1
|
Li N, Fang X, Li H, Liu J, Chen N, Zhao X, Yang Q, Chen X. Ginsenoside CK modulates glucose metabolism via PPARγ to ameliorate SCOP-induced cognitive dysfunction. Metab Brain Dis 2025; 40:168. [PMID: 40178645 DOI: 10.1007/s11011-025-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
Ginsenoside compound K (CK) exhibits neuroprotective properties; however, the underlying mechanisms behind these effects have not been investigated thoroughly. CK is the primary active compound derived from ginseng and is metabolized in the gut. It enhances neuronal function by modulating the gut microflora. Therefore, the present study aimed to elucidate the mechanism through which CK enhances cognitive function, employing gut microbiome and microarray analyses. The results revealed that CK upregulated the expression of peroxisome proliferator-activated receptor gamma (PPARγ), suppressed amyloid-β (Aβ) aggregation in hippocampal neurons, and influenced the expression of cyclin-dependent kinase-5 (CDK5), (including insulin receptor substrate 2) IRS2, insulin-degrading enzyme (IDE), glycogen synthase kinase-3 beta (GSK-3β), glucose transporter type 1 (GLUT1), and glucose transporter type 3 (GLUT3) proteins. These proteins play crucial roles in regulating brain glucose metabolism, increasing neuronal energy, and reducing neuronal apoptosis, thereby ameliorating cognitive impairment in mice.
Collapse
Affiliation(s)
- Na Li
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Xingyu Fang
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China
| | - Hui Li
- Qian Wei Hospital of Jilin Province, Changchun, 130117, Jilin, P.R. China
| | - Jian Liu
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China
| | - Nan Chen
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China
| | - Xiaohui Zhao
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China
| | - Qing Yang
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China.
| | - Xijun Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P.R. China.
| |
Collapse
|
2
|
Zhang X, Lei Y, Zhou H, Liu H, Xu P. The Role of PKM2 in Multiple Signaling Pathways Related to Neurological Diseases. Mol Neurobiol 2024; 61:5002-5026. [PMID: 38157121 DOI: 10.1007/s12035-023-03901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. It is well known that PKM2 plays a vital role in the proliferation of tumor cells. However, PKM2 can also exert its biological functions by mediating multiple signaling pathways in neurological diseases, such as Alzheimer's disease (AD), cognitive dysfunction, ischemic stroke, post-stroke depression, cerebral small-vessel disease, hypoxic-ischemic encephalopathy, traumatic brain injury, spinal cord injury, Parkinson's disease (PD), epilepsy, neuropathic pain, and autoimmune diseases. In these diseases, PKM2 can exert various biological functions, including regulation of glycolysis, inflammatory responses, apoptosis, proliferation of cells, oxidative stress, mitochondrial dysfunction, or pathological autoimmune responses. Moreover, the complexity of PKM2's biological characteristics determines the diversity of its biological functions. However, the role of PKM2 is not entirely the same in different diseases or cells, which is related to its oligomerization, subcellular localization, and post-translational modifications. This article will focus on the biological characteristics of PKM2, the regulation of PKM2 expression, and the biological role of PKM2 in neurological diseases. With this review, we hope to have a better understanding of the molecular mechanisms of PKM2, which may help researchers develop therapeutic strategies in clinic.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihui Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haijun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Chalwa T, Lebeko M, Matobole R, P Khumalo N, Bayat A. Enhanced bioenergetic cellular activity with metabolic switch to aerobic glycolysis in Keloid and Folliculitis Keloidalis Nuchae. Arch Dermatol Res 2024; 316:412. [PMID: 38878082 PMCID: PMC11180017 DOI: 10.1007/s00403-024-03038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 06/19/2024]
Abstract
Keloid scars and folliculitis keloidalis nuchae (FKN) are benign fibroproliferative dermal lesions of unknown aetiology and ill-defined treatment, which typically present in genetically susceptible individuals. Their pathognomonic hallmarks include local aggressive invasive behaviour plus high recurrence post-therapy. In view of this, we investigated proliferative and key parameters of bioenergetic cellular characteristics of site-specific keloid-derived fibroblasts (intra(centre)- and peri(margin)-lesional) and FKN compared to normal skin and normal flat non-hypertrophic scar fibroblasts as negative controls.The results showed statistically significant (P < 0.01) and variable growth dynamics with increased proliferation and migration in keloid fibroblasts, while FKN fibroblasts showed a significant (P < 0.001) increase in proliferation but similar migration profile to controls. A statistically significant metabolic switch towards aerobic glycolysis in the fibroblasts from the disease conditions was noted. Furthermore, an increase in basal glycolysis with a concomitant increase in the cellular maximum glycolytic capacity was also demonstrated in perilesional keloid and FKN fibroblasts (P < 0.05). Mitochondrial function parameters showed increased oxidative phosphorylation in the disease conditions (P < 0.05) indicating functional mitochondria. These findings further suggest that Keloids and FKN demonstrate a switch to a metabolic phenotype of aerobic glycolysis. Increased glycolytic flux inhibition is a potential mechanistic basis for future therapy.
