1
|
Farnoosh R, Abnoosian K. A robust innovative pipeline-based machine learning framework for predicting COVID-19 in Mexican patients. INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT 2024; 15:3466-3484. [DOI: 10.1007/s13198-024-02354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 01/03/2025]
|
2
|
Birhanu MY, Jemberie SS. Mortality rate and predictors of COVID-19 inpatients in Ethiopia: a systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1213077. [PMID: 37928474 PMCID: PMC10624109 DOI: 10.3389/fmed.2023.1213077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an extremely rare virus that devastates the economy and claims human lives. Despite countries' urgent and tenacious public health responses to the COVID-19 pandemic, the disease is killing a large number of people. The results of prior studies have not been used by policymakers and programmers due to the presence of conflicting results. As a result, this study was conducted to fill the knowledge gap and develop a research agenda. Objective This study aimed to assess the mortality rate and predictors of COVID-19 hospitalized patients in Ethiopia. Methods Electronic databases were searched to find articles that were conducted using a retrospective cohort study design and published in English up to 2022. The data were extracted using a Microsoft Excel spreadsheet and exported to StataTM version 17.0 for further analysis. The presence of heterogeneity was assessed and presented using a forest plot. The subgroup analysis, meta-regression, and publication bias were computed to identify the source of heterogeneity. The pool COVID-19 mortality rate and its predictors were calculated and identified using the random effects meta-analysis model, respectively. The significant predictors identified were reported using a relative risk ratio and 95% confidence interval (CI). Results Seven studies with 31,498 participants were included. The pooled mortality rate of COVID-19 was 9.13 (95% CI: 5.38, 12.88) per 1,000 person-days of mortality-free observation. Those study participants who had chronic kidney disease had 2.29 (95% CI: 1.14, 4.60) times higher chance of experiencing mortality than their corresponding counterparts, diabetics had 2.14 (95% CI: 1.22, 3.76), HIV patients had 2.98 (95% CI: 1.26, 7.03), hypertensive patients had 1.63 (95% CI: 1.43, 1.85), and smoker had 2.35 (95% CI: 1.48, 3.73). Conclusion COVID-19 mortality rate was high to tackle the epidemic of the disease in Ethiopia. COVID-19 patients with chronic renal disease, diabetes, hypertension, smoking, and HIV were the significant predictors of mortality among COVID-19 patients in Ethiopia. COVID-19 patients with chronic diseases and comorbidities need special attention, close follow-up, and care from all stakeholders.
Collapse
Affiliation(s)
- Molla Yigzaw Birhanu
- Department of Public Health, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Selamawit Shita Jemberie
- Department of Midwifery, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
3
|
Bostanghadiri N, Ziaeefar P, Mofrad MG, Yousefzadeh P, Hashemi A, Darban-Sarokhalil D. COVID-19: An Overview of SARS-CoV-2 Variants-The Current Vaccines and Drug Development. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1879554. [PMID: 37674935 PMCID: PMC10480030 DOI: 10.1155/2023/1879554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
The world is presently in crisis facing an outbreak of a health-threatening microorganism known as COVID-19, responsible for causing uncommon viral pneumonia in humans. The virus was first reported in Wuhan, China, in early December 2019, and it quickly became a global concern due to the pandemic. Challenges in this regard have been compounded by the emergence of several variants such as B.1.1.7, B.1.351, P1, and B.1.617, which show an increase in transmission power and resistance to therapies and vaccines. Ongoing researches are focused on developing and manufacturing standard treatment strategies and effective vaccines to control the pandemic. Despite developing several vaccines such as Pfizer/BioNTech and Moderna approved by the U.S. Food and Drug Administration (FDA) and other vaccines in phase 4 clinical trials, preventive measures are mandatory to control the COVID-19 pandemic. In this review, based on the latest findings, we will discuss different types of drugs as therapeutic options and confirmed or developing vaccine candidates against SARS-CoV-2. We also discuss in detail the challenges posed by the variants and their effect on therapeutic and preventive interventions.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pardis Ziaeefar
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morvarid Golrokh Mofrad
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parsa Yousefzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Lin F, Chen Y, Mo W, Zhou H, Xiao Z, Hu S, Shi X, Liu M, Wei J, Zhu W, Wang S, Lv X. A bibliometric analysis of autophagy in lung diseases from 2012 to 2021. Front Immunol 2022; 13:1092575. [PMID: 36591291 PMCID: PMC9802149 DOI: 10.3389/fimmu.2022.1092575] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Autophagy refers to the process in which cells wrap their damaged organelles or unwanted proteins into a double-membrane structure and direct them to lysosomes for degradation. Autophagy can regulate many lung diseases such as pulmonary hypertension, acute lung injury, and lung cancer. However, few bibliometric studies on autophagy are available. The aim of the present study was to clarify the role of autophagy in lung diseases by bibliometric analysis. Methods Publications were retrieved from the 2012-2021 Science Citation Index Expanded of Web of Science Core Collection on 20 September 2022. Bibliometrix package in R software was used for data retrieval. VOSviewer and CiteSpace were used to visualize the research focus and trend regarding the effect of autophagy on lung disease. Results A total of 4,522 original articles and reviews on autophagy in lung diseases published between 2012 and 2021 were identified. China had the largest number of published papers and citations, whereas the United States (US) ranked first in the H-index and G-index. Moreover, cooperation network analysis showed close cooperation between the US, China, and some European countries, and the top 10 affiliates were all from these countries and regions. Bibliometric analysis showed that "autophagy" and "apoptosis" were the keywords with the highest frequency. During the past decade, most studies were concerned with basic research on pathways related to the regulatory role of autophagy in the inhibition and attenuation of lung diseases. Conclusion The study of autophagy in lung diseases is still in the development stage. The information published in these articles has helped researchers understand further the hot spots and development trends in the field more and learn about the collaboration network information regarding authors, countries, and institutions, as well as the paper citation correlation. More studies have been performed to gain deeper insights into the pathogenesis of autophagy by focusing on the links and effects between various diseases. More recently, research in this field has paid increasing attention to the function of autophagy in COVID-19-related lung diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xin Lv
- *Correspondence: Xin Lv, ; Sheng Wang,
| |
Collapse
|
5
|
Bazdyrev E, Panova M, Brachs M, Smolyarchuk E, Tsygankova D, Gofman L, Abdyusheva Y, Novikov F. Efficacy and safety of Treamid in the rehabilitation of patients after COVID-19 pneumonia: a phase 2, randomized, double-blind, placebo-controlled trial. J Transl Med 2022; 20:506. [PMID: 36329513 PMCID: PMC9632561 DOI: 10.1186/s12967-022-03660-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
Background Many patients who recovered from COVID are still suffering from pulmonary dysfunction that can be persistent even for months after infection. Therefore, treatment to prevent irreversible impairment of lung function is needed. Treamid (bisamide derivative of dicarboxylic acid, BDDA) was shown to have anti-inflammatory and antifibrotic effects in animal models of pulmonary fibrosis. This study was designed to assess the safety, tolerability, and efficacy of Treamid in the rehabilitation of patients after COVID pneumonia. The aim was to establish whether Treamid could be effective in ameliorating post-COVID sequelae. Methods The phase 2, randomized, double-blind, placebo-controlled clinical trial was done at 8 medical centers in Russia. Patients with a diagnosis of COVID in the past medical history (with the first symptoms of COVID appear no earlier than 2 months before screening) and having fibrotic changes in the lungs, decreased lung function (percentage of predicted FVC and/or DLCO < 80%), and moderate or severe dyspnea according to mMRC scale were enrolled and randomly assigned in a 1:1 ratio (stratified by the initial degree of lung damage, age, and concomitant chronic diseases) by use of interactive responsive technology to peroral administration of Treamid 50 mg or placebo once a day for 4 weeks. The primary outcome was the proportion of patients who achieved clinically significant improvement in FVC and/or DLCO (defined as a relative increase in FVC of ≥ 10% or a relative increase in FVC in the range of ≥ 5 to < 10% plus a relative increase in DLCO of ≥ 15%) at week 4 compared with baseline. Secondary endpoints included changes from baseline in dyspnea scoring evaluated by the modified Borg and mMRC scales, pulmonary function (FEV1, FVC, FEV1/FVC ratio, DLCO, TLC, FRC), 6-min walk distance, the overall score of the KBILD questionnaire, and the proportion of patients with a reduction in the degree of lung damage assessed by CT scores. This trial was registered on ClinicalTrials.gov (Identifier: NCT04527354). The study was fully funded by PHARMENTERPRISES LLC. Results 12 out of 29 patients (41%) in Treamid group achieved clinically significant improvement in FVC and/or DLCO compared to 5 out of 30 patients (17%) in placebo group (p = 0.036). There was a significant decrease of dyspnea according to modified Borg scale observed in the Treamid group (− 0.9 ± 0.7 vs. − 0.4 ± 0.8, p = 0.018). No significant differences in the adverse events were noted. Exploratory analysis of the female population indicated superiority of Treamid over placebo by decreasing dyspnea and the extent of lung damage as well as increasing TLC. Conclusions 4 weeks oral administration of 50 mg Treamid was associated with clinically significant improvement in the post-COVID patients, evident by an increase in FVC and/or DLCO as well as decreasing dyspnea. Treamid was well tolerated and can be safely administered to patients discharged after COVID. Treamid was more effective in women visible by superior improvement of COVID sequalae after 4 weeks treatment. Considering that female gender is a risk factor associated with the development of post-COVID symptoms, Treamid might offer a pharmacological treatment for long-term sequalae after COVID and supports further investigation in future clinical trials in post-COVID patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03660-9.
