1
|
Salles ACP, Alexandre-Santos B, de Souza Carvalho T, Proença AB, Sepúlveda-Fragoso V, Fernandes T, Oliveira EM, da Nóbrega ACL, Frantz EDC, Magliano DC. ER stress improvement by aerobic training or enalapril differently ameliorates pathological cardiac remodeling in obese mice. Mol Cell Biochem 2024; 479:3167-3179. [PMID: 38308790 DOI: 10.1007/s11010-024-04925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
Overactivation of the classic arm of the renin-angiotensin system (RAS) is one of the main mechanisms involved in obesity-related cardiac remodeling, and a possible relationship between RAS and ER stress in the cardiovascular system have been described. Thus, the aim of this study is to evaluate if activating the protective arm of the RAS by ACE inhibition or aerobic exercise training could overturn diet-induced pathological cardiac hypertrophy by attenuating ER stress. Male C57BL/6 mice were fed a control (SC) or a high-fat diet (HF) for 16 weeks. In the 8th week, HF-fed animals were randomly divided into HF, enalapril treatment (HF-En), and aerobic exercise training (HF-Ex) groups. Body mass (BM), food and energy intake, plasma analyzes, systolic blood pressure (SBP), physical conditioning, and plasma ACE and ACE2 activity were evaluated. Cardiac morphology, and protein expression of hypertrophy, cardiac metabolism, RAS, and ER stress markers were assessed. Data presented as mean ± standard deviation and analyzed by one-way ANOVA with Holm-Sidak post-hoc. HF group had increased BM and SBP, and developed pathological concentric cardiac hypertrophy, with overactivation of the classic arm of the RAS, and higher ER stress. Both interventions reverted the increase in BM, and SBP, and favored the protective arm of the RAS. Enalapril treatment improved pathological cardiac hypertrophy with partial reversal of the concentric pattern, and slightly attenuated cardiac ER stress. In contrast, aerobic exercise training induced physiological eccentric cardiac hypertrophy, and fully diminished ER stress.
Collapse
Affiliation(s)
- Amanda Conceição Pimenta Salles
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Beatriz Alexandre-Santos
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Thais de Souza Carvalho
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Ana Beatriz Proença
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Vinicius Sepúlveda-Fragoso
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
- National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - Antonio Claudio Lucas da Nóbrega
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
- Department of Morphology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
2
|
Souza-Tavares H, Santana-Oliveira DA, Vasques-Monteiro IML, Silva-Veiga FM, Mandarim-de-Lacerda CA, Souza-Mello V. Exercise enhances hepatic mitochondrial structure and function while preventing endoplasmic reticulum stress and metabolic dysfunction-associated steatotic liver disease in mice fed a high-fat diet. Nutr Res 2024; 126:180-192. [PMID: 38759501 DOI: 10.1016/j.nutres.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has attracted increasing attention from the scientific community because of its severe but silent progression and the lack of specific treatment. Glucolipotoxicity triggers endoplasmic reticulum (ER) stress with decreased beta-oxidation and enhanced lipogenesis, promoting the onset of MASLD, whereas regular physical exercise can prevent MASLD by preserving ER and mitochondrial function. Thus, the hypothesis of this study was that high-intensity interval training (HIIT) could prevent the development of MASLD in high-fat (HF)-fed C57BL/6J mice by maintaining insulin sensitivity, preventing ER stress, and promoting beta-oxidation. Forty male C57BL/6J mice (3 months old) comprised 4 experimental groups: the control (C) diet group, the C diet + HIIT (C-HIIT) group, the HF diet group, and the HF diet + HIIT (HF-HIIT) group. HIIT sessions lasted 12 minutes and were performed 3 times weekly by trained mice. The diet and exercise protocols lasted for 10 weeks. The HIIT protocol prevented weight gain and maintained insulin sensitivity in the HF-HIIT group. A chronic HF diet increased ER stress-related gene and protein expression, but HIIT helped to maintain ER homeostasis, preserve mitochondrial ultrastructure, and maximize beta-oxidation. The increased sirtuin-1/peroxisome proliferator-activated receptor-gamma coactivator 1-alpha expression implies that HIIT enhanced mitochondrial biogenesis and yielded adequate mitochondrial dynamics. High hepatic fibronectin type III domain containing 5/irisin agreed with the antilipogenic and anti-inflammatory effects observed in the HF-HIIT group, reinforcing the antisteatotic effects of HIIT. Thus, we confirmed that practicing HIIT 3 times per week maintained insulin sensitivity, prevented ER stress, and enhanced hepatic beta-oxidation, impeding MASLD development in this mouse model even when consuming high energy intake from saturated fatty acids.