Collapse
Affiliation(s)
- Temwani Chalwa
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Maribanyana Lebeko
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Relebohile Matobole
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ardeshir Bayat
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
4
|
Gao L, Liu YX, Zhou YZ, Qin XM. Baicalein Attenuates Neuroinflammation in LPS-Treated BV-2 Cells by Inhibiting Glycolysis via STAT3/c-Myc Pathway. Neurochem Res 2023; 48:3363-3377. [PMID: 37277556 DOI: 10.1007/s11064-023-03961-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
More and more evidence shows that metabolic reprogramming is closely related to the occurrence of AD. The metabolic conversion of oxidative phosphorylation into glycolysis will aggravate microglia-mediated inflammation. It has been demonstrated that baicalein could inhibit neuroinflammation in LPS-treated BV-2 microglial cells, but whether the anti-neuroinflammatory mechanisms of baicalein were related to glycolysis is unclear. Our results depicted that baicalein significantly inhibited the levels of nitric oxide (NO), interleukin-6 (IL-6), prostaglandin 2 (PGE2) and tumor necrosis factor (TNF-α) in LPS-treated BV-2 cells. 1H-NMR metabolomics analysis showed that baicalein decreased the levels of lactic acid and pyruvate, and significantly regulated glycolytic pathway. Further study revealed that baicalein significantly inhibited the activities of glycolysis-related enzymes including hexokinase (HK), 6-phosphate kinase (6-PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), and inhibited STAT3 phosphorylation and c-Myc expression. By using of STAT3 activator RO8191, we found that baicalein suppressed the increase of STAT3 phosphorylation and c-Myc expression triggered by RO8191, and inhibited the increased levels of 6-PFK, PK and LDH caused by RO8191. In conclusion, these results suggested that baicalein attenuated the neuroinflammation in LPS-treated BV-2 cells by inhibiting glycolysis through STAT3/c-Myc pathway.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road Xiaodain District, Taiyuan, 030006, Shanxi, China.
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, Shanxi, China.
| | - Yu-Xin Liu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road Xiaodain District, Taiyuan, 030006, Shanxi, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, Shanxi, China
| | - Yu-Zhi Zhou
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road Xiaodain District, Taiyuan, 030006, Shanxi, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, Shanxi, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road Xiaodain District, Taiyuan, 030006, Shanxi, China.
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
5
|
Low levels of serum LDH are associated with depression and suicide attempts. Gen Hosp Psychiatry 2022; 79:42-49. [PMID: 36265388 DOI: 10.1016/j.genhosppsych.2022.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND A huge body of evidence has signaled a correlation between adult depression and energy metabolism. The key links are the energy supply and substrates for brain energy metabolism and the crucial signaling molecule lactate. Nevertheless, the association between lactate metabolism and depression remains elusive. OBJECTIVE The primary objective of this study was to explore the difference in serum LDH levels between patients with major depressive disorder (MDD) and the normal population and to determine whether LDH can be employed as a predictor of suicide attempt (SA) in MDD patients. METHODS Serum LDH levels were measured in 232 patients with MDD and 110 healthy controls. Depressive symptoms were assessed using the 24-item Hamilton Depression Scale (HAMD-24). The data were collected and analyzed with SPSS 22.0. RESULTS The serum LDH level of the control group was (196.50 ± 34.40) U/L, while that of the MDD group was (177.94 ± 25.89) U/L (P < 0.001). Notably, the LDH level [(169.96 ± 25.31) U/L] in the SA group was significantly lower than that in the control and non-SA groups [(181.25 ± 25.47) U/L] (P < 0.01); There was no significant correlation with HAMD-24 score (P > 0.05). Collectively, this study demonstrated that a decrease in serum LDH levels is an independent risk factor for SA in MDD patients. CONCLUSION Our results imply that a decrease in LDH levels may be associated with MDD and suicidal behaviors. Early identification of suicide risk and evaluation of the prognosis of depression is critical.
Collapse
|
6
|
Vallée A. Arterial Stiffness and the Canonical WNT/β-catenin Pathway. Curr Hypertens Rep 2022; 24:499-507. [PMID: 35727523 DOI: 10.1007/s11906-022-01211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Arterial stiffness (AS) was mainly associated with cardiovascular morbidity and mortality in a hypertensive patient. Some risk factors contribute to the development of AS, such as aging, high blood pressure, vascular calcification, inflammation, and diabetes mellitus. The WNT/β-catenin pathway is implicated in numerous signaling and regulating pathways, including embryogenesis, cell proliferation, migration and polarity, apoptosis, and organogenesis. The activation of the WNT/β-catenin pathway is associated with the development of these risk factors. RECENT FINDINGS Aortic pulse wave velocity (PWV) is measured to determine AS, and in peripheral artery disease patients, PWV is higher than controls. An augmentation in PWV by 1 m/s has been shown to increase the risk of cardiovascular events by 14%. AS measured by PWV is characterized by the deregulation of the WNT/β-catenin pathway by the inactivation of its two inhibitors, i.e., DKK1 and sclerostin. Thus, this review focuses on the role of the WNT/β-catenin pathway which contributes to the development of arterial stiffness.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology - Data - Biostatistics, Delegation of Clinical Research and Innovation, Foch Hospital, 92150, Suresnes, France.
