1
|
Rajarathinam T, Jayaraman S, Kim CS, Yoon JH, Chang SC. Two-dimensional nanozyme nanoarchitectonics customized electrochemical bio diagnostics and lab-on-chip devices for biomarker detection. Adv Colloid Interface Sci 2025; 341:103474. [PMID: 40121951 DOI: 10.1016/j.cis.2025.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Recent developments in nanomaterials and nanotechnology have advanced biosensing research. Two-dimensional (2D) nanomaterials or nanozymes, such as metal oxides, graphene and its derivatives, transition metal dichalcogenides, metal-organic frameworks, carbon-organic frameworks and MXenes, have garnered substantial attention in recent years owing to their unique properties, including high surface area, excellent electrical conductivity, and mechanical flexibility. Moreover, 2D nanozymes exhibit intrinsic enzyme-mimicking properties, including those of peroxidase, oxidase, catalase, and superoxide dismutase, making them well-suited for detecting biomarkers of interest and developing bio diagnostics at the point-of-care. Since 2D nanosystems offer ultra-high sensitivity, label-free detection, and real-time analysis, point-of-care testing and multiplexed biomarker detection, the demand is growing. Additionally, their biocompatibility and scalable fabrication make them cost-effective for widespread adoption. This review discusses the advantages of 2D nanozymes and their recent advancements in biosensing applications. This review summarizes the latest developments in 2D nanozymes, focusing on their synthesis, biocatalytic capabilities, and advancements in developing bio diagnostics and lab-on-chip devices for detecting cancer and non-cancer biomarkers. In addition, existing challenges and prospects in 2D nanozyme-based biosensors are identified, highlighting their biosensing potential and advocating for their expanded application in bio diagnostics and lab-on-chip devices.
Collapse
Affiliation(s)
- Thenmozhi Rajarathinam
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Sivaguru Jayaraman
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Jang-Hee Yoon
- Busan Center, Korea Basic Science Institute, Busan 46742, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
2
|
Rybarczyk A, Sultan T, Hussain N, Azam HMH, Rafique S, Zdarta J, Jesionowski T. Fusion of enzymatic proteins: Enhancing biological activities and facilitating biological modifications. Adv Colloid Interface Sci 2025; 340:103473. [PMID: 40086016 DOI: 10.1016/j.cis.2025.103473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
The fusion of enzymatic proteins represents a dynamic frontier in biotechnology and enzymatic engineering. This in-depth review looks at the many different ways that fusion proteins can be used, showing their importance in biosensing, gene therapy, targeted drug delivery, and biocatalysis. Fusion proteins have shown an astounding ability to improve and fine-tune biological functions by combining the most beneficial parts of different enzymes. Our first step is to explain how protein fusion increases biological functions. This will provide a broad picture of how this phenomenon has changed many fields. We dissect the intricate mechanisms through which fusion proteins orchestrate cellular processes, underscoring their potential to revolutionize the landscape of molecular biology. We also explore the complicated world of structural analysis and design strategies, stressing the importance of molecular insights for making the fusion protein approach work better. These insights broaden understanding of the underlying principles and illuminate the path toward unlocking untapped potential. The review also introduces cutting-edge techniques for constructing fusion protein libraries, such as DNA shuffling and phage display. These new methods allow scientists to build a molecular orchestra with an unprecedented level of accuracy, and thus use fusion proteins to their full potential in various situations. In conclusion, we provide a glimpse into the current challenges and prospects in fusion protein research, shedding light on recent advancements that promise to reshape the future of biotechnology. As we make this interesting journey through the field of enzymatic protein combination, it becomes clear that the fusion paradigm is about to start a new era of innovation that will push the limits of what is possible in biology and molecular engineering.
