1
|
Bylica J, Chrabąszcz K, Major P, Grodzicki T, Kwiatek WM, Pogoda K, Fornal M. Exploring post-bariatric plasma metabolic changes using ATR-FTIR spectroscopy: Clinical insights and molecular perspectives. Biochem Biophys Res Commun 2025; 764:151825. [PMID: 40253906 DOI: 10.1016/j.bbrc.2025.151825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Bariatric surgery offers effective treatment of obesity, yet the full metabolic response of the organism remains unclear. Attenuated Total Reflection Fourier Transform Infrared spectroscopy (ATR-FTIR) allows to track the most detailed biochemical alterations in biofluids on a molecular level. This study aimed to utilize ATR-FTIR spectroscopy for monitoring changes of the metabolic profile of plasma in post-bariatric surgery patients and compare this profile to healthy individuals. Twenty patients with morbid obesity underwent bariatric procedures, resulting in improvement of anthropometric parameters. Laboratory biomarkers showed favorable changes: decreased triglycerides and glucose. PCA analysis of ATR-FTIR spectroscopy data revealed evolution of the plasma metabolic parameters towards those which characterize the healthy group, while the metabolic profile in the baseline group was different - lipid-associated infrared bands primarily drove this differentiation. Semiquantitative analysis of the selected bands revealed distinct spectral profiles with increased total lipid contributions in baseline as compared to follow-up and control. In turn, protein conformation showed increased β-sheet/α-helix ratios and altered secondary protein structures in follow-up. Tyrosine-ascribed region intensity attained the lowest value in baseline. C-O moieties and polysaccharides were elevated in follow-up. Alterations in protein structures were potentially influenced by supplementation and inflammation resolution, while lower tyrosine levels in obesity suggest oxidative stress involvement. Above findings highlight FTIR's potential in revealing impact of bariatric surgery on various elements of the metabolic profile. The multifaceted insight on plasma composition provided by FTIR shows significant improvements of this metabolic profile in post-surgery patients already six months after the intervention.
Collapse
Affiliation(s)
- Jan Bylica
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Kraków, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Kraków, Poland; Department of Rheumatology, Immunology and Internal Medicine, University Hospital in Krakow, Poland.
| | | | - Piotr Major
- 2nd Department of General Surgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Grodzicki
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Kraków, Poland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Maria Fornal
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
2
|
Kim D, Ansari MM, Ghosh M, Heo Y, Choi KC, Son YO. Implications of obesity-mediated cellular dysfunction and adipocytokine signaling pathways in the pathogenesis of osteoarthritis. Mol Aspects Med 2025; 103:101361. [PMID: 40156972 DOI: 10.1016/j.mam.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation, bone sclerosis, and chronic low-grade inflammation. Aging and injury play key roles in OA pathogenesis by triggering the release of proinflammatory factors from adipose tissue and other sources. Obesity and aging impair the function of endoplasmic reticulum (ER) chaperones, leading to ER stress, protein misfolding, and cellular apoptosis. Obesity also induces mitochondrial dysfunction in OA through oxidative stress and disrupts mitochondrial dynamics, exacerbating chondrocyte damage. These factors contribute to inflammation, matrix imbalance, and chondrocyte apoptosis. Adipocytes, the primary source of adipokines, release inflammatory mediators that affect joint cells. Several adipocytokines have a central role in the regulation of many aspects of inflammation. Adiponectin and leptin are the two most abundant adipocytokines that are strongly associated with OA progression. This literature review suggests that adipokines activate many signaling pathways to exert downstream effects and play significant roles in obesity-induced OA. Understanding this rapidly growing family of mainly adipocyte-derived mediators and obesity-mediated cellular dysfunction may be important in the development of new therapies for obesity-associated OA management.
Collapse
Affiliation(s)
- Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| | - Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Ki-Choon Choi
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan, 31000, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
3
|
Steiner MR, de Mello AH, Salla DH, Bressan CBC, Luiz Mendes R, de Oliveira MP, da Silva LE, Fernandes BB, Lima IR, Zaccaron RP, Réus GZ, Lock Silveira PC, Luiz Streck E, Rezin GT. The Impact of Maternal Obesity and Deprivation On Energy Metabolism, Oxidative Stress and Brain Antioxidant Defense in the Neurodevelopment of Offspring in the Short, Medium and Long Term. Mol Neurobiol 2025:10.1007/s12035-025-05070-6. [PMID: 40411684 DOI: 10.1007/s12035-025-05070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 05/13/2025] [Indexed: 05/26/2025]
Abstract
The current global obesity epidemic is often associated with changes in dietary habits and lifestyle. Increasing evidence from both observational and experimental animal studies has highlighted the relationship between prenatal exposures and an increased predisposition to metabolic and cognitive disorders, as well as obesity in adulthood. In this study, we used a rodent model to investigate brain energy metabolism by assessing mitochondrial respiratory chain complexes I and II, along with oxidative stress markers (DCF) and antioxidant defenses (GSH and SOD), aiming to identify potential alterations in the central nervous system during offspring neurodevelopment. Our results demonstrated increased body weight and mesenteric fat accumulation in early life and adolescence, along with an imbalance in brain energy metabolism when maternal obesity and early-life stress (maternal deprivation) were combined. By exploring the complex interactions between gestational exposures and long-term behavioral and metabolic outcomes in an experimental model, our findings contribute to a better understanding of the developmental origins of health and disease.
Collapse
Affiliation(s)
- Mariella Reinol Steiner
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil.
| | - Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Daniele Hendler Salla
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Catarina Barbosa Chaves Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Rayane Luiz Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Bruna Barros Fernandes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Igor Ramos Lima
- Laboratory of Experimental Pathophysiology - Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
- Laboratory of Experimental Pathophysiology - Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Gislaine Zilli Réus
- Translational Psychiatry Laboratory, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Pathophysiology - Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Emílio Luiz Streck
- Neurometabolic Diseases Laboratory - Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| |
Collapse
|
4
|
Szczerbowska-Boruchowska M, Chenczke A, Ruszczycki B, Wrobel P, Tokarczyk W, Stec P, Sowa KM, Ziomber-Lisiak A. Increased rubidium levels in brain regions involved in food intake in obese rats. Brain Struct Funct 2025; 230:66. [PMID: 40372485 DOI: 10.1007/s00429-025-02930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
The hypothalamus, particularly its ventromedial and lateral regions, plays a pivotal role in homeostatic appetite regulation and is therefore a significant brain structure in the development of obesity. Additionally, the development of obesity can be caused by improper hedonic regulation, which involves neural circuits and systems associated with pleasure and reward. Several studies indicate a possible link between rubidium (Rb) and obesity, despite this element is not being typically considered influential in vital life processes. The present study, therefore, aims to investigate whether excessive body fat in obese animals alters rubidium levels in brain regions directly or indirectly involved in appetite regulation. The research was conducted on high-calorie diet (HCD)-induced obese rats (OB, n = 8) and their lean counterparts (L, n = 8). The determination of Rb levels in brain areas was performed using synchrotron radiation-based X-ray fluorescence microanalysis (SRXRF). The obtained results show a significantly higher level of Rb in all brain areas examined, although the increase in this element in obese individuals was not the same in all structures. The largest relative difference (over 70%) was observed for the orbitofrontal cortex, and the smallest (about 35%) for the amygdala. Principal component analysis with linear projections demonstrated a clear differentiation between the brain structures of obese and non-obese individuals based on the full elemental composition of tissues, while Rb was the only element that distinguished the obese group in each of the examined brain structures. The results obtained clearly confirm the increase in Rb levels in the brain structures responsible for regulating appetite in obesity.
Collapse
Affiliation(s)
| | - Aleksandra Chenczke
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Blazej Ruszczycki
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Pawel Wrobel
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Wiktoria Tokarczyk
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Patryk Stec
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Katarzyna M Sowa
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
5
|
Tao P, Yan X, Li Y, Wang Z. The Impact of BMI on PCOS Patients and Transcriptome Profiling and Bioinformatic Analysis of Granulosa Cells in PCOS Patients with High and Low BMI. Reprod Sci 2025; 32:1626-1643. [PMID: 39821799 DOI: 10.1007/s43032-024-01783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE To explore the impact of high body mass index (BMI) on the embryo quality and clinical outcomes of polycystic ovary syndrome (PCOS) patients, and the possible genes involved. METHODS Patients who underwent in-vitro fertilization (IVF) treatment and embryo transfer in our center from November 2014 to September 2023, were divided into low BMI PCOS (LBP) group, high BMI PCOS (HBP) group, and high BMI control (HBC) group. Transcriptome sequencing was performed in eight PCOS patients' granulosa cells (GCs). RESULTS A total of 812 IVF/intracytoplasmic sperm injection (ICSI) cycles in the embryo part; and 489 fresh, 634 frozen-warmed embryo transfer (FET) cycles from the clinical part were included. The ICSI normal fertilization rate of HBP group was decreased compared to LBP and HBC groups (p = 0.013&0.008). The IVF blastocyst development rate in HBP group was lower than LBP group (p = 0.01). The preterm birth rate in HBP group was higher than in LBP (30.66% vs. 16.48%, p = 0.041) and HBC groups (30.66% vs. 11.34%, p = 0.002), the adjusted OR (AOR) of preterm birth and BMI was 1.124 (p = 0.023) in FET cycles. Transcriptome sequencing result of GCs showed that differentially expressed miRNAs/lncRNA/circRNA/mRNAs in two PCOS groups were 61, 450, 83, and 568, respectively. The hub genes analysis, enrichment analysis and competing endogenous RNA network revealed that cell cycle, oocyte maturation, systemic lupus erythematosus, oxidative phosphorylation, and mitogen-activated protein kinases (MAPK) signaling pathways had important roles in the embryo development and pregnancy process. CONCLUSIONS The combined effect of PCOS and obesity reduced oocyte quality and embryonic development potential, finally led to poorer clinical outcomes.
Collapse
Affiliation(s)
- Ping Tao
- Department of Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University; School of Medicine, Xiamen University, Xiamen, China
| | - Xiaohong Yan
- Department of Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University; School of Medicine, Xiamen University, Xiamen, China
| | - Youzhu Li
- Department of Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University; School of Medicine, Xiamen University, Xiamen, China.
| | - Zhanxiang Wang
- Department of Neurosurgery, First Affiliated Hospital of Xiamen University; School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Tuğal Aslan D, Göktaş Z. The Therapeutic Potential of Theobromine in Obesity: A Comprehensive Review. Nutr Rev 2025; 83:859-868. [PMID: 39271172 PMCID: PMC11986327 DOI: 10.1093/nutrit/nuae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Obesity, characterized by chronic low-grade inflammation, is a significant health concern. Phytochemicals found in plants are being explored for therapeutic use, particularly in combating obesity. Among these, theobromine, commonly found in cocoa and chocolate, shows promise. Although not as extensively studied as caffeine, theobromine exhibits positive effects on human health. It improves lipid profiles, aids in asthma treatment, lowers blood pressure, regulates gut microbiota, reduces tumor formation, moderates blood glucose levels, and acts as a neuroprotective agent. Studies demonstrate its anti-obesity effects through mechanisms such as browning of white adipose tissue, activation of brown adipose tissue, anti-inflammatory properties, and reduction of oxidative stress. This study aims to suggest theobromine as a potential therapeutic agent against obesity-related complications.
Collapse
Affiliation(s)
- Dilem Tuğal Aslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Altindag, Ankara, Turkiye
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Altindag, Ankara, Turkiye
| |
Collapse
|
7
|
Diaz JP, Pena E, El Alam S, Matte C, Cortés I, Figueroa L, Siques P, Brito J. Chlorella vulgaris Supplementation Attenuates Lead Accumulation, Oxidative Stress, and Memory Impairment in Rats. TOXICS 2025; 13:313. [PMID: 40278629 PMCID: PMC12031184 DOI: 10.3390/toxics13040313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Lead is a harmful heavy metal known to alter the environment and affect human health. Several industries have contributed to the increase in lead contamination, making it a major global concern. Thus, remediation strategies are necessary to prevent lead bioaccumulation and deleterious health effects. The aim of this study was to determine the capacity of the green microalga Chlorella vulgaris (C. vulgaris or CV) to remove lead in an animal model and prevent the accumulation of this heavy metal in the principal organs (brain, liver, and kidney) and blood. Forty male Wistar rats were randomly assigned to four groups (n = 10): control group (CT); C. vulgaris supplementation group, 5% of the diet (CV); lead acetate administration group, 500 ppm (Pb); and C. vulgaris supplementation group, 5% of the diet plus lead acetate administration group, 500 ppm (CV-Pb). After 4 weeks of exposure, we measured lead accumulation, memory function, oxidative stress, and antioxidant activity (SOD and GSH). Lead exposure altered memory function, increased oxidative stress in the brain and kidney, and increased SOD activity in the brain. Supplementation with C. vulgaris restored memory function to control levels; reduced oxidative stress in the brain and kidney; and decreased the accumulation of lead in the liver, kidney, and blood of rats exposed to lead. Based on our results, C. vulgaris is a lead chelating and antioxidant agent in animal models.