| |
Collapse
|
7
|
WNT/β-catenin Pathway: a Possible Link Between Hypertension and Alzheimer's Disease. Curr Hypertens Rep 2022; 24:465-475. [PMID: 35788966 DOI: 10.1007/s11906-022-01209-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Recent research has shown that older people with high blood pressure (BP), or hypertension, are more likely to have biomarkers of Alzheimer's disease (AD). Essential hypertension represents the most common cardiovascular disease worldwide and is thought to be responsible for about 13% of all deaths. People with essential hypertension who regularly take prescribed BP medications are half as likely to develop AD as those who do not take them. What then is the connection? RECENT FINDINGS We know that high BP can damage small blood vessels in the brain, affecting those parts that are responsible for memory and thinking. However, the link between AD and hypertension remains unclear. Recent advances in the field of molecular and cellular biology have revealed a downregulation of the canonical WNT/β-catenin pathway in both hypertension and AD. In AD, the glutamate transport function is decreased, a decrease that is associated with a loss of synapse and neuronal death. β-catenin signaling appears to act as a major regulator of glutamate transporters (EAAT and GS) expression and can be harnessed to remove excess glutamate in AD. This review focuses on the possible link between hypertension and AD through the decreased WNT/β-catenin which interacts with the glutamatergic pathway.
Collapse
|
8
|
High-resolution NMR metabolomics of patients with subjective cognitive decline plus: Perturbations in the metabolism of glucose and branched-chain amino acids. Neurobiol Dis 2022; 171:105782. [DOI: 10.1016/j.nbd.2022.105782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
|
9
|
Yang Y, Wang L, Zhang C, Guo Y, Li J, Wu C, Jiao J, Zheng H. Ginsenoside Rg1 improves Alzheimer's disease by regulating oxidative stress, apoptosis, and neuroinflammation through Wnt/GSK-3β/β-catenin signaling pathway. Chem Biol Drug Des 2022; 99:884-896. [PMID: 35313087 DOI: 10.1111/cbdd.14041] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/11/2022] [Accepted: 03/05/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that can cause cognitive impairment. Ginsenoside Rg1 (Rg1) has a significant neuroprotective effect on animals with memory impairment. However, the mechanism of how Rg1 mediates the Wnt signaling pathway and improves cognitive function by regulating oxidative stress, apoptosis, and neuroinflammation is still unclear. In this study, the spatial memory ability of tree shrews was tested by Morris water maze, the expression levels of amyloid protein (Aβ1-42), ionized calcium-binding adapter molecule 1 (iba-1), nitrotyrosine (NT), and 8-hydroxyguanine (8-OHG) were detected by immunohistochemistry. Subsequently, the activity of catalase (CAT) and the glutathione peroxidase (GSH-Px) was, respectively, measured by the ammonium molybdate method and the 5,5'-dithiobis (2-nitrobenzoic acid). Furthermore, the malondialdehyde (MDA) concentration was determined by the thiobarbituric acid test. Finally, the expression levels of Beta-secretase (BACE1), superoxide dismutase (SOD), BCL2-Associated X (Bax), B-cell lymphoma-2 (Bcl-2), caspase-anti-apoptotic factor Cleaved-caspase-3 (Caspase-3), microtubule-associated proteins 2 (MAP2), Neuronal nuclear antigen (NeuN), as well as the phosphorylation of GSK-3β and β-catenin were detected by Western blot. This study implied that Rg1 reduced the phosphorylation of Tau protein, the deposition of Aβ1-42, and the expression of BACE1. It also showed that Rg1 increased the antioxidant activity of SOD, CAT, GPx, and instead reduced the oxidation products of NT, 8-OHG, and MDA, as wells as the inflammatory factor interleukin-1 and iba-1. It further showed that Rg1 increased the ratio of Bcl-2 to Bax and expression of neuronal markers MAP2 and NeuN, but instead reduced the expression of Caspase-3, GSK-3β, and β-catenin. In conclusion, by regulating the Wnt/GSK-3β/β-catenin signaling pathway, Rg1 of moderate and high dose could alleviate oxidative stress damage, improve neuroinflammation, protect neurons, finally improve the cognitive impairment of the AD tree shrew. This study provides theoretical basis for the Rg1 clinical application in AD.
Collapse
Affiliation(s)
- Yi Yang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Limei Wang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Caijun Zhang
- Experiment Center of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yuqian Guo
- Affiliated Hospital of Medical Sergeant School, Army Medical University, Shijiazhuang, China
| | - Jintao Li
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Chao Wu
- Department of Pharmacy, Hefei Ion Medical Center, Hefei, China
| | - Jianlin Jiao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hong Zheng
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Possible actions of cannabidiol in obsessive-compulsive disorder by targeting the WNT/β-catenin pathway. Mol Psychiatry 2022; 27:230-248. [PMID: 33837269 DOI: 10.1038/s41380-021-01086-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/13/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder characterized by recurrent and distinctive obsessions and/or compulsions. The etiologies remain unclear. Recent findings have shown that oxidative stress, inflammation, and glutamatergic pathways play key roles in the causes of OCD. However, first-line therapies include cognitive-behavioral therapy but only 40% of the patients respond to this first-line therapy. Research for new treatment is mandatory. This review focuses on the potential effects of cannabidiol (CBD), as a potential therapeutic strategy, on OCD and some of the presumed mechanisms by which CBD provides its benefit properties. CBD medication downregulates GSK-3β, the main inhibitor of the WNT/β-catenin pathway. The activation of the WNT/β-catenin could be associated with the control of oxidative stress, inflammation, and glutamatergic pathway and circadian rhythms dysregulation in OCD. Future prospective clinical trials could focus on CBD and its different and multiple interactions in OCD.
