1
|
Zhao X, Wang S, He X, Wei W, Huang K. Quercetin prevents the USP22-Snail1 signaling pathway to ameliorate diabetic tubulointerstitial fibrosis. Food Funct 2024; 15:11990-12006. [PMID: 39556027 DOI: 10.1039/d4fo03564j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Our previous studies have demonstrated that ubiquitin-specific peptidase 22 (USP22) has the capacity to accelerate renal epithelial-to-mesenchymal transition (EMT) and promote the pathological progression of diabetic tubulointerstitial fibrosis (TIF) by regulating the ubiquitination of Snail1, an EMT transcription factor. Quercetin is a type of flavonol compound widely found in fruits and vegetables that has anti-inflammatory, antioxidant and anti-fibrosis effects. However, whether quercetin promotes the degradation of Snail1 and regulates the pathological progression of TIF by inhibiting USP22 requires further investigation. In this study, we found that quercetin significantly inhibited the expression of USP22 and Snail1 in high glucose (HG)-induced renal tubular epithelial cells (TECs), and reversed the expression of EMT-related proteins and inhibited the overproduction of fibronectin (FN) and Collage Type IV (Collagen IV) induced by high glucose. Additionally, quercetin blocked the deubiquitination of Snail1 mediated by USP22. Further study found that quercetin inhibited the interaction between USP22 and Snail1, thereby reducing the stability of Snail1. Furthermore, quercetin also reduced the protein levels of USP22 and Snail1 in the kidney tissue of diabetic mice and ameliorated renal function, delayed EMT and TIF. In conclusion, quercetin regulates the USP22-Snail1 signal pathway to inhibit the occurrence of EMT both in vitro and in vivo, and ultimately ameliorate the pathological progress of TIF.
Collapse
Affiliation(s)
- Xilin Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Songping Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xuelan He
- Phase I Clinical Trial Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China.
| | - Wentao Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Kaipeng Huang
- Phase I Clinical Trial Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Luo M, Hu Z, Yang J, Yang J, Sheng W, Lin C, Li D, He Q. Diosgenin Improves Lipid Metabolism in Diabetic Nephropathy via Regulation of miR-148b-3p/DNMT1/FOXO1 Axis. Nephron Clin Pract 2024; 149:226-239. [PMID: 39602888 DOI: 10.1159/000541690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/24/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The progression of diabetic nephropathy (DN) is closely associated with lipid accumulation. Diosgenin (Dio) plays a beneficial role in the lipid metabolism associated with multiple diseases. Thus, the mechanism underlying Dio's function in DN associated with aberrant lipid accumulation warrants further investigation. METHODS To model DN in vitro, HK-2 cells were treated with high glucose (HG) and palmitic acid. Cell viability was evaluated using MTT assay. The triglyceride (TG) content in HK-2 cells was measured using a commercial assay kit. The formation of lipid droplets in HK-2 cells was observed using Oil Red O staining. The expression levels of mRNA and protein were detected using RT-qPCR and Western blot, respectively. The DNA methylation of FOXO1 was assessed using MSP. The interaction between DNMT1 and the FOXO1 promoter was confirmed by ChIP assay. RESULTS Dio treatment reduced TG levels and lipid droplet formation in HK-2 cells co-treated with HG and palmitic acid. Simultaneously, the levels of miR-148b-3p and FOXO1 were increased by Dio, while Dio decreased the expression levels of DNMT1 and SREBP-2. Meanwhile, miR-148b-3p can bind to DNMT1, which in turn inhibits the expression of FOXO1 by mediating the DNA methylation of FOXO1. In addition, FOXO1 negatively regulates the expression of SREBP-2 by interacting with the SREBP-2 promoter. MiR-148b-3p inhibition or silencing of FOXO1 abolished the inhibitory effect of Dio on TG production and lipid droplet formation. This effect was further exacerbated by the downregulation of DNMT1. FOXO1 overexpression may counteract the promotive effects of miR-148b-3p inhibitor on lipid accumulation. CONCLUSIONS Dio treatment reduced TG production and lipid droplet formation in HK-2 cells during the progression of DN by modulating the miR-148b-3p/DNMT1/FOXO1/SREBP-2 axis. This finding provides new evidence supporting the therapeutic potential of Dio for DN.
Collapse
Affiliation(s)
- Min Luo
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zongren Hu
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jichang Yang
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Gooeto Internet-Based Hospital, Changsha, China
| | - Jinhan Yang
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Gooeto Internet-Based Hospital, Changsha, China
| | - Wen Sheng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Chengxiong Lin
- Huairen Hospital of Traditional Chinese Medicine, Huaihua, China
| | - Dian Li
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qinghu He
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Wang L, Wang J, Xu A, Wei L, Pei M, Shen T, Xian X, Yang K, Fei L, Pan Y, Yang H, Wang X. Future embracing: exosomes driving a revolutionary approach to the diagnosis and treatment of idiopathic membranous nephropathy. J Nanobiotechnology 2024; 22:472. [PMID: 39118155 PMCID: PMC11312222 DOI: 10.1186/s12951-024-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and is associated with high rates of end-stage renal disease. Early detection and precise interventions are crucial for improving patient prognosis and quality of life. However, the current diagnosis primarily relies on renal biopsies and traditional biomarkers, which have limitations. Additionally, targeted therapeutic strategies are lacking. Exosomes, small vesicles that facilitate intercellular communication, have emerged as potential noninvasive diagnostic markers due to their stability, diverse cargo, and rapid detectability. They also hold promise as carriers for gene and drug delivery, presenting innovative opportunities in renal disease prognosis and treatment. However, research on exosomes in the context of idiopathic membranous nephropathy (IMN) remains limited, with a focus on exploring urinary exosomes as IMN markers. In this review, we summarize the current status of MN diagnosis and treatment, highlight the fundamental characteristics of exosomes, and discuss recent advancements in their application to IMN diagnosis and therapy. We provide insights into the clinical prospects of exosomes in IMN and acknowledge potential challenges. This article aims to offer forward-looking insights into the future of exosome-mediated IMN diagnosis and treatment, indicating a revolutionary transformation in this field.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China
| | - Ao Xu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lijuan Wei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Ming Pei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Tuwei Shen
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xian Xian
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450099, China
| | - Lingyan Fei
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China.