Collapse
Affiliation(s)
- Juan Pablo Diaz
- Faculty of Natural and Renewable Resources, Arturo Prat University, Iquique 1100000, Chile;
- Núcleo de Investigación Aplicada e Innovación en Ciencias Biológicas, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique 1110939, Chile
| | - Eduardo Pena
- High Altitude Medicine Research Center, Arturo Prat University, Iquique 1100000, Chile; (S.E.A.); (C.M.); (P.S.); (J.B.)
| | - Samia El Alam
- High Altitude Medicine Research Center, Arturo Prat University, Iquique 1100000, Chile; (S.E.A.); (C.M.); (P.S.); (J.B.)
| | - Cecilia Matte
- High Altitude Medicine Research Center, Arturo Prat University, Iquique 1100000, Chile; (S.E.A.); (C.M.); (P.S.); (J.B.)
| | - Isaac Cortés
- Mathematic Department, Engineer Faculty, Atacama University, Copiapó 1530000, Chile;
| | - Leonardo Figueroa
- Chemical Department, Science Faculty, University of Tarapaca, Arica 1000000, Chile;
| | - Patricia Siques
- High Altitude Medicine Research Center, Arturo Prat University, Iquique 1100000, Chile; (S.E.A.); (C.M.); (P.S.); (J.B.)
| | - Julio Brito
- High Altitude Medicine Research Center, Arturo Prat University, Iquique 1100000, Chile; (S.E.A.); (C.M.); (P.S.); (J.B.)
| |
Collapse
|
8
|
Wang Y, Zhang Y, Wang W, Zhang Y, Dong X, Liu Y. Diverse Physiological Roles of Kynurenine Pathway Metabolites: Updated Implications for Health and Disease. Metabolites 2025; 15:210. [PMID: 40137174 PMCID: PMC11943880 DOI: 10.3390/metabo15030210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Tryptophan is an essential amino acid critical for human health. It plays a pivotal role in numerous physiological and biochemical processes through its metabolism. The kynurenine (KYN) pathway serves as the principal metabolic route for tryptophan, producing bioactive metabolites, including KYN, quinolinic acid, and 3-hydroxykynurenine. Numerous studies are actively investigating the relationship between tryptophan metabolism and physiological functions. These studies are highlighting the interactions among metabolites that may exert synergistic or antagonistic effects, such as neuroprotective or neurotoxic, and pro-oxidative or antioxidant activities. Minor disruptions in the homeostasis of these metabolites can result in immune dysregulation, contributing to a spectrum of diseases. These diseases include neurological disorders, mental illnesses, cardiovascular conditions, autoimmune diseases, and chronic kidney disease. Therefore, understanding the physiological roles of the KYN pathway metabolites is essential for elucidating the contribution of tryptophan metabolism to health regulation. The present review emphasizes the physiological roles of KYN pathway metabolites and their mechanisms in disease development, aiming to establish a theoretical basis for leveraging dietary nutrients to enhance human health.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Liu
- Shandong Food Ferment Industry & Design Institute, QiLu University of Technology (Shandong Academy of Sciences), No. 41, Jiefang Road, Jinan 250013, China
| |
Collapse
|
9
|
Han L, Ho CT, Lu M. Regulatory Role of Bioactive Compounds from Natural Spices on Mitochondrial Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5711-5723. [PMID: 40019340 DOI: 10.1021/acs.jafc.4c12341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Natural spices have gained much attention for their aromatic and pungent flavors as well as their multiple beneficial health effects. As complex organelles that play a central role in energy production, stress response control, cell signal transduction, and metabolism regulation, mitochondria could be regulated by many bioactive components in spices. In this review, the role of mitochondria in maintaining cellular and metabolism homeostasis is summarized. The regulatory effects of mitochondrial function by major bioactive compounds from natural spices are evaluated, including capsaicin, 6-gingerol, 6-shogaol, allicin, quercetin, curcumin, tetrahydrocurcumin, and cinnamaldehyde. The underlying molecular mechanisms are also discussed. This work could enhance our understanding toward health-promoting properties of spice compounds as well as provide new insights into the prevention and treatment of disorders associated with mitochondrial dysfunctions by those nutraceuticals.
Collapse
Affiliation(s)
- Liguang Han
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Timme K, Inyang I, White HE, Keating AF. Diet-induced obesity alters the ovarian chemical biotransformation and oxidative stress response proteins both basally and in response to 7,12-dimethylbenz[a]anthracene exposure. Toxicol Sci 2025; 204:9-19. [PMID: 39910959 PMCID: PMC11879017 DOI: 10.1093/toxsci/kfae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
7,12-Dimethylbenz[a]anthracene (DMBA) is a polycyclic aromatic hydrocarbon that causes female infertility via DNA damage, and the ovary has the capacity to mitigate DMBA exposure via the action of proteins including the glutathione S-transferase (GST) family. Due to previous findings of DNA damage and a reduced ovarian chemical biotransformation response to DMBA exposure in hyperphagia-induced obese mice, this study investigated the hypothesis that diet-induced obesity would hamper the ovarian biotransformative response to DMBA exposure. Six-week-old C57BL6/J mice were fed either a normal rodent diet (L) or a high fat high sucrose diet (O) until the O group was ∼30% heavier than the L. Both L and O mice were exposed to either corn oil (C) or DMBA (1 mg/kg) for 7 d. Liver weight was increased (P < 0.05) in obese mice exposed to DMBA but no effect on spleen weight, uterine weight, ovary weight, estrous cyclicity, or circulating 17β-estradiol and progesterone were observed. Primordial and preantral follicle numbers were higher (P < 0.05) in the obese mice and there was a tendency (P = 0.055) for higher antral follicles in DMBA-exposed obese mice. The ovarian proteome was identified by LC-MS/MS analysis to be altered both by diet-induced obesity and by DMBA exposure with changes observed in levels of proteins involved in oocyte development and chemical biotransformation, including GST isoform pi. Fewer proteins were affected by the combined exposure of diet and DMBA than by a single treatment, indicating that physiological status impacts the response to DMBA exposure.
Collapse
Affiliation(s)
- Kelsey Timme
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Imaobong Inyang
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Hunter E White
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
11
|
Kshirsagar A, Ronan R, Rebelo AL, McMahon S, Pandit A, Schlosser G. Quantitative proteomics of regenerating and non-regenerating spinal cords in Xenopus. Dev Biol 2025; 519:65-78. [PMID: 39694174 DOI: 10.1016/j.ydbio.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Spinal cord injury in humans is a life-changing condition with no effective treatment. However, many non-mammalian vertebrates can fully regenerate their spinal cord after injury. Frogs such as Xenopus can regenerate the spinal cord at larval stages, but lose this capacity at metamorphosis. This makes them ideal models to elucidate molecular pathways underlying regenerative capacity by comparing responses to spinal cord injury in regenerative (R) and non-regenerative (NR) stages of the same species. Here we use quantitative proteomics with Isobaric Tags for Relative and Absolute Quantification (iTRAQ) followed by Ingenuity Pathway Analysis (IPA) to identify functions and pathways that were differentially regulated after spinal cord injury between R and NR stages in Xenopus laevis. We find that many embryonic pathways of neuronal development are re-activated following SCI at the R but not at the NR stage. This is accompanied by the upregulation of regulatory proteins controlling transcription and translation at the R stage, but their downregulation at the NR stage. Conversely, lipid hydrolysis and uptake as well as mitochondrial oxidative phosphorylation is downregulated at the R, but upregulated at the NR stage. Taken together this suggests that dysregulation of lipid homeostasis and augmentation of oxidative stress play a key role in the loss of regenerative capacity of the spinal cord after metamorphosis. In identifying new factors regulating regenerative capacity in the vertebrate spinal cord, our findings suggest new potential therapeutic targets for promoting neural repair in the injured adult mammalian spinal cord.
Collapse
Affiliation(s)
- Aniket Kshirsagar
- Research Ireland Centre for Medical Devices (CÚRAM), University of Galway, Biomedical Sciences Building, Newcastle Road, Galway, H91 W2TY, Ireland
| | - Rachel Ronan
- Research Ireland Centre for Medical Devices (CÚRAM), University of Galway, Biomedical Sciences Building, Newcastle Road, Galway, H91 W2TY, Ireland
| | - Ana Lúcia Rebelo
- Research Ireland Centre for Medical Devices (CÚRAM), University of Galway, Biomedical Sciences Building, Newcastle Road, Galway, H91 W2TY, Ireland
| | - Siobhan McMahon
- Anatomy, School of Medicine, University of Galway, Galway, Ireland
| | - Abhay Pandit
- Research Ireland Centre for Medical Devices (CÚRAM), University of Galway, Biomedical Sciences Building, Newcastle Road, Galway, H91 W2TY, Ireland.
| | - Gerhard Schlosser
- School of Biological and Chemical Sciences, University of Galway, Biomedical Sciences Building, Newcastle Road, Galway, H91 W2TY, Ireland.
| |
Collapse
|
12
|
Salazar-Hernández E, Bahena-Cuevas OE, Mendoza-Bello JM, Barragán-Bonilla MI, Sánchez-Alavez M, Espinoza-Rojo M. Relationship Between Brain Insulin Resistance, Carbohydrate Consumption, and Protein Carbonyls, and the Link Between Peripheral Insulin Resistance, Fat Consumption, and Malondialdehyde. Biomedicines 2025; 13:404. [PMID: 40002817 PMCID: PMC11853321 DOI: 10.3390/biomedicines13020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The consumption of a high-fat (HFD) or high-carbohydrate/low-fat (LFD) diet is related to insulin resistance; however, central and peripheral alterations can occur independently. In this study, the timeline of insulin resistance was determined while taking into consideration the role of diet in oxidative damage. Background/Objectives: The aim of this study was to ascertain whether a HFD or LFD induces peripheral insulin resistance (PIR) before brain insulin resistance (BIR), and whether the timing of these alterations correlates with heightened oxidative damage markers in plasma, adipose tissue, and the cerebral cortex. Methodology and Results: Three-month-old C57BL/6 male mice were fed with a HFD, LFD, or standard diet for 1, 2, or 3 months. Glucose and insulin tolerance tests were performed to determine PIR, and the hypothalamic thermogenic response to insulin was used to determine their BIR status. For oxidative damage, the levels of malondialdehyde (MDA) and the protein carbonyl group (PCO) and the enzymatic activity of glutathione peroxidase (GSH-Px) were evaluated in plasma, white adipose tissue, brown adipose tissue, and the cerebral cortex. PIR occurred at 3 months of the HFD, but MDA levels in the white adipose tissue increased at 2 months. BIR occurred at 1 and 2 months of the LFD, but the enzymatic activity of GSH-Px was lower at 1 month and the amount of the PCO increased at 2 months. Conclusions: The intake of a HFD or LFD of different durations can influence the establishment of PIR or BIR, and oxidative damage in the fat tissue and cerebral cortex can play an important role.
Collapse
Affiliation(s)
- Elena Salazar-Hernández
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo 39090, Guerrero, Mexico; (E.S.-H.); (O.E.B.-C.); (J.M.M.-B.); (M.I.B.-B.)
| | - Oscar Ezequiel Bahena-Cuevas
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo 39090, Guerrero, Mexico; (E.S.-H.); (O.E.B.-C.); (J.M.M.-B.); (M.I.B.-B.)
| | - Juan Miguel Mendoza-Bello
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo 39090, Guerrero, Mexico; (E.S.-H.); (O.E.B.-C.); (J.M.M.-B.); (M.I.B.-B.)
| | - Martha Isela Barragán-Bonilla
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo 39090, Guerrero, Mexico; (E.S.-H.); (O.E.B.-C.); (J.M.M.-B.); (M.I.B.-B.)
| | - Manuel Sánchez-Alavez
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico;
| | - Mónica Espinoza-Rojo
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo 39090, Guerrero, Mexico; (E.S.-H.); (O.E.B.-C.); (J.M.M.-B.); (M.I.B.-B.)
| |
Collapse
|
13
|
Li C, Yuan Y, Jia Y, Zhou Q, Wang Q, Jiang X. Cellular senescence: from homeostasis to pathological implications and therapeutic strategies. Front Immunol 2025; 16:1534263. [PMID: 39963130 PMCID: PMC11830604 DOI: 10.3389/fimmu.2025.1534263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Cellular aging is a multifactorial and intricately regulated physiological process with profound implications. The interaction between cellular senescence and cancer is complex and multifaceted, senescence can both promote and inhibit tumor progression through various mechanisms. M6A methylation modification regulates the aging process of cells and tissues by modulating senescence-related genes. In this review, we comprehensively discuss the characteristics of cellular senescence, the signaling pathways regulating senescence, the biomarkers of senescence, and the mechanisms of anti-senescence drugs. Notably, this review also delves into the complex interactions between senescence and cancer, emphasizing the dual role of the senescent microenvironment in tumor initiation, progression, and treatment. Finally, we thoroughly explore the function and mechanism of m6A methylation modification in cellular senescence, revealing its critical role in regulating gene expression and maintaining cellular homeostasis. In conclusion, this review provides a comprehensive perspective on the molecular mechanisms and biological significance of cellular senescence and offers new insights for the development of anti-senescence strategies.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Yixiao Yuan
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - YingDong Jia
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Zhou
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Xiulin Jiang
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Parrotta ME, Colangeli L, Scipione V, Vitale C, Sbraccia P, Guglielmi V. Time Restricted Eating: A Valuable Alternative to Calorie Restriction for Addressing Obesity? Curr Obes Rep 2025; 14:17. [PMID: 39899119 PMCID: PMC11790783 DOI: 10.1007/s13679-025-00609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE OF REVIEW In this review, we summarize the molecular effects of time-restricted eating (TRE) and its possible role in appetite regulation. We also discuss the potential clinical benefits of TRE in obesity. RECENT FINDINGS TRE is an emerging dietary approach consisting in limiting food intake to a specific window of time each day. The rationale behind this strategy is to restore the circadian misalignment, commonly seen in obesity. Preclinical studies have shown that restricting food intake only during the active phase of the day can positively influence several cellular functions including senescence, mitochondrial activity, inflammation, autophagy and nutrients' sensing pathways. Furthermore, TRE may play a role by modulating appetite and satiety hormones, though further research is needed to clarify its exact mechanisms. Clinical trials involving patients with obesity or type 2 diabetes suggest that TRE can be effective for weight loss, but its broader effects on improving other clinical outcomes, such as cardiovascular risk factors, remain less certain. The epidemic proportions of obesity cause urgency to find dietary, pharmacological and surgical interventions that can be effective in the medium and long term. According to its molecular effects, TRE can be an interesting alternative to caloric restriction in the treatment of obesity, but the considerable variability across clinical trials regarding population, intervention, and follow-up duration makes it difficult to reach definitive conclusions.
