1
|
Zhu X, Su J, Wang F, Chai X, Chen G, Xu A, Meng X, Qiu H, Sun Q, Wang Y, Lv Z, Zhang Y, Liu Y, Han Z, Li N, Sun H, Lu Q. Sodium pump subunit NKAα1 protects against diabetic endothelial dysfunction by inhibiting ferroptosis through the autophagy-lysosome degradation of ACSL4. Clin Transl Med 2025; 15:e70221. [PMID: 39902679 PMCID: PMC11995423 DOI: 10.1002/ctm2.70221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/06/2025] Open
Abstract
The sodium pump Na+/K+-ATPase (NKA), an enzyme ubiquitously expressed in various tissues and cells, is a critical player in maintaining cellular ion homeostasis. Dysregulation of α1 subunit of NKA (NKAα1) has been associated with cardiovascular and metabolic disorders, yet the exact role of NKAα1 in diabetes-induced endothelial malfunction remains incompletely understood. The NKAα1 expression and NKA activity were examined in high-glucose (HG)-exposed endothelial cells (ECs) and mouse aortae, as well as in high-fat-diet (HFD)-fed mice. Acetylcholine (Ach) was utilised to assess endothelium-dependent relaxation (EDR) in isolated mouse aortae. We found that both NKAα1 protein and mRNA levels were significantly downregulated in the aortae of HFD-fed mice, and HG-incubated mouse aortae and ECs. Gain- and loss-of-function experiments revealed that NKAα1 preserves EDR by mitigating oxidative/nitrative stresses in ECs. Overexpression of NKAα1 facilitated EC viability, migration, and angiogenesis by inhibiting the overproduction of superoxide and peroxynitrite. Mechanistically, dysfunctional NKAα1 impaired autophagy process, and prevented the transfer of acyl-CoA synthetase long-chain family member 4 (ACSL4) to the lysosome for degradation, thereby resulting in lipid peroxidation and ferroptosis in ECs. Induction of ferroptosis and inhibition of the autophagy-lysosome pathway blocked the protective effects of NKAα1 on EDR. Eventually, we identified Hamaudol as a potent activator of NKAα1 by restraining the phosphorylation and endocytosis of NKAα1, restoring EDR in obese diabetic mice. Overall, NKAα1 facilitates the autophagic degradation of ACSL4 via the lysosomal pathway, preventing ferroptosis and oxidative/nitrative stress in ECs. NKAα1 may serve as an attractive candidate for the management of vascular disorders associated with diabetes. KEY POINTS: NKAα1 downregulation impairs endothelial function in diabetes by promoting oxidative/nitrative stress and ferroptosis. NKAα1 supports lysosomal degradation of ACSL4 via autophagy, preventing lipid peroxidation and ferroptosis. Hamaudol, an activator of NKAα1, restores endothelial relaxation in diabetic mice by inhibiting NKAα1 phosphorylation and endocytosis.
Collapse
Affiliation(s)
- Xue‐Xue Zhu
- Department of Basic MedicineDepartment of EndocrinologyAffiliated Hospital of Jiangnan UniversityJiangnan UniversityWuxiChina
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Jia‐Bao Su
- Department of Basic MedicineDepartment of EndocrinologyAffiliated Hospital of Jiangnan UniversityJiangnan UniversityWuxiChina
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Fang‐Ming Wang
- Department of Rheumatology and ImmunologyAffiliated Hospital of Jiangnan UniversityJiangnan UniversityWuxiChina
| | - Xiao‐Ying Chai
- Department of Basic MedicineDepartment of EndocrinologyAffiliated Hospital of Jiangnan UniversityJiangnan UniversityWuxiChina
| | - Guo Chen
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - An‐Jing Xu
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Xin‐Yu Meng
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Hong‐Bo Qiu
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Qing‐Yi Sun
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Yao Wang
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zhuo‐Lin Lv
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Yuan Zhang
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Yao Liu
- Department of Cardiac UltrasoundThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhi‐Jun Han
- Department of Clinical Research CenterJiangnan University Medical Center (Wuxi No.2 People's Hospital)Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Na Li
- Research Institute for Reproductive Health and Genetic DiseasesWuxi Maternity and Child Health Care HospitalWuxiChina
| | - Hai‐Jian Sun
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingChina
| | - Qing‐Bo Lu
- Department of Basic MedicineDepartment of EndocrinologyAffiliated Hospital of Jiangnan UniversityJiangnan UniversityWuxiChina
| |
Collapse
|
2
|
Zhou Y, Yao Z, Lin Y, Zhang H. From Tyrosine Kinases to Tyrosine Phosphatases: New Therapeutic Targets in Cancers and Beyond. Pharmaceutics 2024; 16:888. [PMID: 39065585 PMCID: PMC11279542 DOI: 10.3390/pharmaceutics16070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) regulate the level of tyrosine phosphorylation in proteins. PTKs are key enzymes that catalyze the transfer of an ATP phosphoric acid to a tyrosine residue on target protein substrates. Protein tyrosine phosphatases (PTPs) are responsible for the dephosphorylation of tyrosine residues and play a role in countering PTK overactivity. As widespread oncogenes, PTKs were once considered to be promising targets for therapy. However, tyrosine kinase inhibitors (TKIs) now face a number of challenges, including drug resistance and toxic side effects. Treatment strategies now need to be developed from a new perspective. In this review, we assess the current state of TKIs and highlight the role of PTPs in cancer and other diseases. With the advances of allosteric inhibition and the development of multiple alternative proprietary drug strategies, the reputation of PTPs as "undruggable" targets has been overturned, and they are now considered viable therapeutic targets. We also discuss the strategies and prospects of PTP-targeted therapy, as well as its future development.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
- Zhuhai Institute of Jinan University, Zhuhai 511436, China
| |
Collapse
|
3
|
Bernatova I, Bartekova M. Molecular Aspects of Cardiometabolic Diseases: From Etiopathogenesis to Potential Therapeutic Targets. Int J Mol Sci 2024; 25:5841. [PMID: 38892029 PMCID: PMC11172306 DOI: 10.3390/ijms25115841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiometabolic diseases (CMDs) encompass a range of prevalent, often preventable, non-communicable illnesses, including myocardial infarction, stroke, cardiac insufficiency, arterial hypertension, obesity, type 2 diabetes mellitus, insulin resistance, chronic renal dysfunction, non-alcoholic fatty liver disease, and rare metabolic disorders [...].
Collapse
Affiliation(s)
- Iveta Bernatova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371 Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 84104 Bratislava, Slovakia
| |
Collapse
|
4
|
Tang F, Liu D, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H, Peng C. Targeting endothelial cells with golden spice curcumin: A promising therapy for cardiometabolic multimorbidity. Pharmacol Res 2023; 197:106953. [PMID: 37804925 DOI: 10.1016/j.phrs.2023.106953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cardiometabolic multimorbidity (CMM) is an increasingly significant global public health concern. It encompasses the coexistence of multiple cardiometabolic diseases, including hypertension, stroke, heart disease, atherosclerosis, and T2DM. A crucial component to the development of CMM is the disruption of endothelial homeostasis. Therefore, therapies targeting endothelial cells through multi-targeted and multi-pathway approaches hold promise for preventing and treatment of CMM. Curcumin, a widely used dietary supplement derived from the golden spice Carcuma longa, has demonstrated remarkable potential in treatment of CMM through its interaction with endothelial cells. Numerous studies have identified various molecular targets of curcumin (such as NF-κB/PI3K/AKT, MAPK/NF-κB/IL-1β, HO-1, NOs, VEGF, ICAM-1 and ROS). These findings highlight the efficacy of curcumin as a therapeutic agent against CMM through the regulation of endothelial function. It is worth noting that there is a close relationship between the progression of CMM and endothelial damage, characterized by oxidative stress, inflammation, abnormal NO bioavailability and cell adhesion. This paper provides a comprehensive review of curcumin, including its availability, pharmacokinetics, pharmaceutics, and therapeutic application in treatment of CMM, as well as the challenges and future prospects for its clinical translation. In summary, curcumin shows promise as a potential treatment option for CMM, particularly due to its ability to target endothelial cells. It represents a novel and natural lead compound that may offer significant therapeutic benefits in the management of CMM.
Collapse
Affiliation(s)
- Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dong Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Wen W, Zheng H, Li W, Huang G, Chen P, Zhu X, Cao Y, Li J, Huang X, Huang Y. Transcription factor EB: A potential integrated network regulator in metabolic-associated cardiac injury. Metabolism 2023; 147:155662. [PMID: 37517793 DOI: 10.1016/j.metabol.2023.155662] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
With the worldwide pandemic of metabolic diseases, such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD), cardiometabolic disease (CMD) has become a significant cause of death in humans. However, the pathophysiology of metabolic-associated cardiac injury is complex and not completely clear, and it is important to explore new strategies and targets for the treatment of CMD. A series of pathophysiological disturbances caused by metabolic disorders, such as insulin resistance (IR), hyperglycemia, hyperlipidemia, mitochondrial dysfunction, oxidative stress, inflammation, endoplasmic reticulum stress (ERS), autophagy dysfunction, calcium homeostasis imbalance, and endothelial dysfunction, may be related to the incidence and development of CMD. Transcription Factor EB (TFEB), as a transcription factor, has been extensively studied for its role in regulating lysosomal biogenesis and autophagy. Recently, the regulatory role of TFEB in other biological processes, including the regulation of glucose homeostasis, lipid metabolism, etc. has been gradually revealed. In this review, we will focus on the relationship between TFEB and IR, lipid metabolism, endothelial dysfunction, oxidative stress, inflammation, ERS, calcium homeostasis, autophagy, and mitochondrial quality control (MQC) and the potential regulatory mechanisms among them, to provide a comprehensive summary for TFEB as a potential new therapeutic target for CMD.
