1
|
Hui L, Chen X, Huang M, Jiang Y, Liu T. TANK-Binding Kinase 1 in the Pathogenesis and Treatment of Inflammation-Related Diseases. Int J Mol Sci 2025; 26:1941. [PMID: 40076567 PMCID: PMC11900955 DOI: 10.3390/ijms26051941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
TANK-binding kinase 1 (TBK1) is a key signaling kinase involved in innate immune and inflammatory responses. TBK1 drives immune cells to participate in the inflammatory response by activating the NF-κB and interferon regulatory factor signaling pathways in immune cells, promoting the expression of pro-inflammatory genes, and regulating immune cell function. Thus, it plays a crucial role in initiating a signaling cascade that establishes an inflammatory environment. In inflammation-related diseases, TBK1 acts as a bridge linking inflammation to immunity, metabolism, or tumorigenesis, playing an important role in the pathogenesis of immune-mediated inflammatory diseases, metabolic, inflammatory syndromes, and inflammation-associated cancers by regulating the activation of inflammatory pathways and the production of inflammatory cytokines in cells. In this review, we focused on the mechanisms of TBK1 in immune cells and inflammatory-related diseases, providing new insights for further studies targeting TBK1 as a potential treatment for inflammation-related diseases. Thus, optimizing and investigating highly selective cell-specific TBK1 inhibitors is important for their application in these diseases.
Collapse
Affiliation(s)
- Lu Hui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Xiaolin Chen
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Mengke Huang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Hui L, Huang MK, Dai QK, Miao CL, Yang YL, Liu CX, Liu T, Jiang YM. Amlexanox targeted inhibition of TBK1 regulates immune cell function to exacerbate DSS-induced inflammatory bowel disease. Clin Exp Immunol 2025; 219:uxae082. [PMID: 39248363 PMCID: PMC11771202 DOI: 10.1093/cei/uxae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/18/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024] Open
Abstract
Amlexanox (ALX) is a small-molecule drug for the treatment of inflammatory, autoimmune, metabolic, and tumor diseases. At present, there are no studies on whether ALX has a therapeutic effect on inflammatory bowel disease (IBD). In this study, we used a mouse model of dextran sulfate sodium-induced colitis to investigate the effect of ALX-targeted inhibition of TBK1 on colitis. We found that the severity of colitis in mice was correlated with TBK1 expression. Notably, although ALX inhibited the activation of the TBK1-NF-κB/TBK1-IRF3 pro-inflammatory signaling pathway, it exacerbated colitis and reduced survival in mice. The results of drug safety experiments ruled out a relationship between this exacerbating effect and drug toxicity. In addition, ELISA results showed that ALX promoted the secretion of IL-1β and IFN-α, and inhibited the production of cytokines IL-6, TNF-α, IL-10, TGF-β, and secretory IgA. Flow cytometry results further showed that ALX promoted T-cell proliferation, activation, and differentiation, and thus played a pro-inflammatory role; also, ALX inhibited the generation of dendritic cells and the polarization of macrophages to M1 type, thus exerting anti-inflammatory effect. These data suggest that the regulation of ALX on the function of different immune cells is different, so the effect on the inflammatory response is bidirectional. In conclusion, our study demonstrates that simply inhibiting TBK1 in all immune cells is not effective for the treatment of colitis. Further investigation of the anti-inflammatory mechanism of ALX on dendritic cells and macrophages may provide a new strategy for the treatment of IBD.