Collapse
|
11
|
A Warburg-like metabolic program coordinates Wnt, AMPK, and mTOR signaling pathways in epileptogenesis. PLoS One 2021; 16:e0252282. [PMID: 34358226 PMCID: PMC8345866 DOI: 10.1371/journal.pone.0252282] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a complex neurological condition characterized by repeated spontaneous seizures and can be induced by initiating seizures known as status epilepticus (SE). Elaborating the critical molecular mechanisms following SE are central to understanding the establishment of chronic seizures. Here, we identify a transient program of molecular and metabolic signaling in the early epileptogenic period, centered on day five following SE in the pre-clinical kainate or pilocarpine models of temporal lobe epilepsy. Our work now elaborates a new molecular mechanism centered around Wnt signaling and a growing network comprised of metabolic reprogramming and mTOR activation. Biochemical, metabolomic, confocal microscopy and mouse genetics experiments all demonstrate coordinated activation of Wnt signaling, predominantly in neurons, and the ensuing induction of an overall aerobic glycolysis (Warburg-like phenomenon) and an altered TCA cycle in early epileptogenesis. A centerpiece of the mechanism is the regulation of pyruvate dehydrogenase (PDH) through its kinase and Wnt target genes PDK4. Intriguingly, PDH is a central gene in certain genetic epilepsies, underscoring the relevance of our elaborated mechanisms. While sharing some features with cancers, the Warburg-like metabolism in early epileptogenesis is uniquely split between neurons and astrocytes to achieve an overall novel metabolic reprogramming. This split Warburg metabolic reprogramming triggers an inhibition of AMPK and subsequent activation of mTOR, which is a signature event of epileptogenesis. Interrogation of the mechanism with the metabolic inhibitor 2-deoxyglucose surprisingly demonstrated that Wnt signaling and the resulting metabolic reprogramming lies upstream of mTOR activation in epileptogenesis. To augment the pre-clinical pilocarpine and kainate models, aspects of the proposed mechanisms were also investigated and correlated in a genetic model of constitutive Wnt signaling (deletion of the transcriptional repressor and Wnt pathway inhibitor HBP1). The results from the HBP1-/- mice provide a genetic evidence that Wnt signaling may set the threshold of acquired seizure susceptibility with a similar molecular framework. Using biochemistry and genetics, this paper outlines a new molecular framework of early epileptogenesis and advances a potential molecular platform for refining therapeutic strategies in attenuating recurrent seizures.
Collapse
|
12
|
Dutta A, Chattopadhyay H. A Brief on Biological Thermodynamics for Human Physiology. J Biomech Eng 2021; 143:070802. [PMID: 33704420 DOI: 10.1115/1.4050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/08/2022]
Abstract
Thermodynamics, the science of energy interactions, governs the direction of processes found in nature. While the subject finds wide applications in science and technology, its connection to biological sciences and in particular to bio-engineering is becoming increasingly important. In this work, after a brief introduction to the fundamental concepts in thermodynamics, we focus on its application in human physiology. A review of application of thermodynamics to the interaction between human body and environment is presented. Research works on biological systems such as the nervous system and the cardiovascular systems are summarized. The thermodynamics of metabolism is reviewed, and finally, the role of the subject in understanding and combating diseases is highlighted.
Collapse
Affiliation(s)
- Abhijit Dutta
- Department of Mechanical Engineering, MCKV Institute of Engineering, Howrah 711204, India; Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| | | |
Collapse
|
13
|
Cortical proteins may provide motor resilience in older adults. Sci Rep 2021; 11:11311. [PMID: 34050212 PMCID: PMC8163829 DOI: 10.1038/s41598-021-90859-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/18/2021] [Indexed: 11/20/2022] Open
Abstract
Motor resilience proteins may be a high value therapeutic target that offset the negative effects of pathologies on motor function. This study sought to identify cortical proteins associated with motor decline unexplained by brain pathologies that provide motor resilience. We studied 1226 older decedents with annual motor testing, postmortem brain pathologies and quantified 226 proteotypic peptides in prefrontal cortex. Twenty peptides remained associated with motor decline in models controlling for ten brain pathologies (FDR < 0.05). Higher levels of nine peptides and lower levels of eleven peptides were related to slower decline. A higher motor resilience protein score based on averaging the levels of all 20 peptides was related to slower motor decline, less severe parkinsonism and lower odds of mobility disability before death. Cortical proteins may provide motor resilience. Targeting these proteins in further drug discovery may yield novel interventions to maintain motor function in old age.