Collapse
Affiliation(s)
- Weixing Wen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Haoxiao Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Weiwen Li
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Guolin Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Peng Chen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Xiaolin Zhu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Yue Cao
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Jiahuan Li
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation Research, Guangzhou, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| |
Collapse
|
6
|
Das D, Shruthi NR, Banerjee A, Jothimani G, Duttaroy AK, Pathak S. Endothelial dysfunction, platelet hyperactivity, hypertension, and the metabolic syndrome: molecular insights and combating strategies. Front Nutr 2023; 10:1221438. [PMID: 37614749 PMCID: PMC10442661 DOI: 10.3389/fnut.2023.1221438] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023] Open
Abstract
Metabolic syndrome (MetS) is a multifaceted condition that increases the possibility of developing atherosclerotic cardiovascular disease. MetS includes obesity, hypertension, dyslipidemia, hyperglycemia, endothelial dysfunction, and platelet hyperactivity. There is a concerning rise in the occurrence and frequency of MetS globally. The rising incidence and severity of MetS need a proactive, multipronged strategy for identifying and treating those affected. For many MetS patients, achieving recommended goals for healthy fat intake, blood pressure control, and blood glucose management may require a combination of medicine therapy, lifestyles, nutraceuticals, and others. However, it is essential to note that lifestyle modification should be the first-line therapy for MetS. In addition, MetS requires pharmacological, nutraceutical, or other interventions. This review aimed to bring together the etiology, molecular mechanisms, and dietary strategies to combat hypertension, endothelial dysfunction, and platelet dysfunction in individuals with MetS.
Collapse
Affiliation(s)
- Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Nagainallur Ravichandran Shruthi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Ganesan Jothimani
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Asim K. Duttaroy
- Faculty of Medicine, Department of Nutrition, Institute of Medical Sciences, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
7
|
Guillot E, Lemay A, Allouche M, Vitorino Silva S, Coppola H, Sabatier F, Dignat-George F, Sarre A, Peyter AC, Simoncini S, Yzydorczyk C. Resveratrol Reverses Endothelial Colony-Forming Cell Dysfunction in Adulthood in a Rat Model of Intrauterine Growth Restriction. Int J Mol Sci 2023; 24:ijms24119747. [PMID: 37298697 DOI: 10.3390/ijms24119747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Individuals born after intrauterine growth restriction (IUGR) are at risk of developing cardiovascular diseases (CVDs). Endothelial dysfunction plays a role in the pathogenesis of CVDs; and endothelial colony-forming cells (ECFCs) have been identified as key factors in endothelial repair. In a rat model of IUGR induced by a maternal low-protein diet, we observed an altered functionality of ECFCs in 6-month-old males, which was associated with arterial hypertension related to oxidative stress and stress-induced premature senescence (SIPS). Resveratrol (R), a polyphenol compound, was found to improve cardiovascular function. In this study, we investigated whether resveratrol could reverse ECFC dysfunctions in the IUGR group. ECFCs were isolated from IUGR and control (CTRL) males and were treated with R (1 μM) or dimethylsulfoxide (DMSO) for 48 h. In the IUGR-ECFCs, R increased proliferation (5'-bromo-2'-deoxyuridine (BrdU) incorporation, p < 0.001) and improved capillary-like outgrowth sprout formation (in Matrigel), nitric oxide (NO) production (fluorescent dye, p < 0.01), and endothelial nitric oxide synthase (eNOS) expression (immunofluorescence, p < 0.001). In addition, R decreased oxidative stress with reduced superoxide anion production (fluorescent dye, p < 0.001); increased Cu/Zn superoxide dismutase expression (Western blot, p < 0.05); and reversed SIPS with decreased beta-galactosidase activity (p < 0.001), and decreased p16ink4a (p < 0.05) and increased Sirtuin-1 (p < 0.05) expressions (Western blot). No effects of R were observed in the CTRL-ECFCs. These results suggest that R reverses long-term ECFC dysfunctions related to IUGR.
Collapse
Affiliation(s)
- Estelle Guillot
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Anna Lemay
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Manon Allouche
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Sara Vitorino Silva
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Hanna Coppola
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Florence Sabatier
- Center from Cardiovascular and Nutrition Research (C2VN), Institut National de la Santé Et de la Recherche Médicale (INSERM), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
- Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement (INRAe), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
| | - Françoise Dignat-George
- Center from Cardiovascular and Nutrition Research (C2VN), Institut National de la Santé Et de la Recherche Médicale (INSERM), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
- Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement (INRAe), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
| | - Alexandre Sarre
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Anne-Christine Peyter
- Neonatal Research Laboratory, Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Stéphanie Simoncini
- Center from Cardiovascular and Nutrition Research (C2VN), Institut National de la Santé Et de la Recherche Médicale (INSERM), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
- Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement (INRAe), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
| | - Catherine Yzydorczyk
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
8
|
Ngum JA, Tatang FJ, Toumeni MH, Nguengo SN, Simo USF, Mezajou CF, Kameni C, Ngongang NN, Tchinda MF, Dongho Dongmo FF, Akami M, Ngane Ngono AR, Tamgue O. An overview of natural products that modulate the expression of non-coding RNAs involved in oxidative stress and inflammation-associated disorders. Front Pharmacol 2023; 14:1144836. [PMID: 37168992 PMCID: PMC10165025 DOI: 10.3389/fphar.2023.1144836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Oxidative stress is a state in which oxidants are produced in excess in the body's tissues and cells, resulting in a biological imbalance amid the generation of reactive oxygen and nitrogen species (RONS) from redox reactions. In case of insufficient antioxidants to balance, the immune system triggers signaling cascades to mount inflammatory responses. Oxidative stress can have deleterious effects on major macromolecules such as lipids, proteins, and nucleic acids, hence, Oxidative stress and inflammation are among the multiple factors contributing to the etiology of several disorders such as diabetes, cancers, and cardiovascular diseases. Non-coding RNAs (ncRNAs) which were once referred to as dark matter have been found to function as key regulators of gene expression through different mechanisms. They have dynamic roles in the onset and development of inflammatory and oxidative stress-related diseases, therefore, are potential targets for the control of those diseases. One way of controlling those diseases is through the use of natural products, a rich source of antioxidants that have drawn attention with several studies showing their involvement in combating chronic diseases given their enormous gains, low side effects, and toxicity. In this review, we highlighted the natural products that have been reported to target ncRNAs as mediators of their biological effects on oxidative stress and several inflammation-associated disorders. Those natural products include Baicalein, Tanshinone IIA, Geniposide, Carvacrol/Thymol, Triptolide, Oleacein, Curcumin, Resveratrol, Solarmargine, Allicin, aqueous extract or pulp of Açai, Quercetin, and Genistein. We also draw attention to some other compounds including Zanthoxylum bungeanum, Canna genus rhizome, Fuzi-ganjiang herb pair, Aronia melanocarpa, Peppermint, and Gingerol that are effective against oxidative stress and inflammation-related disorders, however, have no known effect on ncRNAs. Lastly, we touched on the many ncRNAs that were found to play a role in oxidative stress and inflammation-related disorders but have not yet been investigated as targets of a natural product. Shedding more light into these two last points of shadow will be of great interest in the valorization of natural compounds in the control and therapy of oxidative stress- and inflammation-associated disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ousman Tamgue
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| |
Collapse
|
9
|
Chilukuri N, Bustamante-Helfrich B, Ji Y, Wang G, Hong X, Cheng TL, Wang X. Maternal folate status and placental vascular malperfusion: Findings from a high-risk US minority birth cohort. Placenta 2022; 129:87-93. [PMID: 36274480 DOI: 10.1016/j.placenta.2022.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Maternal folate deficiency was associated with preeclampsia (PE) and PE was associated with placental maternal vascular malperfusion (MVM). However, no study has examined the association of maternal folate status with placental MVM. METHODS We examined the association of maternal folate status and placental MVM in the Boston Birth Cohort. Primary exposure variables were maternal self-reported multivitamin supplement (<2, 3-5, >5 times/week) per trimester; and plasma folate levels (nmol/L) after birth. Primary outcome was presence/absence of placental MVM defined by the Amsterdam Placental Workshop Group standard classification. Covariates included demographics, chronic hypertension, clinically diagnosed PE, eclampsia and HELLP syndrome, gestational and pre-gestational diabetes, overweight/obesity, maternal cigarette smoking and alcohol use. Associations between folate and placental MVM were evaluated using multivariate logistic regressions. RESULTS Of 3001 mothers in this study, 18.8% of mothers had PE, 37.5% had MVM. Mothers with the lowest self-reported frequency of folate intake had the highest risk of MVM (OR 1.45, 95% CI 1.03-2.05), after adjusting for the covariates. Consistently, among a subset of 939 mothers with plasma folate levels, folate insufficiency was associated with increased risk of MVM (OR 1.65, 95% CI 1.03-2.63), after adjusting for the covariables. As expected, mothers with low folate and placental MVM had highest rates of PE compared to those of high folate and no MVM (p < 0.001). DISCUSSION In this high-risk birth cohort, low maternal folate status was associated with increased risk of placental MVM. Further investigation should explore the association between folate status, placental findings and the great obstetrical syndrome.
Collapse
Affiliation(s)
- Nymisha Chilukuri
- Department of Pediatrics, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Suite 2088, Baltimore, MD, 21287, United States.
| | - Blandine Bustamante-Helfrich
- University of the Incarnate Word School of Osteopathic Medicine, 7615 Kennedy Hill, San Antonio, TX, 78235, United States.
| | - Yuelong Ji
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| | - Guoying Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| | - Tina L Cheng
- University of Cincinnati, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 3016, Cincinnati, OH, 45229-3026, United States.