Collapse
Affiliation(s)
- Lu Hui
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Meng-ke Huang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Qing-kai Dai
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Cheng-lin Miao
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Yun-long Yang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Chen-xi Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yong-mei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Bhardwaj M, Mazumder PM. The gut-liver axis: emerging mechanisms and therapeutic approaches for nonalcoholic fatty liver disease and type 2 diabetes mellitus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8421-8443. [PMID: 38861011 DOI: 10.1007/s00210-024-03204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), more appropriately known as metabolic (dysfunction) associated fatty liver disease (MAFLD), a prevalent condition in type 2 diabetes mellitus (T2DM) patients, is a complex condition involving hepatic lipid accumulation, inflammation, and liver fibrosis. The gut-liver axis is closely linked to metabolic dysfunction, insulin resistance, inflammation, and oxidative stress that are leading to the cooccurrence of MAFLD and T2DM cardiovascular diseases (CVDs). The purpose of this review is to raise awareness about the role of the gut-liver axis in the progression of MAFLD, T2DM and CVDs with a critical analysis of available treatment options for T2DM and MAFLD and their impact on cardiovascular health. This study analysed over 100 articles on this topic, using online searches and predefined keywords, to understand and summarise published research. Numerous studies have shown a strong correlation between gut dysfunction, particularly the gut microbiota and its metabolites, and the occurrence and progression of MAFLD and type 2 diabetes mellitus (T2DM). Herein, this article also examines the impact of the gut-liver axis on MAFLD, T2DM, and related complications, focusing on the role of gut microbiota dysbiosis in insulin resistance, T2DM and obesity-related cardiovascular complications. The study suggests potential treatment targets for MAFLD linked to T2DM, focusing on cardiovascular outcomes and the molecular mechanism of the gut-liver axis, as gut microbiota dysbiosis contributes to obesity-related metabolic abnormalities.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India.
| |
Collapse
|
4
|
Yang HW, Kho AR, Lee SH, Kang BS, Park MK, Lee CJ, Park SW, Woo SY, Kim DY, Jung HH, Choi BY, Yang WI, Song HK, Choi HC, Park JK, Suh SW. A phosphodiesterase 4 (PDE4) inhibitor, amlexanox, reduces neuroinflammation and neuronal death after pilocarpine-induced seizure. Neurotherapeutics 2024; 21:e00357. [PMID: 38631990 PMCID: PMC11067350 DOI: 10.1016/j.neurot.2024.e00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Epilepsy, a complex neurological disorder, is characterized by recurrent seizures caused by aberrant electrical activity in the brain. Central to this study is the role of lysosomal dysfunction in epilepsy, which can lead to the accumulation of toxic substrates and impaired autophagy in neurons. Our focus is on phosphodiesterase-4 (PDE4), an enzyme that plays a crucial role in regulating intracellular cyclic adenosine monophosphate (cAMP) levels by converting it into adenosine monophosphate (AMP). In pathological states, including epilepsy, increased PDE4 activity contributes to a decrease in cAMP levels, which may exacerbate neuroinflammatory responses. We hypothesized that amlexanox, an anti-inflammatory drug and non-selective PDE4 inhibitor, could offer neuroprotection by addressing lysosomal dysfunction and mitigating neuroinflammation, ultimately preventing neuronal death in epileptic conditions. Our research utilized a pilocarpine-induced epilepsy animal model to investigate amlexanox's potential benefits. Administered intraperitoneally at a dose of 100 mg/kg daily following the onset of a seizure, we monitored its effects on lysosomal function, inflammation, neuronal death, and cognitive performance in the brain. Tissue samples from various brain regions were collected at predetermined intervals for a comprehensive analysis. The study's results were significant. Amlexanox effectively improved lysosomal function, which we attribute to the modulation of zinc's influx into the lysosomes, subsequently enhancing autophagic processes and decreasing the release of inflammatory factors. Notably, this led to the attenuation of neuronal death in the hippocampal region. Additionally, cognitive function, assessed through the modified neurological severity score (mNSS) and the Barnes maze test, showed substantial improvements after treatment with amlexanox. These promising outcomes indicate that amlexanox has potential as a therapeutic agent in the treatment of epilepsy and related brain disorders. Its ability to combat lysosomal dysfunction and neuroinflammation positions it as a potential neuroprotective intervention. While these findings are encouraging, further research and clinical trials are essential to fully explore and validate the therapeutic efficacy of amlexanox in epilepsy management.