Collapse
Affiliation(s)
| | - Luca Colangeli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Valeria Scipione
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carolina Vitale
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Valeria Guglielmi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
15
|
Oh JM, Kim G, Jeong J, Chun S. Compound K promotes thermogenic signature and mitochondrial biogenesis via the UCP1-SIRT3-PGC1α signaling pathway. Biomed Pharmacother 2025; 183:117838. [PMID: 39799670 DOI: 10.1016/j.biopha.2025.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
Compound K (CK), an active ingredient in ginseng, has anti-cancer, anti-inflammatory, and antioxidant properties. However, its effects on thermogenesis and mitochondrial dynamics in white adipose tissue (WAT) adipocytes are not well understood. This study explores CK's impact on thermogenesis and mitochondrial metabolism in cold-exposed mice and mouse stromal vascular fraction (SVF) cells. CK increased the expression of UCP1 and other brown/beige adipocyte markers (Cd137, Cytb, Letm1, Pgc1α, Prdm16, Tbp1, Tbx1, Uqcrc1) and mitochondrial biogenesis/dynamics factors (Cidea, Cox8b, Cycs, Dio2, Drp1, Fis1, Fgf21, Nrf1, Sirt3, Tfam) in 3T3-L1/iWAT SVF cells. CK enhanced mitochondrial respiration, reduced mitochondrial ROS levels, and restored MMP in iWAT SVF cells, leading to the differentiation of WAT into beige adipocytes, and that was also observed in cold-exposed subcutaneous tissue. CK administration to cold-exposed mice reduced fat droplet size and increased the number of mitochondria. Additionally, CK stimulated non-shivering thermogenesis, indicated by the upregulation of thermogenic and mitochondrial division proteins. The browning effect of CK was nullified by SIRT3 knockdown, suggesting that CK induces beige remodeling of WAT by regulating mitochondrial dynamics and SIRT3 expression. These findings suggest CK's potential as a therapeutic agent for obesity and metabolic disorders that promotes the transformation of WAT into a metabolically active beige phenotype.
Collapse
Affiliation(s)
- Jung-Mi Oh
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do 54907, South Korea
| | - Geonhyeong Kim
- Department of Orthopaedic Surgery, Seogwipo Medical Center, Seogwipo-si, Jeju-do 63585, South Korea
| | - Jiho Jeong
- Department of Orthopaedic Surgery, Seogwipo Medical Center, Seogwipo-si, Jeju-do 63585, South Korea
| | - Sungkun Chun
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do 54907, South Korea.
| |
Collapse
|
16
|
Aiassa V, Ferreira MDR, Ingaramo P, D'Alessandro ME. Salvia hispanica L. (chia) seed have beneficial effects upon visceral adipose tissues extracellular matrix disorders and inflammation developed in a sucrose-rich diet-induced adiposity rodent model. Mol Cell Endocrinol 2025; 597:112438. [PMID: 39638143 DOI: 10.1016/j.mce.2024.112438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
We have previously demonstrated that dietary Salvia hispanica L. (chia) seed, rich in α-linolenic acid (ALA), was able to reduce visceral adiposity and improves insulin sensitivity in a rodent experimental model of adiposity induced by the administration of a sucrose-rich diet (SRD). The evidence suggests that the pathological expansion of visceral adipose tissue (VAT) is accompanied by changes in the extracellular matrix (ECM) components, which can lead to fibrosis, and/or a greater expression of pro-inflammatory adipokines. The aim of the present work was to evaluate the effect of chia seed administration upon key components and modulators of ECM remodeling and inflammation in different white adipose tissues (WAT) (epididymal-eWAT- and retroperitoneal-rWAT-) in a SRD-induced adiposity rodent model. The results showed that chia seed reduced the increased hydroxyproline levels observed in SRD-fed group and this was accompanied by changes in the activity/expression of matrix metalloproteinases MMP-2 and MMP-9. No changes were observed in transforming growth factor β (TGF-β) expression levels. In addition, this nutritional intervention was able to reduce the levels of PAI-1 and MCP-1, and to increase the levels of adiponectin in both VAT. An increase in the ratio of n-3/n-6 polyunsaturated fatty acids in the membrane phospholipids of both VAT was also observed. The present study demonstrated that chia seed have anti-fibrotic and anti-inflammatory actions in the VAT which could play a key role in the amelioration of visceral adiposity and whole-body insulin insensitivity developed in SRD-fed rats.
Collapse
Affiliation(s)
- Victoria Aiassa
- Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Del Rosario Ferreira
- Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Paola Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL- CONICET), Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Eugenia D'Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
17
|
Cheng M, Ding F, Li L, Dai C, Sun X, Xu J, Chen F, Li M, Li X. Exploring the role of curcumin in mitigating oxidative stress to alleviate lipid metabolism disorders. Front Pharmacol 2025; 16:1517174. [PMID: 39950117 PMCID: PMC11822302 DOI: 10.3389/fphar.2025.1517174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Lipid metabolism plays a crucial role in maintaining homeostasis and overall health, as lipids are essential molecules involved in bioenergetic processes. An increasing body of research indicates that disorders of lipid metabolism can contribute to the development and progression of various diseases, including hyperlipidemia, obesity, non-alcoholic fatty liver disease (NAFLD), diabetes mellitus, atherosclerosis, and cancer, potentially leading to poor prognoses. The activation of the oxidative stress pathway disrupts lipid metabolism and induces cellular stress, significantly contributing to metabolic disorders. A well-documented crosstalk and interconnection between these metabolic disorders exists. Consequently, researchers have sought to identify antioxidant-rich substances in readily accessible everyday foods for potential use as complementary therapies. Curcumin, known for its anti-inflammatory and antioxidant properties, has been shown to enhance cellular antioxidant activity, mitigate oxidative stress, and alleviate lipid metabolism disorders by reducing reactive oxygen species (ROS) accumulation. These effects include decreasing fat deposition, increasing fatty acid uptake, and improving insulin sensitivity. A review of the existing literature reveals numerous studies emphasizing the role of curcumin in the prevention and management of metabolic diseases. Curcumin influences metabolic disorders through multiple mechanisms of action, with the oxidative stress pathway playing a central role in various lipid metabolism disorders. Thus, we aimed to elucidate the role of curcumin in various metabolic disorders through a unified mechanism of action, offering new insights into the prevention and treatment of metabolic diseases. Firstly, this article provides a brief overview of the basic pathophysiological processes of oxidative stress and lipid metabolism, as well as the role of oxidative stress in the pathogenesis of lipid metabolism disorders. Notably, the article reviews the role of curcumin in mitigating oxidative stress and in preventing and treating diseases associated with lipid metabolism disorders, including hyperlipidemia, non-alcoholic fatty liver disease (NAFLD), atherosclerosis, obesity, and diabetes, thereby highlighting the therapeutic potential of curcumin in lipid metabolism-related diseases.
Collapse
Affiliation(s)
- Maojun Cheng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Hosptial of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Ding
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Hosptial of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyang Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Hosptial of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Changmao Dai
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Hosptial of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaolan Sun
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Hosptial of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jia Xu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Hosptial of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Feier Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Hosptial of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingxiu Li
- Sichuan No. 2 Hosptial of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xueping Li
- Hosptial of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Li S, Cao J, Yang Z, Jin S, Yang L, Chen H. Licorice and dried ginger decoction inhibits inflammation and alleviates mitochondrial dysfunction in chronic obstructive pulmonary disease by targeting siglec-1. Int Immunopharmacol 2025; 146:113789. [PMID: 39708484 DOI: 10.1016/j.intimp.2024.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease. Licorice and dried ginger decoction (LGD) is traditional Chinese medicine prescription with multiple effects. Glycyrrhetinic acid (GA) is the main bioactive components of LGD, which has been proven to have a relieving effect on various inflammatory diseases. Siglec-1 is a cell surface sialoadhesin and has been confirmed to be overexpressed in COPD and facilitate inflammatory reaction. This study is aimed to probe the interaction between LGD, GA, and siglec-1. METHODS Cigarette smoke (CS) combined with lipopolysaccharide (LPS) treatment was utilized to construct a COPD rat model. Cigarette smoke extract (CSE) was utilized to induce alveolar macrophage NR8383 to construct a COPD cell model. HE staining was applied for measuring histopathological changes of COPD rats. Enzyme-linked immunosorbent assay (ELISA), reverse transcription real-time polymerase chain reaction (RT-qPCR), and western blot were applied for testing the concentrations and expressions of proinflammatory factors. High performance liquid chromatography-tandem mass spectrometry (HPLC-MS) analysis was utilized to determine the combination between siglec-1 and GA. JC-1 assay was utilized to evaluate mitochondrial function. Reactive oxygen species (ROS) production was tested by dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining. RESULTS LGD treatment notably alleviated lung injury and inflammatory response in COPD rats. In CSE-induced cells, LGD treatment suppressed the contents of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8. Sialic-acid-binding Ig-like lectin 1 (Siglec-1) expression induced by CS was decreased after LGD treatment. Furthermore, we proved that GA could target siglec-1 to regulate the inflammatory response in COPD rats and cells. Additionally, GA could reduce ROS production and alleviate mitochondrial dysfunction to suppress COPD progression. CONCLUSION LGD inhibits inflammation and alleviates mitochondrial dysfunction in COPD by targeting siglec-1.
Collapse
Affiliation(s)
- Sensen Li
- Department of Scientific Research Section, the First People's Hospital of Zhumadian, Affiliated Hospital of Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Key Laboratory of Chronic Disease Research, School of Medicine, Huanghuai University, Zhumadian, Henan 463000, China.
| | - Juan Cao
- Department of Scientific Research Section, the First People's Hospital of Zhumadian, Affiliated Hospital of Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Key Laboratory of Chronic Disease Research, School of Medicine, Huanghuai University, Zhumadian, Henan 463000, China
| | | | - Shaoju Jin
- Department of Pharmacology, Luohe Medical College, Luohe, Henan 462002, China.
| | - Lei Yang
- Department of Scientific Research Section, the First People's Hospital of Zhumadian, Affiliated Hospital of Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Key Laboratory of Chronic Disease Research, School of Medicine, Huanghuai University, Zhumadian, Henan 463000, China.
| | - Hao Chen
- Department of Scientific Research Section, the First People's Hospital of Zhumadian, Affiliated Hospital of Huanghuai University, Zhumadian, Henan 463000, China.
| |
Collapse
|
19
|
Feng J, Zhu C, Zou J, Zhang L. Hyperbaric Oxygen Therapy for the Treatment of Bone-Related Diseases. Int J Mol Sci 2025; 26:1067. [PMID: 39940834 PMCID: PMC11817436 DOI: 10.3390/ijms26031067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is a therapeutic modality that enhances tissue oxygenation by delivering 100% oxygen at pressures greater than 1 absolute atmosphere. In recent years, HBOT has shown considerable potential in the treatment of bone diseases. While excess oxygen was once thought to induce oxidative stress, recent studies indicate that when administered within safe limits, HBOT can notably promote bone healing and repair. Extensive basic research has demonstrated that HBOT can stimulate the proliferation and differentiation of osteoblasts and encourage bone angiogenesis. Furthermore, HBOT has been shown to exert a beneficial influence on bone metabolism by modulating the inflammatory response and redox status. These mechanisms are closely related to core issues of bone biology. Specifically, in the context of fracture healing, bone defect repair, and conditions such as osteoporosis, HBOT targets the key bone signaling pathways involved in bone health, thereby exerting a therapeutic effect. Several clinical studies have demonstrated the efficacy of HBOT in improving bone health. However, the optimal HBOT regimen for treating various bone diseases still requires further definition to expand the indications for its clinical application. This paper outlines the mechanisms of HBOT, focusing on its antioxidant stress, promotion of bone vascularization, and anti-inflammatory properties. The paper also describes the application of HBOT in orthopedic diseases, thereby providing a scientific basis for the development of precise and personalized HBOT treatment regimens in clinical orthopedics.
Collapse
Affiliation(s)
- Jie Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.F.); (C.Z.); (J.Z.)
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.F.); (C.Z.); (J.Z.)
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.F.); (C.Z.); (J.Z.)