Collapse
Affiliation(s)
- Agnieszka Rybarczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Talha Sultan
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Safa Rafique
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
3
|
Koyambo-Konzapa SJ, Oubella A, Altharawi A, Aldakhil T. COVID-19 detection via isobutyric acid biomarker: A DFT computational study on beryllium-doped C60 fullerene. J Mol Graph Model 2025; 137:108987. [PMID: 39985930 DOI: 10.1016/j.jmgm.2025.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/18/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
The COVID-19 pandemic has underscored the urgent need for rapid, accurate, and non-invasive diagnostic methods. This study explores the potential of beryllium-doped C60 fullerene as a sensor for detecting COVID-19 via isobutyric acid (ISO-But), a biomarker found in the breath of infected individuals. By employing Density Functional Theory (DFT), we analyze the electronic and structural properties of pristine and metal-doped C60 fullerenes (Beryllium (Be) and Calcium (Ca)), focusing on their interactions with isobutyric acid. Our findings reveal that BeC59, combined with isobutyric acid, displays a colorimetric response within the visible spectrum, indicating its suitability for point-of-care diagnostics. With rapid recovery and strong interaction properties, this sensor design promises to advance non-invasive COVID-19 detection, making it accessible and feasible for real-time applications.
Collapse
Affiliation(s)
- Stève-Jonathan Koyambo-Konzapa
- Laboratoire Matière, Energie et Rayonnement (LAMER), Université de Bangui, P.O. Box 1450 Bangui, Central African Republic.
| | - Ali Oubella
- Laboratory of Chemistry and Environment, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco.
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Taibah Aldakhil
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
4
|
Ramola A, Shakya AK, Bergman A. Comprehensive Analysis of Advancement in Optical Biosensing Techniques for Early Detection of Cancerous Cells. BIOSENSORS 2025; 15:292. [PMID: 40422031 DOI: 10.3390/bios15050292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/28/2025]
Abstract
This investigation presents an overview of various optical biosensors utilized for the detection of cancer cells. It covers a comprehensive range of technologies, including surface plasmon resonance (SPR) sensors, which exploit changes in refractive index (RI) at the sensor surface to detect biomolecular interactions. Localized surface plasmon resonance (LSPR) sensors offer high sensitivity and versatility in detecting cancer biomarkers. Colorimetric sensors, based on color changes induced via specific biochemical reactions, provide a cost-effective and simple approach to cancer detection. Sensors based on fluorescence work using the light emitted from fluorescent molecules detect cancer-specific targets with specificity and high sensitivity. Photonics and waveguide sensors utilize optical waveguides to detect changes in light propagation, offering real-time and label-free detection of cancer biomarkers. Raman spectroscopy-based sensors utilize surface-enhanced Raman scattering (SERS) to provide molecular fingerprint information for cancer diagnosis. Lastly, fiber optic sensors offer flexibility and miniaturization, making them suitable for in vivo and point-of-care applications in cancer detection. This study provides insights into the principles, applications, and advancements of these optical biosensors in cancer diagnostics, highlighting their potential in improving early detection and patient outcomes.
Collapse
Affiliation(s)
- Ayushman Ramola
- Department of Electrical and Electronics Engineering, Ariel University, Ariel 40700, Israel
| | - Amit Kumar Shakya
- Department of Electrical and Electronics Engineering, Ariel University, Ariel 40700, Israel
| | - Arik Bergman
- Department of Electrical and Electronics Engineering, Ariel University, Ariel 40700, Israel
| |
Collapse
|
5
|
Nanda SS, Park DG, Yi DK. Current Trends in In Vitro Diagnostics Using Surface-Enhanced Raman Scattering in Translational Biomedical Research. BIOSENSORS 2025; 15:265. [PMID: 40422004 DOI: 10.3390/bios15050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025]
Abstract
Immunoassays using surface-enhanced Raman scattering (SERS) are prosperous in disease diagnosis due to their excellent multiplexing ability, high sensitivity, and large dynamic range. Given the recent advancements in SERS immunoassays, this work provides a comprehensive overview, from fundamental principles to practical applications. An mRNA sensor utilizing Raman spectroscopy is a detection method that leverages the unique vibrational characteristics of mRNA molecules to identify and quantify their presence in a sample, often achieved through a technique called SERS, where specially designed nanoparticles amplify the Raman signal, allowing for the highly sensitive detection of even small amounts of mRNA. This review analyzes SERS assays used to detect RNA biomarkers, which show promise in cancer diagnostics and are being actively studied clinically. To selectively detect a specific mRNA sequence, a probe molecule (e.g., a DNA oligonucleotide complementary to the target mRNA) is attached to the SERS substrate, allowing the target mRNA to hybridize and generate a detectable Raman signal upon binding. Thus, the discussion includes proposals to enhance SERS immunoassay performance, along with future challenges and perspectives, offering concise, valid guidelines for platform selection based on application.