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
4
|
Hu M, Shen X, Zhou L. Role of Extracellular Vesicle-Derived Noncoding RNAs in Diabetic Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:303-312. [PMID: 39131883 PMCID: PMC11309761 DOI: 10.1159/000539024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/18/2024] [Indexed: 08/13/2024]
Abstract
Background Diabetic kidney disease (DKD), a metabolism-related syndrome characterized by abnormal glomerular filtration rate, proteinuria, and renal microangiopathy, is one of the most common forms of chronic kidney disease, whereas extracellular vesicles (EVs) have been recently evidenced as a novel cell communication player in DKD occurrence and progress via releasing various bioactive molecules, including proteins, lipids, and especially RNA, among which noncoding RNAs (including miRNAs, lncRNAs, and circRNAs) are the major regulators. However, the functional relevance of EV-derived ncRNAs in DKD is to be elucidated. Summary Studies have reported that EV-derived ncRNAs regulate gene expression via a diverse range of regulatory mechanisms, contributing to diverse phenotypes related to DKD progression. Furthermore, there are already many potential clinical diagnostic and therapeutic studies based on these ncRNAs, which can be expected to have potential applications in clinical practice for EV-derived ncRNAs. Key Messages In the current review, we summarized the mechanistic role of EVs in DKD according to biological function classifications, including inflammation and oxidative stress, epithelial-mesenchymal transition, cell death, and extracellular matrix deposition. In addition, we comprehensively discussed the potential applications of EV-derived ncRNAs as diagnostic biomarkers and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Miao Hu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiahong Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling Zhou
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Aboismaiel MG, Amin MN, Eissa LA. Renoprotective effect of a novel combination of 6-gingerol and metformin in high-fat diet/streptozotocin-induced diabetic nephropathy in rats via targeting miRNA-146a, miRNA-223, TLR4/TRAF6/NLRP3 inflammasome pathway and HIF-1α. Biol Res 2024; 57:47. [PMID: 39033184 PMCID: PMC11265012 DOI: 10.1186/s40659-024-00527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/29/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND MiRNA-146a and miRNA-223 are key epigenetic regulators of toll-like receptor 4 (TLR4)/tumor necrosis factor-receptor-associated factor 6 (TRAF6)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway, which is involved in diabetic nephropathy (DN) pathogenesis. The currently available oral anti-diabetic treatments have been insufficient to halt DN development and progression. Therefore, this work aimed to assess the renoprotective effect of the natural compound 6-gingerol (GR) either alone or in combination with metformin (MET) in high-fat diet/streptozotocin-induced DN in rats. The proposed molecular mechanisms were also investigated. METHODS Oral gavage of 6-gingerol (100 mg/kg) and metformin (300 mg/kg) were administered to rats daily for eight weeks. MiRNA-146a, miRNA-223, TLR4, TRAF6, nuclear factor-kappa B (NF-κB) (p65), NLRP3, caspase-1, and hypoxia-inducible factor-1 alpha (HIF-1α) mRNA expressions were measured using real-time PCR. ELISA was used to measure TLR4, TRAF6, NLRP3, caspase-1, tumor necrosis factor-alpha (TNF-α), and interleukin-1-beta (IL-1β) renal tissue levels. Renal tissue histopathology and immunohistochemical examination of fibronectin and NF-κB (p65) were performed. RESULTS 6-Gingerol treatment significantly reduced kidney tissue damage and fibrosis. 6-Gingerol up-regulated miRNA-146a and miRNA-223 and reduced TLR4, TRAF6, NF-κB (p65), NLRP3, caspase-1, TNF-α, IL-1β, HIF-1α and fibronectin renal expressions. 6-Gingerol improved lipid profile and renal functions, attenuated renal hypertrophy, increased reduced glutathione, and decreased blood glucose and malondialdehyde levels. 6-Gingerol and metformin combination showed superior renoprotective effects than either alone. CONCLUSION 6-Gingerol demonstrated a key protective role in DN by induction of miRNA-146a and miRNA-223 expression and inhibition of TLR4/TRAF6/NLRP3 inflammasome signaling. 6-Gingerol, a safe, affordable, and abundant natural compound, holds promise for use as an adjuvant therapy with metformin in diabetic patients to attenuate renal damage and stop the progression of DN.
Collapse
Affiliation(s)
- Merna G Aboismaiel
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed N Amin
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
6
|
Tahmasebi F, Asl ER, Vahidinia Z, Barati S. Stem Cell-Derived Exosomal MicroRNAs as Novel Potential Approach for Multiple Sclerosis Treatment. Cell Mol Neurobiol 2024; 44:44. [PMID: 38713302 PMCID: PMC11076329 DOI: 10.1007/s10571-024-01478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammation and demyelination of CNS neurons. Up to now, there are many therapeutic strategies for MS but they are only being able to reduce progression of diseases and have not got any effect on repair and remyelination. Stem cell therapy is an appropriate method for regeneration but has limitations and problems. So recently, researches were used of exosomes that facilitate intercellular communication and transfer cell-to-cell biological information. MicroRNAs (miRNAs) are a class of short non-coding RNAs that we can used to their dysregulation in order to diseases diagnosis. The miRNAs of microvesicles obtained stem cells may change the fate of transplanted cells based on received signals of injured regions. The miRNAs existing in MSCs may be displayed the cell type and their biological activities. Current studies show also that the miRNAs create communication between stem cells and tissue-injured cells. In the present review, firstly we discuss the role of miRNAs dysregulation in MS patients and miRNAs expression by stem cells. Finally, in this study was confirmed the relationship of microRNAs involved in MS and miRNAs expressed by stem cells and interaction between them in order to find appropriate treatment methods in future for limit to disability progression.
Collapse
Affiliation(s)
- Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran.
| |
Collapse
|
7
|
Poojari AS, Wairkar S, Kulkarni YA. Stem cells as a regenerative medicine approach in treatment of microvascular diabetic complications. Tissue Cell 2023; 85:102225. [PMID: 37801960 DOI: 10.1016/j.tice.2023.102225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood glucose and is associated with high morbidity and mortality among the diabetic population. Uncontrolled chronic hyperglycaemia causes increased formation and accumulation of different oxidative and nitrosative stress markers, resulting in microvascular and macrovascular complications, which might seriously affect the quality of a patient's life. Conventional treatment strategies are confined to controlling blood glucose by regulating the insulin level and are not involved in attenuating the life-threatening complications of diabetes mellitus. Thus, there is an unmet need to develop a viable treatment strategy that could target the multi-etiological factors involved in the pathogenesis of diabetic complications. Stem cell therapy, a regenerative medicine approach, has been investigated in diabetic complications owing to their unique characteristic features of self-renewal, multilineage differentiation and regeneration potential. The present review is focused on potential therapeutic applications of stem cells in the treatment of microvascular diabetic complications such as nephropathy, retinopathy, and polyneuropathy.