Collapse
Affiliation(s)
- Hyun Wook Yang
- Department of Physiology, Neurology, Hallym University, College of Medicine, 1-Okcheon Dong, 39 Hallymdaehak-gil, Chuncheon 200-708, Republic of Korea.
| | - A Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Song Hee Lee
- Department of Physiology, Neurology, Hallym University, College of Medicine, 1-Okcheon Dong, 39 Hallymdaehak-gil, Chuncheon 200-708, Republic of Korea.
| | - Beom Seok Kang
- Department of Physiology, Neurology, Hallym University, College of Medicine, 1-Okcheon Dong, 39 Hallymdaehak-gil, Chuncheon 200-708, Republic of Korea.
| | - Min Kyu Park
- Department of Physiology, Neurology, Hallym University, College of Medicine, 1-Okcheon Dong, 39 Hallymdaehak-gil, Chuncheon 200-708, Republic of Korea.
| | - Chang Jun Lee
- Department of Physiology, Neurology, Hallym University, College of Medicine, 1-Okcheon Dong, 39 Hallymdaehak-gil, Chuncheon 200-708, Republic of Korea.
| | - Se Wan Park
- Department of Physiology, Neurology, Hallym University, College of Medicine, 1-Okcheon Dong, 39 Hallymdaehak-gil, Chuncheon 200-708, Republic of Korea.
| | - Seo Young Woo
- Department of Physiology, Neurology, Hallym University, College of Medicine, 1-Okcheon Dong, 39 Hallymdaehak-gil, Chuncheon 200-708, Republic of Korea.
| | - Dong Yeon Kim
- Department of Physiology, Neurology, Hallym University, College of Medicine, 1-Okcheon Dong, 39 Hallymdaehak-gil, Chuncheon 200-708, Republic of Korea.
| | - Hyun Ho Jung
- Department of Physiology, Neurology, Hallym University, College of Medicine, 1-Okcheon Dong, 39 Hallymdaehak-gil, Chuncheon 200-708, Republic of Korea.
| | - Bo Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Republic of Korea; Institute of Sport Science, Hallym University, Chuncheon 24252, Republic of Korea.
| | - Won Il Yang
- Institute of Sport Science, Hallym University, Chuncheon 24252, Republic of Korea; Department of Sport Industry Studies, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hong Ki Song
- Neurology, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea; Hallym Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Republic of Korea.
| | - Hui Chul Choi
- Neurology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; Hallym Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Republic of Korea.
| | - Jin Kyu Park
- Department of Physiology, Neurology, Hallym University, College of Medicine, 1-Okcheon Dong, 39 Hallymdaehak-gil, Chuncheon 200-708, Republic of Korea.
| | - Sang Won Suh
- Department of Physiology, Neurology, Hallym University, College of Medicine, 1-Okcheon Dong, 39 Hallymdaehak-gil, Chuncheon 200-708, Republic of Korea; Hallym Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
5
|
Chen L, Ye X, Yang L, Zhao J, You J, Feng Y. Linking fatty liver diseases to hepatocellular carcinoma by hepatic stellate cells. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:25-35. [PMID: 39036388 PMCID: PMC11256631 DOI: 10.1016/j.jncc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 07/23/2024] Open
Abstract
Hepatic stellate cells (HSCs), a distinct category of non-parenchymal cells in the liver, are critical for liver homeostasis. In healthy livers, HSCs remain non-proliferative and quiescent. However, under conditions of acute or chronic liver damage, HSCs are activated and participate in the progression and regulation of liver diseases such as liver fibrosis, cirrhosis, and liver cancer. Fatty liver diseases (FLD), including nonalcoholic (NAFLD) and alcohol-related (ALD), are common chronic inflammatory conditions of the liver. These diseases, often resulting from multiple metabolic disorders, can progress through a sequence of inflammation, fibrosis, and ultimately, cancer. In this review, we focused on the activation and regulatory mechanism of HSCs in the context of FLD. We summarized the molecular pathways of activated HSCs (aHSCs) in mediating FLD and their role in promoting liver tumor development from the perspectives of cell proliferation, invasion, metastasis, angiogenesis, immunosuppression, and chemo-resistance. We aimed to offer an in-depth discussion on the reciprocal regulatory interactions between FLD and HSC activation, providing new insights for researchers in this field.