Collapse
Affiliation(s)
- Henrique Souza-Tavares
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Isabela Macedo Lopes Vasques-Monteiro
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flavia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Rahim HA, Damirchi A, Babaei P. Comparison of HIIT and MICT and further detraining on metabolic syndrome and asprosin signaling pathway in metabolic syndrome model of rats. Sci Rep 2024; 14:11313. [PMID: 38760452 PMCID: PMC11101655 DOI: 10.1038/s41598-024-61842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
Physical activity promotes various metabolic benefits by balancing pro and anti-inflammatory adipokines. Recent studies suggest that asprosin might be involved in progression of metabolic syndrome (MetS), however, the underlying mechanisms have not been understood yet. This study aimed to evaluate the effects of high-intensity interval training (HIIT), moderate-intensity continuous training (MICT), and further detraining on MetS indices, insulin resistance, serum and the liver levels of asprosin, and AMP-activated protein kinase (AMPK) pathway in menopause-induced MetS model of rats. A total of 64 Wistar rats were used in this study and divided into eight groups: Sham1, OVX1 (ovariectomized), Sham2, OVX2, OVX + HIIT, OVX + MICT, OVX + HIIT + Det (detraining), and OVX + MICT + Det. Animals performed the protocols, and then serum concentrations of asprosin, TNF-α, insulin, fasting blood glucose, and lipid profiles (TC, LDL, TG, and HDL) were assessed. Additionally, the liver expression of asprosin, AMPK, and P-AMPK was measured by western blotting. Both HIIT and MICT caused a significant decrease in weight, waist circumference, BMI (P = 0.001), and serum levels of glucose, insulin, asprosin (P = 0.001), triglyceride, total cholesterol, low-density lipoprotein (LDL), and TNF-α (P = 0.001), but an increase in the liver AMPK, P-AMPK, and P-AMPK/AMPK (P = 0.001), compared with OVX2 noexercised group. MICT was superior to HIIT in reducing serum asprosin, TNF-a, TG, LDL (P = 0.001), insulin, fasting blood glucose, HOMA-IR, and QUEKI index (P = 0.001), but an increase in the liver AMPK, and p-AMPK (P = 0.001). Although after two months of de-training almost all indices returned to the pre exercise values (P < 0.05). The findings suggest that MICT effectively alleviates MetS induced by menopause, at least partly through the activation of liver signaling of P-AMPK and the reduction of asprosin and TNF-α. These results have practical implications for the development of exercise interventions targeting MetS in menopausal individuals, emphasizing the potential benefits of MICT in mitigating MetS-related complications.
Collapse
Affiliation(s)
- Hiwa Ahmed Rahim
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
- College of Physical Education and Sports Sciences, University of Halabja, Halabja, Iraq
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Damirchi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Parvin Babaei
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
4
|
Bo B, Guo A, Kaila SJ, Hao Z, Zhang H, Wei J, Yao Y. Elucidating the primary mechanisms of high-intensity interval training for improved cardiac fitness in obesity. Front Physiol 2023; 14:1170324. [PMID: 37608837 PMCID: PMC10441243 DOI: 10.3389/fphys.2023.1170324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Obesity is a global and rising multifactorial pandemic associated with the emergence of several comorbidities that are risk factors for malignant cardiac remodeling and disease. High-intensity interval training (HIIT) has gained considerable attention due to its favorable outcomes of cardiometabolic health in individuals with overweight or obese. The primary aim of this review is to discuss the fundamental processes through which HIIT improves cardiac impairment in individuals with obesity to develop viable treatments for obesity management. In this review, a multiple database search and collection were conducted from the earliest record to January 2013 for studies included the qualitative component of HIIT intervention in humans and animals with overweight/obesity related to cardiac remodeling and fitness. We attempt to integrate the main mechanisms of HIIT in cardiac remolding improvement in obesity into an overall sequential hypothesis. This work focus on the ameliorative effects of HIIT on obesity-induced cardiac remodeling with respect to potential and pleiotropic mechanisms, including adipose distribution, energy metabolism, inflammatory response, insulin resistance, and related risk profiles in obesity. In conclusion, HIIT has been shown to reduce obesity-induced risks of cardiac remodeling, but the long-term effects of HIIT on obesity-induced cardiac injury and disease are presently unknown. Collective understanding highlights numerous specific research that are needed before the safety and effectiveness of HIIT can be confirmed and widely adopted in patient with obesity.
Collapse
Affiliation(s)
- Bing Bo
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng, China
- Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Aijing Guo
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng, China
| | - Severa Jafeth Kaila
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng, China
| | - Zhe Hao
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng, China
| | - Huiqing Zhang
- Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuan Yao
- Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| |
Collapse
|
5
|
Dos-Santos A, do Nascimento Carvalho B, Da Costa-Santos N, Mello-Silva FQD, Pereira ADA, Jesus NRD, De Angelis K, Irigoyen MC, Bernardes N, Caperuto EC, Scapini KB, Sanches IC. Effects of Exercise Intensity on Cardiometabolic Parameters of Ovariectomized Obese Mice. Int J Sports Med 2023. [PMID: 37146639 DOI: 10.1055/a-2044-8691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The aim of this study was to compare the effects of continuous-moderate vs. high-intensity interval aerobic training on cardiovascular and metabolic parameters in ovariectomized high-fat-fed mice. C57BL/6 female ovariectomized were divided into four groups (n=8): low-fat-fed sedentary (SLF); high-fat-fed sedentary (SHF); high-fat-fed moderate-intensity continuous trained (MICT-HF); and high-fat-fed high-intensity interval aerobic trained (HIIT-HF). The high-fat diet lasted 10 weeks. Ovariectomy was performed in the fourth week. The exercise training was carried out in the last four weeks of protocol. Fasting glycemia, oral glucose tolerance, arterial pressure, baroreflex sensitivity, and cardiovascular autonomic modulation were evaluated. Moderate-intensity continuous training prevented the increase in arterial pressure and promoted a reduction in HR at rest, associated with an improvement in the sympathovagal balance in MICT-HF vs. SHF. The high-intensity interval training reduced blood glucose and glucose intolerance in HIIT-HF vs. SHF and MICT-HF. In addition, it improved sympathovagal balance in HIIT-HF vs. SHF. Moderate-intensity continuous training was more effective in promoting cardiovascular benefits, while high-intensity interval training was more effective in promoting metabolic benefits.