Collapse
Affiliation(s)
- Avinash S Poojari
- Shobhabhen Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sarika Wairkar
- Shobhabhen Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhabhen Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
8
|
He FT, Fu XL, Li MH, Fu CY, Chen JZ. USP14 Regulates ATF2/PIK3CD Axis to Promote Microvascular Endothelial Cell Proliferation, Migration, and Angiogenesis in Diabetic Retinopathy. Biochem Genet 2023; 61:2076-2091. [PMID: 36939972 DOI: 10.1007/s10528-023-10358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/23/2023] [Indexed: 03/21/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in diabetic patients. However, the pathogenesis of DR is complex, and no firm conclusions have been drawn so far. It has become a hot spot in ophthalmology research to deeply study the mechanism of DR pathological changes and find effective treatment options. Human retinal microvascular endothelial cells (HRMECs) were induced by high glucose (HG) to construct DR cell model. CCK-8 assay was used to detect the viability of HRMECs. Transwell assay was used to detect the migration ability of HRMECs. Tube formation assay was used to identify the tube formation ability of HRMECs. The expressions of USP14, ATF2 and PIK3CD were detected by Western blot analysis and qRT-PCR assay. Immunoprecipitation (IP) was used to ascertain the relationship of USP14 and ATF2. To explore the regulatory relationship between ATF2 and PIK3CD by dual-luciferase reporter gene assay and Chromatin immunoprecipitation (ChIP) assay. High glucose treatment promoted the proliferation, migration, and tube formation of HRMEC, and the expressions of USP14, ATF2 and PIK3CD were significantly up-regulated. USP14 or ATF2 knockdown inhibited HG-induced HRMECs proliferation, migration, and tube formation. USP14 regulated the expression of ATF2, and ATF2 promoted PIK3CD expression. PIK3CD overexpression attenuated the inhibitory effectiveness of USP14 knockdown on proliferation, migration and tube formation of DR cell model. Here, we revealed that USP14 regulated the ATF2/PIK3CD axis to promote proliferation, migration, and tube formation in HG-induced HRMECs.
Collapse
Affiliation(s)
- Fu-Tao He
- Department of Ophthalmology, Hainan West Central Hospital, No.2 Fubo East Road, Nada Town, Danzhou, 571700, Hainan Province, People's Republic of China
| | - Xiao-Lin Fu
- Department of Ophthalmology, Hainan West Central Hospital, No.2 Fubo East Road, Nada Town, Danzhou, 571700, Hainan Province, People's Republic of China.
| | - Mo-Han Li
- Department of Ophthalmology, Hainan West Central Hospital, No.2 Fubo East Road, Nada Town, Danzhou, 571700, Hainan Province, People's Republic of China
| | - Chun-Yan Fu
- Department of Ophthalmology, Hainan West Central Hospital, No.2 Fubo East Road, Nada Town, Danzhou, 571700, Hainan Province, People's Republic of China
| | - Jian-Zhi Chen
- Department of Ophthalmology, Hainan West Central Hospital, No.2 Fubo East Road, Nada Town, Danzhou, 571700, Hainan Province, People's Republic of China
| |
Collapse
|
9
|
Chao Y, Gu T, Zhang Z, Wu T, Wang J, Bi Y. The role of miRNAs carried by extracellular vesicles in type 2 diabetes and its complications. J Diabetes 2023; 15:838-852. [PMID: 37583355 PMCID: PMC10590682 DOI: 10.1111/1753-0407.13456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 08/17/2023] Open
Abstract
Diabetes poses severe global public health problems and places heavy burdens on the medical and economic systems of society. Type 2 diabetes (T2D) accounts for 90% of these cases. Diabetes also often accompanies serious complications that threaten multiple organs such as the brain, eyes, kidneys, and the cardiovascular system. MicroRNAs (miRNAs) carried by extracellular vesicles (EV-miRNAs) are considered to mediate cross-organ and cross-cellular communication and have a vital role in the pathophysiology of T2D. They also offer promising sources of diabetes-related biomarkers and serve as effective therapeutic targets. Here, we briefly reviewed studies of EV-miRNAs in T2D and related complications. Specially, we innovatively explore the targeting nature of miRNA action due to the target specificity of vesicle binding, aiding mechanism understanding as well as the detection and treatment of diseases.
Collapse
Affiliation(s)
- Yining Chao
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Branch of National Clinical Research Centre for Metabolic DiseasesNanjingChina
| | - Tianwei Gu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Branch of National Clinical Research Centre for Metabolic DiseasesNanjingChina
| | - Zhou Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Branch of National Clinical Research Centre for Metabolic DiseasesNanjingChina
| | - Tianyu Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Branch of National Clinical Research Centre for Metabolic DiseasesNanjingChina
| | - Jin Wang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Branch of National Clinical Research Centre for Metabolic DiseasesNanjingChina
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Branch of National Clinical Research Centre for Metabolic DiseasesNanjingChina
| |
Collapse
|
10
|
Ghafouri-Fard S, Shoorei H, Dong P, Poornajaf Y, Hussen BM, Taheri M, Akbari Dilmaghani N. Emerging functions and clinical applications of exosomal microRNAs in diseases. Noncoding RNA Res 2023; 8:350-362. [PMID: 37250456 PMCID: PMC10209650 DOI: 10.1016/j.ncrna.2023.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/07/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
Exosomes are an important group of extracellular vesicles that transfer several kinds of biomolecules and facilitate cell-cell communication. The content of exosomes, particularly the amounts of microRNA (miRNAs) inside these vesicles, demonstrates a disease-specific pattern reflecting pathogenic processes and may be employed as a diagnostic and prognostic marker. miRNAs may enter recipient cells through exosomes and generate a RISC complex that can cause degradation of the target mRNAs or block translation of their corresponding proteins. Therefore, exosome-derived miRNAs constitute an important mechanism of gene regulation in recipient cells. The miRNA content of exosomes can be used as an important tool in the detection of diverse disorders, particularly cancers. This research field has an important situation in cancer diagnosis. In addition, exosomal microRNAs offer a great deal of promise in the treatment of human disorders. However, there are still certain challenges to be resolved. The most important challenges are as follow: the detection of exosomal miRNAs should be standardized, exosomal miRNAs-associated studies should be conducted in large number of clinical samples, and experiment settings and detection criteria should be consistent across different labs. The goal of this article is to present an overview of the effects of exosome-derived microRNAs on a variety of diseases, including gastrointestinal, pulmonary, neurological, and cardiovascular diseases, with a particular emphasis on malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Wang H, Wang J, Liu T, Leng Y, Yang W. Stem cell-derived exosomal MicroRNAs: Potential therapies in diabetic kidney disease. Biomed Pharmacother 2023; 164:114961. [PMID: 37257230 DOI: 10.1016/j.biopha.2023.114961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023] Open
Abstract
The diabetic kidney disease (DKD) is chronic kidney disease caused by diabetes and one of the most common comorbidities. It is often more difficult to treat end-stage renal disease once it develops because of its complex metabolic disorders, so early prevention and treatment are important. However, currently available DKD therapies are not ideal, and novel therapeutic strategies are urgently needed. The potential of stem cell therapies partly depends on their ability to secrete exosomes. More and more studies have shown that stem cell-derived exosomes take part in the DKD pathophysiological process, which may offer an effective therapy for DKD treatment. Herein, we mainly review potential therapies of stem cell-derived exosomes mainly stem cell-derived exosomal microRNAs in DKD, including their protective effects on mesangial cells, podocytes and renal tubular epithelial cells. Using this secretome as possible therapeutic drugs without potential carcinogenicity should be the focus of further research.