Collapse
Affiliation(s)
| | - Dae-Gyeom Park
- Advanced Refrigeration and Air-Conditioning Energy Center, Pusan National University, Busan 46241, Republic of Korea
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Republic of Korea
| |
Collapse
|
6
|
Hetta HF, Melhem T, Aljohani HM, Salama A, Ahmed R, Elfadil H, Alanazi FE, Ramadan YN, Battah B, Rottura M, Donadu MG. Beyond Conventional Antifungals: Combating Resistance Through Novel Therapeutic Pathways. Pharmaceuticals (Basel) 2025; 18:364. [PMID: 40143141 PMCID: PMC11944814 DOI: 10.3390/ph18030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
The rising burden of fungal infections presents a significant challenge to global healthcare, particularly with increasing antifungal resistance limiting treatment efficacy. Early detection and timely intervention remain critical, yet fungal pathogens employ diverse mechanisms to evade host immunity and develop resistance, undermining existing therapeutic options. Limited antifungal options and rising resistance necessitate novel treatment strategies. This review provides a comprehensive overview of conventional antifungal agents, their mechanisms of action, and emerging resistance pathways. Furthermore, it highlights recently approved and investigational antifungal compounds while evaluating innovative approaches such as nanotechnology, drug repurposing, and immunotherapy. Addressing antifungal resistance requires a multifaceted strategy that integrates novel therapeutics, enhanced diagnostic tools, and future research efforts to develop sustainable and effective treatment solutions.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Tameem Melhem
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | - Hashim M. Aljohani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madina 41477, Saudi Arabia;
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Hassabelrasoul Elfadil
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Antioch Syrian Private University, Maaret Saidnaya 22734, Syria;
| | - Michelangelo Rottura
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Matthew Gavino Donadu
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026 Olbia, Italy
- Department of Medicine, Surgery and Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
7
|
Eldien HMS, Almaeen AH, El Fath AA, Taha AE, Ahmed R, Elfadil H, Hetta HF. Unlocking the Potential of RNA Sequencing in COVID-19: Toward Accurate Diagnosis and Personalized Medicine. Diagnostics (Basel) 2025; 15:229. [PMID: 39857114 PMCID: PMC11763845 DOI: 10.3390/diagnostics15020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
COVID-19 has caused widespread morbidity and mortality, with its effects extending to multiple organ systems. Despite known risk factors for severe disease, including advanced age and underlying comorbidities, patient outcomes can vary significantly. This variability complicates efforts to predict disease progression and tailor treatment strategies. While diagnostic and therapeutic approaches are still under debate, RNA sequencing (RNAseq) has emerged as a promising tool to provide deeper insights into the pathophysiology of COVID-19 and guide personalized treatment. A comprehensive literature review was conducted using PubMed, Scopus, Web of Science, and Google Scholar. We employed Medical Subject Headings (MeSH) terms and relevant keywords to identify studies that explored the role of RNAseq in COVID-19 diagnostics, prognostics, and therapeutics. RNAseq has proven instrumental in identifying molecular biomarkers associated with disease severity in patients with COVID-19. It allows for the differentiation between asymptomatic and symptomatic individuals and sheds light on the immune response mechanisms that contribute to disease progression. In critically ill patients, RNAseq has been crucial for identifying key genes that may predict patient outcomes, guiding therapeutic decisions, and assessing the long-term effects of the virus. Additionally, RNAseq has helped in understanding the persistence of viral RNA after recovery, offering new insights into the management of post-acute sequelae, including long COVID. RNA sequencing significantly improves COVID-19 management, particularly for critically ill patients, by enhancing diagnostic accuracy, personalizing treatment, and predicting therapeutic responses. It refines patient stratification, improving outcomes, and holds promise for targeted interventions in both acute and long COVID.