Collapse
Affiliation(s)
- Adriano Dos-Santos
- Human Movement Laboratory, Sao Judas Tadeu University, Sao Paulo, Brazil
| | | | | | | | | | | | | | - Maria Claudia Irigoyen
- Heart Institute, department of hypertension, University of Sao Paulo, Faculty of Medicine, Sao Paulo, Brazil
| | - Nathalia Bernardes
- Human Movement Laboratory, Sao Judas Tadeu University, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
6
|
XU LUSI, HU GAIZUN, QIU JIAHE, MIURA TAKAHIRO, YAMAKOSHI SEIKO, NAMAI-TAKAHASHI ASAKO, KOHZUKI MASAHIRO, ITO OSAMU. Exercise Training Prevents High Fructose-Induced Hypertension and Renal Damages in Male Dahl Salt-Sensitive Rats. Med Sci Sports Exerc 2023; 55:803-812. [PMID: 36729699 PMCID: PMC10090347 DOI: 10.1249/mss.0000000000003100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION High-fructose diet (HFr) causes metabolic syndrome, and HFr-induced hypertension and renal damage are exaggerated in Dahl salt-sensitive (DS) rats. Exercise training (Ex) has antihypertensive and renal protective effects in rats fed HFr; however, there has been little discussion about the DS rats, which exhibit metabolic disturbances. This study thus examined the effects of Ex on DS rats fed HFr. METHODS Male DS rats were divided into three groups. The control group was fed a control diet, and both the HFr group and the HFr-Ex group were fed an HFr (60% fructose). The HFr-Ex group also underwent treadmill running (20 m·min -1 , 60 min·d -1 , 5 d·wk -1 ). After 12 wk, renal function, histology, and renin-angiotensin system were examined. RESULTS HFr increased blood pressure, urinary albumin, and creatinine clearance, and Ex inhibited these increases. HFr induced glomerular sclerosis, podocyte injury, afferent arteriole thickening, and renal interstitial fibrosis, and Ex ameliorated them. HFr reduced plasma renin activity, and Ex further reduced the activity. HFr also increased the expression of angiotensinogen, renin, angiotensin-converting enzyme (ACE), and angiotensin II type 1 receptor, and Ex restored the ACE expression to the control levels. HFr decreased the expression of ACE2, angiotensin II type 2 receptor, and Mas receptor, and Ex restored the ACE2 and Mas receptor expressions to the control levels and further decreased the angiotensin II type 2 receptor expression. HFr increased the ACE activity and decreased the ACE2 activity, and Ex restored these activities to the control levels. CONCLUSIONS Ex prevents HFr-induced hypertension and renal damages in DS rats. The changes in renal renin-angiotensin system may be involved in the mechanism of the antihypertensive and renal protective effects of Ex.
Collapse
Affiliation(s)
- LUSI XU
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, JAPAN
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
| | - GAIZUN HU
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA
| | - JIAHE QIU
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
| | - TAKAHIRO MIURA
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
| | - SEIKO YAMAKOSHI
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University Sendai, JAPAN
| | - ASAKO NAMAI-TAKAHASHI
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, JAPAN
| | - MASAHIRO KOHZUKI
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
| | - OSAMU ITO
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, JAPAN
| |
Collapse
|
7
|
Xue B, Yu Y, Beltz TG, Guo F, Wei SG, Johnson AK. Voluntary Exercise Eliminates Maternal Gestational Hypertension-Induced Hypertensive Response Sensitization to Postweaning High-Fat Diet in Male Adult Offspring. Hypertension 2022; 79:2016-2027. [PMID: 35730432 PMCID: PMC9378552 DOI: 10.1161/hypertensionaha.122.19608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Exercise has profound effects on cardiovascular function and metabolism in both physiological and pathophysiological states. The present study tested whether voluntary exercise would protect male offspring against maternal gestational hypertension-induced hypertensive response sensitization elicited by post-weaning high-fat diet (HFD). METHODS AND RESULTS On low-lard-fat diet, offspring of both normotensive and hypertensive dams had comparable resting blood pressure, but HFD feeding elicited an enhanced increase in blood pressure (ie, hypertensive response sensitization) in sedentary offspring of hypertensive dams when compared with sedentary offspring of normotensive dams. The HFD fed sedentary offspring of hypertensive dams displayed greater sympathetic activity, enhanced pressor responses to centrally administered ANG II (angiotensin II) or leptin, and greater mRNA expression of proinflammatory cytokines, leptin, and a marker of blood-brain barrier leakage in the hypothalamic paraventricular nucleus. The enhanced blood pressure and central sympathetic activity in HFD-fed sedentary offspring of hypertensive dams were significantly reduced by exercise but fell only to levels comparable to HFD-fed exercising offspring of normotensive dams. HFD-induced increases in plasma IL-6 (interleukin-6) and sympathetic activity and greater pressor responses to central TNF (tumor necrosis factor)-α in offspring from both normotensive and hypertensive dams were also maintained after exercise. Nevertheless, exercise had remarkably beneficial effects on metabolic and autonomic function, brain reactivity to ANG II and leptin and gene expression of brain prohypertensive factors in all offspring. CONCLUSIONS Voluntary exercise plays a beneficial role in preventing maternal hypertension-induced hypertensive response sensitization, and that this is associated with attenuation of enhanced brain reactivity and centrally driven sympathetic activity.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Yang Yu