Collapse
Affiliation(s)
- Han Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jiajia Wang
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Tiejun Liu
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yan Leng
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
12
|
Alur V, Raju V, Vastrad B, Vastrad C, Kavatagimath S, Kotturshetti S. Bioinformatics Analysis of Next Generation Sequencing Data Identifies Molecular Biomarkers Associated With Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231155635. [PMID: 36844983 PMCID: PMC9944228 DOI: 10.1177/11795514231155635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is the most common metabolic disorder. The aim of the present investigation was to identify gene signature specific to T2DM. Methods The next generation sequencing (NGS) dataset GSE81608 was retrieved from the gene expression omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) between T2DM and normal controls. Then, Gene Ontology (GO) and pathway enrichment analysis, protein-protein interaction (PPI) network, modules, miRNA (micro RNA)-hub gene regulatory network construction and TF (transcription factor)-hub gene regulatory network construction, and topological analysis were performed. Receiver operating characteristic curve (ROC) analysis was also performed to verify the prognostic value of hub genes. Results A total of 927 DEGs (461 were up regulated and 466 down regulated genes) were identified in T2DM. GO and REACTOME results showed that DEGs mainly enriched in protein metabolic process, establishment of localization, metabolism of proteins, and metabolism. The top centrality hub genes APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1 were screened out as the critical genes. ROC analysis provides prognostic value of hub genes. Conclusion The potential crucial genes, especially APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1, might be linked with risk of T2DM. Our study provided novel insights of T2DM into genetics, molecular pathogenesis, and novel therapeutic targets.
Collapse
Affiliation(s)
- Varun Alur
- Department of Endocrinology, J.J.M
Medical College, Davanagere, Karnataka, India
| | - Varshita Raju
- Department of Obstetrics and
Gynecology, J.J.M Medical College, Davanagere, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry,
K.L.E. College of Pharmacy, Gadag, Karnataka, India
| | | | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E.
College of Pharmacy, Belagavi, Karnataka, India
| | | |
Collapse
|
13
|
Kitamura H. Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders. Int J Mol Sci 2023; 24:3219. [PMID: 36834633 PMCID: PMC9966627 DOI: 10.3390/ijms24043219] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Ubiquitination and deubiquitination are reversible processes that modify the characteristics of target proteins, including stability, intracellular localization, and enzymatic activity. Ubiquitin-specific proteases (USPs) constitute the largest deubiquitinating enzyme family. To date, accumulating evidence indicates that several USPs positively and negatively affect metabolic diseases. USP22 in pancreatic β-cells, USP2 in adipose tissue macrophages, USP9X, 20, and 33 in myocytes, USP4, 7, 10, and 18 in hepatocytes, and USP2 in hypothalamus improve hyperglycemia, whereas USP19 in adipocytes, USP21 in myocytes, and USP2, 14, and 20 in hepatocytes promote hyperglycemia. In contrast, USP1, 5, 9X, 14, 15, 22, 36, and 48 modulate the progression of diabetic nephropathy, neuropathy, and/or retinopathy. USP4, 10, and 18 in hepatocytes ameliorates non-alcoholic fatty liver disease (NAFLD), while hepatic USP2, 11, 14, 19, and 20 exacerbate it. The roles of USP7 and 22 in hepatic disorders are controversial. USP9X, 14, 17, and 20 in vascular cells are postulated to be determinants of atherosclerosis. Moreover, mutations in the Usp8 and Usp48 loci in pituitary tumors cause Cushing syndrome. This review summarizes the current knowledge about the modulatory roles of USPs in energy metabolic disorders.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Laboratory of Comparative Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| |
Collapse
|
14
|
Yang X, Yu Y, Li B, Chen Y, Feng M, Hu Y, Jiang W. Bone marrow mesenchymal stem cell-derived exosomes protect podocytes from HBx-induced ferroptosis. PeerJ 2023; 11:e15314. [PMID: 37193022 PMCID: PMC10183163 DOI: 10.7717/peerj.15314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/18/2023] Open
Abstract
Introduction Hepatitis B virus-associated glomerulonephritis (HBV-GN) is a common secondary kidney disease in China, the pathogenesis of which is not completely clear, and there is still a lack of effective treatment. Methods The mechanism of exosomes derived from bone marrow mesenchymal stem cells (BMSCs) was investigated by using HBx-transfected human renal podocytes. Cell viability was detected by CCK8 assay. Iron and malondialdehyde (MDA) contents were detected by using commercial kits. Reactive oxygen species (ROS) levels were measured by flow cytometry analysis. The expression of ferroptosis related molecules was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. The effect of miR-223-3p transferred by BMSC-derived exosomes on HBx-overexpressing podocytes was proved by using miR-223-3p inhibitor. Results The cell viability of podocytes reduced at 72 h or 96 h after the transfection of lentivirus overexpressing HBx protein (p < 0.05). Ferroptosis-related proteins, including glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) were down-regulated upon HBx overexpression, while acyl-CoA synthetase long-chain family member 4 (ACSL4) was up-regulated (p < 0.05). Intracellular levels of iron, MDA, and ROS were also enhanced (p < 0.05). BMSC-derived exosomes protected against ferroptosis induced by HBx overexpression in podocytes. miR-223-3p was enriched in BMSC-derived exosomes. Application of miR-223-3p inhibitor reversed the protective effect of BMSC-derived exosomes on HBx-induced ferroptosis in podocytes. Conclusion BMSC-derived exosomes inhibit HBx-induced podocyte ferroptosis by transferring miR-223-3p.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yani Yu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baoshuang Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yueqi Chen
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Moxuan Feng
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongzheng Hu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Hu L, Zhang R, Wu J, Feng C, Jiang J. Kruppel-Like Factor (KLF6) Regulates Oxidative Stress and Apoptosis of Human Retinal Pigment Epithelial Cells Induced by High Glucose Through Transcriptional Regulation of USP22 and the Downstream SIRT1/Nrf2 Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Oxidative stress and apoptosis play an important role in diabetic retinopathy (DR). KLF6 and its transcriptional regulator USP22 are abnormally expressed in DR, but the specific role and mechanism have not been reported. In this paper, we will discuss the specific roles and mechanisms
of KLF6 and USP22 on oxidative stress and apoptosis in DR. In this study, RT-qPCR and western blot were used to detect the expression of KLF6 and USP22 in ARPE-19 cells. Subsequently, after KLF6 was overexpressed and USP22 expression was inhibited by cell transfection, the oxidative stress
and apoptosis related indexes were detected by CCK-8, ELISA, TUNEL and other techniques to explore the mechanism. In addition, we used luciferase and ChIP to detect the association between KLF6 and USP22. Finally, the expression of proteins related to the SIRT1/Nrf2 pathway was detected by