Collapse
|
6
|
Banerjee S, Wang X, Du S, Zhu C, Jia Y, Wang Y, Cai Q. Comprehensive role of SARS-CoV-2 spike glycoprotein in regulating host signaling pathway. J Med Virol 2022; 94:4071-4087. [PMID: 35488404 PMCID: PMC9348444 DOI: 10.1002/jmv.27820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/06/2022]
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, global public health and the economy have suffered unprecedented damage. Based on the increasing related literature, the characteristics and pathogenic mechanisms of the virus, and epidemiological and clinical features of the disease are being rapidly discovered. The spike glycoprotein (S protein), as a key antigen of SARS-CoV-2 for developing vaccines, antibodies, and drug targets, has been shown to play an important role in viral entry, tissue tropism, and pathogenesis. In this review, we summarize the molecular mechanisms of interaction between S protein and host factors, especially receptor-mediated viral modulation of host signaling pathways, and highlight the progression of potential therapeutic targets, prophylactic and therapeutic agents for prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Biotechnology and BioengineeringKoba Institutional AreaGandhinagarGujaratIndia
| | - Xinyu Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Shujuan Du
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Caixia Zhu
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yuping Jia
- Shandong Academy of Pharmaceutical SciencesJinanChina
| | - Yuyan Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qiliang Cai
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Maurya SK, Baghel MS, Gaurav, Chaudhary V, Kaushik A, Gautam A. Putative role of mitochondria in SARS-CoV-2 mediated brain dysfunctions: a prospect. Biotechnol Genet Eng Rev 2022:1-26. [PMID: 35934991 DOI: 10.1080/02648725.2022.2108998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. Though the virus primarily damages the respiratory and cardiovascular systems after binding to the host angiotensin-converting enzyme 2 (ACE2) receptors, it has the potential to affect all major organ systems, including the human nervous system. There are multiple clinical reports of anosmia, dizziness, headache, nausea, ageusia, encephalitis, demyelination, neuropathy, memory loss, and neurological complications in SARS-CoV-2 infected individuals. Though the molecular mechanism of these brain dysfunctions during SARS-CoV-2 infection is elusive, the mitochondria seem to be an integral part of this pathogenesis. Emerging research findings suggest that the dysfunctional mitochondria and associated altered bioenergetics in the infected host cells lead to altered energy metabolism in the brain of Covid-19 patients. The interactome between viral proteins and mitochondrial proteins during Covid-19 pathogenesis also provides evidence for the involvement of mitochondria in SARS-CoV-2-induced brain dysfunctions. The present review discusses the possible role of mitochondria in disturbing the SARS-CoV-2 mediated brain functions, with the potential to use this information to prevent and treat these impairments.
Collapse
Affiliation(s)
| | - Meghraj S Baghel
- Department of Pathology, School of Medicine Johns Hopkins University, Baltimore, MD, USA
| | - Gaurav
- Department of Botany, Ramjas College, University of Delhi, Delhi, India
| | - Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department ofEnvironmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
8
|
Khodakarim N, Kalantari S, Riahi T, Moradians V, Talebi-Taher M, Yassin Z, Afshar H, Kooranifar S, Aloosh O, Ziaie S, Zamani N, Tirkan A, Ramim T. Effectiveness of Plasmapheresis Treatment in the Treatment of Patients with COVID-19 Disease. Med J Islam Repub Iran 2022; 36:83. [PMID: 36128282 PMCID: PMC9448457 DOI: 10.47176/mjiri.36.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/25/2022] [Indexed: 11/05/2022] Open
Abstract
Background: According to the World Health Organization, COVID-19 management focuses primarily on infection prevention, case management, case monitoring, and supportive care. However, due to the lack of evidence, no specific anti-SARS-CoV-2 treatment is recommended. This study aimed to evaluate the effectiveness of plasmapheresis treatment in COVID-19 patients with symptoms of pulmonary involvement on the computed tomography (CT) of the lung. Methods: In 2021, an experimental study in critically ill patients admitted to the COVID-19 ward in the Hazrat-e Rasool hospital diagnosed with COVID-19 was conducted in the second phase (pilot study). The diagnosis was confirmed according to clinical signs, CT scan of the lung, and the Polymerase chain reaction (PCR) test. All patients received the usual treatments for COVID-19 disease and underwent plasmapheresis at a dose of 40 cc/kg daily up to 4 doses. All patients were observed for 24 hours for complications of plasmapheresis treatment and simultaneously for symptoms of COVID-19, after which only routine care measures were performed. The next day and 2 weeks after resumption of the treatment, patients experienced COVID-19 symptoms, including shortness of breath, cough, and fever. Blood oxygen saturation, and treatment results were evaluated. Qualitative and rank variables were described using absolute and relative frequencies and quantitative parametric variables were used using mean and confidence interval. Frequencies were compared in groups using the chi-square test. All tests were performed in 2 directions and P > 0.05 was considered statistically significant. Results: Of the 120 patients studied, 79 (65.8%) were men and 41 (34.2%) were women. The mean age was 60.30 ± 15.61 years (22-95 years). The mean hospital stay was 12.89 days ± 7.25 days (2-38 days). Increased blood oxygen saturation levels in patients had an increasing trend. Inflammatory indices had a downward trend in patients. The frequency of plasmapheresis had no significant effect on reducing the downward trend of inflammatory markers. The greatest reduction occurred in the first plasmapheresis. Conclusion: Finally, according to the findings, plasmapheresis is one of the appropriate treatments to improve patients' symptoms and reduce cytokine storm. Recovered patients had lower levels of inflammatory markers than those who died.
Collapse
Affiliation(s)
- Nastaran Khodakarim
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Kalantari
- Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Taghi Riahi
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Vahan Moradians
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Talebi-Taher
- Department of Infectious Disease, Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zeynab Yassin
- Department of Infectious Disease, School of Medicine, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hale Afshar
- Department of Pulmonary Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Siavash Kooranifar
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Oldooz Aloosh
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Ziaie
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Zamani
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Atefe Tirkan
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Tayeb Ramim
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran,Corresponding author: Tayeb Ramim,
| |
Collapse
|
9
|
Atlasi R, Tabatabaei-Malazy O, Bandarian F, Rezaei N, Khashayar P, Larijani B. Scientometric Analysis of Global Scientific Publications on COVID-19 and Diabetes with an Emphasis on Middle Eastern Countries. Int J Endocrinol Metab 2022; 20:e120812. [PMID: 36407029 PMCID: PMC9661537 DOI: 10.5812/ijem-120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/30/2022] [Accepted: 07/24/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Due to the worldwide spread of COVID-19, various countries have designed scientific studies on different aspects of the disease. Patients with diabetes mellitus (DM) have been proven to be at higher risk of COVID-19-related complications, hospitalization, and death. OBJECTIVES The aim was to conduct a scientometric analysis of scholarly outputs on diabetes and COVID-19. METHODS Web of Science was searched for scientific publications on diabetes and COVID-19 by Middle Eastern researchers until September 14, 2021. Collected data were analyzed for document type, subject area, countries, top journals, citation number, and authors' collaboration network using VOS viewer 1.6.15 and bibliometrix R-package 4.1.1. RESULTS Overall, the characteristics of 603 documents on DM and COVID-19 were analyzed. The top three productive countries in the field were Iran, Turkey, and Saudi Arabia. The top affiliation was from Iran; "Tehran University of Medical Sciences" (n = 168), followed by "Shahid Beheshti University of Medical Sciences" (n = 82). The total citation number was 3704 times. The highest cited paper (348) was a systematic review from Iran, published in arch Acad Emerg Med. The top source was "Diabetes & Metabolic Syndrome: Clinical Research & Reviews," with 26 documents. CONCLUSIONS The current study provides an overview of the quantity and quality of published scholarly documents on the intersection of DM and COVID-19 in the region. Our findings help scientists find the existing gaps, manage the research budgets, identify active authors and scientific institutes to collaborate with, and use their experience to produce new knowledge in the future.
Collapse
Affiliation(s)
- Rasha Atlasi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding Author: Non-communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Bandarian
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding Author: Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nafiseh Rezaei
- Department of Medical Library & Information Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Library & Information Sciences, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Khashayar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Kumar A, Sharma M, Richardson CD, Kelvin DJ. Potential of Natural Alkaloids From Jadwar ( Delphinium denudatum) as Inhibitors Against Main Protease of COVID-19: A Molecular Modeling Approach. Front Mol Biosci 2022; 9:898874. [PMID: 35620478 PMCID: PMC9127362 DOI: 10.3389/fmolb.2022.898874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
The ongoing pandemic coronavirus disease (COVID-19) caused by a novel corona virus, namely, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has had a major impact on global public health. COVID-19 cases continue to increase across the globe with high mortality rates in immunocompromised patients. There is still a pressing demand for drug discovery and vaccine development against this highly contagious disease. To design and develop antiviral drugs against COVID-19, the main protease (Mpro) has emerged as one of the important drug targets. In this context, the present work explored Jadwar (Delphinium denudatum)-derived natural alkaloids as potential inhibitors against Mpro of SARS-CoV-2 by employing a combination of molecular docking and molecular dynamic simulation-based methods. Molecular docking and interaction profile analysis revealed strong binding on the Mpro functional domain with four natural alkaloids viz. panicutine (-7.4 kcal/mol), vilmorrianone (-7.0 kcal/mol), denudatine (-6.0 kcal/mol), and condelphine (-5.9 kcal/mol). The molecular docking results evaluated by using the MD simulations on 200 nanoseconds confirmed highly stable interactions of these compounds with the Mpro. Additionally, mechanics/generalized Born/Poisson-Boltzmann surface area (MM/G/P/BSA) free energy calculations also affirmed the docking results. Natural alkaloids explored in the present study possess the essential drug-likeness properties, namely, absorption, distribution, metabolism, and excretion (ADME), and are in accordance with Lipinski's rule of five. The results of this study suggest that these four bioactive molecules, namely, condelphine, denudatine, panicutine, and vilmorrianone, might be effective candidates against COVID-19 and can be further investigated using a number of experimental methods.