Collapse
Affiliation(s)
- Heba M. Saad Eldien
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abdulrahman H. Almaeen
- Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Ahmed Abo El Fath
- Tropical Medicine and Gastroenterology Department, Assiut University Hospital, Assiut 71515, Egypt;
| | - Ahmed E. Taha
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Hassabelrasoul Elfadil
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| |
Collapse
|
8
|
Ma J, Huang Y, Jia G, Dong X, Shi Q, Sun Y. Discovery of broad-spectrum high-affinity peptide ligands of spike protein for the vaccine purification of SARS-CoV-2 and Omicron variants. Int J Biol Macromol 2024; 283:137059. [PMID: 39500432 DOI: 10.1016/j.ijbiomac.2024.137059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
Abstract
To combat with emerging SARS-CoV-2 variants of concern (VOCs), we report the identification of a set of unique HWK-motif peptide ligands for the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein from a phage-displayed peptide library. These HWK-motif peptides exhibited nanomolar affinity for RBD. Among them, the peptide, HWKAVNWLKPWT (SP-HWK), had not only the highest affinities for RBD and trimer S protein, but also broad-spectrum affinities for RBDs from VOCs. Molecular dynamics simulations and competitive ELISA revealed a conserved pocket between the cryptic and the outer faces of RBD for SP-HWK binding, distinct from the human angiotensin-converting enzyme 2 receptor binding site. By coupling SP-HWK to agarose gel, the as-prepared affinity gel could efficiently capture RBD and trimer S from the ancestral strain and the Omicron variant, and the bound targets could be recovered by mild elution at pH 6.0. More importantly, the affinity gel presented excellent and stable chromatographic performance in the purification of inactivated SARS-CoV-2 and Omicron vaccines, affording high yields and purities, and strong HCP reduction. The results demonstrated the potential of SP-HWK as a broad-spectrum peptide ligand for developing a universal platform for the vaccine purification of SARS-CoV-2 and VOCs.
Collapse
Affiliation(s)
- Jing Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yongdong Huang
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | | | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
9
|
Mahmoudi F, Jafari D, Esfahani SMM, Hoseini A, Barati M, Saraygord-Afshari N. Development and Validation of a Highly Sensitive RT-qLAMP Assay for Rapid Detection of SARS-CoV-2: Methodological Aspects. Mol Biotechnol 2024:10.1007/s12033-024-01275-7. [PMID: 39316362 DOI: 10.1007/s12033-024-01275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Specific and reliable diagnostic methods are becoming increasingly essential to identify patients in light of the high transmission rate and the recent appearance of the new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For the specific detection of SARS-CoV-2, our quantitative reverse transcription loop-mediated isothermal amplification (RT-qLAMP) assay implementation demonstrates how flexible it can be with two readouts: visualized colorimetric and real-time fluorescence. Different factors were optimized to improve the reaction conditions, including temperature (60 °C), assay runtime (60 min), primers, MgSO4 (6 mM), dNTPs (1 mM), LAMP Buffer (1.2 mM Tris-HCl), KCl (50 mM), pH (8), and phenol red (10 mM) concentrations. Regarding analytical sensitivity, the colorimetric RT-LAMP method detected samples with Ct values up to 29, while the RT-qLAMP assay identified up to Ct = 31. RT-qLAMP was evaluated on 40 clinical samples (25 positives and 15 negatives) for viral RNA detection. All negative samples were found negative through fluorescent reading in RT-qLAMP and quantitative reverse transcription PCR (RT-qPCR) assays. Twenty-three clinically positive samples demonstrated a positive RT-qLAMP reaction (up to Ct ≤ 31) with 92% clinical sensitivity, 100% clinical specificity, 100% positive predictive value (PPV), 88.24% negative predictive values (NPV), and 95% accuracy.
Collapse
Affiliation(s)
- Faezeh Mahmoudi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, 14496114535, Iran
| | - Davod Jafari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, 14496114535, Iran
| | - Seyedeh Mona Mousavi Esfahani
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, 14496114535, Iran
| | - Arshad Hoseini
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, 14496114535, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, 14496114535, Iran.