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
20
|
Deng S, Mei S, Zhou Q, Zhi W, Wu W, Cai J, Yuan P. Characteristics of cardiopulmonary exercise capacity in adults with different degrees of obesity. Front Physiol 2025; 15:1466153. [PMID: 39902468 PMCID: PMC11788284 DOI: 10.3389/fphys.2024.1466153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/13/2024] [Indexed: 02/05/2025] Open
Abstract
Objective To explore the characteristics of cardiopulmonary exercise capacity in adults with different degrees of obesity through cardiopulmonary exercise test (CPET). Methods From September 2019 to January 2024, the data of patients undergoing CPET in the Rehabilitation Department of the Affiliated Wuxi People's Hospital of Nanjing Medical University were analyzed retrospectively. A total of 231 cases were included. They were categorized into five groups based on their body mass index (BMI): the control group (18.5 ≤ BMI < 24 kg/m2, n = 28), the overweight group (24.0 ≤ BMI < 28 kg/m2, n = 48), the mild obesity group (28 ≤ BMI < 35 kg/m2, n = 75), the moderate obesity group (35.0 ≤ BMI < 40 kg/m2, n = 47), and the severe obesity group (BMI ≥ 40 kg/m2, n = 33). Collected informations on the age, gender, height, and weight of five groups of participants. The VO2 at anaerobic threshold (VO2AT), percentage of predicted VO2AT (VO2AT% Pred), peak oxygen consumption (VO2peak), percentage of predicted VO2peak (VO2peak% Pred), peak kilogram oxygen consumption (VO2peak/kg), maximum exercise power (WRmax), breathing reserve (BR), maximum heart rate (HRmax), percentage of predicted HRmax (HRmax% Pred), maximum O2 pulse (VO2/HRmax), percentage of predicted maximum O2 pulse (VO2/HRmax%Pred), maximum relative O2 pulse (VO2/HRmax/kg),heart rate response (HRr), forced vital capacity (FVC), ratio of forced expiratory volume to vital capacity in 1 s (FEV1/FVC), percentage of predicted forced vital capacity (FVC% Pred), percentage of predicted forced expiratory volume ratio of 1 s (FEV1% Pred), peak expiratory flow rate (PEF), maximum exercise ventilation (VEmax), maximum voluntary ventilation (MVV) and other indicators during the CPET were collected. Single factor analysis of variance was used to compare the mean of each index between groups. Spearman correlation analysis was used to analyze the correlation between BMI and various indicators. Results There was no statistical significance in gender composition, age, height, and exercise habit of the five groups of participants (P > 0.05). The body mass and BMI of the five groups had significant differences (P < 0.001). In terms of cardiopulmonary exercise capacity, there were statistical differences among the five groups in the overall distribution of VO2AT (H = 37.370,P < 0.001), VO2AT/kg (H = 34.747, P < 0.001), VO2peak (H = 23.018,P< 0.001), VO2peak/kg (H = 66.606, P < 0.001) and WRmax%Pred (H = 45.136, P < 0.001). There was no significant difference among the five groups in the overall distribution of VO2AT%Pred, VO2peak%Pred and WRmax. There were statistical significant difference among the five groups in HRmax (F = 2.443, P = 0.048), HRmax%Pred (F = 6.920, P < 0.001), VO2/HRmax (F = 8.803, P < 0.001), VO2/HRmax%Pred (F = 11.354, P < 0.001), VO2/HRmax/kg (F = 18.688, P < 0.001) and BR (F = 6.147, P < 0.001) and HRr (F = 9.467, P < 0.001). There were no significant differences among the five groups in RERmax (F = 0.336, P > 0.05). In terms of static pulmonary function, there were significant differences among the five groups in FVC%Pred (F = 4.577, P = 0.001), FEV1%Pred (F = 3.681, P = 0.006) and FEV1/FVC (F = 3.344, P = 0.011). There was no differences among the five groups in MVV(P> 0.05), and there were significant differences among the five groups in VEmax (P = 0.005) In terms of correlation analysis, BMI was positively correlated with VO2AT,VO2peak, VEmax and VO2/HRmax, and negatively correlated with VO2AT/kg, VO2peak/kg,WRmax%Pred, HRmax%Pred, VO2/HRmax%Pred, VO2/HRmax/kg,BR and HRr. In terms of static pulmonary function, BMI was negatively correlated with FVC%Pred, FEV1%Pred. Conclusion With the aggravation of obesity, the maximum exercise ability of adults decreases, VO2peak/kg and VO2/HRmax%Pred decreases, and the breathing reserve decreases.
Collapse
Affiliation(s)
- Shukun Deng
- Department of Rehabilitation Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Shengrui Mei
- Department of Rehabilitation Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Qunyan Zhou
- Department of Nutrition, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Wenjun Zhi
- Department of Nutrition, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Wenjun Wu
- Department of Endocrine, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Junyan Cai
- Department of Rehabilitation Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Peng Yuan
- Department of Rehabilitation Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
21
|
Zeng J, Cheong LYT, Lo CH. Therapeutic targeting of obesity-induced neuroinflammation and neurodegeneration. Front Endocrinol (Lausanne) 2025; 15:1456948. [PMID: 39897964 PMCID: PMC11781992 DOI: 10.3389/fendo.2024.1456948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Obesity is a major modifiable risk factor leading to neuroinflammation and neurodegeneration. Excessive fat storage in obesity promotes the progressive infiltration of immune cells into adipose tissue, resulting in the release of pro-inflammatory factors such as cytokines and adipokines. These inflammatory mediators circulate through the bloodstream, propagating inflammation both in the periphery and in the central nervous system. Gut dysbiosis, which results in a leaky intestinal barrier, exacerbates inflammation and plays a significant role in linking obesity to the pathogenesis of neuroinflammation and neurodegeneration through the gut-brain/gut-brain-liver axis. Inflammatory states within the brain can lead to insulin resistance, mitochondrial dysfunction, autolysosomal dysfunction, and increased oxidative stress. These disruptions impair normal neuronal function and subsequently lead to cognitive decline and motor deficits, similar to the pathologies observed in major neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Understanding the underlying disease mechanisms is crucial for developing therapeutic strategies to address defects in these inflammatory and metabolic pathways. In this review, we summarize and provide insights into different therapeutic strategies, including methods to alter gut dysbiosis, lifestyle changes, dietary supplementation, as well as pharmacological agents derived from natural sources, that target obesity-induced neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, United States
| | - Lenny Yi Tong Cheong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
22
|
Chervet A, Nehme R, Defois-Fraysse C, Decombat C, Blavignac C, Auxenfans C, Evrard B, Michel S, Filaire E, Berthon JY, Dreux-Zigha A, Delort L, Caldefie-Chézet F. Development and characterization of a chicory extract fermented by Akkermansia muciniphila: An in vitro study on its potential to modulate obesity-related inflammation. Curr Res Food Sci 2025; 10:100974. [PMID: 39906505 PMCID: PMC11791162 DOI: 10.1016/j.crfs.2025.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Obesity, the fifth leading cause of death globally and linked to chronic low-grade inflammation and development of numerous severe pathologies, is a major public health problem. Fermented foods, probiotics, and postbiotics emerge as promising avenues for combating obesity and inflammation. The aim of our study was to develop and characterize phyto-postbiotics corresponding to prebiotic compounds fermented by gut bacteria, which could act on obesity and related-inflammation. Chicory extract fermented by Akkermansia muciniphila (C-Akm) was selected as the most antioxidant of 20 fermented extracts. The identification of metabolites derived from C-Akm extract has enabled us to detect mostly amino acids, acids, and some polyphenols (daidzein and genistein). The anti-inflammatory and anti-obesity activities of C-Akm extract were studied by testing the extract (50 μg/mL) on the polarization of THP-1 into macrophages, the secretion of pro-inflammatory cytokines in LPS-stimulated PBMCs, and the secretion of leptin and adiponectin in adipospheroids derived from human adipose stem cells. Finally, the extract was examined in 3D co-culture model mimicking inflamed obese adipose tissue. We found that C-Akm extract decreased ROS generation, TNF-α and Il-6 gene expression in polarized macrophages, INFγ and IL-17A secretion in LPS-stimulated PBMCs stimulated with LPS. It also decreased leptin expression while increasing adiponectin and HSL expression levels in both adipocytes and co-cultures. In addition, C-Akm extract stimulated adiponectin secretion in the co-culture model. Finally, our in vitro investigations demonstrated the potential benefits of C-Akm extract in the prevention and treatment of obesity-related inflammation.
Collapse
Affiliation(s)
- A. Chervet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - R. Nehme
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | | | - C. Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - C. Blavignac
- Université Clermont-Auvergne, Centre d’Imagerie Cellulaire Santé (CCIS), Clermont-Ferrand, France
| | - C. Auxenfans
- Banque de Tissus et de Cellules, Hôpital Edouard-Herriot, 69000, Lyon, France
| | - B. Evrard
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - S. Michel
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - E. Filaire
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - J.-Y. Berthon
- Greentech, Biopôle Clermont-Limagne, 63360, Saint-Beauzire, France
| | - A. Dreux-Zigha
- Greencell, Biopôle Clermont-Limagne, 63360, Saint-Beauzire, France
| | - L. Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - F. Caldefie-Chézet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
23
|
Feješ A, Šebeková K, Borbélyová V. Pathophysiological Role of Neutrophil Extracellular Traps in Diet-Induced Obesity and Metabolic Syndrome in Animal Models. Nutrients 2025; 17:241. [PMID: 39861371 PMCID: PMC11768048 DOI: 10.3390/nu17020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
The global pandemic of obesity poses a serious health, social, and economic burden. Patients living with obesity are at an increased risk of developing noncommunicable diseases or to die prematurely. Obesity is a state of chronic low-grade inflammation. Neutrophils are first to be recruited to sites of inflammation, where they contribute to host defense via phagocytosis, degranulation, and extrusion of neutrophil extracellular traps (NETs). NETs are web-like DNA structures of nuclear or mitochondrial DNA associated with cytosolic antimicrobial proteins. The primary function of NETosis is preventing the dissemination of pathogens. However, neutrophils may occasionally misidentify host molecules as danger-associated molecular patterns, triggering NET formation. This can lead to further recruitment of neutrophils, resulting in propagation and a vicious cycle of persistent systemic inflammation. This scenario may occur when neutrophils infiltrate expanded obese adipose tissue. Thus, NETosis is implicated in the pathophysiology of autoimmune and metabolic disorders, including obesity. This review explores the role of NETosis in obesity and two obesity-associated conditions-hypertension and liver steatosis. With the rising prevalence of obesity driving research into its pathophysiology, particularly through diet-induced obesity models in rodents, we discuss insights gained from both human and animal studies. Additionally, we highlight the potential offered by rodent models and the opportunities presented by genetically modified mouse strains for advancing our understanding of obesity-related inflammation.
Collapse
Affiliation(s)
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 83303 Bratislava, Slovakia; (A.F.); (V.B.)
| | | |
Collapse
|
24
|
Engelmann M, Götze J, Baumbach P, Neu C, Settmacher U, Ardelt M, Kissler H, Coldewey SM. Mitochondrial oxygen metabolism as a potential predictor of weight loss after laparoscopic sleeve gastrectomy for class III obesity. Front Endocrinol (Lausanne) 2025; 15:1488175. [PMID: 39839477 PMCID: PMC11746103 DOI: 10.3389/fendo.2024.1488175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
The prevalence of obesity is increasing at an alarming rate in industrialized countries. Obesity is a systemic disease that causes not only macroscopic alterations, but also mitochondrial dysfunction. Laparoscopic sleeve gastrectomy (LSG) poses a potential therapeutic option for patients with severe obesity. In order to ascertain the efficacy of bariatric interventions, it is important to assess not only weight loss, but also changes in body composition. Additionally, the aim of this study was to investigate the association between weight loss and cellular oxygen metabolism, a surrogate for mitochondrial function. We used bioimpedance analysis (BIA) to assess changes in weight and body composition in patients up to one year after LSG. To evaluate mitochondrial oxygen metabolism, we used the Cellular Oxygen Metabolism Monitor (COMET) to non-invasively measure the mitochondrial oxygen tension (mitoPO2), mitochondrial oxygen consumption (mitoVO2) and mitochondrial oxygen delivery (mitoDO2). We compared the values obtained in patients with obesity with those of age- and sex-matched healthy controls and investigated changes up to one year after LSG. 48 patients (46.5 years [35.5-55.3]; 38/48 female (79.2%); BMI 46.7 [42.5-51.0]) completed the study. They showed a significant weight loss and a decrease in relative fat mass after six months. We found no differences in mitochondrial oxygen metabolism between obese patients and healthy controls. MitoPO2, mitoVO2 and mitoDO2 did not change up to one year after surgery. It is noteworthy that patients who exhibited higher mitoPO2, mitoVO2, and mitoDO2 values prior to surgery demonstrated superior weight loss outcomes one year after LSG. This was the first study to investigate the non-invasively measured mitochondrial oxygen metabolism in the long-term course after bariatric surgery. Further studies in larger cohorts are needed to confirm these findings. Clinical trial registration https://www.bfarm.de/DE/Das-BfArM/Aufgaben/Deutsches-Register-Klinischer-Studien/_node.html, identifier DRKS00015891.