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Terry G. Beltz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Fang Guo
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Shun-Guang Wei
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
- François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
- François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Klöting N, Schwarzer M, Heyne E, Ceglarek U, Hoffmann A, Krohn K, Doenst T, Blüher M. Intrinsic Exercise Capacity Affects Glycine and Angiotensin-Converting Enzyme 2 (ACE2) Levels in Sedentary and Exercise Trained Rats. Metabolites 2022; 12:548. [PMID: 35736481 PMCID: PMC9228358 DOI: 10.3390/metabo12060548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been identified as the cellular entry receptor for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). High ACE2 tissue expression and low glycine levels were suggested to increase susceptibility for SARS-CoV-2 infection and increasing circulating ACE2 has been proposed as one possible strategy to combat COVID-19. In humans, aerobic physical exercise induces an increase in plasma ACE2 in some individuals. However, it is not clear whether glycine and ACE2 levels depend on intrinsic exercise capacity or on exercise training. We used rats selectively bred for high intrinsic exercise capacity (HCR) or low exercise capacity (LCR) and tested the influence of this genetic predetermination and/or aerobic exercise on metabolites, ACE2 tissue expression and circulating ACE 2. ACE2 expression was measured in different tissues in the sedentary animals and again after 4 weeks of high-intensity aerobic exercise in both LCRs and HCRs. Sedentary HCRs exhibited significantly higher circulating ACE2 concentrations compared to LCRs, but a lower expression of ACE2 in all investigated tissues except for adipose tissue. Body weight was negatively correlated with serum ACE2 and positively correlated with ACE2 expression in the heart. Aerobic exercise caused a significant decrease in ACE2 expression in the lung, heart, muscle, and kidney both in LCRs and HCRs. Our results suggest that ACE2 expression, circulating ACE2 and glycine serum concentration are related to aerobic intrinsic exercise capacity and can be influenced with exercise. These results may support the hypothesis that physically fit individuals have a lower susceptibility for COVID-19 infection.
Collapse
Affiliation(s)
- Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig, Ph. Rosenthal Street 27, 04103 Leipzig, Germany; (A.H.); (M.B.)
| | - Michael Schwarzer
- Department of Cardiothoracic Surgery, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (M.S.); (E.H.); (T.D.)
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (M.S.); (E.H.); (T.D.)
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Medical Center, 04103 Leipzig, Germany;
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig, Ph. Rosenthal Street 27, 04103 Leipzig, Germany; (A.H.); (M.B.)
| | - Knut Krohn
- CoreUnit DNA Technologies, Medical Faculty, University of Leipzig, Liebigstr. 21, 04103 Leipzig, Germany;
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (M.S.); (E.H.); (T.D.)
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig, Ph. Rosenthal Street 27, 04103 Leipzig, Germany; (A.H.); (M.B.)
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Liebigstr. 20, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Liu QQ, Xie WQ, Luo YX, Li YD, Huang WH, Wu YX, Li YS. High Intensity Interval Training: A Potential Method for Treating Sarcopenia. Clin Interv Aging 2022; 17:857-872. [PMID: 35656091 PMCID: PMC9152764 DOI: 10.2147/cia.s366245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia, an age-related disease characterized by loss of muscle strength and muscle mass, has attracted the attention of medical experts due to its severe morbidity, low living quality, high expenditure of health care, and mortality. Traditionally, persistent aerobic exercise (PAE) is considered as a valid way to attenuate muscular atrophy. However, nowadays, high intensity interval training (HIIT) has emerged as a more effective and time-efficient method to replace traditional exercise modes. HIIT displays comprehensive effects on exercise capacity and skeletal muscle metabolism, and it provides a time-out for the recovery of cardiopulmonary and muscular functions without causing severe adverse effects. Studies demonstrated that compared with PAE, HIIT showed similar or even higher effects in improving muscle strength, enhancing physical performances and increasing muscle mass of elder people. Therefore, HIIT might become a promising way to cope with the age-related loss of muscle mass and muscle function. However, it is worth mentioning that no study of HIIT was conducted directly on sarcopenia patients, which is attributed to the suspicious of safety and validity. In this review, we will assess the effects of different training parameters on muscle and sarcopenia, summarize previous papers which compared the effects of HIIT and PAE in improving muscle quality and function, and evaluate the potential of HIIT to replace the status of PAE in treating old people with muscle atrophy and low modality; and point out drawbacks of temporary experiments. Our aim is to discuss the feasibility of HIIT to treat sarcopenia and provide a reference for clinical scientists who want to utilize HIIT as a new way to cope with sarcopenia.
