1
|
Huang J, Xu Z, Yu C, Liu L, Ji L, Qiu P, Li C, Zhou X. The volatile oil of Acorus tatarinowii Schott ameliorates Alzheimer's disease through improving insulin resistance via activating the PI3K/AKT pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156168. [PMID: 39486109 DOI: 10.1016/j.phymed.2024.156168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) presently stands as the most prevalent neurodegenerative disease. Existing research underscores the pivotal role of insulin signaling in the progression of AD. Acorus tatarinowii Schott (SCP), a traditional Chinese herbal, is employed for AD treatment in China. The volatile oil of Acorus tatarinowii Schott (SCP-oil) is the active component. However, its impact on AD-associated insulin resistance (AD-IR) remains inadequately investigated. PURPOSE This study used network pharmacology and experimental to investigate the effects and mechanisms of SCP-oil on cognitive improvement in AD by inhibiting IR. MATERIALS AND METHODS GC-Q/TOF-MS was employed to analyze the chemical composition of SCP-oil, while network pharmacology predicted the targets associated with SCP-oil in treating AD-IR to identify its regulatory mechanism. IR in the brain was simulated by intracerebroventricular streptozotocin administration (ICV-STZ). The neuroprotective and cognitive improvement effects of SCP-oil were assessed using the Morris water maze and hematoxylin and eosin, as well as Nissl staining. The expression levels of Neun and proteins related to p-tau, tau, amyloid-beta (Aβ), apoptosis, and the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway were measured using immunohistochemistry and Western blotting, respectively. Dexamethasone (DXM)-induced HT22 cells were used for IR modeling. Chemical analysis determined the glucose consumption rate, and periodic acid Schiff staining was employed to detect glycogen deposition. Western Blots were utilized to investigate the expression of characteristic AD proteins, apoptosis-related proteins, and PI3K/AKT pathway-related proteins. The apoptosis rate was detected by flow cytometry. Reverse validation was further performed using LY294002 to evaluate the pharmacodynamic effects of SCP-oil after PI3K/AKT pathway inhibition. RESULTS A total of 25 chemical constituents were identified in SCP-oil. The network pharmacology findings indicated that SCP-oil holds the potential to ameliorate IR in the brain by activating the PI3K/AKT pathway, thereby improving AD. SCP-oil significantly improved ICV-STZ-induced cognitive dysfunction and pathological damage, reduced neuronal loss, Aβ deposition, and tau protein hyperphosphorylation, inhibited cell apoptosis, and activated the PI3K/AKT signaling pathway. Neuron loss, Aβ deposition, and tau protein hyperphosphorylation and cell apoptosis were further enhanced following treatment with LY294002, while the PI3K/AKT signaling pathway was further inhibited, and the protective effect of SCP-oil was weakened. CONCLUSION SCP-oil exhibited the potential to ameliorate brain IR, inhibiting cell apoptosis by activating the PI3K/AKT signaling pathway, thereby improving learning and memory ability.