Collapse
Affiliation(s)
- Markus Engelmann
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Juliane Götze
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Philipp Baumbach
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Charles Neu
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Ardelt
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Hermann Kissler
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
25
|
Brewster GS, Houser MC, Yang I, Pelkmans J, Higgins M, Tower-Gilchrist C, Wells J, Quyyumi AA, Jones D, Dunbar S, Carlson N. Metabolic Pathways Associated With Obesity and Hypertension in Black Caregivers of Persons Living With Dementia. Nurs Res 2025; 74:37-46. [PMID: 39420455 PMCID: PMC11637965 DOI: 10.1097/nnr.0000000000000783] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND In the United States, Black adults have the highest prevalence of obesity and hypertension, increasing their risk of morbidity and mortality. Caregivers of persons with dementia are also at increased risk of morbidity and mortality due to the demands of providing care. Thus, Black caregivers-who are the second largest group of caregivers of persons with dementia in the United States-have the highest risks for poor health outcomes among all caregivers. However, the physiological changes associated with multiple chronic conditions in Black caregivers are poorly understood. OBJECTIVES In this study, metabolomics were compared to the metabolic profiles of Black caregivers with obesity, with or without hypertension. Our goal was to identify metabolites and metabolic pathways that could be targeted to reduce obesity and hypertension rates in this group. METHODS High-resolution, untargeted metabolomic assays were performed on plasma samples from 26 self-identified Black caregivers with obesity, 18 of whom had hypertension. Logistic regression and pathway analyses were employed to identify metabolites and metabolic pathways differentiating caregivers with obesity only and caregivers with both obesity and hypertension. RESULTS Key metabolic pathways discriminating caregivers with obesity only and caregivers with obesity and hypertension were butanoate and glutamate metabolism, fatty acid activation/biosynthesis, and the carnitine shuttle pathway. Metabolites related to glutamate metabolism in the butanoate metabolism pathway were more abundant in caregivers with hypertension, while metabolites identified as butyric acid/butanoate and R-(3)-hydroxybutanoate were less abundant. Caregivers with hypertension also had lower levels of several unsaturated fatty acids. DISCUSSION In Black caregivers with obesity, multiple metabolic features and pathways differentiated among caregivers with and without hypertension. If confirmed in future studies, these findings would support ongoing clinical monitoring and culturally tailored interventions focused on nutrition (particularly polyunsaturated fats and animal protein), exercise, and stress management to reduce the risk of hypertension in Black caregivers with obesity.
Collapse
Affiliation(s)
- Glenna S. Brewster
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, USA
| | - Madelyn C. Houser
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, USA
| | - Irene Yang
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, USA
| | - Jordan Pelkmans
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, USA
| | - Melinda Higgins
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, USA
| | | | - Jessica Wells
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, USA
| | | | - Dean Jones
- Emory University School of Medicine, Atlanta, GA, USA
| | - Sandra Dunbar
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, USA
| | - Nicole Carlson
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, USA
| |
Collapse
|
26
|
Li Y, Guo W, Li H, Wang Y, Liu X, Kong W. The Change of Skeletal Muscle Caused by Inflammation in Obesity as the Key Path to Fibrosis: Thoughts on Mechanisms and Intervention Strategies. Biomolecules 2024; 15:20. [PMID: 39858415 PMCID: PMC11764331 DOI: 10.3390/biom15010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/27/2025] Open
Abstract
Obesity leads to a chronic inflammatory state throughout the body, with increased infiltration of immune cells and inflammatory factors in skeletal muscle tissue, and, at the same time, the level of intracellular mitochondrial oxidative stress rises. Meanwhile, obesity is closely related to the development of skeletal muscle fibrosis and can affect the metabolic function of skeletal muscle, triggering metabolic disorders such as insulin resistance (IR) and type 2 diabetes (T2D). However, whether there is a mutual regulatory effect between the two pathological states of inflammation and fibrosis in obese skeletal muscle and the specific molecular mechanisms have not been fully clarified. This review focuses on the pathological changes of skeletal muscle inflammation and fibrosis induced by obesity, covering the metabolic changes it causes, such as lipid deposition, mitochondrial dysfunction, and dysregulation of inflammatory factors, aiming to reveal the intricate connections between the two. In terms of intervention strategies, aerobic exercise, dietary modification, and pharmacotherapy can improve skeletal muscle inflammation and fibrosis. This article provides insight into the important roles of inflammation and fibrosis in the treatment of obesity and the management of skeletal muscle diseases, aiming to provide new ideas for the diagnosis and treatment of metabolic diseases such as obesity and IR.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Wenwen Guo
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Han Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Yuhao Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Xinwei Liu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| |
Collapse
|
27
|
Papakonstantinou I, Tsioufis K, Katsi V. Spotlight on the Mechanism of Action of Semaglutide. Curr Issues Mol Biol 2024; 46:14514-14541. [PMID: 39728000 DOI: 10.3390/cimb46120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Initially intended to control blood glucose levels in patients with type 2 diabetes, semaglutide, a potent glucagon-like peptide 1 analogue, has been established as an effective weight loss treatment by controlling appetite. Integrating the latest clinical trials, semaglutide in patients with or without diabetes presents significant therapeutic efficacy in ameliorating cardiometabolic risk factors and physical functioning, independent of body weight reduction. Semaglutide may modulate adipose tissue browning, which enhances human metabolism and exhibits possible benefits in skeletal muscle degeneration, accelerated by obesity and ageing. This may be attributed to anti-inflammatory, mitochondrial biogenesis, antioxidant and autophagy-regulating effects. However, most of the supporting evidence on the mechanistic actions of semaglutide is preclinical, demonstrated in rodents and not actually confirmed in humans, therefore warranting caution in the interpretation. This article aims to explore potential innovative molecular mechanisms of semaglutide action in restoring the balance of several interlinking aspects of metabolism, pointing to distinct functions in inflammation and oxidative stress in insulin-sensitive musculoskeletal and adipose tissues. Moreover, possible applications in protection from infections and anti-aging properties are discussed. Semaglutide enhancement of the core molecular mechanisms involved in the progress of obesity and diabetes, although mostly preclinical, may provide a framework for future research applications in human diseases overall.
Collapse
Affiliation(s)
- Ilias Papakonstantinou
- 4th Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Vasiliki Katsi
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| |
Collapse
|
28
|
Padhy I, Sharma T, Banerjee B, Mohapatra S, Sahoo CR, Padhy RN. Structure based exploration of mitochondrial alpha carbonic anhydrase inhibitors as potential leads for anti-obesity drug development. Daru 2024; 32:907-924. [PMID: 39276204 PMCID: PMC11554982 DOI: 10.1007/s40199-024-00535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/11/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Obesity has emerged as a major health challenge globally in the last two decades. Dysregulated fatty acid metabolism and de novo lipogenesis are prime causes for obesity development which ultimately trigger other co-morbid pathological conditions thereby risking life longevity. Fatty acid metabolism and de novo lipogenesis involve several biochemical steps both in cytosol and mitochondria. Reportedly, the high catalytically active mitochondrial carbonic anhydrases (CAVA/CAVB) regulate the intercellular depot of bicarbonate ions and catalyze the rapid carboxylation of pyruvate and acetyl-co-A to acetyl-co-A and malonate respectively, which are the precursors of fatty acid synthesis and lipogenesis. Several in vitro and in vivo investigations indicate inhibition of mitochondrial carbonic anhydrase isoforms interfere in the functioning of pyruvate, fatty acid and succinate pathways. Targeting of mitochondrial carbonic anhydrase isoforms (CAVA/CAVB) could thereby modulate gluconeogenetic as well as lipogenetic pathways and pave way for designing of novel leads in the development pipeline of anti-obesity medications. METHODS The present review unveils a diverse chemical space including synthetic sulphonamides, sulphamates, sulfamides and many natural bioactive molecules which selectively inhibit the mitochondrial isoform CAVA/CAVB with an emphasis on major state-of-art drug design strategies. RESULTS More than 60% similarity in the structural framework of the carbonic anhydrase isoforms has converged the drug design methods towards the development of isoform selective chemotypes. While the benzene sulphonamide derivatives selectively inhibit CAVA/CAVB in low nanomolar ranges depending on the substitutions on the phenyl ring, the sulpamates and sulpamides potently inhibit CAVB. The virtual screening and drug repurposing methods have also explored many non-sulphonamide chemical scaffolds which can potently inhibit CAVA. CONCLUSION The review could pave way for the development of novel and effective anti-obesity drugs which can modulate the energy metabolism.
Collapse
Affiliation(s)
- Ipsa Padhy
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Tripti Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
- School of Pharmaceutical Sciences and Research, Chhatrapati Shivaji Maharaj University, Panvel, Navi Mumbai, Maharashtra, 410221, India.
| | - Biswajit Banerjee
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Sujata Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Chita R Sahoo
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Bhubaneswar, India
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
29
|
Bakondi E, Jung T, Marg S, Schnell V, Weber D, Schulz TJ, Grune T, Höhn A. Palmitic acid and eicosapentaenoic acid supplementation in 3T3 adipocytes: impact on lipid storage and oxidative stress. Redox Rep 2024; 29:2430882. [PMID: 39607809 DOI: 10.1080/13510002.2024.2430882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVES Obesity is a worldwide public health problem, predisposing individuals to serious cardiovascular and metabolic complications such as type 2 diabetes mellitus. White adipose tissue serves as an important regulator of energy balance, and its expansion in obesity can trigger inflammatory reactions and oxidative stress, which can also lead to insulin resistance. Adipocytes, with a key role in regulating metabolic homeostasis, respond to increased calorie intake and altered fatty acid composition with hypertrophy or hyperplasia. Of particular interest are saturated fatty acids such as palmitic acid and omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA), which have differential effects on adipocyte function and inflammation. METHODS Using 3T3-L1 cells as a model for adipocytes, we evaluated the effects of PA and EPA on lipid accumulation, droplet size, and oxidative stress markers. RESULTS We were able to show that EPA supplementation in 3T3 adipocytes does not lead to excessive lipid accumulation, but rather reduces the size of lipid droplets and also induces redox changes due to the unsaturated nature of EPA. DISCUSSION These results emphasize the contrasting roles of PA and EPA and the importance of fatty acid composition in the regulation of adipocyte function.
Collapse
Affiliation(s)
- Edina Bakondi
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Susanna Marg
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Vanessa Schnell
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
30
|
Lee MS, Doo M, Kim Y. Effects of quercetin nanoemulsion on SIRT1 activation and mitochondrial biogenesis in the skeletal muscle of high-fat diet-fed mice. Nutr Res Pract 2024; 18:806-817. [PMID: 39651323 PMCID: PMC11621433 DOI: 10.4162/nrp.2024.18.6.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND/OBJECTIVES Quercetin (QT) is a plant flavonoid that offers health benefits owing to its various bioactive properties; however, as a hydrophobic substance, it has considerably low bioavailability. We previously demonstrated that QT nanoemulsion (QT+NE) formulated via oil-in-water nanoemulsification exhibited more effective cholesterol-lowering activity than ordinary QT in high cholesterol-fed rats. In this study, we investigated the effects of QT+NE on the regulation of skeletal muscle mitochondrial function in high-fat diet (HD)-fed mice. MATERIALS/METHODS C57BL/6J mice were fed a normal chow diet (ND), HD (45% of calories from fat), or HD with 0.05% QT+NE or QT for 11 weeks. We analyzed sirtuin 1 (SIRT1) activation, mitochondrial changes, and the expression of genes involved in mitochondrial biogenesis in skeletal muscle. RESULTS Body weight and body weight gain decreased in the QT+NE group compared with that in the HD group (P < 0.05), but not in the QT group. Epididymal adipose tissue weight decreased in both the QT and QT+NE groups (P < 0.05). Plasma lipid levels also improved in both the QT and QT+NE groups (P < 0.05). QT+NE intake upregulated the messenger RNA levels of SIRT1, peroxisome proliferator-activated receptor-γ coactivator 1-α, nuclear respiratory factor 1, and mitochondrial transcription factor A in skeletal muscle compared with HD intake alone (P < 0.05), whereas QT did not. In particular, SIRT1 activity was significantly increased in the QT+NE group compared with that in the QT group (P < 0.05). HD intake reduced mitochondrial DNA content compared with ND intake; nevertheless, QT+NE intake retained it (P < 0.05). CONCLUSION Collectively, our findings suggest that QT+NE may be beneficial in enhancing mitochondrial biogenesis in skeletal muscle of HD-fed mice, which may be associated with SIRT1 activation.
Collapse
Affiliation(s)
- Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Miae Doo
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
31
|
Zhang Z, Wei H, Lin T, Zhao C, Song Y, Deng Y, Sun Y, Zhao Y, Luo Q, Zhang X, Zhang D, Li H. DKK3 promotes adipogenic differentiation of stem cells by inhibiting Wnt/β-catenin signaling pathway related gene expression and mitochondrial autophagy function. Poult Sci 2024; 103:104257. [PMID: 39316979 PMCID: PMC11462485 DOI: 10.1016/j.psj.2024.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
Mesenchymal stem cells can differentiate into adipocyte precursor cells, and the balance of stem cell differentiation determines the quantity of adipocytes. Early-stage adipose tissue expression profiling revealed abnormal expression of DKK3 in the high-fat group. Moreover, DKK3 is enriched in the Wnt/β-catenin signaling pathway, and studies have shown that DKK3 can serve as a gene involved in early regulation of adipogenesis. Therefore, this study focuses on exploring how DKK3 regulates the molecular mechanism of adipocyte differentiation through the Wnt/β-catenin signaling pathway. In this experiment, the role of DKK3 in the differentiation of bone marrow mesenchymal stem cells into adipocyte precursors was validated using in vitro cultured chicken bone marrow mesenchymal stem cells. The results showed that overexpression of DKK3 led to a significant downregulation of Wnt/β-catenin signaling pathway-related marker gene expression (P < 0.05), a significant upregulation of adipogenic differentiation-related genes (P < 0.05), an increase in lipid droplet content, a significant increase in OD value (P < 0.05), a significant upregulation of mitochondrial oxidative respiratory-related marker gene expression (P < 0.05), and a significant downregulation of mitochondrial autophagy-related marker genes (P < 0.05). Conversely, the results were opposite after interfering with DKK3 gene expression. In this study, 4 SNP sites, including g.8419139, g.8419556, g.8419560, and g.8419598, were detected in the 7th exon of DKK3, among which the g.8419598 (C > T) site was significantly correlated with abdominal fat weight and abdominal fat rate in 100-day-old Ma Huang chickens (P < 0.001).