Collapse
Affiliation(s)
- Qian-Qi Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410083, People’s Republic of China
| | - Wen-Qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Yu-Xuan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410083, People’s Republic of China
| | - Yi-Dan Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410083, People’s Republic of China
| | - Wei-Hong Huang
- Mobile Health Ministry of Education - China Mobile Joint Laboratory, Xiangya Hospital Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Yu-Xiang Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, Hubei, 430056, People’s Republic of China
- Yu-Xiang Wu, Department of Health and Kinesiology, School of Physical Education, Jianghan University, No. 8, Sanjiaohu Road, Wuhan, Hubei, 430056, People’s Republic of China, Tel +86 27 8422 6921, Email
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Correspondence: Yu-Sheng Li, Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People’s Republic of China, Tel +86-13975889696, Email
| |
Collapse
|
10
|
Rentería I, García-Suárez PC, Moncada-Jiménez J, Machado-Parra JP, Antunes BM, Lira FS, Jiménez-Maldonado A. Unhealthy Dieting During the COVID-19 Pandemic: An Opinion Regarding the Harmful Effects on Brain Health. Front Nutr 2022; 9:876112. [PMID: 35571935 PMCID: PMC9097874 DOI: 10.3389/fnut.2022.876112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Since 2020, the world has been suffering from a pandemic that has affected thousands of people regardless of socio-economic conditions, forcing the population to adopt different strategies to prevent and control the advance of the disease, one of which is social distancing. Even though social distancing is a safe strategy to reduce the spread of COVID-19, it is also the cause of a rising sedentary behavior. This behavior develops an excess of fat tissue that leads to metabolic and inflammatory disruption related to chronic diseases and mental health disorders, such as anxiety, depression, and sleep issues. Furthermore, the adoption of dietary patterns involving the consumption of ultra-processed foods, higher in fats and sugars, and the reduction of fresh and healthy foods may play a role in the progress of the disease. In this perspective, we will discuss how an unhealthy diet can affect brain function and, consequently, be a risk factor for mental health diseases.
Collapse
Affiliation(s)
- Iván Rentería
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Patricia Concepción García-Suárez
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
- Department of Health, Sports and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - José Moncada-Jiménez
- Human Movement Sciences Research Center (CIMOHU), University of Costa Rica, San José, Costa Rica
| | | | | | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Paulista State University, UNESP, Presidente Prudente, São Paulo, Brazil
| | | |
Collapse
|
11
|
Sex-Specific Impacts of Exercise on Cardiovascular Remodeling. J Clin Med 2021; 10:jcm10173833. [PMID: 34501285 PMCID: PMC8432130 DOI: 10.3390/jcm10173833] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death in men and women. Biological sex plays a major role in cardiovascular physiology and pathological cardiovascular remodeling. Traditionally, pathological remodeling of cardiovascular system refers to the molecular, cellular, and morphological changes that result from insults, such as myocardial infarction or hypertension. Regular exercise training is known to induce physiological cardiovascular remodeling and beneficial functional adaptation of the cardiovascular apparatus. However, impact of exercise-induced cardiovascular remodeling and functional adaptation varies between males and females. This review aims to compare and contrast sex-specific manifestations of exercise-induced cardiovascular remodeling and functional adaptation. Specifically, we review (1) sex disparities in cardiovascular function, (2) influence of biological sex on exercise-induced cardiovascular remodeling and functional adaptation, and (3) sex-specific impacts of various types, intensities, and durations of exercise training on cardiovascular apparatus. The review highlights both animal and human studies in order to give an all-encompassing view of the exercise-induced sex differences in cardiovascular system and addresses the gaps in knowledge in the field.
Collapse
|
12
|
Is School Gardening Combined with Physical Activity Intervention Effective for Improving Childhood Obesity? A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13082605. [PMID: 34444765 PMCID: PMC8402215 DOI: 10.3390/nu13082605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
School gardening activities (SGA) combined with physical activities (PA) may improve childhood dietary intake and prevent overweight and obesity. This study aims to evaluate the effect of SGA combined with PA on children’s dietary intake and anthropometric outcomes. We searched studies containing randomized controlled trials up to January 2021 in Web of Science, PubMed, Cochrane Library, and the EBSCO database on this topic for children aged 7 to 12 years. Fourteen studies met the requirements for meta-analysis (n = 9187). We found that SGA has no obvious effect on improving children’s BMI (WMD = −0.49; p = 0.085; I2 = 86.3%), BMI z-score (WMD = −0.12; p = 0.235; I2 = 63.0%), and WC (WMD = −0.98; p = 0.05; I2 = 72.9%). SGA can effectively improve children’s FVs (WMD = 0.59, p = 0.003, I2 = 95.3%). SGA combined with PA can significantly increase children’s FVs but cannot greatly improve weight status. Although more studies on this topic are needed to prove the effectiveness of this method, the results of our review show that both SGA and SGA combined with PA has a modest but positive impact of reducing BMI and WC outcomes but can significantly increase children’s FVs.
Collapse
|
13
|
Tokinoya K, Ono S, Aoki K, Yanazawa K, Shishikura Y, Sugasawa T, Takekoshi K. Gene expression level of renalase in the skeletal muscles is increased with high-intensity exercise training in mice on a high-fat diet. Physiol Int 2021; 108:274-284. [PMID: 34191746 DOI: 10.1556/2060.2021.00147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Exercise training is beneficial for reducing obesity. In particular, exercise training can lower the catecholamine concentration in circulation. Renalase, whose expression was first confirmed in the kidneys, is a physiologically active substance that decomposes circulating catecholamines; additionally, it has been reported to be present in the skeletal muscles. The aim of this study was to clarify the expression of renalase in the skeletal muscles and kidneys after high-intensity exercise training in obese mice. MATERIAL AND METHODS The mice were divided into four groups: normal diet and sedentary, normal diet and exercise training, high-fat diet and sedentary, and high-fat diet and exercise training, and the test was performed for 8 weeks. RESULTS Body weight and skeletal muscle wet weight were reduced by high-fat diet intake but were rescued by training. Skeletal muscle renalase gene expression was significantly increased by exercise training. However, in the kidneys the gene expression of renalase was significantly increased by high-fat diet intake and exercise training. No significant changes were observed in the gene expression of catecholamine-degrading enzymes, catechol-O-methyltransferase and monoamine oxidase A and B. CONCLUSION We demonstrated that exercise training increased the gene expression of renalase in the skeletal muscles and kidneys, thus lowering circulating catecholamine levels. This may lead to amelioration of obesity as catecholamines are lipolytic.