Collapse
Affiliation(s)
- Anuj Kumar
- Laboratory of Immunity, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Mansi Sharma
- Laboratory of Immunity, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Christopher D. Richardson
- Department of Microbiology and Immunology, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - David J. Kelvin
- Laboratory of Immunity, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
| |
Collapse
|
11
|
Rahimmanesh I, Kouhpayeh S, Azizi Y, Khanahmad H. Conceptual Framework for SARS-CoV-2-Related Lymphopenia. Adv Biomed Res 2022; 11:16. [PMID: 35386537 PMCID: PMC8977610 DOI: 10.4103/abr.abr_303_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The emerging of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak is associated with high morbidity and mortality rates globally. One of the most prominent characteristics of coronavirus disease-19 (COVID-19) is lymphopenia, which is in contrast to other viral infections. This controversy might be explained by the evaluation of impaired innate and adaptive immune responses, during the SARS-CoV-2 infection. During the innate immune response, poly-ADP-ribose polymerase hyperactivated due to virus entry and extensive DNA damage sequentially, leading to nicotinamide adenine dinucleotide (NAD)+ depletion, adenosine triphosphate depletion, and finally cell death. In contrast to the immune response against viral infections, cytotoxic T lymphocytes decline sharply in SARS-CoV-2 infection which might be due to infiltration and trapping in the lower respiratory tract. In addition, there are more factors proposed to involve in lymphopenia in COVID-19 infection such as the role of CD38, which functions as NADase and intensifies NAD depletion, which in turn affects NAD+–dependent Sirtuin proteins, as the regulators of cell death and viability. Lung tissue sequestration following cytokine storm supposed to be another reason for lymphopenia in COVID-19 patients. Protein 7a, as one of the virus-encoded proteins, induces apoptosis in various organ-derived cell lines. These mechanisms proposed to induce lymphopenia, although there are still more studies needed to clarify the underlying mechanisms for lymphopenia in COVID-19 patients.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, Erythron Genetics and Pathobiology Laboratory, Isfahan, Iran
| | - Yadollah Azizi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
You H, Zhao Q, Dong M. The Key Genes Underlying Pathophysiology Correlation Between the Acute Myocardial Infarction and COVID-19. Int J Gen Med 2022; 15:2479-2490. [PMID: 35282650 PMCID: PMC8904943 DOI: 10.2147/ijgm.s354885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Accumulating evidences disclose that COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has a marked effect on acute myocardial infarction (AMI). Nevertheless, the underlying pathophysiology correlation between the AMI and COVID-19 remains vague. Materials and Methods Bioinformatics analyses of the altered transcriptional profiling of peripheral blood mononuclear cells (PBMCs) in patients with AMI and COVID-19 were implemented, including identification of differentially expressed genes and common genes between AMI and COVID-19, protein–protein interactions, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, TF-genes and miRNA coregulatory networks, to explore their biological functions and potential roles in the pathogenesis of COVID-19-related AMI. Conclusion Our bioinformatic analyses of gene expression profiling of PBMCs in patients with AMI and COVID-19 provide us with a unique view regarding underlying pathophysiology correlation between the two vital diseases.
Collapse
Affiliation(s)
- Hongjun You
- Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, Xi’an, 710068, Shaanxi, People’s Republic of China
| | - Qianqian Zhao
- Department of Clinical Immunology, The First Affiliated Hospital, Air Force Military Medical University, Xi’an, 710032, Shaanxi, People’s Republic of China
| | - Mengya Dong
- Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, Xi’an, 710068, Shaanxi, People’s Republic of China
- Correspondence: Mengya Dong, Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, 256 West Youyi Road, Xi’an, Shaanxi, 710068, People’s Republic of China, Tel +86–15802943974, Email
| |
Collapse
|
13
|
Scapaticci S, Neri CR, Marseglia GL, Staiano A, Chiarelli F, Verduci E. The impact of the COVID-19 pandemic on lifestyle behaviors in children and adolescents: an international overview. Ital J Pediatr 2022; 48:22. [PMID: 35120570 PMCID: PMC8815717 DOI: 10.1186/s13052-022-01211-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
The adverse effects of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are not limited to the related infectious disease. In children and adolescents, serious risks due to the coronavirus disease 2019 (COVID-19) pandemic are also related to its indirect effects. These include an unbalanced diet with an increased risk of weight excess or nutritional deficiencies, increased sedentary lifestyle, lack of schooling, social isolation, and impaired mental health.Pediatricians should be aware of the side effects of the COVID-19 pandemic on children's diet, physical mental health and advise the families according to their nutritional needs and financial resources. Moreover, the lack of a targeted therapy able to offer protection against the deleterious effects of SARS-CoV-2 infection should require a greater effort by scientific societies to find a more effective prevention strategy. In this context, much interest should be given to nutritional support, able to contrast malnutrition and to stimulate the immune system.
Collapse
Affiliation(s)
- S Scapaticci
- Department of Paediatrics, University of Chieti-Pescara, Chieti, Italy
| | - C R Neri
- Department of Paediatrics, University of Chieti-Pescara, Chieti, Italy
| | - G L Marseglia
- Department of Paediatrics, University of Pavia IRCCS San Matteo foundation, Pavia, Italy
| | - A Staiano
- Department of Paediatrics, University of Naples "Federico II", Naples, Italy
| | - F Chiarelli
- Department of Paediatrics, University of Chieti-Pescara, Chieti, Italy.
| | - E Verduci
- Department of Paediatrics, Children's Hospital "Vittore Buzzi", University of Milan, Milan, Italy
| |
Collapse
|
14
|
Zhang H, Wu Y, He Y, Liu X, Liu M, Tang Y, Li X, Yang G, Liang G, Xu S, Wang M, Wang W. Age-Related Risk Factors and Complications of Patients With COVID-19: A Population-Based Retrospective Study. Front Med (Lausanne) 2022; 8:757459. [PMID: 35087843 PMCID: PMC8786909 DOI: 10.3389/fmed.2021.757459] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: To study the differences in clinical characteristics, risk factors, and complications across age-groups among the inpatients with the coronavirus disease 2019 (COVID-19). Methods: In this population-based retrospective study, we included all the positive hospitalized patients with COVID-19 at Wuhan City from December 29, 2019 to April 15, 2020, during the first pandemic wave. Multivariate logistic regression analyses were used to explore the risk factors for death from COVID-19. Canonical correlation analysis (CCA) was performed to study the associations between comorbidities and complications. Results: There are 36,358 patients in the final cohort, of whom 2,492 (6.85%) died. Greater age (odds ration [OR] = 1.061 [95% CI 1.057-1.065], p < 0.001), male gender (OR = 1.726 [95% CI 1.582-1.885], p < 0.001), alcohol consumption (OR = 1.558 [95% CI 1.355-1.786], p < 0.001), smoking (OR = 1.326 [95% CI 1.055-1.652], p = 0.014), hypertension (OR = 1.175 [95% CI 1.067-1.293], p = 0.001), diabetes (OR = 1.258 [95% CI 1.118-1.413], p < 0.001), cancer (OR = 1.86 [95% CI 1.507-2.279], p < 0.001), chronic kidney disease (CKD) (OR = 1.745 [95% CI 1.427-2.12], p < 0.001), and intracerebral hemorrhage (ICH) (OR = 1.96 [95% CI 1.323-2.846], p = 0.001) were independent risk factors for death from COVID-19. Patients aged 40-80 years make up the majority of the whole patients, and them had similar risk factors with the whole patients. For patients aged <40 years, only cancer (OR = 17.112 [95% CI 6.264-39.73], p < 0.001) and ICH (OR = 31.538 [95% CI 5.213-158.787], p < 0.001) were significantly associated with higher odds of death. For patients aged >80 years, only age (OR = 1.033 [95% CI 1.008-1.059], p = 0.01) and male gender (OR = 1.585 [95% CI 1.301-1.933], p < 0.001) were associated with higher odds of death. The incidence of most complications increases with age, but arrhythmias, gastrointestinal bleeding, and sepsis were more common in younger deceased patients with COVID-19, with only arrhythmia reaching statistical difference (p = 0.039). We found a relatively poor correlation between preexisting risk factors and complications. Conclusions: Coronavirus disease 2019 are disproportionally affected by age for its clinical manifestations, risk factors, complications, and outcomes. Prior complications have little effect on the incidence of extrapulmonary complications.
Collapse
Affiliation(s)
- Han Zhang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Wu
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing He
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | | | - Mingqian Liu
- Winning Health Technology Group Co., Ltd., Shanghai, China
| | - Yuhong Tang
- Winning Health Technology Group Co., Ltd., Shanghai, China
| | - Xiaohua Li
- Winning Health Technology Group Co., Ltd., Shanghai, China
| | - Guang Yang
- Winning Health Technology Group Co., Ltd., Shanghai, China
| | - Gang Liang
- Wuhan Municipal Health Commission, Wuhan, China
| | - Shabei Xu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Minghuan Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Pulido Morales LL, Buitrago Romero JS, Ardila Sanchez IA, Yepes-Calderon F. Turning any bed into an intensive care unit with the Internet of things and artificial intelligence technology. Presenting the enhanced mechanical ventilator. F1000Res 2022; 11:1570. [PMID: 36798112 PMCID: PMC9925877 DOI: 10.12688/f1000research.127647.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The recent Coronavirus disease 2019 (COVID-19) pandemic displayed weaknesses in the healthcare infrastructures worldwide and exposed a lack of specialized personnel to cover the demands of a massive calamity. We have developed a portable ventilator that uses real-time vitals read from the patient to estimate -- through artificial intelligence -- the optimal operation point. The ventilator has redundant telecommunication capabilities; therefore, the remote assistance model can protect specialists and relatives from highly contagious agents. Additionally, we have designed a system that automatically publishes information in a proprietary cloud centralizer to keep physicians and relatives informed. The system was tested in a residential last-mile connection, and transaction times below the second were registered. The timing scheme allows us to operate up to 200 devices concurrently on these lowest-specification transmission control protocol/internet protocol (TCP/IP) services, promptly transmitting data for online processing and reporting. The ventilator is a proof of concept of automation that has behavioral and cognitive inputs to cheaply, yet reliably, extend the installed capacity of the healthcare systems and multiply the response of the skilled medical personnel to cover high-demanding scenarios and improve service quality.
Collapse
Affiliation(s)
| | | | - Ismael A Ardila Sanchez
- Facultad Tecnológica, Universidad Distrital Francisco José de Caldas, Bogota, Bogota, Colombia
| | - Fernando Yepes-Calderon
- I+D+I, GYM Group SA, Cali, Valle del Cauca, Colombia.,Research and Development, Science Based Platforms LLC, Fort Pierce, Florida, 34950, USA.,Facultad de Medicina, Universidad del Valle, Cali, Valle del Cauca, Colombia
| |
Collapse
|
16
|
Patel P, Yadav BK, Patel G. State-of-the-Art and Projected Developments of Nanofiber Filter Material for Face Mask Against COVID-19. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:262-270. [PMID: 34086552 DOI: 10.2174/1872210515666210604110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The Covid-19 epidemic was declared a pandemic by the World Health Organization in March 2020. It is difficult to foresee the future length and severity; it may extend to weeks, months, or even years to deplete the energy and resources of the health care facilities and the providers as there is marginal to no pharmacological medication available to treat the Covid-19. Unless an effective pharmacological treatment such as medicines and vaccines is developed and released publicly, wearing protective face masks and protecting personal health and hygiene is merely a choice to avoid the Covid-19 spread. This review summarizes the background knowledge on the Covid-19 disease and currently available face masks for highly infectious disease primary prevention. According to recent studies of Covid-19 prevention, diagnosis, and treatment, nanotechnologists have provided a revolutionary approach that involves both pharmacological and non-pharmacological steps, one of which is the use of nanofibers in facemasks and respirators. METHODS Various researches carried out in the field of nanomask and patented reports based on the application of nanomask were reviewed. CONCLUSION The most recent developments of nanofibers, including research publications, patents and commercial products in Covid-19 prevention, are extensively reviewed from scientific literature and appropriately represented in this study.