Collapse
Affiliation(s)
- Ze Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Haohui Wei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Tao Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Changbin Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yongxiang Song
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yuelin Deng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, China; Department of Animal nutrition system, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong,China
| | - Yiqing Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yongxia Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Hongmei Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
32
|
Tung PW, Thaker VV, Gallagher D, Kupsco A. Mitochondrial Health Markers and Obesity-Related Health in Human Population Studies: A Narrative Review of Recent Literature. Curr Obes Rep 2024; 13:724-738. [PMID: 39287712 DOI: 10.1007/s13679-024-00588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE OF REVIEW This narrative review summarizes current literature on the relationship of mitochondrial biomarkers with obesity-related characteristics, including body mass index and body composition. RECENT FINDINGS Mitochondria, as cellular powerhouses, play a pivotal role in energy production and the regulation of metabolic process. Altered mitochondrial functions contribute to obesity, yet evidence of the intricate relationship between mitochondrial dynamics and obesity-related outcomes in human population studies is scarce and warrants further attention. We discuss emerging evidence linking obesity and related health outcomes to impaired oxidative phosphorylation pathways, oxidative stress and mtDNA variants, copy number and methylation, all hallmark of suboptimal mitochondrial function. We also explore the influence of dietary interventions and metabolic and bariatric surgery procedures on restoring mitochondrial attributes of individuals with obesity. Finally, we report on the potential knowledge gaps in the mitochondrial dynamics for human health for future study.
Collapse
Affiliation(s)
- Pei Wen Tung
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Vidhu V Thaker
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Dympna Gallagher
- Department of Medicine, Columbia University Irving Medical Center , New York, NY, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
33
|
Kowalczyk P, Krych S, Kramkowski K, Jęczmyk A, Hrapkowicz T. Effect of Oxidative Stress on Mitochondrial Damage and Repair in Heart Disease and Ischemic Events. Int J Mol Sci 2024; 25:12467. [PMID: 39596532 PMCID: PMC11594588 DOI: 10.3390/ijms252212467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
The literature analysis conducted in this review discusses the latest achievements in the identification of cardiovascular damage induced by oxidative stress with secondary platelet mitochondrial dysfunction. Damage to the platelets of mitochondria as a result of their interactions with reactive oxygen species (ROS) and reactive nitrogen species (RNS) can lead to their numerous ischemic events associated with hypoxia or hyperoxia processes in the cell. Disturbances in redox reactions in the platelet mitochondrial membrane lead to the direct oxidation of cellular macromolecules, including nucleic acids (DNA base oxidation), membrane lipids (lipid peroxidation process) and cellular proteins (formation of reducing groups in repair proteins and amino acid peroxides). Oxidative changes in biomolecules inducing tissue damage leads to inflammation, initiating pathogenic processes associated with faster cell aging or their apoptosis. The consequence of damage to platelet mitochondria and their excessive activation is the induction of cardiovascular and neurodegenerative diseases (Parkinson's and Alzheimer's), as well as carbohydrate metabolism disorders (diabetes). The oxidation of mitochondrial DNA can lead to modifications in its bases, inducing the formation of exocyclic adducts of the ethano and propano type. As a consequence, it disrupts DNA repair processes and conduces to premature neoplastic transformation in critical genes such as the p53 suppressor gene, which leads to the development of various types of tumors. The topic of new innovative methods and techniques for the analysis of oxidative stress in platelet mitochondria based on methods such as a nicking assay, oxygen consumption assay, Total Thrombus formation Analysis System (T-Tas), and continuous-flow left ventricular assist devices (CF-LVADs) was also discussed. They were put together into one scientific and research platform. This will enable the facilitation of faster diagnostics and the identification of platelet mitochondrial damage by clinicians and scientists in order to implement adequate therapeutic procedures and minimize the risk of the induction of cardiovascular diseases, including ischemic events correlated with them. A quantitative analysis of the processes of thrombus formation in cardiovascular diseases will provide an opportunity to select specific anticoagulant and thrombolytic drugs under conditions of preserved hemostasis.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Sebastian Krych
- Student’s Scientific Association, Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1, 15-089 Białystok, Poland;
| | - Agata Jęczmyk
- Students’ Scientific Association, III Department of Cardiology, School of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Tomasz Hrapkowicz
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
34
|
Zhang C, Zheng M, Bai R, Chen J, Yang H, Luo G. Molecular mechanisms of lipid droplets-mitochondria coupling in obesity and metabolic syndrome: insights and pharmacological implications. Front Physiol 2024; 15:1491815. [PMID: 39588271 PMCID: PMC11586377 DOI: 10.3389/fphys.2024.1491815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024] Open
Abstract
Abnormal lipid accumulation is a fundamental contributor to obesity and metabolic disorders. Lipid droplets (LDs) and mitochondria (MT) serve as organelle chaperones in lipid metabolism and energy balance. LDs play a crucial role in lipid storage and mobilization, working in conjunction with MT to regulate lipid metabolism within the liver, brown adipose tissue, and skeletal muscle, thereby maintaining metabolic homeostasis. The novelty of our review is the comprehensive description of LD and MT interaction mechanisms. We also focus on the current drugs that target this metabolism, which provide novel approaches for obesity and related metabolism disorder treatment.
Collapse
Affiliation(s)
- Chunmei Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Zheng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Runlin Bai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiale Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gan Luo
- Department of Orthopedics, Chengdu Integrated Traditional Chinese Medicine & Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
35
|
Nevoit G, Jarusevicius G, Potyazhenko M, Mintser O, Bumblyte IA, Vainoras A. Mitochondrial Dysfunction and Risk Factors for Noncommunicable Diseases: From Basic Concepts to Future Prospective. Diseases 2024; 12:277. [PMID: 39589951 PMCID: PMC11592525 DOI: 10.3390/diseases12110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Noncommunicable diseases (NCDs) are a very important medical problem. The key role of mitochondrial dysfunction (MD) in the occurrence and progression of NCDs has been proven. However, the etiology and pathogenesis of MD itself in many NCDs has not yet been clarified, which makes it one of the most serious medical problems in the modern world, according to many scientists. METHODS An extensive research in the literature was implemented in order to elucidate the role of MD and NCDs' risk factors in the pathogenesis of NCDs. RESULTS The authors propose to take a broader look at the problem of the pathogenesis of NCDs. It is important to understand exactly how NCD risk factors lead to MD. The review is structured in such a way as to answer this question. Based on a systematic analysis of scientific data, a theoretical concept of modern views on the occurrence of MD under the influence of risk factors for the occurrence of NCDs is presented. This was done in order to update MD issues in clinical medicine. MD and NCDs progress throughout a patient's life. Based on this, the review raised the question of the existence of an NCDs continuum. CONCLUSIONS MD is a universal mechanism that causes organ dysfunction and comorbidity of NCDs. Prevention of MD involves diagnosing and eliminating the factors that cause it. Mitochondria are an important therapeutic target.
Collapse
Affiliation(s)
- Ganna Nevoit
- Laboratory of Population Studies, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Gediminas Jarusevicius
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Maksim Potyazhenko
- Department of Internal Medicine and Emergency Medicine, Poltava State Medical University, 36011 Poltava, Ukraine;
| | - Ozar Mintser
- Department of Fundamental Disciplines and Informatics, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine;
| | - Inga Arune Bumblyte
- Department of Nephrology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Alfonsas Vainoras
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| |
Collapse
|
36
|
Zaccaron RP, Mendes C, da Costa C, Silveira PCL, Rezin GT. Skin metabolism in obesity: A narrative review. Wound Repair Regen 2024; 32:1022-1027. [PMID: 39318160 DOI: 10.1111/wrr.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Obesity is a complex multifactorial disease in which excess body fat triggers negative health effects. Systemically, obesity causes several changes, such as inflammation, oxidative stress, mitochondrial dysfunction and apoptosis; factors linked to the slow and incomplete epithelial regenerative process. Specifically, in the integumentary system, obesity causes an expansion of the skin's surface area and changes in collagen deposition. Molecular underpinnings of why obesity delays wound healing are still poorly understood. In addition to the primary role of dermal adipocytes in lipid storage and heat insulation, they also promote skin immunity, wound healing and hair follicle cycling. As a consequence of the cellular and dysfunctional adaptations of adipocytes, inflammatory immune alterations, alteration in the expression of proteins genes associated with the blood supply, altered collagen formation through fibroblast senescence and excessive degradation of extracellular matrix proteins are metabolic characteristics of the system in obesity that contribute to sustained inflammation and decreased mechanical resistance of the skin.
Collapse
Affiliation(s)
- Rubya Pereira Zaccaron
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Carolini Mendes
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Camila da Costa
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| |
Collapse
|
37
|
Choi H, Ha K, Kim JT, Moon MK, Joung H, Lee HK, Pak YK. Relationships among Dioxin-like Mitochondria Inhibitor Substances (MIS)-Mediated Mitochondria Dysfunction, Obesity, and Lung Function in a Korean Cohort. TOXICS 2024; 12:735. [PMID: 39453155 PMCID: PMC11510957 DOI: 10.3390/toxics12100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Mitochondrial dysfunction is closely linked to obesity and diabetes, with declining lung function in aging increasing diabetes risk, potentially due to elevated serum levels of dioxin-like mitochondria inhibitor substances (MIS) from prolonged exposure to environmental pollutants. However, the mechanisms connecting MIS, mitochondria, lung function, and metabolic disorder remain unclear. In this study, we analyzed data from 1371 adults aged 40-69 years in the 2008 Korean Genome Epidemiologic Study (KoGES) Ansung cohort. We indirectly estimated dioxin-like MIS levels by measuring intracellular ATP (MISATP) and reactive oxygen species (MISROS) in cultured cells treated with the serum of participants. Using correlation analysis and structural equation modeling (SEM), we explored the relationships among MIS, mitochondrial function, body mass index (BMI), and lung function (FEV1 and FVC). Our findings revealed that MISATP was associated with BMI in females and with FVC in males, while MISROS correlated with both BMI and FVC in males, not in females. Significant associations between BMI and FVC were found in the highest MIS subgroup in both sexes. SEM analyses demonstrated that MIS negatively influenced mitochondrial function, which in turn affected BMI and lung function. Age-related declines in lung function were also linked to mitochondrial dysfunction. This study underscores the potential of MIS assays as alternatives for assessing mitochondrial function and highlights the importance of mitochondrial health in metabolic disorders and lung function.
Collapse
Affiliation(s)
- Hoonsung Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea;
| | - Kyungho Ha
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea;
| | - Jin Taek Kim
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Nowon Eulji University Hospital, Eulji University School of Medicine, Seoul 01830, Republic of Korea;
| | - Min Kyong Moon
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea;
| | - Hyojee Joung
- Department of Public Health, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hong Kyu Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03087, Republic of Korea;
| | - Youngmi Kim Pak
- Biomedical Science Institute, Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
38
|
Dashti M, Ali NM, Alsaleh H, John SE, Nizam R, Al-Mulla F, Thanaraj TA. Mitochondrial haplogroup R offers protection against obesity in Kuwaiti and Qatari populations. Front Endocrinol (Lausanne) 2024; 15:1449374. [PMID: 39464187 PMCID: PMC11502345 DOI: 10.3389/fendo.2024.1449374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024] Open
Abstract
Background The Kuwaiti and Qatari populations have a high prevalence of obesity, a major risk factor for various metabolic disorders. Previous studies have independently explored mitochondrial DNA (mtDNA) variations and their association with obesity in these populations. This study aims to investigate the role of mtDNA haplogroups and variants in obesity risk among these Gulf populations. Methods Whole exome sequencing data from 1,112 participants (348 Kuwaitis and 764 Qataris) were analyzed for mtDNA variants. Participants were classified as obese or non-obese based on body mass index (BMI). Association analyses were performed to examine the relationship between mtDNA haplogroups and obesity, adjusting for covariates such as age and sex. Results Haplogroup R was found to be protective against obesity, with an odds ratio (OR) of 0.69 (p = 0.045). This association remained significant after adjusting for age and sex (OR = 0.694; 95% CI: 0.482-0.997; p = 0.048). Several mtDNA variants, particularly those involved in mitochondrial energy metabolism, showed nominal associations with obesity, but these did not remain significant after correcting for multiple testing. Conclusion Haplogroup R consistently demonstrates a protective association against obesity in both Kuwaiti and Qatari populations, highlighting its potential as a biomarker for obesity risk in the Gulf region. However, further research with larger sample sizes is needed to validate these findings and clarify the role of mtDNA variants in obesity.