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, 14496114535, Iran.
| |
Collapse
|
10
|
Yadav A, Yadav AK, NaziaTarannum. Fabrication of Aluminum Foil Integrated Pegylated Gold Nanoparticle Surface-Enhanced Raman Scattering Substrate for the Detection and Classification of Uropathogenic Bacteria. ACS APPLIED BIO MATERIALS 2024; 7:6127-6137. [PMID: 39133870 DOI: 10.1021/acsabm.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Rapid detection and classification of pathogenic microbes for food hygiene, healthcare, environmental contamination, and chemical and biological exposures remain a major challenge due to nonavailability of fast and accurate detection methods. The delay in clinical diagnosis of the most frequent bacterial infections, particularly urinary tract infections (UTIs), which affect about half of the population at least once in their lifetime, can be fatal if not detected and treated appropriately. In this work, we have fabricated aluminum (Al) foil integrated pegylated gold nanoparticles (AuNPs) as a potential surface-enhanced Raman scattering (SERS) substrate, which is used for the detection and classification of uropathogens, namely, E. coli, S. aureus, and P. aeruginosa directly from the culture without any pretreatment. The substrate is first drop cast with bacterial pellets and then pegylated AuNPs, and the interaction of two on Al foil base gives identifiable characteristic Raman peaks with good reproducibility. With the use of chemometric methods such as principal component analysis (PCA), the Al foil-based SERS substrate offers a quick, effective detection and classification of three strains of UTI bacteria with the least bacterial concentration (105 cells mL-1) necessary for clinical diagnosis. In addition, this substrate was able to detect E. coli positive clinical samples by giving SERS fingerprint information directly from centrifuged urine samples within minutes. The stability of pegylated AuNPs provides for its application at the point of care with rapid and easy detection of uropathogens as well as the possibility of advancement in healthcare applications.
Collapse
Affiliation(s)
- Akanksha Yadav
- Department of Physics, Chaudhary Charan Singh University, Meerut 250004, India
| | - Anil K Yadav
- Department of Physics, Chaudhary Charan Singh University, Meerut 250004, India
| | - NaziaTarannum
- Department of Chemistry, Chaudhary Charan Singh University, Meerut 250004, India
| |
Collapse
|
11
|
Pourmadadi M, Ghaemi A, Khanizadeh A, Yazdian F, Mollajavadi Y, Arshad R, Rahdar A. Breast cancer detection based on cancer antigen 15-3; emphasis on optical and electrochemical methods: A review. Biosens Bioelectron 2024; 260:116425. [PMID: 38824703 DOI: 10.1016/j.bios.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/23/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Cancer antigen 15-3 (CA 15-3) is a crucial marker used in the diagnosis and monitoring of breast cancer (BC). The demand for early and precise cancer detection has grown, making the creation of biosensors that are highly sensitive and specific essential. This review paper provides a thorough examination of the progress made in optical and electrochemical biosensors for detecting the cancer biomarker CA 15-3. We focus on explaining their fundamental principles, sensitivity, specificity, and potential for point-of-care applications. The performance attributes of these biosensors are assessed by considering their limits of detection, reaction times, and operational stability, while also making comparisons to conventional methods of CA 15-3 detection. In addition, we explore the incorporation of nanomaterials and innovative transducer components to improve the performance of biosensors. This paper conducts a thorough examination of recent studies to identify the existing obstacles. It also suggests potential areas for future research in this fast progressing field.The paper provides insights into their advancement and utilization to enhance patient outcomes. Both categories of biosensors provide significant promise for the detection of CA 15-3 and offer distinct advantages compared to conventional analytical approaches.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran, GC, 1983963113, Iran
| | - Amirhossein Ghaemi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amirhossein Khanizadeh
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Yasin Mollajavadi
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan; Adjunct Professor at Equator University of Science and Technology, Uganda
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, 538-98615, Iran; Key Laboratory of Modeling and Simulation-based Reliability and Optimization, University of Zabol, Zabol, Iran.