western blot. The results showed that silencing USP22 increased the activity, and inhibited apoptosis and oxidative stress of ARPE-19 cells induced by high glucose (HG). KLF6 transcriptionally activates USP22. Overexpression of KLF6 reversed the protective effects of silencing USP22 on HG-induced
ARPE-19 cells against apoptosis and antioxidant stress, which may be achieved by regulating the SIRT1/Nrf2 pathway. In conclusion, KLF6 regulated oxidative stress and apoptosis of ARPE-19 cells induced by high glucose through transcriptional regulation of USP22 and the downstream SIRT1/Nrf2
pathway.
Collapse
Affiliation(s)
- Liping Hu
- Department of Fundus, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Rui Zhang
- Department of Fundus, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Jianhua Wu
- Department of Fundus, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Chao Feng
- Department of Fundus, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Jingli Jiang
- Department of Ophthalmology, Wenrong Hospital of Hengdian, Jinhua, Zhejiang, 322118, China
| |
Collapse
|
16
|
Li Q, Zhang Z, Yin M, Cui C, Zhang Y, Wang Y, Liu F. What do we actually know about exosomal microRNAs in kidney diseases? Front Physiol 2022; 13:941143. [PMID: 36105281 PMCID: PMC9464820 DOI: 10.3389/fphys.2022.941143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
There are several types of kidney diseases with complex causes. If left untreated, these diseases irreversibly progress to end-stage renal disease. Thus, their early diagnosis and targeted treatment are important. Exosomes-extracellular vesicles released by a variety of cells-are ideal carriers for DNA, RNA, proteins, and other metabolites owing to their bilayer membranes. Studies have shown that almost all renal cells can secrete exosomes. While research on exosomal microRNAs in the context of renal diseases begun only recently, rapid progress has been achieved. This review summarizes the changes in exosomal microRNA expression in different kidney diseases. Thus, it highlights the diagnostic and prognostic value of these exosomal microRNAs. Further, this review analyzes their roles in the development of different kidney diseases, guiding research on molecular mechanisms and therapeutic strategies.
Collapse
Affiliation(s)
- Qianyu Li
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Zhiping Zhang
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Min Yin
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Cancan Cui
- Clinical Laboratory, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Yucheng Zhang
- Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Yali Wang
- Department of Blood Transfusion, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Liu
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Liu W, Lin H, Nie W, Wan J, Jiang Q, Zhang A. Exosomal miR-221-3p Derived from Bone Marrow Mesenchymal Stem Cells Alleviates Asthma Progression by Targeting FGF2 and Inhibiting the ERK1/2 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5910874. [PMID: 35990834 PMCID: PMC9385294 DOI: 10.1155/2022/5910874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 12/02/2022]
Abstract
Exosomes derived from human bone marrow mesenchymal stem cells (BMSCs) play potential protective roles in asthma. However, the underlying mechanisms remain not fully elucidated. Herein, exosomes were isolated from BMSCs, and the morphology, particle size, and exosome marker proteins were identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot, respectively. Then airway smooth muscle cells (ASMCs) were treated with transforming growth factor-β1 (TGF-β1) to construct a proliferation model and then incubated with BMSCs-derived exosomes. We found that exosome incubation increased miR-221-3p expression and inhibited proliferation, migration, and the levels of extracellular matrix (ECM) proteins including fibronectin and collagen III. Moreover, FGF2 was identified as a target gene of miR-221-3p. FGF2 overexpression reversed the inhibitory effects of exosomal miR-221-3p on ASMC progression. Besides, the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) is inhibited by exosomal miR-221-3p, which was reversed by FGF2 overexpression. And ERK1/2 signaling activator reversed the effects of exosomal miR-221-3p on ASMC progression. Additionally, an ovalbumin (OVA)-induced asthmatic mice model was established, and exosome treatment alleviated airway hyper-responsiveness (AHR), histopathological damage, and ECM deposition in asthmatic mice. Taken together, our findings indicated that exosomal miR-221-3p derived from BMSCs inhibited FGF2 expression and the ERK1/2 signaling, thus attenuating proliferation, migration, and ECM deposition in ASMCs and alleviating asthma progression in OVA-induced asthmatic mice. Our findings may provide a novel therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Weike Liu
- Department of Pediatrics, Chengyang District People's Hospital of Qingdao, Qingdao 266000, Shandong, China
| | - Hui Lin
- Department of Pediatrics, Chengyang District People's Hospital of Qingdao, Qingdao 266000, Shandong, China
| | - Wuhui Nie
- Department of Pediatrics, Chengyang District People's Hospital of Qingdao, Qingdao 266000, Shandong, China
| | - Jieting Wan
- Department of Haemodialysis, Jimo District People's Hospital of Qingdao, Qingdao 266000, Shandong, China
| | - Qian Jiang
- Department of Pediatrics, Chengyang District People's Hospital of Qingdao, Qingdao 266000, Shandong, China
| | - Aimei Zhang
- Department of Pediatrics, Chengyang District People's Hospital of Qingdao, Qingdao 266000, Shandong, China
| |
Collapse
|
18
|
Tailored Extracellular Vesicles: Novel Tool for Tissue Regeneration. Stem Cells Int 2022; 2022:7695078. [PMID: 35915850 PMCID: PMC9338735 DOI: 10.1155/2022/7695078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Extracellular vesicles (EVs) play an essential part in multiple pathophysiological processes including tissue injury and regeneration because of their inherent characteristics of small size, low immunogenicity and toxicity, and capability of carrying a variety of bioactive molecules and mediating intercellular communication. Nevertheless, accumulating studies have shown that the application of EVs faces many challenges such as insufficient therapeutic efficacy, a lack of targeting capability, low yield, and rapid clearance from the body. It is known that EVs can be engineered, modified, and designed to encapsulate therapeutic cargos like proteins, peptides, nucleic acids, and drugs to improve their therapeutic efficacy. Targeted peptides, antibodies, aptamers, magnetic nanoparticles, and proteins are introduced to modify various cell-derived EVs for increasing targeting ability. In addition, extracellular vesicle mimetics (EMs) and self-assembly EV-mimicking nanocomplex are applied to improve production and simplify EV purification process. The combination of EVs with biomaterials like hydrogel, and scaffolds dressing endows EVs with long-term therapeutic efficacy and synergistically enhanced regenerative outcome. Thus, we will summarize recent developments of EV modification strategies for more extraordinary regenerative effect in various tissue injury repair. Subsequently, opportunities and challenges of promoting the clinical application of engineered EVs will be discussed.