Collapse
Affiliation(s)
- Liang'en Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiangshi Ye
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lixian Yang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Hangzhou Medical College), Hangzhou, China
| | - Jiangsha Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yuxiong Feng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Gao B, Wu X, Bu L, Jiang Q, Wang L, Liu H, Zhang X, Wu Y, Li X, Li J, Liang Y, Xu L, Xie W, Guo J. Atypical inflammatory kinase IKBKE phosphorylates and inactivates FoxA1 to promote liver tumorigenesis. SCIENCE ADVANCES 2024; 10:eadk2285. [PMID: 38324694 PMCID: PMC10849599 DOI: 10.1126/sciadv.adk2285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Physiologically, FoxA1 plays a key role in liver differentiation and development, and pathologically exhibits an oncogenic role in prostate and breast cancers. However, its role and upstream regulation in liver tumorigenesis remain unclear. Here, we demonstrate that FoxA1 acts as a tumor suppressor in liver cancer. Using a CRISPR-based kinome screening approach, noncanonical inflammatory kinase IKBKE has been identified to inhibit FoxA1 transcriptional activity. Notably, IKBKE directly binds to and phosphorylates FoxA1 to reduce its complex formation and DNA interaction, leading to elevated hepatocellular malignancies. Nonphosphorylated mimic Foxa1 knock-in mice markedly delay liver tumorigenesis in hydrodynamic transfection murine models, while phospho-mimic Foxa1 knock-in phenocopy Foxa1 knockout mice to exhibit developmental defects and liver inflammation. Notably, Ikbke knockout delays diethylnitrosamine (DEN)-induced mouse liver tumor development. Together, our findings not only reveal FoxA1 as a bona fide substrate and negative nuclear effector of IKBKE in hepatocellular carcinioma (HCC) but also provide a promising strategy to target IKBEK for HCC therapy.
Collapse
Affiliation(s)
- Bing Gao
- Center of Hepato-Pancreate-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lang Bu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qiwei Jiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Haining Liu
- Center of Hepato-Pancreate-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiaomei Zhang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Xiaoxing Li
- Center of Hepato-Pancreate-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jingting Li
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Ying Liang
- Department of Nephrology, Guangzhou Eighth People′s Hospital, Guangzhou Medical University, Guangdong 510060, China
| | - Lixia Xu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
- Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
7
|
Yang L, Hao Y, Boeckmans J, Rodrigues RM, He Y. Immune cells and their derived microRNA-enriched extracellular vesicles in nonalcoholic fatty liver diseases: Novel therapeutic targets. Pharmacol Ther 2023; 243:108353. [PMID: 36738973 DOI: 10.1016/j.pharmthera.2023.108353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Despite extensive research and multiple clinical trials, there are still no FDA-approved therapies to treat the most severe forms of NAFLD. This is largely due to its complicated etiology and pathogenesis, which involves visceral obesity, insulin resistance, gut dysbiosis, etc. Although inflammation is generally believed to be one of the critical factors that drive the progression of simple steatosis to nonalcoholic steatohepatitis (NASH), the exact type of inflammation and how it contributes to NASH pathogenesis remain largely unknown. Liver inflammation is accompanied by the elevation of inflammatory mediators, including cytokines and chemokines and consequently intrahepatic infiltration of multiple types of immune cells. Recent studies revealed that extracellular vesicles (EVs) derived from inflammatory cells and hepatocytes play an important role in controlling liver inflammation during NASH. In this review, we highlight the roles of innate and adaptive immune cells and their microRNA-enriched EVs during NAFLD development and discuss potential drugs that target inflammatory pathways for the treatment of NAFLD.
Collapse
Affiliation(s)
- Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yawen Hao
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Zhang Y, Zhang J, Wang J, Chen H, Ouyang L, Wang Y. Targeting GRK2 and GRK5 for treating chronic degenerative diseases: Advances and future perspectives. Eur J Med Chem 2022; 243:114668. [DOI: 10.1016/j.ejmech.2022.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
|
9
|
Liu Y, Chen M. Targeting hepatic stellate cells may serve as a promising target for hepatic steatosis. J Gastroenterol Hepatol 2022; 37:2331. [PMID: 36254850 DOI: 10.1111/jgh.16028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Y Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - M Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
Affiliation(s)
- Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
| | - Wei-Lin Jin
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China.