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| |
Collapse
|
10
|
Ugwor EI, Ugbaja RN, Segun James A, Dosumu OA, Thomas FC, Ezenandu EO, Graham RE. Inhibition of fat accumulation, lipid dysmetabolism, cardiac inflammation, and improved NO signalling mediate the protective effects of lycopene against cardio-metabolic disorder in obese female rats. Nutr Res 2022; 104:140-153. [DOI: 10.1016/j.nutres.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
|
11
|
Zhang Y, Guan Q, Wang Z. PTP1B inhibition ameliorates inflammatory injury and dysfunction in ox‑LDL‑induced HUVECs by activating the AMPK/SIRT1 signaling pathway via negative regulation of KLF2. Exp Ther Med 2022; 24:467. [PMID: 35747159 PMCID: PMC9204542 DOI: 10.3892/etm.2022.11394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/15/2022] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis is a key pathogenic factor of cardiovascular diseases. However, the role of protein tyrosine phosphatase 1B (PTP1B) in oxidized low-density lipoprotein (ox-LDL)-treated vascular endothelial cells remains unclear. The aim of the present study was to explore the possible physiological roles and mechanism of PTP1B in atherosclerosis using HUVECs as an in vitro model. PTP1B expression was assessed by reverse transcription-quantitative PCR. Cell viability was measured using the Cell Counting Kit-8 and lactate dehydrogenase activity assays. Levels of inflammatory factors, including IL-1β, IL-6 and TNF-α, and oxidative stress factors, including malondialdehyde, superoxide dismutase and glutathione peroxidase, were assessed using ELISA and commercially available kits, respectively. Furthermore, TUNEL assay and western blotting were performed to assess the extent of apoptosis-related factors, including Bcl-2, Bax, Cleaved caspase-3 and Caspase-3. Tube formation assay was used to assess tubule formation ability and western blotting was to analyze VEGFA protein level. Binding sites for the transcription factor Kruppel-like factor 2 (KLF2) on the PTP1B promoter were predicted using the JASPAR database and verified using luciferase reporter assays and chromatin immunoprecipitation. The protein levels of phosphorylated 5'AMP-activated protein kinase (p-AMPK), AMPK and SIRT1 were measured using western blotting. The results demonstrated that the PTP1B mRNA and protein expression levels were significantly upregulated in oxidized low-density lipoprotein (ox-LDL)-induced HUVECs. In addition, ox-LDL-induced HUVECs transfected with short hairpin RNA against PTP1B exhibited a significant increase in cell viability, reduced inflammatory factor levels, apoptosis and oxidative stress, as well as increased tubule formation ability. KLF2 was found to negatively regulate the transcriptional activity of PTP1B. KLF2 knockdown reversed the protective effects of PTP1B knockdown on ox-LDL-induced HUVECs. KLF2 knockdown also abolished PTP1B knockdown-triggered AMPK/SIRT1 signaling pathway activation in ox-LDL-induced HUVECs. To conclude, the results of the present study suggested that PTP1B knockdown can prevent ox-LDL-induced inflammatory injury and dysfunction in HUVECs, which is regulated at least in part by the AMPK/SIRT1 signaling pathway through KLF2.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Qiang Guan
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Zhenfeng Wang
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
12
|
Li KX, Wang ZC, Machuki JO, Li MZ, Wu YJ, Niu MK, Yu KY, Lu QB, Sun HJ. Benefits of Curcumin in the Vasculature: A Therapeutic Candidate for Vascular Remodeling in Arterial Hypertension and Pulmonary Arterial Hypertension? Front Physiol 2022; 13:848867. [PMID: 35530510 PMCID: PMC9075737 DOI: 10.3389/fphys.2022.848867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Growing evidence suggests that hypertension is one of the leading causes of cardiovascular morbidity and mortality since uncontrolled high blood pressure increases the risk of myocardial infarction, aortic dissection, hemorrhagic stroke, and chronic kidney disease. Impaired vascular homeostasis plays a critical role in the development of hypertension-induced vascular remodeling. Abnormal behaviors of vascular cells are not only a pathological hallmark of hypertensive vascular remodeling, but also an important pathological basis for maintaining reduced vascular compliance in hypertension. Targeting vascular remodeling represents a novel therapeutic approach in hypertension and its cardiovascular complications. Phytochemicals are emerging as candidates with therapeutic effects on numerous pathologies, including hypertension. An increasing number of studies have found that curcumin, a polyphenolic compound derived from dietary spice turmeric, holds a broad spectrum of pharmacological actions, such as antiplatelet, anticancer, anti-inflammatory, antioxidant, and antiangiogenic effects. Curcumin has been shown to prevent or treat vascular remodeling in hypertensive rodents by modulating various signaling pathways. In the present review, we attempt to focus on the current findings and molecular mechanisms of curcumin in the treatment of hypertensive vascular remodeling. In particular, adverse and inconsistent effects of curcumin, as well as some favorable pharmacokinetics or pharmacodynamics profiles in arterial hypertension will be discussed. Moreover, the recent progress in the preparation of nano-curcumins and their therapeutic potential in hypertension will be briefly recapped. The future research directions and challenges of curcumin in hypertension-related vascular remodeling are also proposed. It is foreseeable that curcumin is likely to be a therapeutic agent for hypertension and vascular remodeling going forwards.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | - Meng-Zhen Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Jie Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-Kai Niu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kang-Ying Yu
- Nursing School of Wuxi Taihu University, Wuxi, China
| | - Qing-Bo Lu
- School of Medicine, Southeast University, Nanjing, China
| | - Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Reily-Bell M, Bahn A, Katare R. Reactive Oxygen Species-Mediated Diabetic Heart Disease: Mechanisms and Therapies. Antioxid Redox Signal 2022; 36:608-630. [PMID: 34011169 DOI: 10.1089/ars.2021.0098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Diabetic heart disease (DHD) is the primary cause of mortality in people with diabetes. A significant contributor to the development of DHD is the disruption of redox balance due to reactive oxygen species (ROS) overproduction resulting from sustained high glucose levels. Therapies specifically focusing on the suppression of ROS will hugely benefit patients with DHD. Recent Advances: In addition to the gold standard pharmacological therapies, the recent development of gene therapy provides an exciting avenue for developing new therapeutics to treat ROS-mediated DHD. In particular, microRNAs (miRNAs) are gaining interest due to their crucial role in several physiological and pathological processes, including DHD. Critical Issues: miRNAs have many targets and differential function depending on the environment. Therefore, a proper understanding of the function of miRNAs in specific cell types and cell states is required for the successful application of this technology. In the present review, we first provide an overview of the role of ROS in contributing to DHD and the currently available treatments. We then discuss the newer gene therapies with a specific focus on the role of miRNAs as the causative factors and therapeutic targets to combat ROS-mediated DHD. Future Directions: The future of miRNA therapeutics in tackling ROS-mediated DHD is dependent on a complete understanding of how miRNAs behave in different cells and environments. Future research should also aim to develop conditional miRNA therapeutic platforms capable of switching on and off in response to disruptions in the redox state. Antioxid. Redox Signal. 36, 608-630.
Collapse
Affiliation(s)
- Matthew Reily-Bell
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - Andrew Bahn
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Sun HJ, Wang ZC, Nie XW, Bian JS. Therapeutic potential of carbon monoxide in hypertension-induced vascular smooth muscle cell damage revisited: from physiology and pharmacology. Biochem Pharmacol 2022; 199:115008. [PMID: 35318039 DOI: 10.1016/j.bcp.2022.115008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 01/14/2023]
Abstract
As a chronic and progressive disorder, hypertension remains to be a serious public health problem around the world. Among the different types of hypertension, pulmonary arterial hypertension (PAH) is a devastating disease associated with pulmonary arteriole remodeling, right ventricular failure and death. The contemporary management of systemic hypertension and PAH has substantially grown since more therapeutic targets and/or agents have been developed. Evolving treatment strategies targeting the vascular remodeling lead to improving outcomes in patients with hypertension, nevertheless, significant advancement opportunities for developing better antihypertensive drugs remain. Carbon monoxide (CO), an active endogenous gasotransmitter along with hydrogen sulfide (H2S) and nitric oxide (NO), is primarily generated by heme oxygenase (HO). Cumulative evidence suggests that CO is considered as an important signaling molecule under both physiological and pathological conditions. Studies have shown that CO confers a number of biological and pharmacological properties, especially its involvement in the pathological process and treatment of hypertension-related vascular remodeling. This review will critically outline the roles of CO in hypertension-associated vascular remodeling and discuss the underlying mechanisms for the protective effects of CO against hypertension and vascular remodeling. In addition, we will propose the challenges and perspectives of CO in hypertensive vascular remodeling. It is expected that a comprehensive understanding of CO in the vasculature might be essential to translate CO to be a novel pharmacological agent for hypertension-induced vascular remodeling.
Collapse
Affiliation(s)
- Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xiao-Wei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, China.
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
15
|
Yang B, Ye Z, Wang Y, Guo H, Lehmler HJ, Huang R, Song E, Song Y. Evaluation of Early Biomarkers of Atherosclerosis Associated with Polychlorinated Biphenyl Exposure: An in Vitro and in Vivo Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37011. [PMID: 35349355 PMCID: PMC8963524 DOI: 10.1289/ehp9833] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Miscellaneous cardiovascular risk factors have been defined, but the contribution of environmental pollutants exposure on cardiovascular disease (CVD) remains underappreciated. OBJECTIVE We investigated the potential impact of typical environmental pollutant exposure on atherogenesis and its underlying mechanisms. METHODS We used human umbilical vein endothelial cells (HUVECs) and apolipoprotein E knockout (ApoE-/-) mice to investigate how 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ, a toxic polychlorinated biphenyl metabolite) affects atherogenesis and identified early biomarkers of CVD associated with PCB29-pQ exposures. Then, we used long noncoding RNAs (lncRNAs) HDAC7-AS1-overexpressing ApoE-/- mice and apolipoprotein E/caveolin 1 double-knockout (ApoE-/-/CAV1-/-) mice to address the role of these early biomarkers in PCB29-pQ-induced atherogenesis. Plasma samples from patients with coronary heart disease (CHD) were also used to confirm our findings. RESULTS Our data indicate that lncRNA HDAC7-AS1 bound to MIR-7-5p via argonaute 2 in PCB29-pQ-challenged HUVECs. Our mRNA sequencing assay identified transforming growth factor-β2 (TGF-β2) as a possible target gene of MIR-7-5p; HDAC7-AS1 sponged MIR-7-5p and inhibited the binding of TGF-β2 to MIR-7-5p. The effect of PCB29-pQ-induced endothelial injury, vascular inflammation, development of plaques, and atherogenesis in ApoE-/- mice was greater with MIR-7-5p-mediated TGF-β2 inhibition, whereas HDAC7-AS1-overexpressing ApoE-/- mice and ApoE-/-/CAV1-/- mice showed the opposite effect. Consistently, plasma levels of HDAC7-AS1 and MIR-7-5p were found to be significantly associated individuals diagnosed with CHD. DISCUSSIONS These findings demonstrated that a mechanism-based, integrated-omics approach enabled the identification of potentially clinically relevant diagnostic indicators and therapeutic targets of CHD mediated by environmental contaminants using in vitro and in vivo models of HUVECs and ApoE-/- and ApoE-/-/CAV1-/- mice. https://doi.org/10.1289/EHP9833.