Collapse
Affiliation(s)
- Junhao Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiwei Xu
- Jinhua Academy, Zhejiang Chinese Medical University, Jinhua, 321000, China; Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chenshi Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ping Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xiaojie Zhou
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Haewphet T, Parhira S, Chaisupasakul P, Wangteeraprasert A, Phoungpetchara I, Pekthong D, Kaewkong W, Jiang ZH, Bai LP, Somran J, Srisawang P. The dichloromethane fraction from Calotropis gigantea (L.) dryand. Stem bark extract prevents liver cancer in SDT rats with insulin-independent diabetes mellitus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118516. [PMID: 38971341 DOI: 10.1016/j.jep.2024.118516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Calotropis gigantea (L.) Dryand. (C. gigantea) is a traditional medicinal plant, recognized for its effectiveness in managing diabetes, along with its notable antioxidant, anti-inflammatory, and anticancer properties. Type II diabetes mellitus (T2DM) is characterized by chronic metabolic disorders associated with an elevated risk of hepatocellular carcinoma (HCC) due to hyperglycemia and impaired insulin response. The scientific validation of C. gigantea's ethnopharmacological efficacy offers advantages in alleviating cancer progression in T2DM complications, enriching existing knowledge and potentially aiding future clinical cancer treatments. AIM This study aimed to investigate the preventive potential of the dichloromethane fraction of C. gigantea stem bark extract (CGDCM) against diethylnitrosamine (DEN)-induced HCC in T2DM rats, aiming to reduce cancer incidence associated with diabetes while validating C. gigantea's ethnopharmacological efficacy. MATERIALS AND METHODS Spontaneously Diabetic Torii (SDT) rats were administered DEN to induce HCC (SDT-DEN-VEH), followed by treatment with CGDCM. Metformin was used as a positive control (SDT-DEN-MET). All the treatments were administered for 10 weeks after the initial DEN injection. Diabetes-related parameters, including serum levels of glucose, insulin, and glycosylated hemoglobin (HbA1c), as well as liver function enzymes (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and gamma-glutamyl transferase), were quantified. Serum inflammation biomarkers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were evaluated. Liver tissue samples were analyzed for inflammation protein expression (IL-6, TNF-α, transforming growth factor-β1 (TGF-β1), and α-smooth muscle actin (α-SMA)). Histopathological evaluation was performed to assess hepatic necrosis, inflammation, and fibrosis. Liver cell proliferation was determined using immunohistochemistry for Ki-67 expression. RESULTS Rats with SDT-DEN-induced HCC treated with CGDCM exhibited reduced serum glucose levels, elevated insulin levels, and decreased HbA1c levels. CGDCM treatment also reduced elevated hepatic IL-6, TNF-α, TGF-β1, and α-SMA levels in SDT-DEN-VEH rats. Additionally, CGDCM treatment prevented hepatocyte damage, fibrosis, and cell proliferation. No adverse effects on normal organs were observed with CGDCM treatment, suggesting its safety for the treatment of HCC complications associated with diabetes. Additionally, the absence of adverse effects in SD rats treated with CGDCM at 2.5 mg/kg further supports the notion of its safe usage. CONCLUSIONS These findings suggest that C. gigantea stem bark extract exerts preventive effects against the development of HCC complications in patients with T2DM, expanding the potential benefits of its ethnopharmacological advantages.
Collapse
Affiliation(s)
- Thaiyawat Haewphet
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Supawadee Parhira
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand; Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Pattaraporn Chaisupasakul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand.
| | | | - Ittipon Phoungpetchara
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Dumrongsak Pekthong
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand; Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, China.
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, China.
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
3
|
Kiba A, Saha D, Das BK. Exploration of the anti-diabetic potential of hydro-ethanolic leaf extract of Koenigia polystachya L.: an edible wild plant from Northeastern India. Lab Anim Res 2023; 39:21. [PMID: 37723570 PMCID: PMC10506326 DOI: 10.1186/s42826-023-00174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Globally, medicinal plants are used to treat diseases like diabetes. The present study evaluates the possible antioxidant, acute oral toxicity, the in-vitro and in-vivo antidiabetic potential of the hydro-ethanolic leaf extract of Koenigia polystachya (HELeKP) against beta-cell damage in experimentally induced diabetes mellitus. The DPPH (2,2-diphenyl-1-picrylhydrazine), ABTS [2,2'-azino bis-(3-ethylbenzothiazoline-6-sulfonic acid)], H2O2 (Hydrogen peroxide), superoxide radical scavenging activity and NO (Nitric oxide) assay estimated the in-vitro antioxidant assay of HELeKP. The acute oral toxicity study was evaluated per the OECD (Organization for Economic Cooperation and Development) test guidelines 425. Diabetes was stimulated in rats with a single dose of Streptozotocin (STZ), and after confirmation of diabetes, HELeKP was given orally for 21 days. Blood/serum samples were gathered and examined for biochemical changes, while tissue samples were evaluated for histopathological alterations. RESULTS The IC50 value of the HELeKP for all the anti-oxidant assays confirms the free radical scavenging activity. The data on acute oral toxicity revealed that the HELeKP used in the study was comparatively very safe. The outcomes of the in-vivo study suggested that the extract significantly reduced (p < 0.001) the fasting glucose level in STZ-induced diabetic rats. Furthermore, the lipid profile level was significantly normalized (p < 0.01, p < 0.001) in diabetic rats. The histopathological observation of the pancreas in HELeKP-treated rats showed significant beta-cell restoration. CONCLUSIONS Based on the outcomes of this study, the HELeKP-treated rats have significant free radical scavenging and anti-diabetic potential. Therefore, it can be recommended as a beneficial functional vegetable for consumption.