Collapse
Affiliation(s)
- Katsuyuki Tokinoya
- 1Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo,192-0397, Japan
- 2Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Seiko Ono
- 3Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Kai Aoki
- 2Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
- 4Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Koki Yanazawa
- 3Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yasuhiro Shishikura
- 3Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Takehito Sugasawa
- 4Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Kazuhiro Takekoshi
- 4Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
14
|
Liśkiewicz AD, Marczak Ł, Bogus K, Liśkiewicz D, Przybyła M, Lewin-Kowalik J. Proteomic and Structural Manifestations of Cardiomyopathy in Rat Models of Obesity and Weight Loss. Front Endocrinol (Lausanne) 2021; 12:568197. [PMID: 33716957 PMCID: PMC7945951 DOI: 10.3389/fendo.2021.568197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity cardiomyopathy increases the risk of heart failure and death. Obesity is curable, leading to the restoration of the heart phenotype, but it is not clear if there are any after-effects of obesity present after weight loss. We characterize the proteomic landscape of obesity cardiomyopathy with an evaluation of whether the cardiac phenotype is still shaped after weight loss. Cardiomyopathy was validated by cardiac hypertrophy, fibrosis, oversized myocytes, and mTOR upregulation in a rat model of cafeteria diet-induced developmental obesity. By global proteomic techniques (LC-MS/MS) a plethora of molecular changes was observed in the heart and circulation of obese animals, suggesting abnormal utilization of metabolic substrates. This was confirmed by increased levels of cardiac ACSL-1, a key enzyme for fatty acid degradation and decreased GLUT-1, a glucose transporter in obese rats. Calorie restriction and weight loss led to the normalization of the heart's size, but fibrosis was still excessive. The proteomic compositions of cardiac tissue and plasma were different after weight loss as compared to control. In addition to morphological consequences, obesity cardiomyopathy involves many proteomic changes. Weight loss provides for a partial repair of the heart's architecture, but the trace of fibrotic deposition and proteomic alterations may occur.
Collapse
Affiliation(s)
- Arkadiusz D. Liśkiewicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Przybyła
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
15
|
Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020; 64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Standardized animal models represent one of the most valuable tools available to understand the mechanism underlying the metabolic syndrome (MetS) and to seek for new therapeutic strategies. However, there is considerable variability in the studies conducted with this essential purpose. This review presents an updated discussion of the most recent studies using diverse experimental conditions to induce MetS in rodents with unbalanced diets, discusses the key findings in metabolic outcomes, and critically evaluates what we have been learned from them and how to advance in the field. The study includes scientific reports sourced from the Web of Science and PubMed databases, published between January 2013 and June 2020, which used hypercaloric diets to induce metabolic disorders, and address the impact of the diet on metabolic parameters. The collected data are used as support to discuss variables such as sex, species, and age of the animals, the most favorable type of diet, and the ideal diet length to generate metabolic changes. The experimental characteristics propose herein improve the performance of a preclinical model that resembles the human MetS and will guide researchers to investigate new therapeutic alternatives with confidence and higher translational validity.
Collapse
Affiliation(s)
- Bianca F Leonardi
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Aline R Zimmer
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
16
|
Kalaki-Jouybari F, Shanaki M, Delfan M, Gorgani-Firouzjae S, Khakdan S. High-intensity interval training (HIIT) alleviated NAFLD feature via miR-122 induction in liver of high-fat high-fructose diet induced diabetic rats. Arch Physiol Biochem 2020; 126:242-249. [PMID: 30318957 DOI: 10.1080/13813455.2018.1510968] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Exercise intervention is strongly recommended to manage metabolic diseases. In this study, we investigate, whether HIIT and CET can induce hepatic miR-122 expression, NAFLD rats with diabetes.Methods: 40 Wistar rats divided into 2 groups, non-diabetic (NDC) and diabetic .Type 2 diabetes was induced by high-fat high-fructose diet (HFHFD). Then diabetic rats were subdivided into three groups: diabetic control (HFHFD + DC), CET (HFHFD + CET), and HIIT (HFHFD + HIIT). After eight weeks of exercise on a rodent treadmill, we measured miR-122 and its target genes expression in the liver of rats.Results: HIIT decreased the expression of FAS, ACC, SREBP-1c compared with HFHFD + DC (p = .004, p = .032, p = .043, respectively), and could partially increase miR-122 expression as compared with HFHFD + DC (26.8%, p = .68).Conclusions: Exercise training could be a non-pharmacological intervention for improvement of NAFLD of diabetic rats by induction of miR-122. HIIT had a greater effect on NAFLD amelioration than CET.