Collapse
Affiliation(s)
- Mohammed Dashti
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Naser M. Ali
- Department of Medical Laboratories, Ahmadi Hospital, Kuwait Oil Company (KOC), Ahmadi, Kuwait
| | - Hussain Alsaleh
- Saad Al-Abdullah Academy for Security Sciences, Ministry of Interior, Shuwaikh, Kuwait
| | - Sumi Elsa John
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | |
Collapse
|
39
|
van Drie RWA, van de Wouw J, Zandbergen LM, Dehairs J, Swinnen JV, Mulder MT, Verhaar MC, MaassenVanDenBrink A, Duncker DJ, Sorop O, Merkus D. Vasodilator reactive oxygen species ameliorate perturbed myocardial oxygen delivery in exercising swine with multiple comorbidities. Basic Res Cardiol 2024; 119:869-887. [PMID: 38796544 PMCID: PMC11461570 DOI: 10.1007/s00395-024-01055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
Multiple common cardiovascular comorbidities produce coronary microvascular dysfunction. We previously observed in swine that a combination of diabetes mellitus (DM), high fat diet (HFD) and chronic kidney disease (CKD) induced systemic inflammation, increased oxidative stress and produced coronary endothelial dysfunction, altering control of coronary microvascular tone via loss of NO bioavailability, which was associated with an increase in circulating endothelin (ET). In the present study, we tested the hypotheses that (1) ROS scavenging and (2) ETA+B-receptor blockade improve myocardial oxygen delivery in the same female swine model. Healthy female swine on normal pig chow served as controls (Normal). Five months after induction of DM (streptozotocin, 3 × 50 mg kg-1 i.v.), hypercholesterolemia (HFD) and CKD (renal embolization), swine were chronically instrumented and studied at rest and during exercise. Sustained hyperglycemia, hypercholesterolemia and renal dysfunction were accompanied by systemic inflammation and oxidative stress. In vivo ROS scavenging (TEMPOL + MPG) reduced myocardial oxygen delivery in DM + HFD + CKD swine, suggestive of a vasodilator influence of endogenous ROS, while it had no effect in Normal swine. In vitro wire myography revealed a vasodilator role for hydrogen peroxide (H2O2) in isolated small coronary artery segments from DM + HFD + CKD, but not Normal swine. Increased catalase activity and ceramide production in left ventricular myocardial tissue of DM + HFD + CKD swine further suggest that increased H2O2 acts as vasodilator ROS in the coronary microvasculature. Despite elevated ET-1 plasma levels in DM + HFD + CKD swine, ETA+B blockade did not affect myocardial oxygen delivery in Normal or DM + HFD + CKD swine. In conclusion, loss of NO bioavailability due to 5 months exposure to multiple comorbidities is partially compensated by increased H2O2-mediated coronary vasodilation.
Collapse
Affiliation(s)
- R W A van Drie
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - L M Zandbergen
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, 81377 LMU, Munich, Germany
| | - J Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium
| | - J V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium
| | - M T Mulder
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A MaassenVanDenBrink
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - D J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - O Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - D Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, 81377 LMU, Munich, Germany.
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany.
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), University Clinic Munich, LMU, Munich, Germany.
| |
Collapse
|
40
|
Lluch A, Latorre J, Oliveras-Cañellas N, Fernández-Sánchez A, Moreno-Navarrete JM, Castells-Nobau A, Comas F, Buxò M, Rodríguez-Hermosa JI, Ballester M, Espadas I, Martín-Montalvo A, Zhang B, Zhou Y, Burkhardt R, Höring M, Liebisch G, Castellanos-Rubio A, Santin I, Kar A, Laakso M, Pajukanta P, Olkkonen VM, Fernández-Real JM, Ortega FJ. A novel long non-coding RNA connects obesity to impaired adipocyte function. Mol Metab 2024; 90:102040. [PMID: 39362599 PMCID: PMC11544081 DOI: 10.1016/j.molmet.2024.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) can perform tasks of key relevance in fat cells, contributing, when defective, to the burden of obesity and its sequelae. Here, scrutiny of adipose tissue transcriptomes before and after bariatric surgery (GSE53378) granted identification of 496 lncRNAs linked to the obese phenotype. Only expression of linc-GALNTL6-4 displayed an average recovery over 2-fold and FDR-adjusted p-value <0.0001 after weight loss. The aim of the present study was to investigate the impact on adipocyte function and potential clinical value of impaired adipose linc-GALNTL6-4 in obese subjects. METHODS We employed transcriptomic analysis of public dataset GSE199063, and cross validations in two large transversal cohorts to report evidence of a previously unknown association of adipose linc-GALNTL6-4 with obesity. We then performed functional analyses in human adipocyte cultures, genome-wide transcriptomics, and untargeted lipidomics in cell models of loss and gain of function to explore the molecular implications of its associations with obesity and weight loss. RESULTS The expression of linc-GALNTL6-4 in human adipose tissue is adipocyte-specific and co-segregates with obesity, being normalized upon weight loss. This co-segregation is demonstrated in two longitudinal weight loss studies and two cross-sectional samples. While compromised expression of linc-GALNTL6-4 in obese subjects is primarily due to the inflammatory component in the context of obesity, adipogenesis requires the transcriptional upregulation of linc-GALNTL6-4, the expression of which reaches an apex in terminally differentiated adipocytes. Functionally, we demonstrated that the knockdown of linc-GALNTL6-4 impairs adipogenesis, induces alterations in the lipidome, and leads to the downregulation of genes related to cell cycle, while propelling in adipocytes inflammation, impaired fatty acid metabolism, and altered gene expression patterns, including that of apolipoprotein C1 (APOC1). Conversely, the genetic gain of linc-GALNTL6-4 ameliorated differentiation and adipocyte phenotype, putatively by constraining APOC1, also contributing to the metabolism of triglycerides in adipose. CONCLUSIONS Current data unveil the unforeseen connection of adipocyte-specific linc-GALNTL6-4 as a modulator of lipid homeostasis challenged by excessive body weight and meta-inflammation.
Collapse
Affiliation(s)
- Aina Lluch
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jèssica Latorre
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain.
| | - Núria Oliveras-Cañellas
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | | | - José M Moreno-Navarrete
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Anna Castells-Nobau
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Ferran Comas
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain
| | - Maria Buxò
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain
| | - José I Rodríguez-Hermosa
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; School of Medicine, University of Girona (UdG), Girona, Spain
| | - María Ballester
- Animal Breeding and Genetics Programme, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Isabel Espadas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain
| | - Alejandro Martín-Montalvo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Birong Zhang
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Ainara Castellanos-Rubio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Izortze Santin
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bizkaia, Spain; Instituto de Investigación Sanitaria Biocruces Bizkaia, Bizkaia, Spain
| | - Asha Kar
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles (CA), USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles (CA), USA
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Päivi Pajukanta
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles (CA), USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles (CA), USA; Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles (CA), USA
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, University of Helsinki, Helsinki, Finland
| | - José M Fernández-Real
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain; School of Medicine, University of Girona (UdG), Girona, Spain.
| | - Francisco J Ortega
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain.
| |
Collapse
|
41
|
Chen Y, Gao R, Fang J, Ding S. A review: Polysaccharides targeting mitochondria to improve obesity. Int J Biol Macromol 2024; 277:134448. [PMID: 39102922 DOI: 10.1016/j.ijbiomac.2024.134448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Polysaccharides are one of the most important and widely used bioactive components of natural products, which can be used to treat metabolic diseases. Natural polysaccharides (NPs) have been the subject of much study and research in the field of treating obesity in recent years. Studies in the past have demonstrated that mitochondria are important for the initiation, progression, and management of obesity. Additionally, NPs have the ability to improve mitochondrial dysfunction via a variety of mechanisms. This review summarized the relationship between the structure of NPs and their anti-obesity activity, focusing on the anti-obesity effects of these compounds at the mitochondrial level. We discussed the association between the structure and anti-obesity action of NPs, including molecular weight, monosaccharide composition, glycosidic linkage, conformation and extraction methods. Furthermore, NPs can demonstrate a range of functions in adipose tissue, including but not limited to improving the mitochondrial oxidative respiratory chain, inhibiting oxidative stress, and maintaining mitochondrial mass homeostasis. The purpose of this work is to acquire a thorough understanding of the function that mitochondria play in the anti-obesity effects of NPs and to offer fresh insights for the investigation of how NPs prevent obesity and the creation of natural anti-obesity medications.
Collapse
Affiliation(s)
- Yongchao Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China
| | - Rong Gao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China.
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China.
| |
Collapse
|
42
|
Varshney S, Kumar D, Choudhary R, Gupta A, Beg M, Shankar K, Rajan S, Srivastava A, Gupta S, Khandelwal N, Balaramnavar VM, Gaikwad AN. Flavopiridol inhibits adipogenesis and improves metabolic homeostasis by ameliorating adipose tissue inflammation in a diet-induced obesity model. Biomed Pharmacother 2024; 179:117330. [PMID: 39208666 DOI: 10.1016/j.biopha.2024.117330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Repositioning of FDA approved/clinical phase drugs has recently opened a new opportunity for rapid approval of drugs, as it shortens the overall process of drug discovery and development. In previous studies, we predicted the possibility of better activity profiles of flavopiridol, the FDA approved orphan drug with better fit value 2.79 using a common feature pharmacophore model for anti-adipogenic compounds (CFMPA). The present study aimed to investigate the effect of flavopiridol on adipocyte differentiation and to determine the underlying mechanism. Flavopiridol inhibited adipocyte differentiation in different cell models like 3T3-L1, C3H10T1/2, and hMSCs at 150 nM. Flavopiridol was around 135 times more potent than its parent molecule rohitukine. The effect was mediated through down-regulation of key transcription factors of adipogenesis i.e. Peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and their downstream targets, including adipocyte protein -2 (aP2) and fatty acid synthase (FAS). Further, results revealed that flavopiridol arrested the cell cycle in G1/S phase during mitotic clonal expansion by suppressing cell cycle regulatory proteins i.e. Cyclins and CDKs. Flavopiridol inhibited insulin-stimulated signalling in the early phase of adipocyte differentiation by downregulation of AKT/mTOR pathway. In addition, flavopiridol improved mitochondrial function in terms of increased oxygen consumption rate (OCR) in mature adipocytes. In the mouse model of diet-induced obesity, flavopiridol attenuated obesity-associated adipose tissue inflammation and improved serum lipid profile, glucose tolerance as well as insulin sensitivity. In conclusion, the FDA approved drug flavopiridol could be placed as a potential drug candidate for the treatment of cancer and obesity comorbid patients.
Collapse
Affiliation(s)
- Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakhi Choudhary
- Global Institute of Pharmaceutical Education and Research, Jaspur Road, Kashipur, Uttarakhand 244713, India
| | - Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Muheeb Beg
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanchita Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nilesh Khandelwal
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal M Balaramnavar
- Global Institute of Pharmaceutical Education and Research, Jaspur Road, Kashipur, Uttarakhand 244713, India; School of Pharmacy & Research Center, Sanskriti University, 281401 Mathura, UP, India
| | - Anil N Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
43
|
Fu Q, Lv R, Wang S, Wang W, Li Y, Qiu G, Chen X, Sun C. Ndufa8 promotes white fat Browning by improving mitochondrial respiratory chain complex I function to ameliorate obesity by in vitro and in vivo. Cell Signal 2024; 122:111340. [PMID: 39127135 DOI: 10.1016/j.cellsig.2024.111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Obesity and its complications have become a global health problem that needs to be addressed urgently. White adipose tissue (WAT) browning contributes to consuming excess energy in WAT, which is important for improving obesity and maintaining a healthy energy homeostasis. Mitochondria, as the energy metabolism center of cells, are extensively involved in many metabolic processes, including the browning of WAT. NADH: Ubiquinone oxidoreductase subunit A8 (NDUFA8) is a constituent subunit of respiratory chain complex I (CI), which has been found to participate in a wide range of physiological processes by affecting the activity of respiratory CI. However, the regulatory effect of Ndufa8 on the browning of WAT has not been reported. Here, we used β3-adrenergic agonis CL316, 243 to construct WAT browning models in vivo and in vitro to investigate the role and mechanism of Ndufa8 in the regulation of WAT browning. Briefly, Ndufa8 significantly increased CI activity and suppressed mitochondrial ROS levels in vitro, thereby improving mitochondrial function. Ndufa8 also increased the transcriptional levels and protein levels of UCP1 in vitro and in vivo, which promoted WAT browning. Our findings provide a new molecular approach for the research of browning of WAT in animals, as well as a new target for animal metabolism improvement and obesity treatments.
Collapse
Affiliation(s)
- Qinghua Fu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Simeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wentao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yizhou Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guiping Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinhao Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
44
|
Li H, Li Z, Zhang X, Lin Y, Zhang T, Gan L, Mu D. The effect of exogenous mitochondria in enhancing the survival and volume retention of transplanted fat tissue in a nude mice model. Stem Cell Res Ther 2024; 15:321. [PMID: 39334429 PMCID: PMC11438222 DOI: 10.1186/s13287-024-03938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Despite the pivotal role of fat grafting in plastic, reconstructive, and aesthetic surgery, inconsistent survival rates of transplanted adipose tissue, primarily due to early ischemic and hypoxic insults, remain a significant challenge. The infusion of healthy mitochondria has emerged as a promising intervention to support tissue recovery from ischemic, hypoxic, and other types of damages across various organ systems. OBJECTIVES This study aims to evaluate the impact of supplementing human adipose tissue grafts with healthy exogenous mitochondria on their volume and mass retention rates when transplanted into the subcutaneous layers of nude mice. This approach seeks to improve and optimize fat grafting techniques. METHODS Human adipose tissues were preconditioned with exogenous mitochondria (10 µg/mL), a combination of exogenous mitochondria and the inhibitor Dyngo-4a, Dyngo-4a alone, or PBS, and then transplanted into the subcutaneous tissue of 24 nude mice. Samples were harvested at 1 and 3 months post-transplantation for analysis of mass and volume retention. The structural morphology and integrity of the adipose tissues were assessed using Hematoxylin and Eosin (H&E) staining. RESULTS Mitochondrial preconditioning significantly enhanced the retention of mass and volume in fat grafts, demonstrating superior structural morphology and integrity compared to the control group. CONCLUSIONS This study highlights the potential of exogenous mitochondrial augmentation in fat transplantation to significantly improve fat graft survival, thereby optimizing the success of fat grafting procedures.