Collapse
Affiliation(s)
- Alokali Kiba
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati, Assam, 781017, India
| | - Dipankar Saha
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati, Assam, 781017, India
| | - Bhrigu Kumar Das
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati, Assam, 781017, India.
| |
Collapse
|
4
|
Das BK. Altered gut microbiota in hepatocellular carcinoma: Insights into the pathogenic mechanism and preclinical to clinical findings. APMIS 2022; 130:719-740. [PMID: 36321381 DOI: 10.1111/apm.13282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. It is usually the result of pre-existing liver damage caused by hepatitis B and/or C virus infection, alcohol consumption, nonalcoholic steatohepatitis (NASH), aflatoxin exposure, liver cirrhosis, obesity, and diabetes. A growing body of evidence suggests that gut microbes have a role in cancer genesis. More research into the microbiome gut-liver axis has recently contributed to understanding how the gut microbiome facilitates liver disease or even HCC progression. This review focuses on the preclinical results of gut-related hepatocarcinogenesis and probiotics, prebiotics, and antibiotics as therapeutic interventions to maintain gut microbial flora and minimize HCC-associated symptoms. Understanding the mechanistic link between the gut microbiota, host, and cancer progression could aid us in elucidating the cancer-related pathways and drive us toward preventing HCC-associated gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Bhrigu Kumar Das
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science (Assam Science and Technology University), Guwahati, Assam, India
| |
Collapse
|
5
|
Maradagi T, Kumar R, Ponesakki G. Hyperglycaemia-induced human hepatocellular carcinoma (HepG2) cell proliferation through ROS-mediated P38 activation is effectively inhibited by a xanthophyll carotenoid, lutein. Diabet Med 2022; 39:e14713. [PMID: 34614244 DOI: 10.1111/dme.14713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
AIMS Diabetic population have a twofold to threefold increased risk of developing liver cancer, and hyperglycaemia is a prime causative factor that propends the tumour cells to undergo aggressive metabolic growth. In this study, we aimed to examine the molecular mechanism by which lutein inhibits hyperglycaemia-induced human hepatocarcinoma (HepG2) cell proliferation. METHODS The effect of lutein on high glucose-induced proliferation was measured using the WST-1 reagent. Its effect on intracellular reactive oxygen species (ROS) levels was measured by DCF assay. The effect on the expression of antioxidant enzymes, cell cycle regulatory proteins and intracellular protein kinases was analysed by western blotting. The modulatory effect of lutein on different phases of the cell cycle was analysed by flow cytometry. RESULTS The data showed that lutein at 5 µM concentration significantly blocked glucose-promoted HepG2 cell proliferation. Suppression of high glucose-induced cell proliferation by lutein was not associated with apoptosis induction, but it was linked with inhibition of hyperglycaemia-mediated elevated ROS and upregulated expression of high glucose-mediated repressed heme oxygenase 1 (HO1). Furthermore, G2/M phase cell cycle arrest and associated phosphorylation of Cdk1 and P53 were found to be linked with suppressed hyperglycaemia-mediated cell proliferation by lutein. In addition, lutein inhibited hyperglycaemia-induced activation of P38 which relates to high glucose-induced ROS-mediated growth suppression and modulated the phosphorylation of Erk, JNK and Akt in hyperglycaemic HepG2 cells. CONCLUSION Our findings portray that sufficient intake of lutein may offer a negative impact on diabetes-associated tumour growth.