Collapse
Affiliation(s)
- Priya Patel
- Department of Pharmaceutics & Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Bindu Kumari Yadav
- Department of Pharmaceutics & Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Gayatri Patel
- Department of Pharmaceutics & Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| |
Collapse
|
17
|
Croci S, Venneri MA, Mantovani S, Fallerini C, Benetti E, Picchiotti N, Campolo F, Imperatore F, Palmieri M, Daga S, Gabbi C, Montagnani F, Beligni G, Farias TDJ, Carriero ML, Di Sarno L, Alaverdian D, Aslaksen S, Cubellis MV, Spiga O, Baldassarri M, Fava F, Norman PJ, Frullanti E, Isidori AM, Amoroso A, Mari F, Furini S, Mondelli MU, Gen-Covid Multicenter Study, Chiariello M, Renieri A, Meloni I. The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males. Autophagy 2021; 18:1662-1672. [PMID: 34964709 PMCID: PMC9298458 DOI: 10.1080/15548627.2021.1995152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor
Collapse
Affiliation(s)
- Susanna Croci
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefania Mantovani
- Division of Clinical Immunology and Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Benetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Nicola Picchiotti
- DIISM-SAILAB, University of Siena, Siena, Italy.,Department of Mathematics, University of Pavia, Pavia, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Imperatore
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina, Siena, Italy.,Consiglio Nazionale delle Ricerche, Istituto DI Fisiologia Clinica, Siena, Italy
| | - Maria Palmieri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sergio Daga
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Gabbi
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Montagnani
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Medical Sciences, Infectious and Tropical Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giada Beligni
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ticiana D J Farias
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Miriam Lucia Carriero
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Laura Di Sarno
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Diana Alaverdian
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sigrid Aslaksen
- Department of Clinical Science, Universty of Bergen and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| | | | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elisa Frullanti
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, Turin, Italy.,Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Italy
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mario U Mondelli
- Division of Clinical Immunology and Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | - Mario Chiariello
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina, Siena, Italy.,Consiglio Nazionale delle Ricerche, Istituto DI Fisiologia Clinica, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Italy
| | - Ilaria Meloni
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
18
|
Wang J, Zhu K, Xue Y, Wen G, Tao L. Research Progress in the Treatment of Complications and Sequelae of COVID-19. Front Med (Lausanne) 2021; 8:757605. [PMID: 34926504 PMCID: PMC8674502 DOI: 10.3389/fmed.2021.757605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
With the improvement in the understanding of COVID-19 and the widespread vaccination of COVID-19 vaccines in various countries, the epidemic will be brought under control soon. However, multiple viruses could result in the post-viral syndrome, which is also common among patients with COVID-19. Therefore, the long-term consequences and the corresponding treatment of COVID-19 should be the focus in the post-epidemic era. In this review, we summarize the therapeutic strategies for the complications and sequelae of eight major systems caused by COVID-19, including respiratory system, cardiovascular system, neurological system, digestive system, urinary system, endocrine system, reproductive system and skeletal complication. In addition, we also sorted out the side effects reported in the vaccine trials. The purpose of this article is to remind people of possible complications and sequelae of COVID-19 and provide robust guidance on the treatment. It is extremely important to conduct long-term observational prognosis research on a larger scale, so as to have a comprehensive understanding of the impact of the SARS-CoV-2 on the human body and reduce complications to the greatest extent.
Collapse
Affiliation(s)
- Jinpeng Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Kuoyun Zhu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Guangfu Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Javelot H, Straczek C, Meyer G, Gitahy Falcao Faria C, Weiner L, Drapier D, Fakra E, Fossati P, Weibel S, Dizet S, Langrée B, Masson M, Gaillard R, Leboyer M, Llorca PM, Hingray C, Haffen E, Yrondi A. Psychotropics and COVID-19: An analysis of safety and prophylaxis. L'ENCEPHALE 2021; 47:564-588. [PMID: 34548153 PMCID: PMC8410507 DOI: 10.1016/j.encep.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
The use of psychotropics during the COVID-19 pandemic has raised two questions, in order of importance: first, what changes should be made to pharmacological treatments prescribed to mental health patients? Secondly, are there any positive side effects of these substances against SARS-CoV-2? Our aim was to analyze usage safety of psychotropics during COVID-19; therefore, herein, we have studied: (i) the risk of symptomatic complications of COVID-19 associated with the use of these drugs, notably central nervous system activity depression, QTc interval enlargement and infectious and thromboembolic complications; (ii) the risk of mistaking the iatrogenic impact of psychotropics with COVID-19 symptoms, causing diagnostic error. Moreover, we provided a summary of the different information available today for these risks, categorized by mental health disorder, for the following: schizophrenia, bipolar disorder, anxiety disorder, ADHD, sleep disorders and suicidal risk. The matter of psychoactive substance use during the pandemic is also analyzed in this paper, and guideline websites and publications for psychotropic treatments in the context of COVID-19 are referenced during the text, so that changes on those guidelines and eventual interaction between psychotropics and COVID-19 treatment medication can be reported and studied. Finally, we also provide a literature review of the latest known antiviral properties of psychotropics against SARS-CoV-2 as complementary information.
Collapse
Affiliation(s)
- H Javelot
- Établissement public de santé Alsace Nord, 141, avenue Strasbourg, 67170 Brumath, France; Laboratoire de toxicologie et pharmacologie neuro cardiovasculaire, centre de recherche en biomédecine de Strasbourg, université de Strasbourg, 1, rue Eugène-Boeckel, 67000 Strasbourg, France.
| | - C Straczek
- Département de pharmacie, CHU d'Henri-Mondor, université Paris Est Créteil (UPEC), AP-HP, 1, rue Gustave-Eiffel, 94000 Créteil, France; Inserm U955, institut Mondor de recherche biomédical, neuropsychiatrie translationnelle, 8, rue du Général-Sarrail, 94000 Créteil, France
| | - G Meyer
- Service pharmacie, établissement public de santé Alsace Nord, 141, avenue Strasbourg, 67170 Brumath, France; Service pharmacie, CHU de Strasbourg, 1, porte de L'Hôpital, 67000 Strasbourg, France
| | - C Gitahy Falcao Faria
- Institute of Psychiatry, Federal University of Rio de Janeiro (UFRJ), avenue Pedro-Calmon, 550 - Cidade Universitária da Universidade Federal do Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil
| | - L Weiner
- Clinique de psychiatrie, hôpitaux universitaire de Strasbourg, 1, porte de L'Hôpital, 67000 Strasbourg, France
| | - D Drapier
- Pôle hospitalo-universitaire de psychiatrie adulte, centre hospitalier Guillaume-Régnier, rue du Moulin-de-Joué, 35700 Rennes, France; EA 4712, comportements et noyaux gris centraux, université de Rennes 1, 2, avenue du Professeur Léon-Bernard, CS 34317, campus santé de Villejean, 35043 Rennes cedex, France
| | - E Fakra
- Pôle universitaire de psychiatrie, CHU de Saint-Étienne, 37, rue Michelet, 42000 Saint-Étienne, France
| | - P Fossati
- Inserm U1127, ICM, service de psychiatrie adultes, groupe hospitalier pitié Salpêtrière, Sorbonne université, AP-HP, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - S Weibel
- Clinique de psychiatrie, hôpitaux universitaire de Strasbourg, 1, porte de L'Hôpital, 67000 Strasbourg, France
| | - S Dizet
- Centre de ressources et d'expertise en psychopharmacologie (CREPP) Bourgogne Franche-Comté, Chalon-sur-Saône, France; Service Pharmacie, CHS de Sevrey, 55, rue Auguste-Champio, 71100 Sevrey, France
| | - B Langrée
- Service pharmacie, centre hospitalier Guillaume-Régnier, rue du Moulin-de-Joué, 35700 Rennes, France; Clinique du Château de Garches, Nightingale Hospitals-Paris, 11, bis rue de la Porte-Jaune, 92380 Garches, France
| | - M Masson
- SHU, GHU psychiatrie et neurosciences, 1, rue Cabanis, 75014 Paris, France; GHU psychiatrie et neurosciences, université de Paris, Paris, France
| | - R Gaillard
- Conseil national des universités (CNU), 1, rue Cabanis, 75014 Paris, France
| | - M Leboyer
- Inserm, DMU IMPACT, IMRB, translational neuropsychiatry, fondation FondaMental, hôpitaux universitaires « H. Mondor », université Paris Est Créteil (UPEC), AP-HP, 40, rue de Mesly, 94000 Créteil, France; CHU de Clermont-Ferrand, 58, rue Montalembert, 63000 Clermont-Ferrand, France
| | - P M Llorca
- Université Clermont-Auvergne, 1, rue Lucie- et Raymond-Aubrac, 63100 Clermont-Ferrand, France; Pôle hospitalo-universitaire de psychiatrie d'adultes du Grand Nancy, centre psychothérapique de Nancy, 1, rue Docteur Archambault, 54520 Laxou, France
| | - C Hingray
- Département de neurologie, CHU de Nancy, 25, rue Lionnois, 54000 Nancy, France; CIC-1431 Inserm, service de psychiatrie, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25000 Besançon, France
| | - E Haffen
- Laboratoire de neurosciences, université de Franche-Comté, 19, rue Ambroise-Paré, 25030 Besançon cedex, France
| | - A Yrondi
- Unité ToNIC, UMR 1214 CHU Purpan-Pavillon Baudot, place du Dr Joseph Baylac, 31024 Toulouse cedex 3, France
| |
Collapse
|
20
|
Kannoth S, Kandula S, Shaman J. The association between early country-level COVID-19 testing capacity and later COVID-19 mortality outcomes. Influenza Other Respir Viruses 2021; 16:56-62. [PMID: 34647421 PMCID: PMC8652724 DOI: 10.1111/irv.12906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022] Open
Abstract
Background The COVID‐19 pandemic has overrun hospital systems while exacerbating economic hardship and food insecurity on a global scale. In an effort to understand how early action to find and control the virus is associated with cumulative outcomes, we explored how country‐level testing capacity affects later COVID‐19 mortality. Methods We used the Our World in Data database to explore testing and mortality records in 27 countries from December 31, 2019, to September 30, 2020; we applied Cox proportional hazards regression to determine the relationship between early COVID‐19 testing capacity (cumulative tests per case) and later COVID‐19 mortality (time to specified mortality thresholds), adjusting for country‐level confounders, including median age, GDP, hospital bed capacity, population density, and nonpharmaceutical interventions. Results Higher early testing implementation, as indicated by more cumulative tests per case when mortality was still low, was associated with a lower risk for higher per capita deaths. A sample finding indicated that a higher cumulative number of tests administered per case at the time of six deaths per million persons was associated with a lower risk of reaching 15 deaths per million persons, after adjustment for all confounders (HR = 0.909; P = 0.0001). Conclusions Countries that developed stronger COVID‐19 testing capacity at early timepoints, as measured by tests administered per case identified, experienced a slower increase of deaths per capita. Thus, this study operationalizes the value of testing and provides empirical evidence that stronger testing capacity at early timepoints is associated with reduced mortality and improved pandemic control.