Collapse
|
19
|
Lin Y, Yang Q, Wang J, Chen X, Liu Y, Zhou T. An overview of the efficacy and signaling pathways activated by stem cell-derived extracellular vesicles in diabetic kidney disease. Front Endocrinol (Lausanne) 2022; 13:962635. [PMID: 35966088 PMCID: PMC9366010 DOI: 10.3389/fendo.2022.962635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of complications of diabetes mellitus with severe microvascular lesion and the most common cause of end-stage chronic kidney disease (ESRD). Controlling serum glucose remains the primary approach to preventing and slowing the progression of DKD. Despite considerable efforts to control diabetes, people with diabetes develop not only DKD but also ESRD. The pathogenesis of DKD is very complex, and current studies indicate that mesenchymal stromal cells (MSCs) regulate complex disease processes by promoting pro-regenerative mechanisms and inhibiting multiple pathogenic pathways. Extracellular vesicles (EVs) are products of MSCs. Current data indicate that MSC-EVs-based interventions not only protect renal cells, including renal tubular epithelial cells, podocytes and mesangial cells, but also improve renal function and reduce damage in diabetic animals. As an increasing number of clinical studies have confirmed, MSC-EVs may be an effective way to treat DKD. This review explores the potential efficacy and signaling pathways of MSC-EVs in the treatment of DKD.
Collapse
Affiliation(s)
- Yongda Lin
- Department of Nephrology, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | | | | | | | | | - Tianbiao Zhou
- Department of Nephrology, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
20
|
Quaglia M, Merlotti G, Fornara L, Colombatto A, Cantaluppi V. Extracellular Vesicles Released from Stem Cells as a New Therapeutic Strategy for Primary and Secondary Glomerulonephritis. Int J Mol Sci 2022; 23:ijms23105760. [PMID: 35628570 PMCID: PMC9142886 DOI: 10.3390/ijms23105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Current treatment of primary and secondary glomerulopathies is hampered by many limits and a significant proportion of these disorders still evolves towards end-stage renal disease. A possible answer to this unmet challenge could be represented by therapies with stem cells, which include a variety of progenitor cell types derived from embryonic or adult tissues. Stem cell self-renewal and multi-lineage differentiation ability explain their potential to protect and regenerate injured cells, including kidney tubular cells, podocytes and endothelial cells. In addition, a broad spectrum of anti-inflammatory and immunomodulatory actions appears to interfere with the pathogenic mechanisms of glomerulonephritis. Of note, mesenchymal stromal cells have been particularly investigated as therapy for Lupus Nephritis and Diabetic Nephropathy, whereas initial evidence suggest their beneficial effects in primary glomerulopathies such as IgA nephritis. Extracellular vesicles mediate a complex intercellular communication network, shuttling proteins, nucleic acids and other bioactive molecules from origin to target cells to modulate their functions. Stem cell-derived extracellular vesicles recapitulate beneficial cytoprotective, reparative and immunomodulatory properties of parental cells and are increasingly recognized as a cell-free alternative to stem cell-based therapies for different diseases including glomerulonephritis, also considering the low risk for potential adverse effects such as maldifferentiation and tumorigenesis. We herein summarize the renoprotective potential of therapies with stem cells and extracellular vesicles derived from progenitor cells in glomerulonephritis, with a focus on their different mechanisms of actions. Technological progress and growing knowledge are paving the way for wider clinical application of regenerative medicine to primary and secondary glomerulonephritis: this multi-level, pleiotropic therapy may open new scenarios overcoming the limits and side effects of traditional treatments, although the promising results of experimental models need to be confirmed in the clinical setting.