Collapse
Affiliation(s)
- Haoran Li
- Department of Breast Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Zhengyao Li
- Department of Breast Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Xiaoyu Zhang
- Department of Breast Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Yan Lin
- Department of Breast Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Tongtong Zhang
- Department of Breast Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Leijuan Gan
- Department of Breast Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Dali Mu
- Department of Breast Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| |
Collapse
|
45
|
Zhuang C, Mao J, Ye H, He J, Hu Y, Hu H, Zheng Y. Association between severe headache or migraine and lipid accumulation product and visceral adiposity index in adults: a cross-sectional study from NHANES. Lipids Health Dis 2024; 23:307. [PMID: 39334367 PMCID: PMC11428856 DOI: 10.1186/s12944-024-02303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Existing literature on the impact of lipid accumulation product (LAP) and visceral adiposity index (VAI) on severe headache or migraine is limited. This study aims to elucidate the association between LAP and VAI and the prevalence of migraine. METHODS Data for this study were sourced from the 1999-2004 National Health and Nutrition Examination Survey (NHANES). A database-self-administered questionnaire was used to assess severe headache or migraine. A weighted logistic regression model was employed to assess the relationship between LAP and VAI with migraine prevalence. Complementary analytical approaches included subgroup analysis, restricted cubic spline (RCS), and threshold effect analysis to validate the findings. RESULTS In the end, 4572 people were recruited for the research, including 880 with migraine and 3692 without migraine. Following adjustment for the relevant covariables, weighted logistic regression analysis (OR = 1.409, 95% CI: 1.054, 1.883, P = 0.022; OR = 1.288, 95% CI: 1.010, 1.642, P = 0.042) revealed significantly elevated odds of migraine prevalence in participants within the highest tertile (T3) of LAP and VAI than those in the lowest tertile (T1). The nonlinear association between migraine prevalence and both VAI and LAP was further elucidated through a restricted cubic spline. The threshold analysis pinpointed 2.142 (log-likelihood ratio = 0.016) as the critical inflection point for VAI. Subgroup analysis and interaction testing revealed the significant association was independent in different subgroup factors. CONCLUSIONS The data indicate a robust association between higher levels of LAP and VAI and an increased prevalence of migraine.
Collapse
Affiliation(s)
- Caixiang Zhuang
- Department of Neurology, Postgraduate Training Base Alliance of Wenzhou Medical University (WenzhouPeople's Hospital), Wenzhou, China
| | - Jiesheng Mao
- Department of Neurology, Postgraduate Training Base Alliance of Wenzhou Medical University (WenzhouPeople's Hospital), Wenzhou, China
| | - Hongyu Ye
- Department of Neurology, Postgraduate Training Base Alliance of Wenzhou Medical University (WenzhouPeople's Hospital), Wenzhou, China
| | - Jianghai He
- Department of Neurology, Postgraduate Training Base Alliance of Wenzhou Medical University (WenzhouPeople's Hospital), Wenzhou, China
| | - Yuwen Hu
- Department of Neurology, Postgraduate Training Base Alliance of Wenzhou Medical University (WenzhouPeople's Hospital), Wenzhou, China
| | - Haoxiang Hu
- Department of Neurology, Postgraduate Training Base Alliance of Wenzhou Medical University (WenzhouPeople's Hospital), Wenzhou, China
| | - Yanyan Zheng
- Department of Neurology, Postgraduate Training Base Alliance of Wenzhou Medical University (WenzhouPeople's Hospital), Wenzhou, China.
| |
Collapse
|
46
|
Escobar Marcillo DI, Guglielmi V, Privitera GF, Signore M, Simonelli V, Manganello F, Dell'Orso A, Laterza S, Parlanti E, Pulvirenti A, Marcon F, Siniscalchi E, Fertitta V, Iorio E, Varì R, Nisticò L, Valverde M, Sbraccia P, Dogliotti E, Fortini P. The dual nature of DNA damage response in obesity and bariatric surgery-induced weight loss. Cell Death Dis 2024; 15:664. [PMID: 39256343 PMCID: PMC11387396 DOI: 10.1038/s41419-024-06922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 09/12/2024]
Abstract
This novel study applies targeted functional proteomics to examine tissues and cells obtained from a cohort of individuals with severe obesity who underwent bariatric surgery (BS), using a Reverse-Phase Protein Array (RPPA). In obese individuals, visceral adipose tissue (VAT), but not subcutaneous adipose tissue (SAT), shows activation of DNA damage response (DDR) markers including ATM, ATR, histone H2AX, KAP1, Chk1, and Chk2, alongside senescence markers p16 and p21. Additionally, stress-responsive metabolic markers, such as survivin, mTOR, and PFKFB3, are specifically elevated in VAT, suggesting both cellular stress and metabolic dysregulation. Conversely, peripheral blood mononuclear cells (PBMCs), while exhibiting elevated mTOR and JNK levels, did not present significant changes in DDR or senescence markers. Following BS, unexpected increases in phosphorylated ATM, ATR, and KAP1 levels, but not in Chk1 and Chk2 nor in senescence markers, were observed. This was accompanied by heightened levels of survivin and mTOR, along with improvement in markers of mitochondrial quality and health. This suggests that, following BS, pro-survival pathways involved in cellular adaptation to various stressors and metabolic alterations are activated in circulating PBMCs. Moreover, our findings demonstrate that the DDR has a dual nature. In the case of VAT from individuals with obesity, chronic DDR proves to be harmful, as it is associated with senescence and chronic inflammation. Conversely, after BS, the activation of DDR proteins in PBMCs is associated with a beneficial survival response. This response is characterized by metabolic redesign and improved mitochondrial biogenesis and functionality. This study reveals physiological changes associated with obesity and BS that may aid theragnostic approaches.
Collapse
Affiliation(s)
| | - Valeria Guglielmi
- Internal Medicine Unit and Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Grete Francesca Privitera
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | - Michele Signore
- Core Facilities, ISS, Viale Regina Elena 299, 00161, Roma, Italy
| | - Valeria Simonelli
- Dept of Environment and Health, ISS, Viale Regina Elena 299, 00161, Roma, Italy
| | - Federico Manganello
- Dept of Environment and Health, ISS, Viale Regina Elena 299, 00161, Roma, Italy
| | - Ambra Dell'Orso
- Dept of Environment and Health, ISS, Viale Regina Elena 299, 00161, Roma, Italy
| | - Serena Laterza
- Internal Medicine Unit and Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Eleonora Parlanti
- Dept of Environment and Health, ISS, Viale Regina Elena 299, 00161, Roma, Italy
| | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | - Francesca Marcon
- Dept of Environment and Health, ISS, Viale Regina Elena 299, 00161, Roma, Italy
| | - Ester Siniscalchi
- Dept of Environment and Health, ISS, Viale Regina Elena 299, 00161, Roma, Italy
| | - Veronica Fertitta
- Dept of Environment and Health, ISS, Viale Regina Elena 299, 00161, Roma, Italy
| | - Egidio Iorio
- High Resolution NMR Unit-Core Facilities, ISS, Viale Regina Elena, 299, 00161, Roma, Italy
| | - Rosaria Varì
- Center for Gender-Specific Medicine, ISS, Viale Regina Elena 299, 00161, Rome, Italy
| | - Lorenza Nisticò
- Centre for Behavioral Sciences and Mental Health, ISS, Viale Regina Elena 299, 00161, Roma, Italy
| | - Mahara Valverde
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U. C.P, 04510, CDMX, México
| | - Paolo Sbraccia
- Internal Medicine Unit and Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Eugenia Dogliotti
- Dept of Environment and Health, ISS, Viale Regina Elena 299, 00161, Roma, Italy.
| | - Paola Fortini
- Dept of Environment and Health, ISS, Viale Regina Elena 299, 00161, Roma, Italy.
| |
Collapse
|
47
|
Preciado-Ortiz ME, Martínez-López E, Pedraza-Chaverri J, Medina-Campos ON, Rodríguez-Echevarría R, Reyes-Pérez SD, Rivera-Valdés JJ. 10-Gingerol Increases Antioxidant Enzymes and Attenuates Lipopolysaccharide-Induced Inflammation by Modulating Adipokines in 3T3-L1 Adipocytes. Antioxidants (Basel) 2024; 13:1093. [PMID: 39334752 PMCID: PMC11429246 DOI: 10.3390/antiox13091093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Obesity increases reactive oxygen species production and alters adipokines levels, resulting in a low-grade chronic inflammation state, which contributes to tissue metabolic dysfunction. 10-gingerol, a phenol present in ginger, has shown potential anti-obesogenic effects in vitro. However, the antioxidant and anti-inflammatory properties of 10-gingerol have not been approached. The aim of this study was to investigate the effects of 10-gingerol on antioxidant enzymes' expression and adipokine production in 3T3-L1 adipocytes in response to lipopolysaccharide (LPS)-induced inflammation. METHODS 10-gingerol antioxidant capacity was assessed through Oxygen Radical Absorbance Capacity (ORAC) , Ferric Reducing Antioxidant Power (FRAP), and radical scavenging activity of 2,2-diphenyl-2-picrylhydrazyl (DPPH) assays. 3T3-L1 cells were differentiated and stimulated with 100 ng/mL LPSs. Then, 15 µg/mL 10-gingerol was added for 48 h. The mRNA expression and protein abundance of antioxidant enzymes were evaluated by qPCR and Western blot, respectively. Adipokine levels were determined by ELISA. RESULTS 10-gingerol showed low FRAP and DPPH values but a moderate ORAC value. Moreover, 10-gingerol increased Gpx1 and Sod1 but downregulated Cat expression. Additionally, 10-gingerol significantly increased CAT and GPx1 levels but not SOD-1. Finally, adiponectin and leptin concentrations were increased while resistin and tumor necrosis factor alpha (TNFα) were decreased by 10-gingerol. CONCLUSIONS 10-gingerol presented antioxidant potential by increasing antioxidant enzymes and attenuated LPS-induced inflammation by modulating adipokines in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- María Elizabeth Preciado-Ortiz
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.R.-E.); (S.D.R.-P.)
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.R.-E.); (S.D.R.-P.)
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (J.P.-C.); (O.N.M.-C.)
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (J.P.-C.); (O.N.M.-C.)
| | - Roberto Rodríguez-Echevarría
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.R.-E.); (S.D.R.-P.)
| | - Samantha Desireé Reyes-Pérez
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.R.-E.); (S.D.R.-P.)
- Doctorado en Ciencias en Biología Molecular en Medicina, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Juan José Rivera-Valdés
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.R.-E.); (S.D.R.-P.)
| |
Collapse
|
48
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
49
|
Jun L, Tao YX, Geetha T, Babu JR. Mitochondrial Adaptation in Skeletal Muscle: Impact of Obesity, Caloric Restriction, and Dietary Compounds. Curr Nutr Rep 2024; 13:500-515. [PMID: 38976215 PMCID: PMC11327216 DOI: 10.1007/s13668-024-00555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE OF REVIEW: The global obesity epidemic has become a major public health concern, necessitating comprehensive research into its adverse effects on various tissues within the human body. Among these tissues, skeletal muscle has gained attention due to its susceptibility to obesity-related alterations. Mitochondria are primary source of energy production in the skeletal muscle. Healthy skeletal muscle maintains constant mitochondrial content through continuous cycle of synthesis and degradation. However, obesity has been shown to disrupt this intricate balance. This review summarizes recent findings on the impact of obesity on skeletal muscle mitochondria structure and function. In addition, we summarize the molecular mechanism of mitochondrial quality control systems and how obesity impacts these systems. RECENT FINDINGS: Recent findings show various interventions aimed at mitigating mitochondrial dysfunction in obese model, encompassing strategies including caloric restriction and various dietary compounds. Obesity has deleterious effect on skeletal muscle mitochondria by disrupting mitochondrial biogenesis and dynamics. Caloric restriction, omega-3 fatty acids, resveratrol, and other dietary compounds enhance mitochondrial function and present promising therapeutic opportunities.
Collapse
Affiliation(s)
- Lauren Jun
- Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ya-Xiong Tao
- Department of Anatomy Physiology and Pharmacology, Auburn University, Auburn, AL, 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA.
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
50
|
Tauchmannová K, Pecinová A, Houštěk J, Mráček T. Variability of Clinical Phenotypes Caused by Isolated Defects of Mitochondrial ATP Synthase. Physiol Res 2024; 73:S243-S278. [PMID: 39016153 PMCID: PMC11412354 DOI: 10.33549/physiolres.935407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Disorders of ATP synthase, the key enzyme in mitochondrial energy supply, belong to the most severe metabolic diseases, manifesting as early-onset mitochondrial encephalo-cardiomyopathies. Since ATP synthase subunits are encoded by both mitochondrial and nuclear DNA, pathogenic variants can be found in either genome. In addition, the biogenesis of ATP synthase requires several assembly factors, some of which are also hotspots for pathogenic variants. While variants of MT-ATP6 and TMEM70 represent the most common cases of mitochondrial and nuclear DNA mutations respectively, the advent of next-generation sequencing has revealed new pathogenic variants in a number of structural genes and TMEM70, sometimes with truly peculiar genetics. Here we present a systematic review of the reported cases and discuss biochemical mechanisms, through which they are affecting ATP synthase. We explore how the knowledge of pathophysiology can improve our understanding of enzyme biogenesis and function. Keywords: Mitochondrial diseases o ATP synthase o Nuclear DNA o Mitochondrial DNA o TMEM70.
Collapse
Affiliation(s)
- K Tauchmannová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|