| |
Collapse
|
12
|
C S S, Kini V, Singh M, Mukhopadhyay C, Nag P, Sadani K. Disposable electrochemical biosensors for the detection of bacteria in the light of antimicrobial resistance. Biotechnol Bioeng 2024; 121:2549-2584. [PMID: 38822742 DOI: 10.1002/bit.28735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
Persistent and inappropriate use of antibiotics is causing rife antimicrobial resistance (AMR) worldwide. Common bacterial infections are thus becoming increasingly difficult to treat without the use of last resort antibiotics. This has necessitated a situation where it is imperative to confirm the infection to be bacterial, before treating it with antimicrobial speculatively. Conventional methods of bacteria detection are either culture based which take anywhere between 24 and 96 hor require sophisticated molecular analysis equipment with libraries and trained operators. These are difficult propositions for resource limited community healthcare setups of developing or less developed countries. Customized, inexpensive, point-of-care (PoC) biosensors are thus being researched and developed for rapid detection of bacterial pathogens. The development and optimization of disposable sensor substrates is the first and crucial step in development of such PoC systems. The substrates should facilitate easy charge transfer, a high surface to volume ratio, be tailorable by the various bio-conjugation chemistries, preserve the integrity of the biorecognition element, yet be inexpensive. Such sensor substrates thus need to be thoroughly investigated. Further, if such systems were made disposable, they would attain immunity to biofouling. This article discusses a few potential disposable electrochemical sensor substrates deployed for detection of bacteria for environmental and healthcare applications. The technologies have significant potential in helping reduce bacterial infections and checking AMR. This could help save lives of people succumbing to bacterial infections, as well as improve the overall quality of lives of people in low- and middle-income countries.
Collapse
Affiliation(s)
- Sreelakshmi C S
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vrinda Kini
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Maargavi Singh
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pooja Nag
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapil Sadani
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
13
|
George H, Sun Y, Wu J, Yan Y, Wang R, Pesavento RP, Mathew MT. Intelligent salivary biosensors for periodontitis: in vitro simulation of oral oxidative stress conditions. Med Biol Eng Comput 2024; 62:2409-2434. [PMID: 38609577 DOI: 10.1007/s11517-024-03077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/16/2024] [Indexed: 04/14/2024]
Abstract
ASTRACT One of the most common oral diseases affecting millions of people worldwide is periodontitis. Usually, proteins in body fluids are used as biomarkers of diseases. This study focused on hydrogen peroxide, lipopolysaccharide (LPS), and lactic acid as salivary non-protein biomarkers for oxidative stress conditions of periodontitis. Electrochemical analysis of artificial saliva was done using Gamry with increasing hydrogen peroxide, bLPS, and lactic acid concentrations. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were conducted. From EIS data, change in capacitance and CV plot area were calculated for each test condition. Hydrogen peroxide groups had a decrease in CV area and an increase in percentage change in capacitance, lipopolysaccharide groups had a decrease in CV area and a decrease in percentage change in capacitance, and lactic acid groups had an increase of CV area and an increase in percentage change in capacitance with increasing concentrations. These data showed a unique combination of electrochemical properties for the three biomarkers. Scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) employed to observe the change in the electrode surface and elemental composition data present on the sensor surface also showed a unique trend of elemental weight percentages. Machine learning models using hydrogen peroxide, LPS, and lactic acid electrochemical data were applied for the prediction of risk levels of periodontitis. The detection of hydrogen peroxide, LPS, and lactic acid by electrochemical biosensors indicates the potential to use these molecules as electrochemical biomarkers and use the data for ML-driven prediction tool for the periodontitis risk levels.
Collapse
Affiliation(s)
- Haritha George
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yani Sun
- Department of Material Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Junyi Wu
- Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Yan Yan
- Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Rong Wang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Russell P Pesavento
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Mathew T Mathew
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Material Science, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Eivazzadeh-Keihan R, Saadatidizaji Z, Mahdavi M, Maleki A, Irani M, Zare I. Recent advances in gold nanoparticles-based biosensors for tuberculosis determination. Talanta 2024; 275:126099. [PMID: 38640517 DOI: 10.1016/j.talanta.2024.126099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/16/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Tuberculosis (TB) is one of the major killer diseases affecting lung parenchymal tissues. Mycobacterium tuberculosis (Mtb) is the bacterium that causes it. It most commonly affects the lungs, although it can affect any part of the body, including the stomach, glands, bones, and nervous system. Although anti-mycobacterial drugs are available, it remains a major threat to public health due to the rise of drug-resistant strains, and early and accurate diagnosis is very important. Currently, research science and medical communities are focusing on the use of cost-effective biosensors to manage human biological processes and assess accurate health diagnostics. Due to their high sensitivity in chemical and biological assays, nanomaterials have been considered in the field of biosensors for better diagnosis, and among them, gold nanoparticles (AuNPs) can play an important role in accelerating the diagnosis of TB. Superior biocompatibility, conductivity, catalytic properties, high surface-to-volume ratio, and high density enable their widespread use in the fabrication of biosensors. This review evaluates the diagnostic accuracy of AuNP-based biosensors for the detection of Mtb. According to different transducers of biosensors, their structure, performance, advantages and limitations are summarized and compared. Moreover, the upcoming challenges in their analytical performance have been highlighted and the strategies to overcome those challenges have been briefly discussed.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Zahra Saadatidizaji
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Irani
- Department of Pharmaceutics, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran.