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
11
|
Xiao QA, He Q, Li L, Song Y, Chen YR, Zeng J, Xia X. Role of IKKε in the Metabolic Diseases: Physiology, Pathophysiology, and Pharmacology. Front Pharmacol 2022; 13:888588. [PMID: 35662709 PMCID: PMC9162805 DOI: 10.3389/fphar.2022.888588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
IKKε (inhibitor of nuclear factor kappa-B kinase ε) is a member of the noncanonical NF-κB pathway. It participates in the inflammatory response and innate immunity against bacteria. In recent decades, IKKε has been closely associated with metabolic regulation. Inhibition of the IKKε pathway can improve fat deposition in the liver, reduce subcutaneous fat inflammation, and improve liver gluconeogenesis in obesity. IKKε is expected to be a new therapeutic target for metabolic diseases such as nonalcoholic fatty liver disease, diabetes, and obesity. Herein, we summarize the structural characterization, physiological function, and pathological role of IKKε in metabolic diseases and small molecule inhibitors of IKKε.
Collapse
Affiliation(s)
- Qing-Ao Xiao
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, China.,Third-grade Pharmacological Laboratory on Traditional Chinese MedicineState Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Qian He
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, China.,National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lun Li
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, China.,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, China
| | - Yinhong Song
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, China.,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, China
| | - Yue-Ran Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese MedicineState Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.,Department of Physiology and Pathophysiology, Medical College, China Three Gorges University, Yichang, China
| | - Jun Zeng
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, China
| | - Xuan Xia
- Third-grade Pharmacological Laboratory on Traditional Chinese MedicineState Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.,Department of Physiology and Pathophysiology, Medical College, China Three Gorges University, Yichang, China
| |
Collapse
|
12
|
Pessoa J, Teixeira J. Cytoskeleton alterations in non-alcoholic fatty liver disease. Metabolism 2022; 128:155115. [PMID: 34974078 DOI: 10.1016/j.metabol.2021.155115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Due to its extremely high prevalence and severity, non-alcoholic fatty liver disease (NALFD) is a serious health and economic concern worldwide. Developing effective methods of diagnosis and therapy demands a deeper understanding of its molecular basis. One of the strategies in such an endeavor is the analysis of alterations in the morphology of liver cells. Such alterations, widely reported in NAFLD patients and disease models, are related to the cytoskeleton. Therefore, the fate of the cytoskeleton components is useful to uncover the molecular basis of NAFLD, to further design innovative approaches for its diagnosis and therapy. MAIN FINDINGS Several cytoskeleton proteins are up-regulated in liver cells of NAFLD patients. Under pathological conditions, keratin 18 is released from hepatocytes and its detection in the blood emerges as a non-invasive diagnosis tool. α-Smooth muscle actin is up-regulated in hepatic stellate cells and its down-regulation has been widely tested as a potential NALFD therapeutic approach. Other cytoskeleton proteins, such as vimentin, are also up-regulated. CONCLUSIONS NAFLD progression involves alterations in expression levels of proteins that build the liver cytoskeleton or associate with it. These findings provide a timely opportunity of developing novel approaches for NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- João Pessoa
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - José Teixeira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
The potential value of amlexanox in the treatment of cancer: Molecular targets and therapeutic perspectives. Biochem Pharmacol 2021; 197:114895. [PMID: 34968491 DOI: 10.1016/j.bcp.2021.114895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Amlexanox (AMX) is an azoxanthone drug used for decades for the treatment of mouth aphthous ulcers and now considered for the treatment of diabetes and obesity. The drug is usually viewed as a dual inhibitor of the non-canonical IκB kinases IKK-ɛ (inhibitor-kappaB kinase epsilon) and TBK1 (TANK-binding kinase 1). But a detailed target profile analysis indicated that AMX binds directly to twelve protein targets, including different enzymes (IKK-ɛ, TBK1, GRK1, GRK5, PDE4B, 5- and 12-lipoxygenases) and non-enzyme proteins (FGF-1, HSP90, S100A4, S100A12, S100A13). AMX has been demonstrated to have marked anticancer effects in multiple models of xenografted tumors in mice, including breast, colon, lung and gastric cancers and in onco-hematological models. The anticancer potency is generally modest but largely enhanced upon combination with cytotoxic (temozolide, docetaxel), targeted (selumetinib) or biotherapeutic agents (anti-PD-1 and anti-CTLA4 antibodies). The multiple targets participate in the anticancer effects, chiefly IKK-ɛ/TBK1 but also S100A proteins and PDE4B. The review presents the molecular basis of the antitumor effects of AMX. The capacity of the drug to block nonsense-mediated mRNA decay (NMD) is also discussed, as well as AMX-induced reduction of cancer-related pain. Altogether, the analysis provides a survey of the anticancer action of AMX, with the implicated protein targets. The use of this well-tolerated drug to treat cancer should be further considered and the design of newer analogues encouraged.