Collapse
|
14
|
Vallée A, Vallée JN, Lecarpentier Y. Potential role of cannabidiol in Parkinson's disease by targeting the WNT/β-catenin pathway, oxidative stress and inflammation. Aging (Albany NY) 2021; 13:10796-10813. [PMID: 33848261 PMCID: PMC8064164 DOI: 10.18632/aging.202951] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/26/2021] [Indexed: 04/11/2023]
Abstract
Parkinson's disease (PD) is a major neurodegenerative disease (ND), presenting a progressive degeneration of the nervous system characterized by a loss of dopamine in the substantia nigra pars compacta. Recent findings have shown that oxidative stress and inflammation play key roles in the development of PD. However, therapies remain uncertain and research for new treatment is of the utmost importance. This review focuses on the potential effects of using cannabidiol (CBD) as a potential therapeutic strategy for the treatment of PD and on some of the presumed mechanisms by which CBD provides its beneficial properties. CBD medication downregulates GSK-3β, the main inhibitor of the WNT/β-catenin pathway. Activation of the WNT/β-catenin could be associated with the control of oxidative stress and inflammation. Future prospective clinical trials should focus on CBD and its multiple interactions in the treatment of PD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, Suresnes 92150, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens 80054, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers 86000, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), Meaux 77100, France
| |
Collapse
|
15
|
Vallée A, Lecarpentier Y, Vallée JN. Cannabidiol and the Canonical WNT/β-Catenin Pathway in Glaucoma. Int J Mol Sci 2021; 22:ijms22073798. [PMID: 33917605 PMCID: PMC8038773 DOI: 10.3390/ijms22073798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Glaucoma is a progressive neurodegenerative disease which constitutes the main frequent cause of irreversible blindness. Recent findings have shown that oxidative stress, inflammation and glutamatergic pathway play key roles in the causes of glaucoma. Recent studies have shown a down regulation of the WNT/β-catenin pathway in glaucoma, associated with overactivation of the GSK-3β signaling. WNT/β-catenin pathway is mainly associated with oxidative stress, inflammation and glutamatergic pathway. Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa plant which possesses many therapeutic properties across a range of neuropsychiatric disorders. Since few years, CBD presents an increased interest as a possible drug in anxiolytic disorders. CBD administration is associated with increase of the WNT/β-catenin pathway and decrease of the GSK-3β activity. CBD has a lower affinity for CB1 but can act through other signaling in glaucoma, including the WNT/β-catenin pathway. CBD downregulates GSK3-β activity, an inhibitor of WNT/β-catenin pathway. Moreover, CBD was reported to suppress pro-inflammatory signaling and neuroinflammation, oxidative stress and glutamatergic pathway. Thus, this review focuses on the potential effects of cannabidiol, as a potential therapeutic strategy, on glaucoma and some of the presumed mechanisms by which this phytocannabinoid provides its possible benefit properties through the WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 rue Saint-Fiacre, 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
16
|
Zhou Q, Tang M, He L, Chen S. PKM2: a crucial neuroprotective target against oxidative stress. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1432-1434. [PMID: 33249431 DOI: 10.1093/abbs/gmaa121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Qionglin Zhou
- Department of Pharmacy, the First People's Hospital of Shaoguan, Shaoguan Hospital of Southern Medical University, Shaoguan 512000, China
| | - Mingzhu Tang
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lu He
- Department of Neurosurgery, the First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Shuiping Chen
- Department of Pharmacy, the First People's Hospital of Shaoguan, Shaoguan Hospital of Southern Medical University, Shaoguan 512000, China
| |
Collapse
|
17
|
The influence of circadian rhythms and aerobic glycolysis in autism spectrum disorder. Transl Psychiatry 2020; 10:400. [PMID: 33199680 PMCID: PMC7669888 DOI: 10.1038/s41398-020-01086-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Intellectual abilities and their clinical presentations are extremely heterogeneous in autism spectrum disorder (ASD). The main causes of ASD remain unclear. ASD is frequently associated with sleep disorders. Biologic rhythms are complex systems interacting with the environment and controlling several physiological pathways, including brain development and behavioral processes. Recent findings have shown that the deregulation of the core clock neurodevelopmental signaling is correlated with ASD clinical presentation. One of the main pathways involved in developmental cognitive disorders is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving circadian expression of genes involved in physiologic and metabolic functions. In ASD, the increase of the canonical WNT/β-catenin pathway is enhancing by the dysregulation of circadian rhythms. ASD progression is associated with a major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, the aerobic glycolysis. This review focuses on the interest of circadian rhythms dysregulation in metabolic reprogramming in ASD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
|
18
|
Yan X, Hu Y, Wang B, Wang S, Zhang X. Metabolic Dysregulation Contributes to the Progression of Alzheimer's Disease. Front Neurosci 2020; 14:530219. [PMID: 33250703 PMCID: PMC7674854 DOI: 10.3389/fnins.2020.530219] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease. Numerous studies have demonstrated a critical role for dysregulated glucose metabolism in its pathogenesis. In this review, we summarize metabolic alterations in aging brain and AD-related metabolic deficits associated with glucose metabolism dysregulation, glycolysis dysfunction, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS) deficits, and pentose phosphate pathway impairment. Additionally, we discuss recent treatment strategies targeting metabolic defects in AD, including their limitations, in an effort to encourage the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yue Hu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Sijian Wang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
19
|
Wang X, Chen N, Du Z, Ling Z, Zhang P, Yang J, Khaleel M, Khoury AN, Li J, Li S, Huang H, Zhou X, Han Y, Wei F. Bioinformatics analysis integrating metabolomics of m 6A RNA microarray in intervertebral disc degeneration. Epigenomics 2020; 12:1419-1441. [PMID: 32627576 DOI: 10.2217/epi-2020-0101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: To explore the potential functions and mechanism of N6.methyladenosine (m6A) abnormality of RNAs in nucleus pulposus from the intervertebral disc degeneration (IDD). Materials & methods: We performed rat model, m6A epitranscriptomic microarray, bioinformatics analysis and metabolomics. Results: In IDD, most of the differentially methylated RNAs showed a significant demethylation situation. The competing endogenous RNA network LOC102555094/miR-431/GSK-3β combining downstream Wnt pathway were identified in bioinformatics analysis. For metabolomics, activation of Wnt pathway led to reprogramming of glucose metabolism and enzyme activation of PKM2. Finally, quantitative real-time PCR and methylated RNA immunoprecipitation coupled with quantitative real-time PCR revealed the positive correlation between demethylation of LOC102555094 and expression of both FTO and ZFP217. Conclusion: LOC102555094 might be demethylated by ZFP217, activating FTO and LOC102555094/miR-431/GSK-3β/Wnt played a crucial role in IDD.