Collapse
Affiliation(s)
- Bingwei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhishuai Ye
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yawen Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Hongzhou Guo
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Li C, Wang D, Jiang Z, Gao Y, Sun L, Li R, Chen M, Lin C, Liu D. Non-coding RNAs in diabetes mellitus and diabetic cardiovascular disease. Front Endocrinol (Lausanne) 2022; 13:961802. [PMID: 36147580 PMCID: PMC9487522 DOI: 10.3389/fendo.2022.961802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
More than 10% of the world's population already suffers from varying degrees of diabetes mellitus (DM), but there is still no cure for the disease. Cardiovascular disease (CVD) is one of the most common and dangerous of the many health complications that can be brought on by DM, and has become the leading cause of death in people with diabetes. While research on DM and associated CVD is advancing, the specific mechanisms of their development are still unclear. Given the threat of DM and CVD to humans, the search for new predictive markers and therapeutic ideas is imminent. Non-coding RNAs (ncRNAs) have been a popular subject of research in recent years. Although they do not encode proteins, they play an important role in living organisms, and they can cause disease when their expression is abnormal. Numerous studies have observed aberrant ncRNAs in patients with DM complications, suggesting that they may play an important role in the development of DM and CVD and could potentially act as biomarkers for diagnosis. There is additional evidence that treatment with existing drugs for DM, such as metformin, alters ncRNA expression levels, suggesting that regulation of ncRNA expression may be a key mechanism in future DM treatment. In this review, we assess the role of ncRNAs in the development of DM and CVD, as well as the evidence for ncRNAs as potential therapeutic targets, and make use of bioinformatics to analyze differential ncRNAs with potential functions in DM.
Collapse
Affiliation(s)
- Chengshun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Minqi Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|
17
|
Song X, Meng J, Yan G, Wang H, Li H, Lou D. Semaphorin 7A knockdown improves injury and prevents endothelial-to-mesenchymal transition in ox-LDL-induced HUVECs by regulating β1 integrin expression. Exp Ther Med 2021; 22:1441. [PMID: 34721683 PMCID: PMC8549106 DOI: 10.3892/etm.2021.10876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the most common cause of cardiovascular disease and is accompanied by high mortality rates and a poor prognosis. Semaphorin 7A (Sema7A) and its receptor β1 integrin have been reported to participate in the development of atherosclerosis. However, the role of Sema7A and β1 integrin in endothelial cell injury and endothelial-to-mesenchymal transition (EMT) in atherosclerosis remains undetermined, to the best of our knowledge. The mRNA and protein expression levels of Sema7A and β1 integrin in HUVECs were analyzed using reverse transcription-quantitative PCR (RT-qPCR) and western blot analyses, respectively. HUVECs were induced with 50 µg/ml oxidized low-density lipoprotein (ox-LDL) to establish an atherosclerosis cell model. Cell viability was measured using Cell Counting Kit-8 assay and the production of IL-1β, IL-6 and C-C motif chemokine ligand 2 was determined using ELISA. The expression levels of cell adhesion factors, intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 were analyzed using RT-qPCR and western blot analyses. Cell apoptosis was detected using flow cytometry and western blotting. The levels of EMT-related markers were evaluated using RT-qPCR, western blotting and immunofluorescence staining. The results of the present study revealed that the expression levels of Sema7A and β1 integrin were significantly upregulated in ox-LDL-treated HUVECs. Treatment with ox-LDL significantly decreased cell viability, and increased the levels of inflammatory and adhesion factors, the cell apoptotic rate and the expression levels of EMT-related proteins. Knockdown of Sema7A reversed the ox-LDL-induced inflammatory responses and EMT, while the overexpression of β1 integrin reversed the Sema7A-mediated inhibitory effects on ox-LDL-treated HUVECs. In conclusion, the findings of the present study indicated that Sema7A and β1 integrin may play significant roles in atherosclerosis by mediating endothelial cell injury and EMT progression.
Collapse
Affiliation(s)
- Xiaoying Song
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jing Meng
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Guoliang Yan
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Haihui Wang
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Haitao Li
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Danfei Lou
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
18
|
Wang C, Li Z, Liu Y, Yuan L. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Am J Cancer Res 2021; 11:3996-4010. [PMID: 33664877 PMCID: PMC7914371 DOI: 10.7150/thno.56035] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanosized lipid vesicles originating from the endosomal system that carry many macromolecules from their parental cells and play important roles in intercellular communication. The functions and underlying mechanisms of exosomes in atherosclerosis have recently been intensively studied. In this review, we briefly introduce exosome biology and then focus on advances in the roles of exosomes in atherosclerosis, specifically exosomal changes associated with atherosclerosis, their cellular origins and potential functional cargos, and their detailed impacts on recipient cells. We also discuss the potential of exosomes as biomarkers and drug carriers for managing atherosclerosis.
Collapse
|
19
|
Jiang Y, Sun-Waterhouse D, Chen Y, Li F, Li D. Epigenetic mechanisms underlying the benefits of flavonoids in cardiovascular health and diseases: are long non-coding RNAs rising stars? Crit Rev Food Sci Nutr 2021; 62:3855-3872. [PMID: 33427492 DOI: 10.1080/10408398.2020.1870926] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVDs) rank as the first leading cause of death globally. High dietary polyphenol (especially flavonoids) intake has strongly been associated with low incidence of the primary outcome, overall mortality, blood pressure, inflammatory biomarkers, onset of new-onset type 2 diabetes mellitus (T2DM), and obesity. Phytogenic flavonoids affect the physiological and pathological processes of CVDs by modulating various biochemical signaling pathways. Non-coding RNAs (ncRNAs) have attracted increasing attention as fundamental regulator of gene expression involved in CVDs. Among the different ncRNA subgroups, long ncRNAs (lncRNAs) have recently emerged as regulatory eukaryotic transcripts and therapeutic targets with important and diverse functions in health and diseases. lncRNAs may be associated with the initiation, development and progression of CVDs by modulating acute and chronic inflammation, adipogenesis and lipid metabolism, and cellular physiology. This review summarizes this research on the modulatory effects of lncRNAs and their roles in mediating cellular processes. The mechanisms of action of flavonoids underlying their therapeutic effects on CVDs are also discussed. Based on our review, flavonoids might facilitate a significant epigenetic modification as part (if not full) of their tissue-/cell-related biological effects. This finding may be attributed to their interaction with cellular signaling pathways involved in chronic diseases. Certain lncRNAs might be the target of specific flavonoids, and some critical signaling processes involved in the intervention of CVDs might mediate the therapeutic roles of flavonoids.
Collapse
Affiliation(s)
- Yang Jiang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| | | | - Yilun Chen
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| | - Feng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| | - Dapeng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| |
Collapse
|
20
|
Bo Y, Zhu Y, Tao Y, Li X, Zhai D, Bu Y, Wan Z, Wang L, Wang Y, Yu Z. Association Between Folate and Health Outcomes: An Umbrella Review of Meta-Analyses. Front Public Health 2020; 8:550753. [PMID: 33384976 PMCID: PMC7770110 DOI: 10.3389/fpubh.2020.550753] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background: There is no study that has systematically investigated the breadth and validity of the associations of folate and multiple health outcomes. We aimed to evaluate the quantity, validity, and credibility of evidence regarding associations between folate and multiple health outcomes by using umbrella review of meta-analysis. Methods: We searched the MEDLINE, EMBASE, and Cochrane Library databases from inception to May 20, 2018, to identify potential meta-analyses that examined the association of folate with any health outcome. For each included meta-analysis, we estimated the summary effect size and their 95% confidence interval using the DerSimonian and Laird random-effects model. We used the AMSTAR 2 (A Measurement Tool to Assess Systematic Reviews) to assess methodological quality and the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation working group classification) to assess the quality of evidence for each outcome included in the umbrella review. Results: Overall, 108 articles reporting 133 meta-analyses of observational studies and 154 meta-analyses of randomized controlled trials (RCTs) were included in the study. Among them, 108 unique exposure-outcome-population triplets (referred to as unique meta-analyses hereafter) of RCTs and 87 unique meta-analyses of observational studies were reanalyzed. Beneficial effects of folate were observed in the all-cause mortality rate and in a number of chronic diseases, including several birth/pregnancy outcomes, several cancers, cardiovascular disease and metabolic-related outcomes, neurological conditions, and several other diseases. However, adverse effects of folate were observed for prostate cancer, colorectal adenomatous lesions, asthma or wheezing, and wheezing as an isolated symptom and depression. Conclusions: Current evidence allows for the conclusion that folate is associated with decreased risk of all-cause mortality and a wide range of chronic diseases. However, folate may be associated with an increased risk of prostate cancer. Further research is warranted to improve the certainty of the estimates.