Collapse
|
14
|
Chen D, Du K, Niu X, Zhang H, Zhang X, Tang Y, Zhao J. Development and validation of LC-MS/MS method for amlexanox in rat plasma and its application in preclinical pharmacokinetics. Biomed Chromatogr 2021; 36:e5288. [PMID: 34842293 DOI: 10.1002/bmc.5288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 11/08/2022]
Abstract
Amlexanox, an anti-inflammatory and anti-allergic agent, has been widely used clinically for the treatment of canker sores, asthma, and allergic rhinitis. Recently, amlexanox has received considerable attention in curing nonalcoholic fatty liver diseases and hepatitis virus infection. Herein, we first established a sensitive high-performance liquid chromatography-tandem mass spectrum (LC-MS/MS) method for the determination of amlexanox in rat plasma. Propranolol was used as the internal standard (IS). Using a simple protein precipitation method, the amlexanox and IS were separated with Capcell Pak C18 column (2.0 × 50 mm, 5 μm) and eluted with water and acetonitrile each containing 0.1% formic acid using gradient elution condition at a flow rate of 0.4 mL·min-1 . Amlexanox and IS were detected by a triple quadrupole mass in multiple reactive monitoring (MRM) under the transitions of m/z 299.2 → 281.2 and m/z 259.9 → 116.1 with positive electrospray ionization, respectively. The calibration curves of amlexanox were established with the range of 50 to 2000 ng·mL-1 (r2 > 0.99). The validation method consisted of selectivity, accuracy, precision, carryover effect, matrix effect, recovery, dilution effect, and stability. The fully validated method was successfully applied to the pharmacokinetic study of amlexanox in Wistar rats.
Collapse
Affiliation(s)
- Dan Chen
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kaixin Du
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaochen Niu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Hongwei Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Xue Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yu Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Jianchun Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| |
Collapse
|
15
|
Xiang S, Song S, Tang H, Smaill JB, Wang A, Xie H, Lu X. TANK-binding kinase 1 (TBK1): An emerging therapeutic target for drug discovery. Drug Discov Today 2021; 26:2445-2455. [PMID: 34051368 DOI: 10.1016/j.drudis.2021.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/20/2021] [Accepted: 05/22/2021] [Indexed: 12/16/2022]
Abstract
Dysregulation of TANK-binding kinase 1 (TBK1) homeostasis leads to the occurrence and progression of many diseases, such as inflammation, autoimmune diseases, metabolic diseases, and cancer. Therefore, there is a need to develop TBK1 inhibitors as therapeutic agents. In this review, we highlight the diverse biological functions of TBK1 and summarize the promising small-molecule inhibitors of TBK1 that have the potential to be developed as therapeutic candidates.
Collapse
Affiliation(s)
- Shuang Xiang
- Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shukai Song
- Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Haotian Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Aiqun Wang
- Department of Anesthesiology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou 510220, China.