Collapse
Affiliation(s)
- Tehreem Maradagi
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ravi Kumar
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ganesan Ponesakki
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Biochemistry and Biotechnology, CSIR-Central Leather Research Institute (CLRI), Chennai, India
| |
Collapse
|
6
|
Molecular Mechanisms and Therapeutic Potential of α- and β-Asarone in the Treatment of Neurological Disorders. Antioxidants (Basel) 2022; 11:antiox11020281. [PMID: 35204164 PMCID: PMC8868500 DOI: 10.3390/antiox11020281] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
Neurological disorders are important causes of morbidity and mortality around the world. The increasing prevalence of neurological disorders, associated with an aging population, has intensified the societal burden associated with these diseases, for which no effective treatment strategies currently exist. Therefore, the identification and development of novel therapeutic approaches, able to halt or reverse neuronal loss by targeting the underlying causal factors that lead to neurodegeneration and neuronal cell death, are urgently necessary. Plants and other natural products have been explored as sources of safe, naturally occurring secondary metabolites with potential neuroprotective properties. The secondary metabolites α- and β-asarone can be found in high levels in the rhizomes of the medicinal plant Acorus calamus (L.). α- and β-asarone exhibit multiple pharmacological properties including antioxidant, anti-inflammatory, antiapoptotic, anticancer, and neuroprotective effects. This paper aims to provide an overview of the current research on the therapeutic potential of α- and β-asarone in the treatment of neurological disorders, particularly neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), as well as cerebral ischemic disease, and epilepsy. Current research indicates that α- and β-asarone exert neuroprotective effects by mitigating oxidative stress, abnormal protein accumulation, neuroinflammation, neurotrophic factor deficit, and promoting neuronal cell survival, as well as activating various neuroprotective signalling pathways. Although the beneficial effects exerted by α- and β-asarone have been demonstrated through in vitro and in vivo animal studies, additional research is required to translate laboratory results into safe and effective therapies for patients with AD, PD, and other neurological and neurodegenerative diseases.
Collapse
|
7
|
Kumar Das B, Gadad PC. Impact of diabetes on the increased risk of hepatic cancer: An updated review of biological aspects. DIABETES EPIDEMIOLOGY AND MANAGEMENT 2021; 4:100025. [DOI: 10.1016/j.deman.2021.100025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Leng W, Jiang J, Chen B, Wu Q. Metformin and Malignant Tumors: Not Over the Hill. Diabetes Metab Syndr Obes 2021; 14:3673-3689. [PMID: 34429626 PMCID: PMC8380287 DOI: 10.2147/dmso.s326378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
Malignant tumors are a major cause of death, and their incidence is increasing worldwide. Although the survival rate for some cancers has improved, treatments for other malignant tumors are limited, and their mortality rate continues to increase. People with type 2 diabetes have a higher risk of malignant tumors and a higher mortality rate than those without diabetes. Metformin is a commonly used hypoglycemic drug. In recent years, a growing number of studies have indicated that metformin has antitumor effects and increases the sensitivity of malignant tumors to chemotherapy. However, the effect of metformin on different tumors is currently controversial, and the mechanism of metformin's antitumor action is not fully understood. Insights into the effect of metformin on malignant tumors and the possible mechanism may contribute to the development of antitumor drugs.
Collapse
Affiliation(s)
- Weiling Leng
- Endocrinology Department, The First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Juan Jiang
- Endocrinology and Nephrology Department, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Bing Chen
- Endocrinology Department, The First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Qinan Wu
- Endocrinology Department, Dazu Hospital of Chongqing Medical University, The People’s Hospital of Dazu, Chongqing, People’s Republic of China
| |
Collapse
|
9
|
Abstract