Collapse
Affiliation(s)
- Fatemeh Kalaki-Jouybari
- Department of Medical Laboratory Sciences, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Shanaki
- Department of Medical Laboratory Sciences, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Delfan
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Alzahra University, Tehran, Iran
| | - Sattar Gorgani-Firouzjae
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Soheyla Khakdan
- Department of Medical Laboratory Sciences, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Jiménez-Maldonado A, García-Suárez PC, Rentería I, Moncada-Jiménez J, Plaisance EP. Impact of high-intensity interval training and sprint interval training on peripheral markers of glycemic control in metabolic syndrome and type 2 diabetes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165820. [PMID: 32360396 DOI: 10.1016/j.bbadis.2020.165820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/14/2020] [Accepted: 04/25/2020] [Indexed: 12/17/2022]
Abstract
Glycemic control is essential to reduce the risk of complications associated with metabolic syndrome (MetS) and type 2 diabetes (T2D). Aerobic and resistance exercise performed alone or in combination improve glycemic control in both conditions. However, perceived lack of time and commitment are considered principal barriers to performing exercise regularly. High intensity interval training (HIIT) and sprint interval training (SIT) can be performed in a fraction of the time required for continuous aerobic exercise. A substantial scientific evidence indicates that HIIT/SIT improve glycemic control to a similar or greater extent than aerobic exercise in populations without MetS or T2D. Likewise, growing evidence suggest that HIIT/SIT improve the glycemic control during MetS and T2D. The aim of this review is to discuss the effects of interval training protocols on peripheral markers of glucose metabolism in patients with MetS and T2D.
Collapse
Affiliation(s)
| | | | - Iván Rentería
- Facultad de Deportes Campus Ensenada, Universidad Autónoma de Baja California, Mexico
| | - José Moncada-Jiménez
- Human Movement Sciences Research Center, University of Costa Rica, San José, Costa Rica
| | - Eric P Plaisance
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
18
|
Rebelo MA, Padovan CM, Pereira AC, Moraes CD. Moderate-intensity exercise training improves long-term memory in fructose-fed rats. MOTRIZ: REVISTA DE EDUCACAO FISICA 2020. [DOI: 10.1590/s1980-65742020000400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2025] Open
|
19
|
Exercise-induced cardiac opioid system activation attenuates apoptosis pathway in obese rats. Life Sci 2019; 231:116542. [PMID: 31176781 DOI: 10.1016/j.lfs.2019.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
AIM To compare the effect of 150 min vs. 300 min of weekly moderate intensity exercise training on the activation of the opioid system and apoptosis in the hearts of a diet-induced obesity model. METHODS Male Wistar rats were fed with either control (CON) or high fat (HF) diet for 32 weeks. At the 20th week, HF group was subdivided into sedentary, low (LEV, 150 min·week-1) or high (HEV, 300 min·week-1) exercise volume. After 12 weeks of exercise, body mass gain, adiposity index, systolic blood pressure, cardiac morphometry, apoptosis biomarkers and opioid system expression were evaluated. RESULTS Sedentary animals fed with HF presented pathological cardiac hypertrophy and higher body mass gain, systolic blood pressure and adiposity index than control group. Both exercise volumes induced physiological cardiac hypertrophy, restored systolic blood pressure and improved adiposity index, but only 300 min·week-1 reduced body mass gain. HF group exhibited lower proenkephalin, PI3K, ERK and GSK-3β expression, and greater activated caspase-3 expression than control group. Compared to HF, no changes in the cardiac opioid system were observed in the 150 min·week-1 of exercise training, while 300 min·week-1 showed greater proenkephalin, DOR, KOR, MOR, Akt, ERK and GSK-3β expression, and lower activated caspase-3 expression. CONCLUSION 300 min·week-1 of exercise training triggered opioid system activation and provided greater cardioprotection against obesity than 150 min·week-1. Our findings provide translational aspect with clinical relevance about the critical dose of exercise training necessary to reduce cardiovascular risk factors caused by obesity.
Collapse
|
20
|
Ghardashi Afousi A, Gaeini A, Rakhshan K, Naderi N, Darbandi Azar A, Aboutaleb N. Targeting necroptotic cell death pathway by high-intensity interval training (HIIT) decreases development of post-ischemic adverse remodelling after myocardial ischemia / reperfusion injury. J Cell Commun Signal 2019; 13:255-267. [PMID: 30073629 PMCID: PMC6498245 DOI: 10.1007/s12079-018-0481-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/11/2018] [Indexed: 12/21/2022] Open
Abstract
Regulated necrosis (necroptosis) plays a pivotal role in the extent of cardiomyocyte loss and the development of post-ischemic adverse remodelling and cardiac dysfunction following myocardial I/R injury. Although HIIT has been reported to give rise to cardioprotection against MI, but the detailed knowledge of its molecular targets for treatment of MI is still not available. The LAD of Male Wistar rats was occluded to induce MI for 30 min and reperfusion for eight weeks. We investigated the effect of long-term HIIT for eight weeks on lipid peroxidation, SOD activity and GSH content using ELISA assay. Cardiac function, fibrosis, and infarct size were assessed by echocardiography, Masson's trichrome and Evans Blue/TTC dual staining respectively. The expressions of gene markers of myocardial hypertrophy, fibrosis and key mediators of necroptosis were measured using RT-PCR and western blotting assay respectively. The results indicated that HIIT reduced lipid peroxidation, infarct size and improved endogenous antioxidant system and heart function. Significant decreases in mRNA levels of procollagen α1(I), α1(III), and fibronectin1were observed following HIIT. Moreover, that HIIT significantly decreased the expression of key mediators of necroptosis induced by MI (P < 0.05). There were no significant differences in β-MHC mRNA level in different groups. The findings of study suggest that HIIT might exert cardioprotective effects against post-ischemic adverse remodeling through targeting necroptosis process. Likewise, cardioprotective effects of HIIT in coping with myocardial I/R injury may be associated with RIP1-RIP3-MLKL axis. These findings establish a critical foundation for higher efficiency of exercise-based cardiac rehabilitation post-MI and future research.