Collapse
Affiliation(s)
- Xiaoshuai Wang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Ningning Chen
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Zefeng Du
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Zemin Ling
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510030, China
| | - Penghui Zhang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Jiaming Yang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Mohammed Khaleel
- Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Anthony N Khoury
- Hip Preservation Center, Baylor University Medical Center at Dallas, TX 75390, USA
| | - Jianwen Li
- Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, 523000, China
| | - Songbo Li
- Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, 523000, China
| | - Haoyang Huang
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Xinwei Zhou
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Yueyin Han
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Fuxin Wei
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| |
Collapse
|
20
|
Takeuchi Y, Okinaka Y, Ogawa Y, Kikuchi-Taura A, Kataoka Y, Gul S, Claussen C, Boltze J, Taguchi A. Intravenous Bone Marrow Mononuclear Cells Transplantation in Aged Mice Increases Transcription of Glucose Transporter 1 and Na +/K +-ATPase at Hippocampus Followed by Restored Neurological Functions. Front Aging Neurosci 2020; 12:170. [PMID: 32595487 PMCID: PMC7301702 DOI: 10.3389/fnagi.2020.00170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023] Open
Abstract
We recently reported that intravenous bone marrow mononuclear cell (BM-MNC) transplantation in stroke improves neurological function through improvement of cerebral metabolism. Cerebral metabolism is known to diminish with aging, and the reduction of metabolism is one of the presumed causes of neurological decline in the elderly. We report herein that transcription of glucose transporters, monocarboxylate transporters, and Na+/K+-ATPase is downregulated in the hippocampus of aged mice with impaired neurological functions. Intravenous BM-MNC transplantation in aged mice stimulated the transcription of glucose transporter 1 and Na+/K+-ATPase α1 followed by restoration of neurological function. As glucose transporters and Na+/K+-ATPases are closely related to cerebral metabolism and neurological function, our data indicate that BM-MNC transplantation in aged mice has the potential to restore neurological function by activating transcription of glucose transporter and Na+/K+-ATPase. Furthermore, our data indicate that changes in transcription of glucose transporter and Na+/K+-ATPase could be surrogate biomarkers for age-related neurological impairment as well as quantifying the efficacy of therapies.
Collapse
Affiliation(s)
- Yukiko Takeuchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yuka Okinaka
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yuko Ogawa
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Akie Kikuchi-Taura
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Hyogo, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, RIKEN, Hyogo, Japan
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME - ScreeningPort, Hamburg, Germany.,Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Hamburg, Germany
| | - Carsten Claussen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME - ScreeningPort, Hamburg, Germany.,Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Hamburg, Germany
| | - Johannes Boltze
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| |
Collapse
|
21
|
Vallée A, Vallée JN, Guillevin R, Lecarpentier Y. Riluzole: a therapeutic strategy in Alzheimer's disease by targeting the WNT/β-catenin pathway. Aging (Albany NY) 2020; 12:3095-3113. [PMID: 32035419 PMCID: PMC7041777 DOI: 10.18632/aging.102830] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, where the etiology remains unclear. AD is characterized by amyloid-(Aβ) protein aggregation and neurofibrillary plaques deposits. Oxidative stress and chronic inflammation have been suggested as causes of AD. Glutamatergic pathway dysregulation is also mainly associated with AD process. In AD, the canonical WNT/β-catenin pathway is downregulated. Downregulation of WNT/β-catenin, by activation of GSK-3β-induced Aβ, and inactivation of PI3K/Akt pathway involve oxidative stress in AD. The downregulation of the WNT/β-catenin pathway decreases the activity of EAAT2, the glutamate receptors, and leads to neuronal death. In AD, oxidative stress, neuroinflammation and glutamatergic pathway operate in a vicious circle driven by the dysregulation of the WNT/β-catenin pathway. Riluzole is a glutamate modulator and used as treatment in amyotrophic lateral sclerosis. Recent findings have highlighted its use in AD and its potential increase power on the WNT pathway. Nevertheless, the mechanism by which Riluzole can operate in AD remains unclear and should be better determine. The focus of our review is to highlight the potential action of Riluzole in AD by targeting the canonical WNT/β-catenin pathway to modulate glutamatergic pathway, oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Alexandre Vallée
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), University of Poitiers, CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France.,Laboratory of Mathematics and Applications (LMA), University of Poitiers, Poitiers, France
| | - Rémy Guillevin
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), University of Poitiers, CHU de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
22
|
Vallée A, Lecarpentier Y, Vallée R, Guillevin R, Vallée JN. Circadian Rhythms in Exudative Age-Related Macular Degeneration: The Key Role of the Canonical WNT/β-Catenin Pathway. Int J Mol Sci 2020; 21:ijms21030820. [PMID: 32012797 PMCID: PMC7037737 DOI: 10.3390/ijms21030820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is considered as the main worldwide cause of blindness in elderly adults. Exudative AMD type represents 10 to 15% of macular degeneration cases, but is the main cause of vision loss and blindness. Circadian rhythm changes are associated with aging and could further accelerate it. However, the link between circadian rhythms and exudative AMD is not fully understood. Some evidence suggests that dysregulation of circadian functions could be manifestations of diseases or could be risk factors for the development of disease in elderly adults. Biological rhythms are complex systems interacting with the environment and control several physiological pathways. Recent findings have shown that the dysregulation of circadian rhythms is correlated with exudative AMD. One of the main pathways involved in exudative AMD is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving the circadian expression of genes involved in physiological and metabolic functions. In exudative AMD, the increase of the canonical WNT/β-catenin pathway is enhanced by the dysregulation of circadian rhythms. Exudative AMD progression is associated with major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, of aerobic glycolysis. This review focuses on the interest of circadian rhythm dysregulation in exudative AMD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France