Collapse
Affiliation(s)
- Sneha Kannoth
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Sasikiran Kandula
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| |
Collapse
|
21
|
COVID-19 Infection and Neuropathological Features. MEDICINES 2021; 8:medicines8100059. [PMID: 34677488 PMCID: PMC8537119 DOI: 10.3390/medicines8100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/03/2022]
Abstract
The pathology associated with COVID-19 infection is progressively being revealed. Recent postmortem assessments have revealed acute airway inflammation as well as diffuse alveolar damage, which bears resemblance to severe acute respiratory syndromes induced by both SARS-CoV and MERS-CoV infections. Although recent papers have highlighted some neuropathologies associated with COVID-19 infection, little is known about this topic of great importance in the area of public health. Here, we discuss how neuroinflammation related to COVID-19 could be triggered by direct viral neuroinvasion and/or cytokine release over the course of the infection.
Collapse
|
22
|
Kumar A, Mishra DC, Angadi UB, Yadav R, Rai A, Kumar D. Inhibition Potencies of Phytochemicals Derived from Sesame Against SARS-CoV-2 Main Protease: A Molecular Docking and Simulation Study. Front Chem 2021; 9:744376. [PMID: 34692642 PMCID: PMC8531729 DOI: 10.3389/fchem.2021.744376] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
The ongoing COVID-19 pandemic, caused by SARS-CoV-2, has now spread across the nations with high mortality rates and multifaceted impact on human life. The proper treatment methods to overcome this contagious disease are still limited. The main protease enzyme (Mpro, also called 3CLpro) is essential for viral replication and has been considered as one of the potent drug targets for treating COVID-19. In this study, virtual screening was performed to find out the molecular interactions between 36 natural compounds derived from sesame and the Mpro of COVID-19. Four natural metabolites, namely, sesamin, sesaminol, sesamolin, and sesamolinol have been ranked as the top interacting molecules to Mpro based on the affinity of molecular docking. Moreover, stability of these four sesame-specific natural compounds has also been evaluated using molecular dynamics (MD) simulations for 200 nanoseconds. The molecular dynamics simulations and free energy calculations revealed that these compounds have stable and favorable energies, causing strong binding with Mpro. These screened natural metabolites also meet the essential conditions for drug likeness such as absorption, distribution, metabolism, and excretion (ADME) properties as well as Lipinski's rule of five. Our finding suggests that these screened natural compounds may be evolved as promising therapeutics against COVID-19.
Collapse
Affiliation(s)
- Anuj Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dwijesh Chandra Mishra
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ulavappa Basavanneppa Angadi
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rashmi Yadav
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
23
|
Yang K, Wen G, Wang J, Zhou S, Da W, Meng Y, Xue Y, Tao L. Complication and Sequelae of COVID-19: What Should We Pay Attention to in the Post-Epidemic Era. Front Immunol 2021; 12:711741. [PMID: 34539642 PMCID: PMC8446426 DOI: 10.3389/fimmu.2021.711741] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 is widespread worldwide and seriously affects the daily life and health of humans. Countries around the world are taking necessary measures to curb the spread. However, COVID-19 patients often have at least one organ complication and sequelae in addition to respiratory symptoms. Controlling the epidemic is only a phased victory, and the complication and sequelae of COVID-19 will need more attention in the post-epidemic era. We collected general information from over 1000 articles published in 2020 after the COVID-19 outbreak and systematically analyzed the complication and sequelae associated with eight major systems in COVID-19 patients caused by ACE2 intervention in the RAS regulatory axis. The autoimmune response induced by 2019-nCoV attacks and damages the normal tissues and organs of the body. Our research will help medical workers worldwide address COVID-19 complication and sequelae.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Guangfu Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinpeng Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Siming Zhou
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Wacili Da
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yan Meng
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Kayode AJ, Banji-Onisile FO, Olaniran AO, Okoh AI. An Overview of the Pathogenesis, Transmission, Diagnosis, and Management of Endemic Human Coronaviruses: A Reflection on the Past and Present Episodes and Possible Future Outbreaks. Pathogens 2021; 10:1108. [PMID: 34578140 PMCID: PMC8470645 DOI: 10.3390/pathogens10091108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of the 2019 coronavirus pandemic caught the world by surprise in late 2019 and has held it hostage for months with an increasing number of infections and deaths. Although coronavirus was first discovered in the 1960s and was known to cause respiratory infection in humans, no information was available about the epidemic pattern of the virus until the past two decades. This review addresses the pathogenesis, transmission dynamics, diagnosis, management strategies, the pattern of the past and present events, and the possibility of future outbreaks of the endemic human coronaviruses. Several studies have described bats as presumptive natural reservoirs of coronaviruses. In essence, the identification of a diverse group of similar SARS coronaviruses in bats suggests the possibility of a future epidemic due to severe acute respiratory syndrome (SARS-like) coronaviruses originating from different reservoir hosts. The study also identified a lack of vaccines to prevent human coronavirus infections in humans in the past, however, the recent breakthrough in vaccine discovery and approval for emergency use for the treatment of Severe Acute Respiratory Syndrome Coronavirus 2 is commendable. The high rates of genomic substitution and recombination due to errors in RNA replication and the potential for independent species crossing suggest the chances of an entirely new strain evolving. Therefore, rapid research efforts should be deployed for vaccination to combat the COVID-19 pandemic and prevent a possible future outbreak. More sensitization and enlightenment on the need to adopt good personal hygiene practices, social distancing, and scientific evaluation of existing medications with promising antiviral effects against SARS-CoV-2 is required. In addition, intensive investigations to unravel and validate the possible reservoirs, the intermediate host, as well as insight into the ability of the virus to break the species barrier are needed to prevent future viral spillover and possible outbreaks.
Collapse
Affiliation(s)
- Adeoye J. Kayode
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; or
- Wastewater Coronavirus Surveillance Laboratory, SAMRC Microbial Water Quality Monitoring Center, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Folasade O. Banji-Onisile
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4000, South Africa; (F.O.B.-O.); (A.O.O.)
| | - Ademola O. Olaniran
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4000, South Africa; (F.O.B.-O.); (A.O.O.)
| | - Anthony I. Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; or
- Wastewater Coronavirus Surveillance Laboratory, SAMRC Microbial Water Quality Monitoring Center, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
- Department of Environmental Health Sciences, College Health Sciences, University of Sharjah, Sharjah 555588, United Arab Emirates
| |
Collapse
|
25
|
Dawra S, Shrivastava S, Kumar D, Asturkar V, Kumar A, Ahmad F, Nanda S. Clinical complications seen in patients after recovery from coronavirus disease 2019: Experience from a COVID care center. Med J Armed Forces India 2021; 77:S475-S478. [PMID: 34334914 PMCID: PMC8313073 DOI: 10.1016/j.mjafi.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/02/2021] [Indexed: 10/25/2022] Open
Abstract
We have had recent experience that patients who have recovered from coronavirus disease 2019 (COVID-19) infection are being readmitted with thromboembolic complications, and some have had sudden cardiac death. There is paucity of literature on such presentations after clinical and microbiological recovery. In the present case series, we present five such patients recently managed at our COVID-19 care facility. All the patients described were elderly (mean age: 66 years) with multiple comorbidities (mean Charlson Comorbidity Index score: 3.5). Two were initially managed at another COVID care facility and discharged. They were admitted at our center within one week of discharge. One patient who was managed at our center was discharged and then readmitted. The other two had recovered from their illness and were planned for discharge (mean duration of hospital stay in initial admission: 14.4 days). All presented within one week of clinical and microbiological recovery (mean: 4.2 days). All were on adequate anticoagulation during initial presentation. All these patients had raised D-dimer levels (three suffered sudden cardiac arrest, one had a confirmed pulmonary thromboembolism, and one had acute ST-elevation myocardial infarction). Thromboembolic complications should be considered an important differential diagnosis in all patients who present with any complication in the immediate follow-up period of recovery from COVID-19 disease. Repeat analysis of D-dimer levels at follow-up may be considered in those who recovered from severe disease. Extended period of anticoagulation and close follow-up may be considered in all patients with COVID-19 who are at high risk of developing thromboembolic complications.