Collapse
Affiliation(s)
- Yacong Bo
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yongjian Zhu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuchang Tao
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xue Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China.,Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Desheng Zhai
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yongjun Bu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Zhongxiao Wan
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ling Wang
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuming Wang
- Department of Administration, Henan University People's Hospital, Zhengzhou, China
| | - Zengli Yu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
21
|
MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res 2020; 44:129-146. [DOI: 10.1038/s41440-020-00553-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
|
22
|
Extracellular Vesicle-Mediated Vascular Cell Communications in Hypertension: Mechanism Insights and Therapeutic Potential of ncRNAs. Cardiovasc Drugs Ther 2020; 36:157-172. [PMID: 32964302 DOI: 10.1007/s10557-020-07080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Hypertension, a chronic and progressive disease, is an outstanding public health issue that affects nearly 40% of the adults worldwide. The increasing prevalence of hypertension is one of the leading causes of cardiovascular morbidity and mortality. Despite of the available treatment medications, an increasing number of hypertensive individuals continues to have uncontrolled blood pressure. In the vasculature, endothelial cells, vascular smooth muscle cells (VSMCs), and adventitial fibroblasts play a fundamental role in vascular homeostasis. The aberrant interactions between vascular cells might lead to hypertension and vascular remodeling. Identification of the precise mechanisms of vascular remodeling may be highly required to develop effective therapeutic approaches for hypertension. Recently, extracellular vesicle-mediated transfer of proteins or noncoding RNAs (ncRNAs) between vascular cells holds promise for the treatment of hypertension. Especially, extracellular vesicle-packaging ncRNAs have gained enormous attention of basic and clinical scientists because of their tremendous potential to act as novel clinical biomarkers and therapeutic targets of hypertension. Here we will discuss the current findings focusing on the emerging roles of extracellular vesicle-carrying ncRNAs in the pathologies of hypertension and its associated vascular remodeling. Furthermore, we will highlight the potential of extracellular vesicles and ncRNAs as biomarkers and therapeutic targets for hypertension. The future research directions on the challenges and perspectives of extracellular vesicles and ncRNAs in hypertensive vascular remodeling are also proposed.
Collapse
|
23
|
Ma X, Zhang J, Wu Z, Wang X. Chicoric acid attenuates hyperglycemia-induced endothelial dysfunction through AMPK-dependent inhibition of oxidative/nitrative stresses. J Recept Signal Transduct Res 2020; 41:378-392. [PMID: 32900249 DOI: 10.1080/10799893.2020.1817076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Endothelial dysfunction is a driving force during the development and progression of cardiovascular complications in diabetes. Targeting endothelial injury may be an attractive avenue for the management of diabetic vascular disorders. Chicoric acid is reported to confer antioxidant and anti-inflammatory properties in various diseases including diabetes. However, the role and mechanism of chicoric acid in hyperglycemia-induced endothelial damage are not well understood. METHODS In the present study, human umbilical vein endothelial cells (HUVECs) were incubated with high glucose/high fat (HG + HF) to induce endothelial cell injury. RESULTS We found that exposure of HUVECs to HG + HF medium promoted the release of cytochrome c (cytc) from mitochondrion into the cytoplasm, stimulated the cleavage of caspase-3 and poly ADP-ribose-polymerase (PARP), then inducing cell apoptosis, the effects that were prevented by administration of chicoric acid. Besides, we found that chicoric acid diminished HG + HF-induced phosphorylation and degradation of IκBα, and subsequent p65 NFκB nuclear translocation, thereby contributing to its anti-inflammatory effects in HUVECs. We also confirmed that chicoric acid mitigated oxidative/nitrative stresses under HG + HF conditions. Studies aimed at exploring the underlying mechanisms found that chicoric acid activated the AMP-activated protein kinase (AMPK) signaling pathway to attenuate HG + HF-triggered injury in HUVECs as AMPK inhibitor Compound C or silencing of AMPKα1 abolished the beneficial effects of chicoric acid in HUVECs. CONCLUSION Collectively, chicoric acid is likely protected against diabetes-induced endothelial dysfunction by activation of the AMPK signaling pathway. Chicoric acid could be a novel candidate for the treatment of the diabetes-associated vascular endothelial injury.
Collapse
Affiliation(s)
- Xiaojuan Ma
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Junli Zhang
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Zejie Wu
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Xia Wang
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
24
|
Sun HJ, Wu ZY, Cao L, Zhu MY, Nie XW, Huang DJ, Sun MT, Bian JS. Role of nitroxyl (HNO) in cardiovascular system: From biochemistry to pharmacology. Pharmacol Res 2020; 159:104961. [DOI: 10.1016/j.phrs.2020.104961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022]
|
25
|
Dong Y, Fan G, Li Y, Zhou Q. TUG1 Represses Apoptosis, Autophagy, and Inflammatory Response by Regulating miR-27a-3p/SLIT2 in Lipopolysaccharide-Treated Vascular Endothelial Cells. J Surg Res 2020; 256:345-354. [PMID: 32738556 DOI: 10.1016/j.jss.2020.05.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The dysfunction of vascular endothelial cells is associated with sepsis development. Long noncoding RNAs take part in the regulation of vascular endothelial cell function. This study aimed to explore the role and mechanism of long noncoding RNA taurine-upregulated gene 1 (TUG1) in lipopolysaccharide (LPS)-induced endothelial cell injury. METHODS LPS-treated human umbilical vein endothelial cells (HUVECs) were used as a model of sepsis in vitro. Quantitative real-time polymerase chain reaction was performed to detect the expression of TUG1, microRNA-27a-3p (miR-27a-3p) and slit guidance ligand 2 (SLIT2) messenger RNA. Western blot was conducted to measure the protein levels of SLIT2 as well as those involved in apoptosis, autophagy, and inflammatory response. Flow cytometry was used to detect cell apoptotic rate. The targets of TUG1 and miR-27a-3p were predicted via starBase (http://starbase.sysu.edu.cn/index.php). Dual-luciferase reporter, RNA immunoprecipitation, and pull-down assays were carried out to validate the target correlation between miR-27a-3p and TUG1/SLIT2. RESULTS TUG1 expression was decreased after the treatment of LPS in HUVECs. Overexpression of TUG1 decreased LPS-induced apoptosis, autophagy, and inflammatory response. TUG1 was a sponge of miR-27a-3p. Upregulation of miR-27a-3p reversed the suppressive effect of TUG1 overexpression on LPS-induced apoptosis, autophagy, and inflammatory response. SLIT2 was a target of miR-27a-3p. Knockdown of miR-27a-3p could inhibit LPS-induced injury by increasing SLIT2 in HUVECs. TUG1 could enhance SLIT2 expression by competitively sponging miR-27a-3p. CONCLUSIONS TUG1 could repress cell apoptosis, autophagy, and inflammatory response in LPS-treated HUVECs by sponging miR-27a-3p to target SLIT2, providing a potential target for the treatment of sepsis.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Department of Respiratory Medicine, The People's Hospital of Shiyan, (Affiliated People's Hospital of Hubei University of Medicine), Shiyan, Hubei, China
| | - Gongchun Fan
- Department of Respiratory Medicine, The People's Hospital of Shiyan, (Affiliated People's Hospital of Hubei University of Medicine), Shiyan, Hubei, China
| | - Yanhong Li
- Department of Respiratory Medicine, The People's Hospital of Shiyan, (Affiliated People's Hospital of Hubei University of Medicine), Shiyan, Hubei, China
| | - Qin Zhou
- Department of Respiratory Medicine, The People's Hospital of Shiyan, (Affiliated People's Hospital of Hubei University of Medicine), Shiyan, Hubei, China.
| |
Collapse
|
26
|
Zhang JR, Sun HJ. LncRNAs and circular RNAs as endothelial cell messengers in hypertension: mechanism insights and therapeutic potential. Mol Biol Rep 2020; 47:5535-5547. [PMID: 32567025 DOI: 10.1007/s11033-020-05601-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Endothelial cells are major constituents in the vasculature, and they act as important players in vascular homeostasis via secretion/release of vasodilators and vasoconstrictors. In healthy arteries, endothelial cells play a key role in the regulation of vascular tone, cellular adhesion, and angiogenesis. A shift in the functions of the blood vessels toward vasoconstriction, proinflammatory state, oxidative stress and deficiency of nitric oxide (NO) might lead to endothelial dysfunction, a key event implicated in the pathophysiology of cardiovascular metabolic diseases, including diabetes, atherosclerosis, arterial hypertension and pulmonary arterial hypertension (PAH). Thus, reversibility of endothelial dysfunction may be beneficial for maintaining vascular homeostasis. In recent years, accumulative evidence has documented that noncoding RNAs (ncRNAs) are critically involved in endothelial homeostasis. Specifically, long noncoding RNAs (lncRNAs) and circular RNAs are highly expressed in endothelial cells where they serve as important mediators in normal endothelial functions. Dysregulation of lncRNAs and circular RNAs has been tightly associated with hypertension-related endothelial dysfunction. In this review, we will summarize the current progression and underlying mechanisms of lncRNA and circular RNA in endothelial cell biology under hypertensive conditions. We will also highlight their potential as biomarkers or therapeutic targets for hypertension and its associated endothelial dysfunction.
Collapse
Affiliation(s)
- Ji-Ru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Wuxi, 214062, People's Republic of China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China. .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
27
|
Crosstalk of lncRNA and Cellular Metabolism and Their Regulatory Mechanism in Cancer. Int J Mol Sci 2020; 21:ijms21082947. [PMID: 32331347 PMCID: PMC7215767 DOI: 10.3390/ijms21082947] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023] Open
Abstract
The imbalanced regulation of metabolic homeostasis and energy production is highly associated with inflammation, tumor growth, metastasis and cancer progression. Both glycolysis and oxidative phosphorylation maintain metabolic homeostasis and energy production in cells. Long noncoding RNAs (lncRNAs) are a class of non-protein-coding transcripts longer than 200 nucleotides. Furthermore, lncRNAs can function as either tumor suppressors or oncogenes in cancer. Dysregulated lncRNAs reportedly regulate cancer hallmarks such as tumor growth, metabolism and metastasis. Accordingly, uncovering the interaction between lncRNAs and cellular metabolism has become a necessity when attempting to identify effective therapeutic and preventive strategies in cancer progression. This review summarizes important knowledge of the actions of known lncRNAs-mediated cancer metabolism.