| | - Rodolphe Vallée
- University Hospital Group of Paris-Seine-Saint-Denis, APHP, University of Paris-13 Sorbonne Paris-Cité, 93000 Paris, France
| | - Rémy Guillevin
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Jean-Noël Vallée
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, 86021 Poitiers, France
| |
Collapse
|
23
|
Gil-Iturbe E, Solas M, Cuadrado-Tejedo M, García-Osta A, Escoté X, Ramírez MJ, Lostao MP. GLUT12 Expression in Brain of Mouse Models of Alzheimer's Disease. Mol Neurobiol 2019; 57:798-805. [PMID: 31473905 DOI: 10.1007/s12035-019-01743-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
The brain depends on glucose as a source of energy. This implies the presence of glucose transporters, being GLUT1 and GLUT3 the most relevant. Expression of GLUT12 is found in mouse and human brain at low levels. We previously demonstrated GLUT12 upregulation in the frontal cortex of aged subjects that was even higher in aged Alzheimer's disease (AD) patients. However, the cause and the mechanism through which this increase occurs are still unknown. Here, we aimed to investigate whether the upregulation of GLUT12 in AD is related with aging or Aβ deposition in comparison with GLUT1, GLUT3, and GLUT4. In the frontal cortex of two amyloidogenic mouse models (Tg2576 and APP/PS1) GLUT12 levels were increased. Contrary, expression of GLUT1 and GLUT3 were decreased, while GLUT4 did not change. In aged mice and the senescence-accelerated model SAMP8, GLUT12 and GLUT4 were upregulated in comparison with young animals. GLUT1 and GLUT3 did not show significant changes with age. The effect of β-amyloid (Aβ) deposition was also evaluated in Aβ peptide i.c.v. injected mice. In the hippocampus, GLUT12 expression increased whereas GLUT4 was not modified. Consistent with the results in the amyloidogenic models, GLUT3 and GLUT1 were downregulated. In summary, Aβ increases GLUT12 protein expression in the brain pointing out a central role of the transporter in AD pathology and opening new perspectives for the treatment of this neurodegenerative disease.
Collapse
Affiliation(s)
- Eva Gil-Iturbe
- Department of Nutrition, Food Science and Physiology, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.,Nutrition Research Centre, University of Navarra, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Mar Cuadrado-Tejedo
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Center for Applied Medical Research (CIMA), Division of Neurosciences, University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Ana García-Osta
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Center for Applied Medical Research (CIMA), Division of Neurosciences, University of Navarra, Pamplona, Spain
| | - Xavier Escoté
- Nutrition Research Centre, University of Navarra, Pamplona, Spain.,Unitat de Nutrició i Salut, Centre Tecnològic de Catalunya, Eurecat, Reus, Spain
| | - María Javier Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María Pilar Lostao
- Department of Nutrition, Food Science and Physiology, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain. .,Nutrition Research Centre, University of Navarra, Pamplona, Spain. .,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
24
|
Vallée A, Vallée JN, Lecarpentier Y. Metabolic reprogramming in atherosclerosis: Opposed interplay between the canonical WNT/β-catenin pathway and PPARγ. J Mol Cell Cardiol 2019; 133:36-46. [PMID: 31153873 DOI: 10.1016/j.yjmcc.2019.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Abstract
Atherosclerosis, a chronic inflammatory and age-related disease, is a complex mechanism presenting a dysregulation of vessel structures. During this process, the canonical WNT/β-catenin pathway is increased whereas PPARγ is downregulated. The two systems act in an opposite manner. This paper reviews the opposing interplay of these systems and their metabolic-reprogramming pathway in atherosclerosis. Activation of the WNT/β-catenin pathway enhances the transcription of targets involved in inflammation, endothelial dysfunction, the proliferation of vascular smooth muscle cells, and vascular calcification. This complex mechanism, which is partly controlled by the WNT/β-catenin pathway, presents several metabolic dysfunctions. This phenomenon, called aerobic glycolysis (or the Warburg effect), consists of a shift in ATP production from mitochondrial oxidative phosphorylation to aerobic glycolysis, leading to the overproduction of intracellular lactate. This mechanism is partially due to the injury of mitochondrial respiration and an increase in the glycolytic pathway. In contrast, PPARγ agonists downregulate the WNT/β-catenin pathway. Therefore, the development of therapeutic targets, such as PPARγ agonists, for the treatment of atherosclerosis could be an interesting and innovative way of counteracting the canonical WNT pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, Paris, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France; Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| |
Collapse
|
25
|
Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension. Curr Hypertens Rep 2018; 20:62. [PMID: 29884931 DOI: 10.1007/s11906-018-0860-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Heterogeneous causes can determinate hypertension. RECENT FINDINGS The renin-angiotensin system (RAS) has a major role in the pathophysiology of blood pressure. Angiotensin II and aldosterone are overexpressed during hypertension and lead to hypertension development and its cardiovascular complications. In several tissues, the overactivation of the canonical WNT/β-catenin pathway leads to inactivation of peroxisome proliferator-activated receptor gamma (PPARγ), while PPARγ stimulation induces a decrease of the canonical WNT/β-catenin pathway. In hypertension, the WNT/β-catenin pathway is upregulated, whereas PPARγ is decreased. The WNT/β-catenin pathway and RAS regulate positively each other during hypertension, whereas PPARγ agonists can decrease the expression of both the WNT/β-catenin pathway and RAS. We focus this review on the hypothesis of an opposite interplay between PPARγ and both the canonical WNT/β-catenin pathway and RAS in regulating the molecular mechanism underlying hypertension. The interactions between PPARγ and the canonical WNT/β-catenin pathway through the regulation of the renin-angiotensin system in hypertension may be an interesting way to better understand the actions and the effects of PPARγ agonists as antihypertensive drugs.