Collapse
Affiliation(s)
- Alireza Ghardashi Afousi
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, University of Tehran, Tehran, IR Iran
| | - Abbasali Gaeini
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, University of Tehran, Tehran, IR Iran
| | - Kamran Rakhshan
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Naderi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Darbandi Azar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center and Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Camelo L, Marinho TDS, Águila MB, Souza-Mello V, Barbosa-da-Silva S. Intermittent fasting exerts beneficial metabolic effects on blood pressure and cardiac structure by modulating local renin-angiotensin system in the heart of mice fed high-fat or high-fructose diets. Nutr Res 2018; 63:51-62. [PMID: 30824397 DOI: 10.1016/j.nutres.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/01/2018] [Accepted: 12/07/2018] [Indexed: 02/09/2023]
Abstract
Intermittent fasting (IF) sets the preference for fats as fuel and is linked to beneficial metabolic outcomes; however, the effects in the renin-angiotensin system (RAS) in the heart remains to be determined. We hypothesized that IF improves blood pressure and lipid profiles due to a less activated local RAS in the left ventricle of mice, irrespective of the dietary scheme. This study aimed to evaluate the effects of intermittent fasting on cardiovascular parameters and local RAS in the left ventricle (LV) of mice fed either a high-fat (HF) or high-fructose diet (HFru). Metabolic alterations were induced in C57BL/6 mice by providing them free access to a high-fat or a high-fructose (HFru) diet for 8 weeks. Following the 8-week metabolic alteration period, the mice were subjected to the IF protocol in which mice were deprived of food for 24 hours, every other day, for a period of 4 weeks. The IF protocol caused significant reduction in body weight, systolic blood pressure, blood glucose, total cholesterol, and triacylglycerol levels, in addition to augmenting the plasma and urinary uric acid levels, irrespective of the diet. Post IF protocol, beneficial LV remodeling was observed in animals fed either diet and included reduced LV mass, thickness, and cardiomyocyte cross-sectional area. These results comply with the improved RAS modulation, which favored ACE2/MAS receptor axis over the renin/ACE/AT1 axis. In conclusion, the significant decrease in weight brought about as a result of the IF protocol lead to modulation of the local RAS, with the consequential benefit of LV remodeling and reduction in blood pressure, irrespective of the diet.
Collapse
Affiliation(s)
- Luana Camelo
- Institute of Biology, State University of Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
22
|
Ghardashi-Afousi A, Holisaz MT, Shirvani H, Pishgoo B. The effects of low-volume high-intensity interval versus moderate intensity continuous training on heart rate variability, and hemodynamic and echocardiography indices in men after coronary artery bypass grafting: A randomized clinical trial study. ARYA ATHEROSCLEROSIS 2018; 14:260-271. [PMID: 31143227 PMCID: PMC6527148 DOI: 10.22122/arya.v14i6.1781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/22/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Heart rate variability (HRV) declines after coronary artery bypass grafting (CABG). The purpose of this study was to evaluate the effect of low-volume high-intensity interval training (LV-HIIT) and moderate-intensity continuous training (MICT) on HRV as well as, hemodynamic and echocardiography indices. METHODS Forty-two men after CABG (55.12 ± 3.97 years) were randomly assigned into LV-HIIT, MICT, and control (CTL) groups. The exercise training in LV-HIIT consisted of 2-minute interval at 85-95 percent of maximal heart rate (HRmax), 2-minute interval at 50% of HRmax and 40-minute interval at 70% of HRmax in MICT for three sessions in a week, for 6-weeks. HRV parameters were evaluated by 24-hour Holter electrocardiography (ECG) recording, and echocardiography parameters at baseline and end of intervention were measured in all 3 groups. RESULTS At the end of the intervention, left ventricular ejection fraction (LVEF) significantly increased in LV-HIIT group (58.53 ± 7.26 percent) compared with MICT (52.26 ± 7.91 percent) and CTL (49.68 ± 7.27 percent) groups (P < 0.001). Furthermore, mean R-R interval, root mean square successive difference (RMSSD) of R-R interval, and standard deviation of R-R interval (SDRR) in LV-HIIT group considerably increased compared with MICT group (P < 0.001). High-frequency power (HF) significantly increased in LV-HIIT and MICT groups compared with CTL group (P < 0.001). On the other hand, low frequency (LF) and LF/HF ratio significantly decreased in LV-HIIT group in comparison with MICT group (P < 0.010). CONCLUSION These results suggest that LV-HIIT has a greater effect on improvement of cardiac autonomic activities by increasing R-R interval, SDRR, RMSSD, and HF, and decreasing LF and LF/HF ratio in patients after CABG.
Collapse
Affiliation(s)
- Alireza Ghardashi-Afousi
- PhD Candidate, Department of Exercise Physiology, School of Physical Education and Exercise Sciences, University of Tehran AND Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Holisaz
- Professor, Department of Physical Medicine and Rehabilitation, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Shirvani
- Assistant Professor, Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahram Pishgoo
- Associate Professor, Atherosclerosis Research Center, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|