Collapse
|
28
|
Huang Z, Liu J, Li L, Guo Y, Luo Q, Li J. Long non-coding RNA expression profiling of macrophage line RAW264.7 infected by Mycobacterium tuberculosis. Biotech Histochem 2020; 95:403-410. [PMID: 32077318 DOI: 10.1080/10520295.2019.1707874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in regulation of biological processes. The role of lncRNAs in macrophages in response to Mycobacterium tuberculosis infection has not been explored. We used high throughput lncRNA microarray analysis to detect differentially expressed lncRNAs and mRNAs in RAW264.7 macrophages with or without M. tuberculosis infection. Quantitative real-time PCR (qRT-PCR) was used to verify the microarray results. Bioinformatics analysis (GO and KEGG) were used to explore the function of significantly dysregulated genes. Microarray results indicated that 1,487 lncRNAs (791 up and 696 down) and 910 mRNAs (536 up and 374 down) were expressed differentially in RAW264.7 macrophages with M. tuberculosis infection compared to controls. GO and pathway analysis revealed that up-regulated mRNAs were involved in immune response, immune system process, system development or TNF signaling pathway, and antigen processing and presentation. To the contrary, down-regulated mRNAs participated in system development, regulation of biological processes and peroxisome proliferator-activated receptor (PPAR) signaling pathway. qRT-PCR results of 10 lncRNAs and mRNAs were consistent with the microarray data. M. tuberculosis infection of macrophages caused enhanced expression of lncRNA AK151345 in a time- and dose-dependent manner. We determined comprehensive expression profiles of differentially expressed lncRNAs in RAW264.7 macrophages infected by M. tuberculosis.
Collapse
Affiliation(s)
- Zikun Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University , Nanchang 330006, China
| | - Jianing Liu
- 2014 grade of Queen Mary Department of Medical College of Nanchang University , Nanchang 330006, China
| | - Lu Li
- 2014 grade of Queen Mary Department of Medical College of Nanchang University , Nanchang 330006, China
| | - Yang Guo
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University , Nanchang 330006, China
| | - Qing Luo
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University , Nanchang 330006, China
| | - Junming Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University , Nanchang 330006, China
| |
Collapse
|
29
|
Wu X, Zheng X, Cheng J, Zhang K, Ma C. LncRNA TUG1 regulates proliferation and apoptosis by regulating miR-148b/IGF2 axis in ox-LDL-stimulated VSMC and HUVEC. Life Sci 2020; 243:117287. [DOI: 10.1016/j.lfs.2020.117287] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022]
|
30
|
Sun HJ, Wu ZY, Nie XW, Bian JS. Role of Endothelial Dysfunction in Cardiovascular Diseases: The Link Between Inflammation and Hydrogen Sulfide. Front Pharmacol 2020; 10:1568. [PMID: 32038245 PMCID: PMC6985156 DOI: 10.3389/fphar.2019.01568] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells are important constituents of blood vessels that play critical roles in cardiovascular homeostasis by regulating blood fluidity and fibrinolysis, vascular tone, angiogenesis, monocyte/leukocyte adhesion, and platelet aggregation. The normal vascular endothelium is taken as a gatekeeper of cardiovascular health, whereas abnormality of vascular endothelium is a major contributor to a plethora of cardiovascular ailments, such as atherosclerosis, aging, hypertension, obesity, and diabetes. Endothelial dysfunction is characterized by imbalanced vasodilation and vasoconstriction, elevated reactive oxygen species (ROS), and proinflammatory factors, as well as deficiency of nitric oxide (NO) bioavailability. The occurrence of endothelial dysfunction disrupts the endothelial barrier permeability that is a part of inflammatory response in the development of cardiovascular diseases. As such, abrogation of endothelial cell activation/inflammation is of clinical relevance. Recently, hydrogen sulfide (H2S), an entry as a gasotransmitter, exerts diverse biological effects through acting on various targeted signaling pathways. Within the cardiovascular system, the formation of H2S is detected in smooth muscle cells, vascular endothelial cells, and cardiomyocytes. Disrupted H2S bioavailability is postulated to be a new indicator for endothelial cell inflammation and its associated endothelial dysfunction. In this review, we will summarize recent advances about the roles of H2S in endothelial cell homeostasis, especially under pathological conditions, and discuss its putative therapeutic applications in endothelial inflammation-associated cardiovascular disorders.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
31
|
Coco C, Sgarra L, Potenza MA, Nacci C, Pasculli B, Barbano R, Parrella P, Montagnani M. Can Epigenetics of Endothelial Dysfunction Represent the Key to Precision Medicine in Type 2 Diabetes Mellitus? Int J Mol Sci 2019; 20:ijms20122949. [PMID: 31212911 PMCID: PMC6628049 DOI: 10.3390/ijms20122949] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
In both developing and industrialized Countries, the growing prevalence of Type 2 Diabetes Mellitus (T2DM) and the severity of its related complications make T2DM one of the most challenging metabolic diseases worldwide. The close relationship between genetic and environmental factors suggests that eating habits and unhealthy lifestyles may significantly affect metabolic pathways, resulting in dynamic modifications of chromatin-associated proteins and homeostatic transcriptional responses involved in the progression of T2DM. Epigenetic mechanisms may be implicated in the complex processes linking environmental factors to genetic predisposition to metabolic disturbances, leading to obesity and type 2 diabetes mellitus (T2DM). Endothelial dysfunction represents an earlier marker and an important player in the development of this disease. Dysregulation of the endothelial ability to produce and release vasoactive mediators is recognized as the initial feature of impaired vascular activity under obesity and other insulin resistance conditions and undoubtedly concurs to the accelerated progression of atherosclerotic lesions and overall cardiovascular risk in T2DM patients. This review aims to summarize the most current knowledge regarding the involvement of epigenetic changes associated with endothelial dysfunction in T2DM, in order to identify potential targets that might contribute to pursuing “precision medicine” in the context of diabetic illness.
Collapse
Affiliation(s)
- Celeste Coco
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Luca Sgarra
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Assunta Potenza
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Carmela Nacci
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Barbara Pasculli
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (Foggia), Italy.
| | - Raffaela Barbano
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (Foggia), Italy.
| | - Paola Parrella
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (Foggia), Italy.
| | - Monica Montagnani
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| |
Collapse
|
32
|
Persil-Ozkan O, Yigit E, Yigit Z. Does weight loss affect the parameters that are metabolically related to cardiovascular diseases? Saudi Med J 2019; 40:347-352. [PMID: 30957127 PMCID: PMC6506665 DOI: 10.15537/smj.2019.4.24007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To assess the differences in the parameters that are metabolically related to cardiovascular diseases after weight loss in obese people with coronary artery diseases (CADs). METHODS This study was conducted on 184 patients who were diagnosed with CADs in Istanbul University Cardiology Institute Hospital, Istanbul, Turkey. The levels of leptin, fibrinogen, homocysteine, high-sensitivity C-reactive protein (hs-CRP), triglycerides, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol (LDL-C), fasting blood glucose and insulin, glycated hemoglobin, and uric acid of the obese patients who were put on calorie restricted diet were evaluated retrospectively and compared before and after weight loss. For comparison, non-obese control patients were also studied. Student's t-test and Chi-square test were used for the statistical analysis. Results: Levels of homocysteine, glycated hemoglobin, and leptin were significantly higher in the obese patients than in the non-obese patients. Diabetic obese patients with CADs lost (11.1%) and non-diabetic obese patients with CADs lost (10.5%) of their body weight in 6 months. The levels of cholesterol, LDL-C, and fibrinogen were significantly improved in both groups. Conclusion: The obese patients lost weight after being on calorie-restricted diets and showed significant improvement in the levels of cholesterol, LDL-C, fibrinogen. There was no significant difference in the levels of homocysteine, hs-CRP, and leptin before and after weight loss in both diabetic and non-diabetic obese patients.
Collapse
Affiliation(s)
- Ozlem Persil-Ozkan
- Department of Nutrition and Dietetics, Istanbul Arel University, Istanbul, Turkey. E-mail.
| | | | | |
Collapse
|
33
|
Long Noncoding RNAs in the Regulation of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1318795. [PMID: 30911342 PMCID: PMC6398004 DOI: 10.1155/2019/1318795] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/29/2018] [Accepted: 12/18/2018] [Indexed: 12/25/2022]
Abstract
Oxidative stress takes responsibility for various diseases, such as chronic obstructive pulmonary disease (COPD), Alzheimer's disease (AD), and cardiovascular disease; nevertheless, there is still a lack of specific biomarkers for the guidance of diagnosis and treatment of oxidative stress-related diseases. In recent years, growing studies have documented that oxidative stress has crucial correlations with long noncoding RNAs (lncRNAs), which have been identified as important transcriptions involving the process of oxidative stress, inflammation, etc. and been regarded as the potential specific biomarkers. In this paper, we review links between oxidative stress and lncRNAs, highlight lncRNAs that refer to oxidative stress, and conclude that lncRNAs have played a negative or positive role in the oxidation/antioxidant system, which may be helpful for the further investigation of specific biomarkers of oxidative stress-related diseases.
Collapse
|
34
|
Ju C, Sheng Z, Wang Q, Li Y, Wang X, Li S, Qi Q, Yuan Z. Advanced glycation end products of bovine serum albumin affect the cell growth of human umbilical vein endothelial cells via modulation of MEG3/miR-93/p21 pathway. Acta Biochim Biophys Sin (Shanghai) 2019; 51:41-50. [PMID: 30544204 DOI: 10.1093/abbs/gmy147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022] Open
Abstract
Advanced glycation end products of BSA (AGE-BSA) contribute to the pathogenesis of diabetic vascular diseases. However, the roles and underlying mechanisms of AGE-BSA in diabetic vascular diseases remain largely unclear. Long non-coding RNAs (lncRNAs) are widely identified and known as gene regulators. However, the roles of lncRNAs in diabetic vascular disease are still vague. In this study, we sought to investigate the contributions of lncRNAs in human umbilical vein endothelial cells (HUVECs) treated with AGE-BSA. We first demonstrated that AGE-BSA reduced the cell viability and inhibited the cell proliferation of HUVECs. Then, we found that lncRNA MEG3 was up-regulated in HUVECs treated with AGE-BSA. Furthermore, inhibition of MEG3 restored the AGE-BSA-induced repression of cell viability and proliferation. In addition, our results revealed that MEG3 played its role via modulation of miR-93 expression in HUVECs treated with AGE-BSA. Furthermore, we illustrated that miR-93 played its role via regulation of p21 in HUVECs treated with AGE-BSA. Ultimately, our study displayed that AGE-BSA exerted its function via modulation of MEG3/miR-93/p21 pathway in HUVECs. Thus, for the first time, we identified the MEG3/miR-93/p21 axis in HUVECs treated with AGE-BSA, which might be a novel regulatory network in diabetic vascular cells, and possess the potential therapeutic value for diabetes mellitus.
