreover, it was found that ASHP could upregulate the PI3K/Akt/Gsk-3β/CREB signaling pathway in N2a-SwedAPP cells. Taken together, it suggests that ASHP might reverse cognitive deficits and neurodegeneration via PI3K/Akt/Gsk-3β/CREB pathway.
Collapse
Affiliation(s)
- Yu Qi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Huiting Jing
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Xinhui Cheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Feng Xiao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shengyang, 110016, People's Republic of China.
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
11
|
Ma G, Liu C, Hashim J, Conley G, Morriss N, Meehan WP, Qiu J, Mannix R. Memantine Mitigates Oligodendrocyte Damage after Repetitive Mild Traumatic Brain Injury. Neuroscience 2019; 421:152-161. [DOI: 10.1016/j.neuroscience.2019.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
|
12
|
Maina MB, Bailey LJ, Doherty AJ, Serpell LC. The Involvement of Aβ42 and Tau in Nucleolar and Protein Synthesis Machinery Dysfunction. Front Cell Neurosci 2018; 12:220. [PMID: 30123109 PMCID: PMC6086011 DOI: 10.3389/fncel.2018.00220] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/09/2018] [Indexed: 01/29/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia and is distinguished from other dementias by observation of extracellular Amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles, comprised of fibrils of Aβ and tau protein, respectively. At early stages, AD is characterized by minimal neurodegeneration, oxidative stress, nucleolar stress, and altered protein synthesis machinery. It is generally believed that Aβ oligomers are the neurotoxic species and their levels in the AD brain correlate with the severity of dementia suggesting that they play a critical role in the pathogenesis of the disease. Here, we show that the incubation of differentiated human neuroblastoma cells (SHSY5Y) with freshly prepared Aβ42 oligomers initially resulted in oxidative stress and subtle nucleolar stress in the absence of DNA damage or cell death. The presence of exogenous Aβ oligomers resulted in altered nuclear tau levels as well as phosphorylation state, leading to altered distribution of nucleolar tau associated with nucleolar stress. These markers of cellular dysfunction worsen over time alongside a reduction in ribosomal RNA synthesis and processing, a decrease in global level of newly synthesized RNA and reduced protein synthesis. The interplay between Aβ and tau in AD remains intriguing and Aβ toxicity has been linked to tau phosphorylation and changes in localization. These findings provide evidence for the involvement of Aβ42 effects on nucleolar tau and protein synthesis machinery dysfunction in cultured cells. Protein synthesis dysfunction is observed in mild cognitive impairment and early AD in the absence of significant neuronal death.
Collapse
Affiliation(s)
- Mahmoud B Maina
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Human Anatomy, College of Medical Sciences, Gombe State University, Gombe, Nigeria
| | - Laura J Bailey
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Louise C Serpell
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
13
|
Maina MB, Bailey LJ, Wagih S, Biasetti L, Pollack SJ, Quinn JP, Thorpe JR, Doherty AJ, Serpell LC. The involvement of tau in nucleolar transcription and the stress response. Acta Neuropathol Commun 2018; 6:70. [PMID: 30064522 PMCID: PMC6066928 DOI: 10.1186/s40478-018-0565-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/30/2018] [Indexed: 12/16/2022] Open
Abstract
Tau is known for its pathological role in neurodegenerative diseases, including Alzheimer's disease (AD) and other tauopathies. Tau is found in many subcellular compartments such as the cytosol and the nucleus. Although its normal role in microtubule binding is well established, its nuclear role is still unclear. Here, we reveal that tau localises to the nucleolus in undifferentiated and differentiated neuroblastoma cells (SHSY5Y), where it associates with TIP5, a key player in heterochromatin stability and ribosomal DNA (rDNA) transcriptional repression. Immunogold labelling on human brain sample confirms the physiological relevance of this finding by showing tau within the nucleolus colocalises with TIP5. Depletion of tau results in an increase in rDNA transcription with an associated decrease in heterochromatin and DNA methylation, suggesting that under normal conditions tau is involved in silencing of the rDNA. Cellular stress induced by glutamate causes nucleolar stress associated with the redistribution of nucleolar non-phosphorylated tau, in a similar manner to fibrillarin, and nuclear upsurge of phosphorylated tau (Thr231) which doesn't colocalise with fibrillarin or nucleolar tau. This suggests that stress may impact on different nuclear tau species. In addition to involvement in rDNA transcription, nucleolar non-phosphorylated tau also undergoes stress-induced redistribution similar to many nucleolar proteins.
Collapse
MESH Headings
- Brain/metabolism
- Brain/ultrastructure
- Cell Differentiation/physiology
- Cell Line, Tumor
- Cell Nucleolus/drug effects
- Cell Nucleolus/metabolism
- Cell Nucleolus/ultrastructure
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/ultrastructure
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Excitatory Amino Acid Agonists/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Glutamic Acid/pharmacology
- Heterochromatin/physiology
- Histones/metabolism
- Humans
- Immunoprecipitation
- Microscopy, Confocal
- Microscopy, Electron
- Neuroblastoma/pathology
- Neuroblastoma/ultrastructure
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Transport/drug effects
- RNA, Messenger
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Transcription, Genetic/drug effects
- Transfection
- tau Proteins/genetics
- tau Proteins/metabolism
- tau Proteins/ultrastructure
Collapse
Affiliation(s)
- Mahmoud B Maina
- School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
- Department of Human Anatomy, College of Medical Science, Gombe State University, Gombe, Nigeria
| | - Laura J Bailey
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| | - Sherin Wagih
- School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - Luca Biasetti
- School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - Saskia J Pollack
- School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - James P Quinn
- School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - Julian R Thorpe
- School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| | - Louise C Serpell
- School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK.
| |
Collapse
|
14
|
Gao Q, Fang Y, Zhang S, Li HW, Yung KKL, Lai KWC. Biophysical Characteristics of Human Neuroblastoma Cell in Oligomeric $\beta $ -Amyloid (1–40) Cytotoxicity. IEEE Trans Nanobioscience 2018; 17:70-77. [DOI: 10.1109/tnb.2018.2800723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Kang SW, Kim SJ, Kim MS. Oxidative stress with tau hyperphosphorylation in memory impaired 1,2-diacetylbenzene-treated mice. Toxicol Lett 2017; 279:53-59. [DOI: 10.1016/j.toxlet.2017.07.892] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/04/2017] [Accepted: 07/17/2017] [Indexed: 10/25/2022]
|