Collapse
|
21
|
Li J, Komatsu H, Poku EK, Olafsen T, Huang KX, Huang LA, Chea J, Bowles N, Chang B, Rawson J, Peng J, Wu AM, Shively JE, Kandeel FR. Biodistribution of Intra-Arterial and Intravenous Delivery of Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles in a Rat Model to Guide Delivery Strategies for Diabetes Therapies. Pharmaceuticals (Basel) 2022; 15:595. [PMID: 35631421 PMCID: PMC9143655 DOI: 10.3390/ph15050595] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Umbilical cord mesenchymal stem cell-derived extracellular vesicles (UC-MSC-EVs) have become an emerging strategy for treating various autoimmune and metabolic disorders, particularly diabetes. Delivery of UC-MSC-EVs is essential to ensure optimal efficacy of UC-MSC-EVs. To develop safe and superior EVs-based delivery strategies, we explored nuclear techniques including positron emission tomography (PET) to evaluate the delivery of UC-MSC-EVs in vivo. In this study, human UC-MSC-EVs were first successfully tagged with I-124 to permit PET determination. Intravenous (I.V.) and intra-arterial (I.A.) administration routes of [124I]I-UC-MSC-EVs were compared and evaluated by in vivo PET-CT imaging and ex vivo biodistribution in a non-diabetic Lewis (LEW) rat model. For I.A. administration, [124I]I-UC-MSC-EVs were directly infused into the pancreatic parenchyma via the celiac artery. PET imaging revealed that the predominant uptake occurred in the liver for both injection routes, and further imaging characterized clearance patterns of [124I]I-UC-MSC-EVs. For biodistribution, the uptake (%ID/gram) in the spleen was significantly higher for I.V. administration compared to I.A. administration (1.95 ± 0.03 and 0.43 ± 0.07, respectively). Importantly, the pancreas displayed similar uptake levels between the two modalities (0.20 ± 0.06 for I.V. and 0.24 ± 0.03 for I.A.). Therefore, our initial data revealed that both routes had similar delivery efficiency for [124I]I-UC-MSC-EVs except in the spleen and liver, considering that higher spleen uptake could enhance immunomodulatory application of UC-MSC-EVs. These findings could guide the development of safe and efficacious delivery strategies for UC-MSC-EVs in diabetes therapies, in which a minimally invasive I.V. approach would serve as a better delivery strategy. Further confirmation studies are ongoing.
Collapse
Affiliation(s)
- Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (H.K.); (K.X.H.); (L.A.H.); (J.R.); (J.P.)
| | - Hirotake Komatsu
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (H.K.); (K.X.H.); (L.A.H.); (J.R.); (J.P.)
| | - Erasmus K. Poku
- Department of Radiopharmacy, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (E.K.P.); (J.C.); (N.B.)
| | - Tove Olafsen
- Department of Cancer Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (T.O.); (B.C.); (A.M.W.); (J.E.S.)
| | - Kelly X. Huang
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (H.K.); (K.X.H.); (L.A.H.); (J.R.); (J.P.)
| | - Lina A. Huang
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (H.K.); (K.X.H.); (L.A.H.); (J.R.); (J.P.)
| | - Junie Chea
- Department of Radiopharmacy, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (E.K.P.); (J.C.); (N.B.)
| | - Nicole Bowles
- Department of Radiopharmacy, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (E.K.P.); (J.C.); (N.B.)
| | - Betty Chang
- Department of Cancer Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (T.O.); (B.C.); (A.M.W.); (J.E.S.)
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (H.K.); (K.X.H.); (L.A.H.); (J.R.); (J.P.)
| | - Jiangling Peng
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (H.K.); (K.X.H.); (L.A.H.); (J.R.); (J.P.)
| | - Anna M. Wu
- Department of Cancer Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (T.O.); (B.C.); (A.M.W.); (J.E.S.)
| | - John E. Shively
- Department of Cancer Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (T.O.); (B.C.); (A.M.W.); (J.E.S.)
| | - Fouad R. Kandeel
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (H.K.); (K.X.H.); (L.A.H.); (J.R.); (J.P.)
| |
Collapse
|
22
|
Zhu Y, Luo M, Bai X, Lou Y, Nie P, Jiang S, Li J, Li B, Luo P. Administration of mesenchymal stem cells in diabetic kidney disease: mechanisms, signaling pathways, and preclinical evidence. Mol Cell Biochem 2022; 477:2073-2092. [PMID: 35469057 DOI: 10.1007/s11010-022-04421-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is a serious microvascular complication of diabetes. Currently, the prevalence and mortality of DKD are increasing annually. However, with no effective drugs to prevent its occurrence and development, the primary therapeutic option is to control blood sugar and blood pressure. Therefore, new and effective drugs/methods are imperative to prevent the development of DKD in patients with diabetes. Mesenchymal stem cells (MSCs) with multi-differentiation potential and paracrine function have received extensive attention as a new treatment option for DKD. However, their role and mechanism in the treatment of DKD remain unclear, and clinical applications are still being explored. Given this, we here provide an unbiased review of recent advances in MSCs for the treatment of DKD in the last decade from the perspectives of the pathogenesis of DKD, biological characteristics of MSCs, and different molecular and signaling pathways. Furthermore, we summarize information on combination therapy strategies using MSCs. Finally, we discuss the challenges and prospects for clinical application.
Collapse
Affiliation(s)
- Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Shan Jiang
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Jicui Li
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
23
|
Li B, Sun G, Yu H, Meng J, Wei F. Exosomal circTAOK1 contributes to diabetic kidney disease progression through regulating SMAD3 expression by sponging miR-520h. Int Urol Nephrol 2022; 54:2343-2354. [PMID: 35142978 DOI: 10.1007/s11255-022-03139-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/30/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a frequent diabetes complication with complex pathogenesis. Circular RNA (circRNA) circTAOK1 (also named circ_0003928) has been reported to be upregulated in high glucose (HG)-treated human umbilical vein endothelial cells. Also, exosomal circRNAs can exert significant roles in the pathology of various diseases. This study is designed to explore the role and mechanism of exosomal circTAOK1 on the glomerular mesangial cell (GMC) injury in DN. METHODS Exosomes were detected by a transmission electron microscope. The protein levels of CD9, CD63, proliferating cell nuclear antigen (PCNA), cyclinD1, α-SMA, fibronectin, E-cadherin, N-cadherin, and SMAD family member 3 (SMAD3) were examined by western blot assay. circTAOK1, microRNA-520h (miR-520h), and SMAD3 levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation and cell cycle progression were detected by cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. The binding relationship between miR-520h and circTAOK1 or SMAD3 was predicted by Starbase and then verified by a dual-luciferase reporter and RNA immunoprecipitation (RIP), RNA pull-down assays. RESULTS CircTAOK1 expression was upregulated in the exosomes isolated from HG-treated glomerular epithelial cells (GEC). Moreover, GEC-circTAOK1-Exo could promote proliferation, fibrosis, and epithelial-mesenchymal transition (EMT) of glomerular mesangial cells (GMCs). Mechanically, circTAOK1 could regulate SMAD3 expression by sponging miR-520h, GEO-si-circTAOK1 Exo-induced miR-520h and repressed SMAD3 expression in GMC. CONCLUSION GEC-circTAOK1-Exo could boost proliferation, fibrosis, and EMT of GMC through targeting the miR-520h/SMAD3 axis, providing new insights into the pathogenesis of DN.