Collapse
Affiliation(s)
- Chengwei Ju
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Zulong Sheng
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Qiuyun Wang
- Department of Cardiology, Ruijin Hospital, Shanghai, China
| | - Yongjun Li
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xin Wang
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Sen Li
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai, China
| | - Quan Qi
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai, China
| | - Zhize Yuan
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai, China
| |
Collapse
|
35
|
Yang M, Wang M, Li X, Xie Y, Xia X, Tian J, Zhang K, Tang A. The role of lncRNAs in signaling pathway implicated in CC. J Cell Biochem 2018; 120:2703-2712. [PMID: 30552693 DOI: 10.1002/jcb.26835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Min Yang
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
- Department of Laboratory Medicine The Sixth Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Min Wang
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Xianping Li
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Yixin Xie
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Jingjing Tian
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Kan Zhang
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Aiguo Tang
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
36
|
Hou X, Yang S, Yin J. Blocking the REDD1/TXNIP axis ameliorates LPS-induced vascular endothelial cell injury through repressing oxidative stress and apoptosis. Am J Physiol Cell Physiol 2018; 316:C104-C110. [PMID: 30485138 DOI: 10.1152/ajpcell.00313.2018] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to investigate the potential role of regulated in development and DNA damage response 1 (REDD1) in LPS-induced vascular endothelial injury by using human umbilical vein endothelial cells (HUVECs). We observed that REDD1 expression was apparently elevated in HUVECs after exposure to LPS. Additionally, elimination of REDD1 strikingly attenuated the secretion of the proinflammatory cytokines TNF-α, IL-6, IL-1β, and monocyte chemotactic protein-1 and the endothelial cell adhesion markers ICAM-1 and VCAM-1 that was induced by LPS stimulation. Subsequently, knockdown of REDD1 augmented cell viability but ameliorated lactate dehydrogenase release in HUVECs stimulated with LPS. Meanwhile, depletion of REDD1 effectively restricted LPS-induced HUVEC apoptosis, as exemplified by reduced DNA fragmentation, and it also elevated antiapoptotic Bcl-2 protein, concomitant with reduced levels of proapoptotic proteins Bax and cleaved caspase-3. Furthermore, repression of REDD1 remarkably alleviated LPS-triggered intracellular reactive oxygen species generation accompanied by decreased malondialdehyde content and increased the activity of the endogenous antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. Most important, depletion of REDD1 protected HUVECs against inflammation-mediated apoptosis and oxidative damage partly through thioredoxin-interacting protein (TXNIP). Collectively, these findings indicate that blocking the REDD1/TXNIP axis repressed the inflammation-mediated vascular injury process, which may be closely related to oxidative stress and apoptosis in HUVECs, implying that the REDD1/TXNIP axis may be a new target for preventing the endothelial cell injury process.
Collapse
Affiliation(s)
- Xuhui Hou
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University , Changchun , People's Republic of China
| | - Songbai Yang
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University , Changchun , People's Republic of China
| | - Jian Yin
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University , Changchun , People's Republic of China
| |
Collapse
|
37
|
Zhang HN, Xu QQ, Thakur A, Alfred MO, Chakraborty M, Ghosh A, Yu XB. Endothelial dysfunction in diabetes and hypertension: Role of microRNAs and long non-coding RNAs. Life Sci 2018; 213:258-268. [PMID: 30342074 DOI: 10.1016/j.lfs.2018.10.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
The vascular endothelium acts as a barrier between the blood flow and the inner lining of the vessel wall, and it functions as a filtering machinery to filter out any unwanted transfer of materials from both sides (i.e. the blood and the surrounding tissues). It is evident that diseases such as diabetes, obesity, and hypertension disturb the normal endothelial functions in humans and lead to endothelial dysfunction, which may further precede to the development of atherosclerosis. Long non-coding RNAs and micro RNAs both are types of non-coding RNAs which, in the recent years, have increasingly been studied in the pathophysiology of many diseases including diabetes, obesity, cardiovascular diseases, neurological diseases, and others. Recent findings have pointed out important aspects on their relevance to endothelial function as well as dysfunction of the system which may arise from presence of diseases such as diabetes and hypertension. Diabetes or hypertension-mediated endothelial dysfunction show characteristics such as reduced nitric oxide synthesis through suppression of endothelial nitric oxide synthase activity in endothelial cells, reduced sensitivity of nitric oxide in smooth muscle cells, and inflammation - all of which have been either shown to be directly caused by gene regulatory mechanisms of non-coding RNAs or shown to be having a correlation with them. In this review, we aim to discuss such findings on the role of these non-coding RNAs in diabetes or hypertension-associated endothelial dysfunction and the related mechanisms that may pave the way for alleviating endothelial dysfunction and its related complications such as atherosclerosis.
Collapse
Affiliation(s)
- Hai-Na Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiao-Qiao Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Abhimanyu Thakur
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology Mesra, Ranchi, India
| | - Martin Omondi Alfred
- Institute of Primate Research, Nairobi, Kenya; School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Manas Chakraborty
- Department of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Arunima Ghosh
- Department of Medical Coding Analysis - Emblem Health, Cognizant Technology Solutions India Pvt Ltd., Bangalore, India
| | - Xu-Ben Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
38
|
Laham-Karam N, Laitinen P, Turunen TA, Ylä-Herttuala S. Activating the Chromatin by Noncoding RNAs. Antioxid Redox Signal 2018; 29:813-831. [PMID: 28699365 DOI: 10.1089/ars.2017.7248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE The extent and breadth of transcription have recently been uncovered and this has revealed an extensive array of noncoding RNAs (ncRNAs). The biological role and significance of these ncRNAs have been realized and to date it appears that ncRNAs may have many important regulatory functions. ncRNAs are multifaceted and they induce a complexity of different types of transcriptional and posttranscriptional regulation, including gene activation. Recent Advances: Association of ncRNAs with gene activation is an important finding. Not only enhancer RNA (eRNA) but other types of ncRNAs, including small RNA (sRNA), long-noncoding RNA (lncRNA), microRNA (miRNA), and PIWI-associated RNA (piRNA), have also been implicated in gene activation. Interestingly, they often coincide with histone modifications that favor an open chromatin. In addition, these ncRNAs can recruit key factors important for transcription, including RNA polymerase II. They may directly bind the genomic DNA or act as scaffolds; alternatively, they may loop the chromatin to enhance transcription. CRITICAL ISSUES Although the role of small activating (sa)RNAs has been considerably studied, the roles of miRNAs and piRNAs in gene activation still need to be substantiated and issues of specificity require further studies. FUTURE DIRECTIONS The ncRNA field is coming out of its infancy and we are gaining a global picture of the importance of ncRNAs. However, detailed mechanisms of action of the different ncRNAs are still to be determined. This may reveal novel ways of transcriptional regulation, which will facilitate our ability to utilize these regulatory pathways for research and therapeutic purposes. Antioxid. Redox Signal. 29, 813-831.
Collapse
Affiliation(s)
- Nihay Laham-Karam
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland
| | - Pia Laitinen
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland
| | - Tiia A Turunen
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland
| | - Seppo Ylä-Herttuala
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland .,2 Heart Center, Kuopio University Hospital , Kuopio, Finland .,3 Gene Therapy Unit, Kuopio University Hospital , Kuopio, Finland
| |
Collapse
|
39
|
Tang N, Jiang S, Yang Y, Liu S, Ponnusamy M, Xin H, Yu T. Noncoding RNAs as therapeutic targets in atherosclerosis with diabetes mellitus. Cardiovasc Ther 2018; 36:e12436. [PMID: 29797660 DOI: 10.1111/1755-5922.12436] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/08/2018] [Accepted: 05/20/2018] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is one of the major macrovascular complications of diabetes mellitus (DM), and it is the main cause of death from clinical observation. Among various cell types involved in this disorder, endothelial cells, vascular smooth muscle cells (VSMCs), and macrophages play a crucial role in the occurrence and development of this disease. The regulation and stabilization of these cells are a key therapeutic strategy for DM-associated atherosclerosis. An increasing number of evidences implicate that various types of noncoding RNAs (ncRNAs) play a vital role in many cellular responses as well as in physiological and pathological processes of atherosclerosis and DM that drive atherogenic/antiatherogenic processes in those cells. Encouragingly, many ncRNAs have already been tested in animal experiments or clinical trials showing good performance. In this review, we summarize recent progresses in research on functional regulatory role of ncRNAs in atherosclerosis with DM. More importantly, we illustrate new thoughts and findings relevant to ncRNAs as potential therapeutic targets or biomarkers for atherosclerosis with DM.