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Xiaoyun Lu
- Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
16
|
Amanatidou AI, Dedoussis GV. Construction and analysis of protein-protein interaction network of non-alcoholic fatty liver disease. Comput Biol Med 2021; 131:104243. [PMID: 33550014 DOI: 10.1016/j.compbiomed.2021.104243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease with multidimensional complexities. Many attempts have been made over the years to treat this disease but its incidence is rising. For this reason, the need to identify and study new candidate proteins that may be associated with NAFLD is of utmost importance. Systems-based approaches such as the analysis of protein-protein interaction (PPI) network could lead to the discovery of new proteins associated with a disease that can then be translated into clinical practice. The aim of this study is to analyze the interaction network of human proteins associated with NAFLD as well as their experimentally verified interactors and to identify novel associations with other human proteins that may be involved in this disease. Computational analysis made it feasible to detect 77 candidate proteins associated with NAFLD, having high network scores. Furthermore, clustering analysis was performed to identify densely connected regions with biological significance in this network. Additionally, gene expression analysis was conducted to validate part of the findings of this research work. We believe that our research will be helpful in extending experimental efforts to address the pathogenesis and progression of NAFLD.
Collapse
Affiliation(s)
- Athina I Amanatidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, El. Venizelou 70, 17671, Athens, Greece.
| | - George V Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, El. Venizelou 70, 17671, Athens, Greece.
| |
Collapse
|
17
|
Huh JY, Reilly SM, Abu-Odeh M, Murphy AN, Mahata SK, Zhang J, Cho Y, Seo JB, Hung CW, Green CR, Metallo CM, Saltiel AR. TANK-Binding Kinase 1 Regulates the Localization of Acyl-CoA Synthetase ACSL1 to Control Hepatic Fatty Acid Oxidation. Cell Metab 2020; 32:1012-1027.e7. [PMID: 33152322 PMCID: PMC7710607 DOI: 10.1016/j.cmet.2020.10.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/20/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Hepatic TANK (TRAF family member associated NFκB activator)-binding kinase 1 (TBK1) activity is increased during obesity, and administration of a TBK1 inhibitor reduces fatty liver. Surprisingly, liver-specific TBK1 knockout in mice produces fatty liver by reducing fatty acid oxidation. TBK1 functions as a scaffolding protein to localize acyl-CoA synthetase long-chain family member 1 (ACSL1) to mitochondria, which generates acyl-CoAs that are channeled for β-oxidation. TBK1 is induced during fasting and maintained in the unphosphorylated, inactive state, enabling its high affinity binding to ACSL1 in mitochondria. In TBK1-deficient liver, ACSL1 is shifted to the endoplasmic reticulum to promote fatty acid re-esterification in lieu of oxidation in response to fasting, which accelerates hepatic lipid accumulation. The impaired fatty acid oxidation in TBK1-deficient hepatocytes is rescued by the expression of kinase-dead TBK1. Thus, TBK1 operates as a rheostat to direct the fate of fatty acids in hepatocytes, supporting oxidation when inactive during fasting and promoting re-esterification when activated during obesity.
Collapse
Affiliation(s)
- Jin Young Huh
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Shannon M Reilly
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Mohammad Abu-Odeh
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA; VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jinyu Zhang
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Yoori Cho
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Jong Bae Seo
- Department of Biosciences, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Chao-Wei Hung
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Courtney R Green
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Alan R Saltiel
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA; Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
18
|
Zhou Z, Qi J, Lim CW, Kim JW, Kim B. Dual TBK1/IKKε inhibitor amlexanox mitigates palmitic acid-induced hepatotoxicity and lipoapoptosis in vitro. Toxicology 2020; 444:152579. [PMID: 32905826 DOI: 10.1016/j.tox.2020.152579] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
Abstract