Collapse
|
26
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches. Int J Mol Sci 2018; 19:ijms19041212. [PMID: 29659554 PMCID: PMC5979570 DOI: 10.3390/ijms19041212] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4+ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4+ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4+ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.
Collapse
Affiliation(s)
- Alexandre Vallée
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France.
| | - Rémy Guillevin
- Data Analysis and Computations Through Imaging Modeling-Mathématiques (DACTIM), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348 (Laboratoire de Mathématiques et Application), University of Poitiers, Centre Hospitalier Universitaire (CHU) de Poitiers, 86000 Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France.
- LMA (Laboratoire de Mathématiques et Applications), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, Université de Poitiers, 86000 Poitiers, France.
| |
Collapse
|
27
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Thermodynamics in Neurodegenerative Diseases: Interplay Between Canonical WNT/Beta-Catenin Pathway-PPAR Gamma, Energy Metabolism and Circadian Rhythms. Neuromolecular Med 2018; 20:174-204. [PMID: 29572723 DOI: 10.1007/s12017-018-8486-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
Entropy production rate is increased by several metabolic and thermodynamics abnormalities in neurodegenerative diseases (NDs). Irreversible processes are quantified by changes in the entropy production rate. This review is focused on the opposing interactions observed in NDs between the canonical WNT/beta-catenin pathway and PPAR gamma and their metabolic and thermodynamic implications. In amyotrophic lateral sclerosis and Huntington's disease, WNT/beta-catenin pathway is upregulated, whereas PPAR gamma is downregulated. In Alzheimer's disease and Parkinson's disease, WNT/beta-catenin pathway is downregulated while PPAR gamma is upregulated. The dysregulation of the canonical WNT/beta-catenin pathway is responsible for the modification of thermodynamics behaviors of metabolic enzymes. Upregulation of WNT/beta-catenin pathway leads to aerobic glycolysis, named Warburg effect, through activated enzymes, such as glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1(PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactic dehydrogenase kinase-A (LDH-A) and inactivation of pyruvate dehydrogenase complex (PDH). Downregulation of WNT/beta-catenin pathway leads to oxidative stress and cell death through inactivation of Glut, PKM2, PDK1, MCT-1, LDH-A but activation of PDH. In addition, in NDs, PPAR gamma is dysregulated, whereas it contributes to the regulation of several key circadian genes. NDs show many dysregulation in the mediation of circadian clock genes and so of circadian rhythms. Thermodynamics rhythms operate far-from-equilibrium and partly regulate interactions between WNT/beta-catenin pathway and PPAR gamma. In NDs, metabolism, thermodynamics and circadian rhythms are tightly interrelated.
Collapse
Affiliation(s)
- Alexandre Vallée
- DRCI, Hôpital Foch, Suresnes, France.
- LMA (Laboratoire de Mathématiques et Applications) CNRS 7348, University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, Université de Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- DRCI, Hôpital Foch, Suresnes, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
28
|
Vallée A, Vallée JN. Warburg effect hypothesis in autism Spectrum disorders. Mol Brain 2018; 11:1. [PMID: 29301575 PMCID: PMC5753567 DOI: 10.1186/s13041-017-0343-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease which is characterized by a deficit in social interactions and communication with repetitive and restrictive behavior. In altered cells, metabolic enzymes are modified by the dysregulation of the canonical WNT/β-catenin pathway. In ASD, the canonical WNT/β-catenin pathway is upregulated. We focus this review on the hypothesis of Warburg effect stimulated by the overexpression of the canonical WNT/β-catenin pathway in ASD. Upregulation of WNT/β-catenin pathway induces aerobic glycolysis, named Warburg effect, through activation of glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1(PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactate dehydrogenase kinase-A (LDH-A) and inactivation of pyruvate dehydrogenase complex (PDH). The aerobic glycolysis consists to a supply of a large part of glucose into lactate regardless of oxygen. Aerobic glycolysis is less efficient in terms of ATP production than oxidative phosphorylation because of the shunt of the TCA cycle. Dysregulation of energetic metabolism might promote cell deregulation and progression of ASD. Warburg effect regulation could be an attractive target for developing therapeutic interventions in ASD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, CHU Poitiers, University of Poitiers, Poitiers, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|