Collapse
Affiliation(s)
- Ningning Tang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Shaoyan Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
40
|
Xu D, Liu R, Meng L, Zhang Y, Lu G, Ma P. Long non-coding RNA ENST01108 promotes carcinogenesis of glioma by acting as a molecular sponge to modulate miR-489. Biomed Pharmacother 2018; 100:20-28. [DOI: 10.1016/j.biopha.2018.01.126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/11/2018] [Accepted: 01/28/2018] [Indexed: 10/18/2022] Open
|
41
|
Simion V, Haemmig S, Feinberg MW. LncRNAs in vascular biology and disease. Vascul Pharmacol 2018; 114:145-156. [PMID: 29425892 DOI: 10.1016/j.vph.2018.01.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Accumulating studies indicate that long non-coding RNAs (lncRNAs) play important roles in the regulation of diverse biological processes involved in homeostatic control of the vessel wall in health and disease. However, our knowledge of the mechanisms by which lncRNAs control gene expression and cell signaling pathways is still nascent. Furthermore, only a handful of lncRNAs has been functionally evaluated in response to pathophysiological stimuli or in vascular disease states. For example, lncRNAs may regulate endothelial dysfunction by modulating endothelial cell proliferation (e.g. MALAT1, H19) or angiogenesis (e.g. MEG3, MANTIS). LncRNAs have also been implicated in modulating vascular smooth muscle cell (VSMC) phenotypes or vascular remodeling (e.g. ANRIL, SMILR, SENCR, MYOSLID). Finally, emerging studies have implicated lncRNAs in leukocytes activation (e.g. lincRNA-Cox2, linc00305, THRIL), macrophage polarization (e.g. GAS5), and cholesterol metabolism (e.g. LeXis). This review summarizes recent findings on the expression, mechanism, and function of lncRNAs implicated in a range of vascular disease states from mice to human subjects. An improved understanding of lncRNAs in vascular disease may provide new pathophysiological insights and opportunities for the generation of a new class of RNA-based biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Viorel Simion
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan Haemmig
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Vaccarin protects human microvascular endothelial cells from apoptosis via attenuation of HDAC1 and oxidative stress. Eur J Pharmacol 2018; 818:371-380. [DOI: 10.1016/j.ejphar.2017.09.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 01/18/2023]
|
43
|
Salusin- β Is Involved in Diabetes Mellitus-Induced Endothelial Dysfunction via Degradation of Peroxisome Proliferator-Activated Receptor Gamma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6905217. [PMID: 29359008 PMCID: PMC5735326 DOI: 10.1155/2017/6905217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/08/2017] [Indexed: 12/18/2022]
Abstract
The pathophysiological mechanisms for vascular lesions in diabetes mellitus (DM) are complex, among which endothelial dysfunction plays a vital role. Therapeutic target against endothelial injury may provide critical venues for treatment of diabetic vascular diseases. We recently identified that salusin-β contributed to high glucose-induced endothelial cell apoptosis. However, the roles of salusin-β in DM-induced endothelial dysfunction remain largely elusive. Male C57BL/6J mice were used to induce type 2 diabetes mellitus (T2DM) model. Human umbilical vein endothelial cells (HUVECs) were cultured in high glucose/high fat (HG/HF) medium. We demonstrated increased expression of salusin-β in diabetic aortic tissues and high-glucose/high-fat- (HG/HF-) incubated HUVECs. Disruption of salusin-β by shRNA abrogated the reactive oxygen species (ROS) production, inflammation, and nitrotyrosine content of HUVECs cultured in HG/HF medium. The HG/HF-mediated decrease in peroxisome proliferator-activated receptor γ (PPARγ) expression was restored by salusin-β shRNA, and PPARγ inhibitor T0070907 abolished the protective actions of salusin-β shRNA on endothelial injury in HG/HF-treated HUVECs. Salusin-β silencing obviously improved endothelium-dependent vasorelaxation, oxidative stress, inflammatory response, and nitrative stress in diabetic aorta. Taken together, our results highlighted the essential role of salusin-β in pathological endothelial dysfunction, and salusin-β may be a promising target in treatment of vascular complications of DM.
Collapse
|
44
|
Long intergenic noncoding RNA 01296 aggravates gastric cancer cells progress through miR-122/MMP-9. Biomed Pharmacother 2017; 97:450-457. [PMID: 29091895 DOI: 10.1016/j.biopha.2017.10.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles on tumor development and progression in gastric cancer (GC). However, the biological function and regulatory mechanisms of LINC01296 in GC still remain unknown. The objective of this study is to investigate the clinical significance and pathological roles of LINC01296 in GC. Results showed that LINC01296 was up-regulated in GC tissue and correlated with poor prognosis. In vitro, LINC01296 knockdown was up-regulated in GC cells and LINC01296 knockdown suppressed GC cells proliferation, migration and invasion, and promoted apoptosis. In vivo xenograft assays, results showed LINC01296 knockdown significantly inhibited GC tumor growth. Bioinformatics analysis revealed that LINC01296 sponged miR-122, which was proved to target MMP-9. Western blot and RT-PCR showed that LINC01296 was positively correlated with MMP-9 expression, while miR-122 was negatively correlated to it. Overall, results indicate that LINC01296 acts as oncogenic lncRNA in GC carcinogenesis, suggesting the LINC01296/miR-122/MMP-9 regulatory pathway in GC tumorigenesis.
Collapse
|
45
|
Sun HJ, Cai WW, Gong LL, Wang X, Zhu XX, Wan MY, Wang PY, Qiu LY. FGF-2-mediated FGFR1 signaling in human microvascular endothelial cells is activated by vaccarin to promote angiogenesis. Biomed Pharmacother 2017; 95:144-152. [DOI: 10.1016/j.biopha.2017.08.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/06/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
|
46
|
Chen ZW, Miu HF, Wang HP, Wu ZN, Wang WJ, Ling YJ, Xu XH, Sun HJ, Jiang X. Pterostilbene protects against uraemia serum-induced endothelial cell damage via activation of Keap1/Nrf2/HO-1 signaling. Int Urol Nephrol 2017; 50:559-570. [DOI: 10.1007/s11255-017-1734-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/25/2017] [Indexed: 12/11/2022]
|
47
|
Li Y, Wen X, Wang L, Sun X, Ma H, Fu Z, Li L. LncRNA ZEB1-AS1 predicts unfavorable prognosis in gastric cancer. Surg Oncol 2017; 26:527-534. [PMID: 29113674 DOI: 10.1016/j.suronc.2017.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 01/17/2023]
Abstract
OBJECTIVES LncRNA ZEB1 Antisense 1 (ZEB1-AS1) has been suggested to be an oncogenic role in human hepatocellular carcinoma, osteosarcoma, glioma and esophageal carcinoma progression. However, the clinical significance and biological function of ZEB1-AS1 in gastric cancer is poorly understood. METHODS Levels of ZEB1-AS1 expression in gastric cancer tissues and cell lines were detected by qRT-PCR. Loss-of-function and gain-of-function studies were conducted to explore the biological function of ZEB1-AS1 in gastric cancer cells migration, invasion and EMT process. Rescued-function studies were performed to explore the association between ZEB1-AS1 and ZEB1 in gastric cancer cells migration, invasion and EMT process. RESULTS ZEB1-AS1 was overexpressed in gastric cancer tissues and cell lines, and correlated with malignant status and prognosis in gastric cancer patients. ZEB1-AS1 regulated gastric cancer cells migration, invasion and EMT process. ZEB1-AS1 positively regulated ZEB1 expression in gastric cancer cells, and had a strongly positive correlation with ZEB1 expression in gastric cancer tissues. Rescued-function studies showed ZEB1 was critical for ZEB1-AS1 induced gastric cancer cells migration, invasion and EMT process. CONCLUSIONS ZEB1-AS1 served as oncogenic roles in the regulation of gastric cancer cells migration, invasion and EMT process through modulating ZEB1.
Collapse
Affiliation(s)
- Yanliang Li
- Department of General Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, NO.440 Jiyan Road, Jinan City 250117, Shandong Province, PR China; Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, NO.324 Jingwuweiqi Road, Jinan City 250021, Shandong Province, PR China
| | - Xiaowen Wen
- Department of General Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, NO.440 Jiyan Road, Jinan City 250117, Shandong Province, PR China
| | - Longgang Wang
- Department of General Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, NO.440 Jiyan Road, Jinan City 250117, Shandong Province, PR China
| | - Xianjun Sun
- Department of General Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, NO.440 Jiyan Road, Jinan City 250117, Shandong Province, PR China
| | - Heng Ma
- Department of General Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, NO.440 Jiyan Road, Jinan City 250117, Shandong Province, PR China
| | - Zheng Fu
- Department of Radiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, NO.440 Jiyan Road, Jinan City 250117, Shandong Province, PR China.
| | - Leping Li
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, NO.324 Jingwuweiqi Road, Jinan City 250021, Shandong Province, PR China.
| |
Collapse
|
48
|
Salusin-β mediates high glucose-induced endothelial injury via disruption of AMPK signaling pathway. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Cui B, Li B, Liu Q, Cui Y. lncRNA CCAT1 Promotes Glioma Tumorigenesis by Sponging miR‐181b. J Cell Biochem 2017; 118:4548-4557. [DOI: 10.1002/jcb.26116] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/04/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Bingzhou Cui
- Department of NeurosurgeryThe People's Hospital of ZhengzhouZhengzhou450002 HenanChina
| | - Baoshan Li
- Department of NeurosurgeryThe Third People's Hospital of QingdaoQingdao266041ShandongChina
| | - Qi Liu
- Department of NeurosurgeryBrain HospitalPeople's Hospital of WeifangWeifang261021ShandongChina
| | - Youqiang Cui
- Department of NeurosurgeryQianfoshan Hospital Affiliated to Shandong UniversityJinan250014ShandongChina
| |
Collapse
|
50
|
C1q/TNF-Related Protein-9 Ameliorates Ox-LDL-Induced Endothelial Dysfunction via PGC-1α/AMPK-Mediated Antioxidant Enzyme Induction. Int J Mol Sci 2017; 18:ijms18061097. [PMID: 28587104 PMCID: PMC5485929 DOI: 10.3390/ijms18061097] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/03/2023] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL) accumulation is one of the critical determinants in endothelial dysfunction in many cardiovascular diseases such as atherosclerosis. C1q/TNF-related protein 9 (CTRP9) is identified to be an adipocytokine with cardioprotective properties. However, the potential roles of CTRP9 in endothelial function remain largely elusive. In the present study, the effects of CTRP9 on the proliferation, apoptosis, migration, angiogenesis, nitric oxide (NO) production and oxidative stress in human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL were investigated. We observed that treatment with ox-LDL inhibited the proliferation, migration, angiogenesis and the generation of NO, while stimulated the apoptosis and reactive oxygen species (ROS) production in HUVECs. Incubation of HUVECs with CTRP9 rescued ox-LDL-induced endothelial injury. CTRP9 treatment reversed ox-LDL-evoked decreases in antioxidant enzymes including heme oxygenase-1 (HO-1), nicotinamide adenine dinucleotide phosphate (NAD(P)H) dehydrogenase quinone 1, and glutamate-cysteine ligase (GCL), as well as endothelial nitric oxide synthase (eNOS). Furthermore, CTRP9 induced activation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC1-α) and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Of interest, AMPK inhibition or PGC1-α silencing abolished CTRP9-mediated antioxidant enzymes levels, eNOS expressions, and endothelial protective effects. Collectively, we provided the first evidence that CTRP9 attenuated ox-LDL-induced endothelial injury by antioxidant enzyme inductions dependent on PGC-1α/AMPK activation.
Collapse
|