Collapse
Affiliation(s)
- Saurabh Dawra
- Classified Specialist (Medicine) & Gastroenterologist, Command Hospital (SC), Pune, India
| | - Sharad Shrivastava
- Senior Adviser (Medicine) & Gastroenterologist, Command Hospital (SC), Pune, India
| | - Dharmendra Kumar
- Senior Adviser (Medicine) & Gastroenterologist, Command Hospital (SC), Pune, India
| | - Vikram Asturkar
- Classified Specialist (Medicine) & Neurologist, Command Hospital (SC), Pune, India
| | - Ankit Kumar
- Resident, Department of Internal Medicine, Armed Forces Medical College, Pune, India
| | - Faiz Ahmad
- Senior Adviser (Medicine) & Neurologist, Command Hospital (SC), Pune, India
| | - Subrat Nanda
- Senior Adviser (Medicine) & Neurologist, Command Hospital (SC), Pune, India
| |
Collapse
|
26
|
Ma MT, Badeti S, Chen CH, Kim J, Choudhary A, Honnen B, Reichman C, Calianese D, Pinter A, Jiang Q, Shi L, Zhou R, Xu H, Li Q, Gause W, Liu D. CAR-NK Cells Effectively Target SARS-CoV-2-Spike-Expressing Cell Lines In Vitro. Front Immunol 2021; 12:652223. [PMID: 34367128 PMCID: PMC8343231 DOI: 10.3389/fimmu.2021.652223] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is highly contagious and presents a significant public health issue. Current therapies used to treat coronavirus disease 2019 (COVID-19) include monoclonal antibody cocktail, convalescent plasma, antivirals, immunomodulators, and anticoagulants. The vaccines from Pfizer and Moderna have recently been authorized for emergency use, which are invaluable for the prevention of SARS-CoV-2 infection. However, their long-term side effects are not yet documented, and populations with immunocompromised conditions (e.g., organ-transplantation and immunodeficient patients) may not be able to mount an effective immune response. In addition, there are concerns that wide-scale immunity to SARS-CoV-2 may introduce immune pressure that could select for escape mutants to the existing vaccines and monoclonal antibody therapies. Emerging evidence has shown that chimeric antigen receptor (CAR)- natural killer (NK) immunotherapy has potent antitumor response in hematologic cancers with minimal adverse effects in recent studies, however, the potentials of CAR-NK cells in treating COVID-19 has not yet been fully exploited. Here, we improve upon a novel approach for the generation of CAR-NK cells for targeting SARS-CoV-2 and its various mutants. CAR-NK cells were generated using the scFv domain of S309 (henceforward, S309-CAR-NK), a SARS-CoV and SARS-CoV-2 neutralizing antibody (NAbs) that targets the highly conserved region of SARS-CoV-2 spike (S) glycoprotein and is therefore more likely to recognize different variants of SARS-CoV-2 isolates. S309-CAR-NK cells can specifically bind to pseudotyped SARS-CoV-2 virus and its D614G, N501Y, and E484K mutants. Furthermore, S309-CAR-NK cells can specifically kill target cells expressing SARS-CoV-2 S protein in vitro and show superior killing activity and cytokine production, compared to that of the recently reported CR3022-CAR-NK cells. Thus, these results pave the way for generating 'off-the-shelf' S309-CAR-NK cells for treatment in high-risk individuals as well as provide an alternative strategy for patients unresponsive to current vaccines.
Collapse
Affiliation(s)
- Minh Tuyet Ma
- Department of Pathology, Immunology and Laboratory Medicine, Newark, NJ, United States
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Saiaditya Badeti
- Department of Pathology, Immunology and Laboratory Medicine, Newark, NJ, United States
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Chih-Hsiung Chen
- Department of Pathology, Immunology and Laboratory Medicine, Newark, NJ, United States
| | - James Kim
- Department of Pathology, Immunology and Laboratory Medicine, Newark, NJ, United States
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Alok Choudhary
- Department of Microbiology, Biochemistry & Molecular Genetics, Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Bill Honnen
- Department of Microbiology, Biochemistry & Molecular Genetics, Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Charles Reichman
- Department of Microbiology, Biochemistry & Molecular Genetics, Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - David Calianese
- Department of Microbiology, Biochemistry & Molecular Genetics, Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Abraham Pinter
- Department of Microbiology, Biochemistry & Molecular Genetics, Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Qingkui Jiang
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Renping Zhou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Huanbin Xu
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Qingsheng Li
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | - William Gause
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Newark, NJ, United States
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
27
|
Meng Z, Wang M, Zhao Z, Zhou Y, Wu Y, Guo S, Li M, Zhou Y, Yang S, Li W, Ying B. Development and Validation of a Predictive Model for Severe COVID-19: A Case-Control Study in China. Front Med (Lausanne) 2021; 8:663145. [PMID: 34113636 PMCID: PMC8185163 DOI: 10.3389/fmed.2021.663145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Predicting the risk of progression to severe coronavirus disease 2019 (COVID-19) could facilitate personalized diagnosis and treatment options, thus optimizing the use of medical resources. Methods: In this prospective study, 206 patients with COVID-19 were enrolled from regional medical institutions between December 20, 2019, and April 10, 2020. We collated a range of data to derive and validate a predictive model for COVID-19 progression, including demographics, clinical characteristics, laboratory findings, and cytokine levels. Variation analysis, along with the least absolute shrinkage and selection operator (LASSO) and Boruta algorithms, was used for modeling. The performance of the derived models was evaluated by specificity, sensitivity, area under the receiver operating characteristic (ROC) curve (AUC), Akaike information criterion (AIC), calibration plots, decision curve analysis (DCA), and Hosmer–Lemeshow test. Results: We used the LASSO algorithm and logistic regression to develop a model that can accurately predict the risk of progression to severe COVID-19. The model incorporated alanine aminotransferase (ALT), interleukin (IL)-6, expectoration, fatigue, lymphocyte ratio (LYMR), aspartate transaminase (AST), and creatinine (CREA). The model yielded a satisfactory predictive performance with an AUC of 0.9104 and 0.8792 in the derivation and validation cohorts, respectively. The final model was then used to create a nomogram that was packaged into an open-source and predictive calculator for clinical use. The model is freely available online at https://severeconid-19predction.shinyapps.io/SHINY/. Conclusion: In this study, we developed an open-source and free predictive calculator for COVID-19 progression based on ALT, IL-6, expectoration, fatigue, LYMR, AST, and CREA. The validated model can effectively predict progression to severe COVID-19, thus providing an efficient option for early and personalized management and the allocation of appropriate medical resources.
Collapse
Affiliation(s)
- Zirui Meng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yongzhao Zhou
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shuo Guo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mengjiao Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyu Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Fakhri S, Nouri Z, Moradi SZ, Akkol EK, Piri S, Sobarzo-Sánchez E, Farzaei MH, Echeverría J. Targeting Multiple Signal Transduction Pathways of SARS-CoV-2: Approaches to COVID-19 Therapeutic Candidates. Molecules 2021; 26:2917. [PMID: 34068970 PMCID: PMC8156180 DOI: 10.3390/molecules26102917] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Due to the complicated pathogenic pathways of coronavirus disease 2019 (COVID-19), related medicinal therapies have remained a clinical challenge. COVID-19 highlights the urgent need to develop mechanistic pathogenic pathways and effective agents for preventing/treating future epidemics. As a result, the destructive pathways of COVID-19 are in the line with clinical symptoms induced by severe acute coronary syndrome (SARS), including lung failure and pneumonia. Accordingly, revealing the exact signaling pathways, including inflammation, oxidative stress, apoptosis, and autophagy, as well as relative representative mediators such as tumor necrosis factor-α (TNF-α), nuclear factor erythroid 2-related factor 2 (Nrf2), Bax/caspases, and Beclin/LC3, respectively, will pave the road for combating COVID-19. Prevailing host factors and multiple steps of SARS-CoV-2 attachment/entry, replication, and assembly/release would be hopeful strategies against COVID-19. This is a comprehensive review of the destructive signaling pathways and host-pathogen interaction of SARS-CoV-2, as well as related therapeutic targets and treatment strategies, including potential natural products-based candidates.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey;
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
29
|
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Identification of alkaloids from Justicia adhatoda as potent SARS CoV-2 main protease inhibitors: An in silico perspective. J Mol Struct 2021; 1229:129489. [PMID: 33100380 PMCID: PMC7571971 DOI: 10.1016/j.molstruc.2020.129489] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic, caused by SARS CoV-2, is responsible for millions of death worldwide. No approved/proper therapeutics is currently available which can effectively combat this outbreak. Several attempts have been undertaken in the search of effective drugs to control the spread of SARS CoV-2 infection. The main protease (Mpro), key component for the cleavage of the viral polyprotein, is considered to be one of the important drug targets for treating COVID-19. Various phytochemicals, including polyphenols and alkaloids, have been proposed as potent inhibitors of Mpro. The alkaloids from leaf extracts of Justicia adhatoda have also been reported to possess anti-viral activity. But whether these alkaloids exhibit any inhibitory effect on SARS CoV-2 Mpro is far from clear. To explore this in detail, we have adopted computational approaches. Justicia adhatoda alkaloids possessing proper drug-likeness properties and two anti-HIV drugs (lopinavir and darunavir; having binding affinity -7.3 to -7.4 kcal/mol) were docked against SARS CoV-2 Mpro to study their binding properties. Only one alkaloid (anisotine) had interaction with both the catalytic residues (His41 and Cys145) of Mpro and exhibited good binding affinity (-7.9 kcal/mol). Molecular dynamic simulations (100 ns) revealed that Mpro-anisotine complex is more stable, conformationally less fluctuated; slightly less compact and marginally expanded than Mpro-darunavir/lopinavir complex. Even the number of intermolecular H-bonds and MM-GBSA analysis suggested that anisotine is a more potent Mpro inhibitor than the two previously recommended antiviral drugs (lopinavir and darunavir) and may evolve as a promising anti-COVID-19 drug if proven in animal experiments and on patients.
Collapse
Affiliation(s)
- Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Snehasis Chowdhuri
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| |
Collapse
|
30
|
Asadzadeh A, Kalankesh LR. A scope of mobile health solutions in COVID-19 pandemics. INFORMATICS IN MEDICINE UNLOCKED 2021; 23:100558. [PMID: 33842688 PMCID: PMC8019236 DOI: 10.1016/j.imu.2021.100558] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023] Open
Abstract
Background and aim COVID-19 has become an international emergency. The use of digital solutions can be effective in managing, preventing, and overcoming the further spread of infectious disease outbreaks. Accordingly, the use of mobile-health (m-health) technologies has the potential to promote public health. This review aimed to study the application of m-health solutions for the management of the COVID-19 outbreak. Methods The search strategy was done in Medline (PubMed), Embase, IEEE, and Google Scholar by using related keywords to m-health and COVID-19 on July 6, 2020. English papers that used m-health technologies for the COVID-19 outbreak were included. Results Of the 2046 papers identified, 16 were included in this study. M-health had been used for various aims such as early detection, fast screening, patient monitoring, information sharing, education, and treatment in response to the COVID-19 outbreak. M-health solutions were classified into four use case categories: prevention, diagnosis, treatment, and protection. The mobile phone-based app and short text massaging were the most frequently used modalities, followed by wearables, portable screening devices, mobile-telehealth, and continuous telemetry monitor during the pandemics. Conclusion It appears that m-health technologies played a positive role during the COVID-19 outbreak. Given the extensive capabilities of m-health solutions, investigation and use of all potential applications of m-health should be considered for combating the current Epidemics and mitigating its negative impacts.