This review provides epidemiological and translational evidence for milk and dairy intake as critical risk factors in the pathogenesis of hepatocellular carcinoma (HCC). Large epidemiological studies in the United States and Europe identified total dairy, milk and butter intake with the exception of yogurt as independent risk factors of HCC. Enhanced activity of mechanistic target of rapamycin complex 1 (mTORC1) is a hallmark of HCC promoted by hepatitis B virus (HBV) and hepatitis C virus (HCV). mTORC1 is also activated by milk protein-induced synthesis of hepatic insulin-like growth factor 1 (IGF-1) and branched-chain amino acids (BCAAs), abundant constituents of milk proteins. Over the last decades, annual milk protein-derived BCAA intake increased 3 to 5 times in Western countries. In synergy with HBV- and HCV-induced secretion of hepatocyte-derived exosomes enriched in microRNA-21 (miR-21) and miR-155, exosomes of pasteurized milk as well deliver these oncogenic miRs to the human liver. Thus, milk exosomes operate in a comparable fashion to HBV- or HCV- induced exosomes. Milk-derived miRs synergistically enhance IGF-1-AKT-mTORC1 signaling and promote mTORC1-dependent translation, a meaningful mechanism during the postnatal growth phase, but a long-term adverse effect promoting the development of HCC. Both, dietary BCAA abundance combined with oncogenic milk exosome exposure persistently overstimulate hepatic mTORC1. Chronic alcohol consumption as well as type 2 diabetes mellitus (T2DM), two HCC-related conditions, increase BCAA plasma levels. In HCC, mTORC1 is further hyperactivated due to RAB1 mutations as well as impaired hepatic BCAA catabolism, a metabolic hallmark of T2DM. The potential HCC-preventive effect of yogurt may be caused by lactobacilli-mediated degradation of BCAAs, inhibition of branched-chain α-ketoacid dehydrogenase kinase via production of intestinal medium-chain fatty acids as well as degradation of milk exosomes including their oncogenic miRs. A restriction of total animal protein intake realized by a vegetable-based diet is recommended for the prevention of HCC.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
10
|
Das BK, Knott RM, Gadad PC. Metformin and asarone inhibit HepG2 cell proliferation in a high glucose environment by regulating AMPK and Akt signaling pathway. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00193-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Background
Metabolic dysregulation is one of the hallmarks of tumor cell proliferation. Evidence indicates the potential role of the 5′adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B/Akt signaling pathway in regulating cell proliferation, survival, and apoptosis. The present study explores the effect of metformin HCl and the combination of α- and β-asarone on the proliferation of HepG2 cells in the presence of high glucose levels simulating the diabetic-hepatocellular carcinoma (HCC) condition.
Results
The metformin and asarone reduced HepG2 cell viability in a dose-dependent manner and induced morphological changes as indicated by methyl thiazolyl tetrazolium (MTT) assay. The metformin and asarone arrested the cells at the G0/G1 phase, upregulated the expression of AMPK, and downregulated Akt expression in high glucose conditions as identified by the flow cytometry technique. Further, the upregulated AMPK led to a decrease in the expression of phosphoenolpyruvate carboxykinase-2 (PCK-2) and sterol regulatory element-binding protein-1 (SREBP-1).
Conclusion
The anti-proliferative effect of metformin and asarone in the diabetic-HCC condition is mediated via AMPK and Akt pathway.
Collapse
|
11
|
Sharma V, Sharma R, Gautam DS, Kuca K, Nepovimova E, Martins N. Role of Vacha ( Acorus calamus Linn.) in Neurological and Metabolic Disorders: Evidence from Ethnopharmacology, Phytochemistry, Pharmacology and Clinical Study. J Clin Med 2020; 9:E1176. [PMID: 32325895 PMCID: PMC7230970 DOI: 10.3390/jcm9041176] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Vacha (Acorus calamus Linn. (Acoraceae)) is a traditional Indian medicinal herb, which is practiced to treat a wide range of health ailments, including neurological, gastrointestinal, respiratory, metabolic, kidney, and liver disorders. The purpose of this paper is to provide a comprehensive up-to-date report on its ethnomedicinal use, phytochemistry, and pharmacotherapeutic potential, while identifying potential areas for further research. To date, 145 constituents have been isolated from this herb and identified, including phenylpropanoids, sesquiterpenoids, and monoterpenes. Compelling evidence is suggestive of the biopotential of its various extracts and active constituents in several metabolic and neurological disorders, such as anticonvulsant, antidepressant, antihypertensive, anti-inflammatory, immunomodulatory, neuroprotective, cardioprotective, and anti-obesity effects. The present extensive literature survey is expected to provide insights into the involvement of several signaling pathways and oxidative mechanisms that can mitigate oxidative stress, and other indirect mechanisms modulated by active biomolecules of A. calamus to improve neurological and metabolic disorders.
Collapse
Affiliation(s)
- Vineet Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India; (V.S.); (D.S.G.)
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India; (V.S.); (D.S.G.)
| | - DevNath Singh Gautam
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India; (V.S.); (D.S.G.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic;
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal
- Institute for research and Innovation in Heath (i3S), University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| |
Collapse
|