The common causes of Non-alcoholic fatty liver disease (NAFLD) are obesity, dyslipidemia, and insulin resistance. Metabolic disorders and lipotoxic hepatocyte damage are hallmarks of NAFLD. Even though amlexanox, a dual inhibitor of TRAF associated nuclear factor κB (NF-κB) activator-binding kinase 1 (TBK1) and IκB kinase epsilon (IKKε), has been reported to effectively improve obesity-related metabolic dysfunctions in mice models, its molecular mechanism has not been fully investigated. This study was designed to investigate the effects of amlexanox on in vitro nonalcoholic steatohepatitis (NASH) model induced by treatment of palmitic acid (PA, 0.4 mM), using a trans-well co-culture system of hepatocytes and Kupffer cells (KCs). Stimulation with PA significantly increased the phosphorylation levels of TBK1 and IKKε in both hepatocytes and KCs, suggesting a potential role of TBK1/IKKε in PA-induced NASH progression. Treatment of amlexanox (50 μM) showed significantly reduced phosphorylation of TBK1 and IKKε and hepatotoxicity as confirmed by decreased levels of lactate dehydrogenase released from hepatocytes. Furthermore, PA-induced inflammation and lipotoxic cell death in hepatocytes were significantly reversed by amlexanox treatment. Intriguingly, amlexanox inhibited the activation of KCs and induced polarization of KCs towards M2 phenotype. Mechanistically, amlexanox treatment decreased the phosphorylation of interferon regulator factor 3 (IRF3) and NF-κB in PA-treated hepatocytes. However, decreased phosphorylation of NF-κB, not IRF3, was found in PA-treated KCs upon amlexanox treatment. Taken together, our findings show that treatment of amlexanox attenuated the severity of PA-induced hepatotoxicity in vitro and lipoapoptosis by the inhibition of TBK1/IKKε-NF-κB and/or IRF3 pathway in hepatocytes and KCs.
Collapse
Affiliation(s)
- Zixiong Zhou
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jing Qi
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jong-Won Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
19
|
He Q, Zeng J, Yao K, Wang W, Wu Q, Tang R, Xia X, Zou X. Long-term subcutaneous injection of lipopolysaccharides and high-fat diet induced non-alcoholic fatty liver disease through IKKε/ NF-κB signaling. Biochem Biophys Res Commun 2020; 532:362-369. [PMID: 32883523 DOI: 10.1016/j.bbrc.2020.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 12/25/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) was associated with increased level of lipopolysaccharides (LPS) which mechanism remained unclear on intervention between LPS and NAFLD. The aim was to explore the IKKε/NF-κB role and its intervention of LPS and high-fat diet (HFD) induced NAFLD. Male C57BL/6 mice were fed on high-fat diet (HFD) combined with or without simultaneously subcutaneous injection of LPS for 18 weeks. Body weight , blood biochemistry parameters, inflammatory mediator and liver lipid deposition were measured to evaluate LPS effect on NAFLD. Furthermore, IKKε selective inhibitor amlexanox (AM) was administrated by gavage to HFD + LPS induced mice. The indicators about metabolism and inflammation were examined and qRT-PCR, immunoblotting assay as well as immunohistochemistry were performed to assess IKKε/NF-κB activation and downstream gene expression. This study found that low-dose LPS + HFD aggravated more significant steatosis than simple HFD or high-dose LPS + HFD. Low-dose LPS exacerbated more prominent inflammation profile including increased IKKε and NF-κB expression in liver than HFD. Inhibiting IKKε/NF-κB signaling with amlexanox significantly prevented HFD + LPS induced metabolic disorders and hepatic steatosis. LPS-upregulated gene expression involved in glucolipid metabolism could be downregulated by amlexanox. Thus, the present study confirmed long-term combinational administration of subcutaneous low-dose LPS injection and HFD induced NAFLD model which had more significant phenotype in mice than simple HFD or high-dose LPS-induction. Targeting on IKKε/NF-κB signaling with its inhibitor amlexanox alleviated steatohepatitis, suggesting that IKKε/NF-κB signaling was responsible for effect of LPS and HFD on NAFLD.
Collapse
Affiliation(s)
- Qian He
- Department of Geriatrics, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China
| | - Jun Zeng
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China
| | - Kecheng Yao
- Department of Geriatrics, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China
| | - Wei Wang
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China
| | - Qiong Wu
- Department of Pediatrics, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China
| | - Renmin Tang
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China
| | - Xuan Xia
- Department of Physiology and Pathophysiology, College of Medical Sciences, China Three Gorges University, Yichang, 443002, Hubei Province, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002, Hubei Province, China.
| | - Xiulan Zou
- Department of Geriatrics, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China; Healthcare Center, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China.
| |
Collapse
|