Collapse
Affiliation(s)
- Afsoon Asadzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila R Kalankesh
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.,Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Crescioli G, Brilli V, Lanzi C, Burgalassi A, Ieri A, Bonaiuti R, Romano E, Innocenti R, Mannaioni G, Vannacci A, Lombardi N. Adverse drug reactions in SARS-CoV-2 hospitalised patients: a case-series with a focus on drug-drug interactions. Intern Emerg Med 2021; 16:697-710. [PMID: 33355896 PMCID: PMC7755981 DOI: 10.1007/s11739-020-02586-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/21/2020] [Indexed: 11/12/2022]
Abstract
Due to the need of early and emergency effective treatments for COVID-19, less attention may have been paid to their safety during the global emergency. In addition, characteristics of drug-drug interaction (DDI)-related adverse drug reactions (ADRs) in COVID-19 patients have not yet been studied in depth. The aim of the present case-series study is to describe clinical and pharmacological characteristics of SARS-CoV-2 hospitalised patients, focusing on ADRs, particularly those related to DDIs. We evaluated all reports of COVID-19 medication-related ADRs collected within the COVID-19 Units of Careggi University Hospital, Florence (Italy), between January 1st and 31st May 2020. Information regarding COVID-19 medications, patients' demographic and clinical characteristics, concomitant drugs, ADRs description and outcome, were collected. Each case was evaluated for the causality assessment and to identify the presence of DDIs. During the study period, 23 Caucasian patients (56.5% males, mean age 76.1 years) experienced one or more ADRs. The majority of them were exposed to polypharmacy and 17.4% presented comorbidities. ADRs were referred to cardiovascular, psychiatric and gastrointestinal disorders. The most frequently reported preferred term was QT prolongation (mean QT interval 496.1 ms). ADRs improved or resolved completely in 60.8% of cases. For all patients, a case-by-case evaluation revealed the presence of one or more DDIs, especially those related to pharmacokinetic interactions. Despite the small number of patients, our evidence underline the clinical burden of DDIs in SARS-CoV-2 hospitalised patients and the risk of unexpected and uncommon psychiatric ADRs.
Collapse
Affiliation(s)
- Giada Crescioli
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
- Tuscan Regional Centre of Pharmacovigilance, Florence, Italy
| | - Valentina Brilli
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
- Toxicology Unit, Emergency Department, Careggi University Hospital, Florence, Italy
| | - Cecilia Lanzi
- Toxicology Unit, Emergency Department, Careggi University Hospital, Florence, Italy
| | - Andrea Burgalassi
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
- Toxicology Unit, Emergency Department, Careggi University Hospital, Florence, Italy
| | - Alessandra Ieri
- Toxicology Unit, Emergency Department, Careggi University Hospital, Florence, Italy
| | - Roberto Bonaiuti
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
- Joint Laboratory of Technological Solutions for Clinical Pharmacology, Pharmacovigilance and Bioinformatics, University of Florence, Florence, Italy
| | - Elias Romano
- Internal Medicine Unit 2, Emergency Department, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Rinaldo Innocenti
- Internal Medicine Unit 2, Emergency Department, Careggi University Hospital, Florence, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
- Toxicology Unit, Emergency Department, Careggi University Hospital, Florence, Italy
| | - Alfredo Vannacci
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
- Tuscan Regional Centre of Pharmacovigilance, Florence, Italy
- Joint Laboratory of Technological Solutions for Clinical Pharmacology, Pharmacovigilance and Bioinformatics, University of Florence, Florence, Italy
| | - Niccolò Lombardi
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
- Tuscan Regional Centre of Pharmacovigilance, Florence, Italy.
- Toxicology Unit, Emergency Department, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
32
|
Li N, Zhu L, Sun L, Shao G. The effects of novel coronavirus (SARS-CoV-2) infection on cardiovascular diseases and cardiopulmonary injuries. Stem Cell Res 2021; 51:102168. [PMID: 33485182 PMCID: PMC7801189 DOI: 10.1016/j.scr.2021.102168] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
COVID-19 caused by a novel coronavirus named SARS-CoV-2, can elites severe acute respiratory syndrome, severe lung injury, cardiac injury, and even death and became a worldwide pandemic. SARS-CoV-2 infection may result in cardiac injury via several mechanisms, including the expression of angiotensin-converting enzyme 2 (ACE2) receptor and leading to a cytokine storm, can elicit an exaggerated host immune response. This response contributes to multi-organ dysfunction. As an emerging infectious disease, there are limited data on the effects of this infection on patients with underlying cardiovascular comorbidities. In this review, we summarize the early-stage clinical experiences with COVID-19, with particular focus on patients with cardiovascular diseases and cardiopulmonary injuries, and explores potential available evidence regarding the association between COVID-19, and cardiovascular complications.
Collapse
Affiliation(s)
- Ni Li
- Department of Cardiothoracic Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang 315041, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Linwen Zhu
- Department of Cardiothoracic Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang 315041, China
| | - Lebo Sun
- Department of Cardiothoracic Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang 315041, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang 315041, China.
| |
Collapse
|
33
|
Langarizadeh MA, Ranjbar Tavakoli M, Abiri A, Ghasempour A, Rezaei M, Ameri A. A review on function and side effects of systemic corticosteroids used in high-grade COVID-19 to prevent cytokine storms. EXCLI JOURNAL 2021; 20:339-365. [PMID: 33746666 PMCID: PMC7975631 DOI: 10.17179/excli2020-3196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
In December 2019, a cluster of pneumonia caused by a novel coronavirus (2019-nCoV), officially known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan, Hubei province, China. Cytokine storm is an uncontrolled systemic inflammatory response resulting from the release of large amounts of pro-inflammatory cytokines and chemokines that occurs at phase 3 of viral infection. Such emergence led to the development of many clinical trials to discover efficient drugs and therapeutic protocols to fight with this single-stranded RNA virus. Corticosteroids suppress inflammation of the lungs during the cytokine storm, weaken immune responses, and inhibit the elimination of pathogen. For this reason, in COVID-19 corticosteroid therapy, systemic inhibition of inflammation is observed with a wide range of side effects. The present review discusses the effectiveness of the corticosteroid application in COVID-19 infection and the related side effects of these agents. In summary, a number of corticosteroids, including and especially methylprednisolone and dexamethasone, have demonstrated remarkable efficacy, particularly for COVID-19 patients who underwent mechanical ventilation.
Collapse
Affiliation(s)
- Mohammad Amin Langarizadeh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Ardavan Abiri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Ghasempour
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Rezaei
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Alieh Ameri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
34
|
Zhang S, Zhang J, Wang C, Chen X, Zhao X, Jing H, Liu H, Li Z, Wang L, Shi J. COVID‑19 and ischemic stroke: Mechanisms of hypercoagulability (Review). Int J Mol Med 2021; 47:21. [PMID: 33448315 PMCID: PMC7849983 DOI: 10.3892/ijmm.2021.4854] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, some patients with severe COVID-19 exhibited complications such as acute ischemic stroke (AIS), which was closely associated with a poor prognosis. These patients often had an abnormal coagulation, namely, elevated levels of D-dimer and fibrinogen, and a low platelet count. Certain studies have suggested that COVID-19 induces AIS by promoting hypercoagulability. Nevertheless, the exact mechanisms through which COVID-19 leads to a hypercoagulable state in infected patients remain unclear. Understanding the underlying mechanisms of hypercoagulability is of utmost importance for the effective treatment of these patients. The present review aims to summarize the current status of research on COVID-19, hypercoagulability and ischemic stroke. The present review also aimed to shed light into the underlying mechanisms through which COVID-19 induces hypercoagulability, and to provide therapies for different mechanisms for the more effective treatment of patients with COVID-19 with ischemic stroke and prevent AIS during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shuoqi Zhang
- Department of Neurology, The Second Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jinming Zhang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chunxu Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaojing Chen
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xinyi Zhao
- Department of Cardiology, The Second Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Huan Liu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhuxin Li
- Department of Acupuncture and Moxibustion, College of Acupuncture and Moxibustion, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Lihua Wang
- Department of Neurology, The Second Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
35
|
Ma M, Badeti S, Chen CH, Pinter A, Jiang Q, Shi L, Zhou R, Xu H, Li Q, Gause W, Liu D. CAR-NK Cells Effectively Target the D614 and G614 SARS-CoV-2-infected Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33469580 DOI: 10.1101/2021.01.14.426742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is highly contagious presenting a significant public health issue. Current therapies used to treat coronavirus disease 2019 (COVID-19) include monoclonal antibody cocktail, convalescent plasma, antivirals, immunomodulators, and anticoagulants, though the current therapeutic options remain limited and expensive. The vaccines from Pfizer and Moderna have recently been authorized for emergency use, which are invaluable for the prevention of SARS-CoV-2 infection. However, their long-term side effects are not yet to be documented, and populations with immunocompromised conditions (e.g., organ-transplantation and immunodeficient patients) may not be able to mount an effective immune response. In addition, there are concerns that wide-scale immunity to SARS-CoV-2 may introduce immune pressure that could select for escape mutants to the existing vaccines and monoclonal antibody therapies. Emerging evidence has shown that chimeric antigen receptor (CAR)- natural killer (NK) immunotherapy has potent antitumor response in hematologic cancers with minimal adverse effects in recent studies, however, the potentials of CAR-NK cells in preventing and treating severe cases of COVID-19 has not yet been fully exploited. Here, we improve upon a novel approach for the generation of CAR-NK cells for targeting SARS-CoV-2 and its D614G mutant. CAR-NK cells were generated using the scFv domain of S309 (henceforward, S309-CAR-NK), a SARS-CoV and SARS-CoV-2 neutralizing antibody that targets the highly conserved region of SARS-CoV-2 spike (S) glycoprotein, therefore would be more likely to recognize different variants of SARS-CoV-2 isolates. S309-CAR-NK cells can specifically bind to pseudotyped SARS-CoV-2 virus and its D614G mutant. Furthermore, S309-CAR-NK cells can specifically kill target cells expressing SARS-CoV-2 S protein in vitro and show superior killing activity and cytokine production, compared to that of the recently published CR3022-CAR-NK cells. Thus, these results pave the way for generating 'off-the-shelf' S309-CAR-NK cells for treatment in high-risk individuals as well as provide an alternative strategy for patients unresponsive to current vaccines.