Collapse
Affiliation(s)
- Bo Li
- Department of Blood Purification, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, China
| | - Guijiang Sun
- Department of Blood Purification, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, China
| | - Haibo Yu
- Department of Blood Purification, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, China
| | - Jia Meng
- Department of Blood Purification, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, China
| | - Fang Wei
- Department of Blood Purification, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, China.
| |
Collapse
|
24
|
Xu YX, Pu SD, Li X, Yu ZW, Zhang YT, Tong XW, Shan YY, Gao XY. Exosomal ncRNAs: Novel Therapeutic Target and Biomarker for Diabetic Complications. Pharmacol Res 2022; 178:106135. [DOI: 10.1016/j.phrs.2022.106135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023]
|
25
|
Peng L, Chen Y, Shi S, Wen H. Stem cell-derived and circulating exosomal microRNAs as new potential tools for diabetic nephropathy management. Stem Cell Res Ther 2022; 13:25. [PMID: 35073973 PMCID: PMC8785577 DOI: 10.1186/s13287-021-02696-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite major advances in the treatment of diabetic nephropathy (DN) in recent years, it remains the most common cause of end-stage renal disease. An early diagnosis and therapy may slow down the DN progression. Numerous potential biomarkers are currently being researched. Circulating levels of the kidney-released exosomes and biological molecules, which reflect the DN pathology including glomerular and tubular dysfunction as well as mesangial expansion and fibrosis, have shown the potential for predicting the occurrence and progression of DN. Moreover, many experimental therapies are currently being investigated, including stem cell therapy and medications targeting inflammatory, oxidant, or pro-fibrotic pathways activated during the DN progression. The therapeutic potential of stem cells is partly depending on their secretory capacity, particularly exosomal microRNAs (Exo-miRs). In recent years, a growing line of research has shown the participation of Exo-miRs in the pathophysiological processes of DN, which may provide effective therapeutic and biomarker tools for DN treatment. METHODS A systematic literature search was performed in MEDLINE, Scopus, and Google Scholar to collect published findings regarding therapeutic stem cell-derived Exo-miRs for DN treatment as well as circulating Exo-miRs as potential DN-associated biomarkers. FINDINGS Glomerular mesangial cells and podocytes are the most important culprits in the pathogenesis of DN and, thus, can be considered valuable therapeutic targets. Preclinical investigations have shown that stem cell-derived exosomes can exert beneficial effects in DN by transferring renoprotective miRs to the injured mesangial cells and podocytes. Of note, renoprotective Exo-miR-125a secreted by adipose-derived mesenchymal stem cells can improve the injured mesangial cells, while renoprotective Exo-miRs secreted by adipose-derived stem cells (Exo-miR-486 and Exo-miR-215-5p), human urine-derived stem cells (Exo-miR-16-5p), and bone marrow-derived mesenchymal stem cells (Exo-miR-let-7a) can improve the injured podocytes. On the other hand, clinical investigations have indicated that circulating Exo-miRs isolated from urine or serum hold great potential as promising biomarkers in DN.
Collapse
Affiliation(s)
- Lei Peng
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yu Chen
- Department of Cardiology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Shaoqing Shi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Heling Wen
- Department of Cardiology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
26
|
Zhu M, Wu J, Gao JQ. Exosomes for diabetes syndrome: ongoing applications and perspective. Biomater Sci 2022; 10:2154-2171. [DOI: 10.1039/d2bm00161f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetes mellitus, ranking the ninth death cause in the world, is a kind of metabolic disease characterized by hyperglycemia. Without timely and effective treatment, many ensuing complications involved with heart,...
Collapse
|
27
|
Yang M, Chen J, Chen L. The roles of mesenchymal stem cell-derived exosomes in diabetes mellitus and its related complications. Front Endocrinol (Lausanne) 2022; 13:1027686. [PMID: 36339446 PMCID: PMC9633677 DOI: 10.3389/fendo.2022.1027686] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is a type of metabolic disease characterized by hyperglycemia, primarily caused by defects in insulin secretion, insulin action, or both. Long-term chronic hyperglycemia can lead to diabetes-related complications, causing damage, dysfunction, and failure of different organs. However, traditional insulin and oral drug therapy can only treat the symptoms but not delay the progressive failure of pancreatic beta cells or prevent the emergence of diabetic complications. Mesenchymal stem cells have received extensive attention due to their strong immunoregulatory functions and regeneration effects. Mesenchymal stem cell-derived exosomes (MSC-Exos) have been proposed as a novel treatment for diabetic patients as they have demonstrated superior efficiency to mesenchymal stem cells. This review summarizes the therapeutic effects, mechanisms, challenges, and future prospects of MSC-Exos in treating diabetes mellitus and its related complications. This review supports the potential use of MSC-Exos in future regenerative medicine to overcome the current difficulties in clinical treatment, particularly in treating diabetes.
Collapse
Affiliation(s)
- Mengmeng Yang
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
- *Correspondence: Jun Chen, ; Li Chen,
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
- *Correspondence: Jun Chen, ; Li Chen,
| |
Collapse
|
28
|
Wang Y, Shan SK, Guo B, Li F, Zheng MH, Lei LM, Xu QS, Ullah MHE, Xu F, Lin X, Yuan LQ. The Multi-Therapeutic Role of MSCs in Diabetic Nephropathy. Front Endocrinol (Lausanne) 2021; 12:671566. [PMID: 34163437 PMCID: PMC8216044 DOI: 10.3389/fendo.2021.671566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common diabetes mellitus (DM) microvascular complications, which always ends with end-stage renal disease (ESRD). Up to now, as the treatment of DN in clinic is still complicated, ESRD has become the main cause of death in diabetic patients. Mesenchymal stem cells (MSCs), with multi-differentiation potential and paracrine function, have attracted considerable attention in cell therapy recently. Increasing studies concerning the mechanisms and therapeutic effect of MSCs in DN emerged. This review summarizes several mechanisms of MSCs, especially MSCs derived exosomes in DN therapy, including hyperglycemia regulation, anti-inflammatory, anti-fibrosis, pro-angiogenesis, and renal function protection. We also emphasize the limitation of MSCs application in the clinic and the enhanced therapeutic role of pre-treated MSCs in the DN therapy. This review provides balanced and impartial views for MSC therapy as a promising strategy in diabetic kidney disease amelioration.
Collapse
Affiliation(s)
- Yi Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Fuxingzi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ling-Qing Yuan,
| |
Collapse
|