Collapse
|
36
|
Egieyeh S, Egieyeh E, Malan S, Christofells A, Fielding B. Computational drug repurposing strategy predicted peptide-based drugs that can potentially inhibit the interaction of SARS-CoV-2 spike protein with its target (humanACE2). PLoS One 2021; 16:e0245258. [PMID: 33417604 PMCID: PMC7793299 DOI: 10.1371/journal.pone.0245258] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/26/2020] [Indexed: 01/24/2023] Open
Abstract
Drug repurposing for COVID-19 has several potential benefits including shorter development time, reduced costs and regulatory support for faster time to market for treatment that can alleviate the current pandemic. The current study used molecular docking, molecular dynamics and protein-protein interaction simulations to predict drugs from the Drug Bank that can bind to the SARS-CoV-2 spike protein interacting surface on the human angiotensin-converting enzyme 2 (hACE2) receptor. The study predicted a number of peptide-based drugs, including Sar9 Met (O2)11-Substance P and BV2, that might bind sufficiently to the hACE2 receptor to modulate the protein-protein interaction required for infection by the SARS-CoV-2 virus. Such drugs could be validated in vitro or in vivo as potential inhibitors of the interaction of SARS-CoV-2 spike protein with the human angiotensin-converting enzyme 2 (hACE2) in the airway. Exploration of the proposed and current pharmacological indications of the peptide drugs predicted as potential inhibitors of the interaction between the spike protein and hACE2 receptor revealed that some of the predicted peptide drugs have been investigated for the treatment of acute respiratory distress syndrome (ARDS), viral infection, inflammation and angioedema, and to stimulate the immune system, and potentiate antiviral agents against influenza virus. Furthermore, these predicted drug hits may be used as a basis to design new peptide or peptidomimetic drugs with better affinity and specificity for the hACE2 receptor that may prevent interaction between SARS-CoV-2 spike protein and hACE2 that is prerequisite to the infection by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Samuel Egieyeh
- Computational Pharmacology and Cheminformatics Research Group, Pharmacology and Clinical Pharmacy Unit, School of Pharmacy, University of the Western Cape, Cape Town, South Africa
- * E-mail:
| | - Elizabeth Egieyeh
- Pharmacology and Clinical Pharmacy Unit, School of Pharmacy, University of the Western Cape, Cape Town, South Africa
| | - Sarel Malan
- Pharmaceutical Chemistry Unit, School of Pharmacy, University of the Western Cape, Cape Town, South Africa
| | - Alan Christofells
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Burtram Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
37
|
Keyhanian K, Umeton RP, Mohit B, Davoudi V, Hajighasemi F, Ghasemi M. SARS-CoV-2 and nervous system: From pathogenesis to clinical manifestation. J Neuroimmunol 2020; 350:577436. [PMID: 33212316 PMCID: PMC7647896 DOI: 10.1016/j.jneuroim.2020.577436] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023]
Abstract
Since the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a growing body of evidence indicates that besides common COVID-19 symptoms, patients may develop various neurological manifestations affecting both the central and peripheral nervous systems as well as skeletal muscles. These manifestations can occur prior, during and even after the onset of COVID-19 general symptoms. In this Review, we discuss the possible neuroimmunological mechanisms underlying the nervous system and skeletal muscle involvement, and viral triggered neuroimmunological conditions associated with SARS-CoV-2, as well as therapeutic approaches that have been considered for these specific complications worldwide.
Collapse
Affiliation(s)
- Kiandokht Keyhanian
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Raffaella Pizzolato Umeton
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Babak Mohit
- Sleep Disorders Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Vahid Davoudi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fatemeh Hajighasemi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
38
|
Shi Z, Puyo CA. N-Acetylcysteine to Combat COVID-19: An Evidence Review. Ther Clin Risk Manag 2020; 16:1047-1055. [PMID: 33177829 PMCID: PMC7649937 DOI: 10.2147/tcrm.s273700] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The novel coronavirus disease (COVID-19) is caused by a virus (SARS-Cov-2) and is known for inducing multisystem organ dysfunction associated with significant morbidity and mortality. Current therapeutic strategies for COVID-19 have failed to effectively reduce mortality rate, especially for elderly patients. A newly developed vaccine against SARS-Cov-2 has been reported to induce the production of neutralizing antibodies in young volunteers. However, the vaccine has shown limited benefit in the elderly, suggesting an age-dependent immune response. As a result, exploring new applications of existing medications could potentially provide valuable treatments for COVID-19. N-acetylcysteine (NAC) has been used in clinical practice to treat critically ill septic patients, and more recently for COVID-19 patients. NAC has antioxidant, anti-inflammatory and immune-modulating characteristics that may prove beneficial in the treatment and prevention of SARS-Cov-2. This review offers a thorough analysis of NAC and discusses its potential use for treatment of COVID-19.
Collapse
Affiliation(s)
- Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Carlos A Puyo
- Department of Anesthesia and Critical Care, Holy Family Hospital, Steward Health Care, Methuen, MA, USA
| |
Collapse
|
39
|
Yepes-Pérez AF, Herrera-Calderon O, Quintero-Saumeth J. Uncaria tomentosa (cat's claw): a promising herbal medicine against SARS-CoV-2/ACE-2 junction and SARS-CoV-2 spike protein based on molecular modeling. J Biomol Struct Dyn 2020; 40:2227-2243. [PMID: 33118480 PMCID: PMC7657399 DOI: 10.1080/07391102.2020.1837676] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
COVID-19 is a novel severe acute respiratory syndrome coronavirus. Currently, there is no effective treatment and vaccines seem to be the solution in the future. Virtual screening of potential drugs against the S protein of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) has provided small molecular compounds with a high binding affinity. Unfortunately, most of these drugs do not attach with the binding interface of the receptor-binding domain (RBD)–angiotensin-converting enzyme-2 (ACE-2) complex in host cells. Molecular modeling was carried out to evaluate the potential antiviral properties of the components of the medicinal herb Uncaria tomentosa (cat’s claw) focusing on the binding interface of the RBD–ACE-2 and the viral spike protein. The in silico approach starts with protein–ligand docking of 26 Cat’s claw key components followed by molecular dynamics simulations and re-docked calculations. Finally, we carried out drug-likeness calculations for the most qualified cat’s claw components. The structural bioinformatics approaches led to the identification of several bioactive compounds of U. tomentosa with potential therapeutic effect by dual strong interaction with interface of the RBD–ACE-2 and the ACE-2 binding site on SARS-CoV-2 RBD viral spike. In addition, in silico drug-likeness indices for these components were calculated and showed good predicted therapeutic profiles of these phytochemicals found in U. tomentosa (cat’s claw). Our findings suggest the potential effectiveness of cat’s claw as complementary and/or alternative medicine for COVID-19 treatment. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Andres F Yepes-Pérez
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia-UdeA, Medellin, Colombia
| | - Oscar Herrera-Calderon
- Academic Department of Pharmacology Bromatology and Toxicology,Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | |
Collapse
|
40
|
Dahiya DS, Kichloo A, Albosta M, Pagad S, Wani F. Gastrointestinal implications in COVID-19. J Investig Med 2020; 68:1397-1401. [DOI: 10.1136/jim-2020-001559] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Believed to have originated from a local Huanan Seafood Wholesale Market in Wuhan, Hubei Province in China, the COVID-19 has had an unprecedented and catastrophic impact on humanity, with the WHO declaring it a global pandemic. Although the first case of COVID-19 was reported in December 2019, the primary source and intermediate host have not been confirmed, but human-to-human transmission has been universally accepted. The main mode of transmission of the virus is through respiratory droplets along with prominent respiratory system involvement. However, fecal-oral transmission due to the shedding of the virus in the gastrointestinal (GI) tract may continue for up to 10 weeks after respiratory clearance and is fast becoming important. SARS-CoV-2 shows a high affinity to ACE2 receptors, making sites of high ACE2 receptor expression, such as lungs, GI tract, brain, kidneys, heart, liver and immune system, a prime target for infection. Through this literature review, we aim to summarize the current knowledge of immunological pathways that contribute to the disease with a focus specifically on the GI tract involvement. We direct attention to the pathophysiological mechanism of involvement of the GI tract leading to symptomatic manifestations, track GI organ-specific viral loads to compare and contrast with other organ systems. We briefly detail specific treatment strategies from a GI disease standpoint and mention special considerations when there is involvement of the GI tract.
Collapse
|
41
|
Pehote G, Vij N. Autophagy Augmentation to Alleviate Immune Response Dysfunction, and Resolve Respiratory and COVID-19 Exacerbations. Cells 2020; 9:cells9091952. [PMID: 32847034 PMCID: PMC7565665 DOI: 10.3390/cells9091952] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
The preservation of cellular homeostasis requires the synthesis of new proteins (proteostasis) and organelles, and the effective removal of misfolded or impaired proteins and cellular debris. This cellular homeostasis involves two key proteostasis mechanisms, the ubiquitin proteasome system and the autophagy–lysosome pathway. These catabolic pathways have been known to be involved in respiratory exacerbations and the pathogenesis of various lung diseases, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and coronavirus disease-2019 (COVID-19). Briefly, proteostasis and autophagy processes are known to decline over time with age, cigarette or biomass smoke exposure, and/or influenced by underlying genetic factors, resulting in the accumulation of misfolded proteins and cellular debris, elevating apoptosis and cellular senescence, and initiating the pathogenesis of acute or chronic lung disease. Moreover, autophagic dysfunction results in an impaired microbial clearance, post-bacterial and/or viral infection(s) which contribute to the initiation of acute and recurrent respiratory exacerbations as well as the progression of chronic obstructive and restrictive lung diseases. In addition, the autophagic dysfunction-mediated cystic fibrosis transmembrane conductance regulator (CFTR) immune response impairment further exacerbates the lung disease. Recent studies demonstrate the therapeutic potential of novel autophagy augmentation strategies, in alleviating the pathogenesis of chronic obstructive or restrictive lung diseases and exacerbations such as those commonly seen in COPD, CF, ALI/ARDS and COVID-19.
Collapse
Affiliation(s)
- Garrett Pehote
- Michigan State University College of Osteopathic Medicine, East Lansing, MI 48823, USA;
| | - Neeraj Vij
- Department of Pediatrics and Pulmonary Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- PRECISION THERANOSTICS INC, Baltimore, MD 21202, USA
- VIJ BIOTECH, Baltimore, MD 21202, USA
- Correspondence: or ; Tel.: +1-240-623-0757
| |
Collapse
|