| |
Collapse
|
15
|
Niu Z, Du H, Ma L, Zhou J, Yuan Z, Sun R, Liu G, Zhang F, Zeng Y. Wavelength Division Multiplexing-Based High-Sensitivity Surface Plasmon Resonance Imaging Biosensor for High-Throughput Real-Time Molecular Interaction Analysis. Molecules 2024; 29:2811. [PMID: 38930876 PMCID: PMC11206673 DOI: 10.3390/molecules29122811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we report the successful development of a novel high-sensitivity intensity-based Surface Plasmon Resonance imaging (SPRi) biosensor and its application for detecting molecular interactions. By optimizing the excitation wavelength and employing a wavelength division multiplexing (WDM) algorithm, the system can determine the optimal excitation wavelength based on the initial refractive index of the sample without adjusting the incidence angle. The experimental results demonstrate that the refractive index resolution of the system reaches 1.77×10-6 RIU. Moreover, it can obtain the optimal excitation wavelength for samples with an initial refractive index in the range of 1.333 to 1.370 RIU and accurately monitor variations within the range of 0.0037 RIU without adjusting the incidence angle. Additionally, our new SPRi technique realized real-time detection of high-throughput biomolecular binding processes, enabling analysis of kinetic parameters. This research is expected to advance the development of more accurate SPRi technologies for molecular interaction analysis.
Collapse
Affiliation(s)
- Zhenxiao Niu
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (H.D.); (L.M.); (G.L.); (F.Z.)
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, China
| | - Hao Du
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (H.D.); (L.M.); (G.L.); (F.Z.)
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, China
| | - Lin Ma
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (H.D.); (L.M.); (G.L.); (F.Z.)
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie Zhou
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China;
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (Z.Y.); (R.S.)
| | - Ronghui Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (Z.Y.); (R.S.)
| | - Guanyu Liu
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (H.D.); (L.M.); (G.L.); (F.Z.)
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, China
| | - Fangteng Zhang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (H.D.); (L.M.); (G.L.); (F.Z.)
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, China
| | - Youjun Zeng
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (H.D.); (L.M.); (G.L.); (F.Z.)
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
16
|
Wang R, Lu S, Deng F, Wu L, Yang G, Chong S, Liu Y. Enhancing the understanding of SARS-CoV-2 protein with structure and detection methods: An integrative review. Int J Biol Macromol 2024; 270:132237. [PMID: 38734351 DOI: 10.1016/j.ijbiomac.2024.132237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
As the rapid and accurate screening of infectious diseases can provide meaningful information for outbreak prevention and control, as well as owing to the existing limitations of the polymerase chain reaction (PCR), it is imperative to have new and validated detection techniques for SARS-CoV-2. Therefore, the rationale for outlining the techniques used to detect SARS-CoV-2 proteins and performing a comprehensive comparison to serve as a practical benchmark for future identification of similar viral proteins is clear. This review highlights the urgent need to strengthen pandemic preparedness by emphasizing the importance of integrated measures. These include improved tools for pathogen characterization, optimized societal precautions, the establishment of early warning systems, and the deployment of highly sensitive diagnostics for effective surveillance, triage, and resource management. Additionally, with an improved understanding of the virus' protein structure, considerable advances in targeted detection, treatment, and prevention strategies are expected to greatly improve our ability to respond to future outbreaks.
Collapse
Affiliation(s)
- Ruiqi Wang
- Shenyang University of Chemical Technology, Shenyang 110142, China; National Institute of Metrology, Beijing 100029, China
| | - Song Lu
- National Institute of Metrology, Beijing 100029, China
| | - Fanyu Deng
- National Institute of Metrology, Beijing 100029, China; North University of China, Taiyuan 030051, China
| | - Liqing Wu
- National Institute of Metrology, Beijing 100029, China
| | - Guowu Yang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518055, China
| | - Siying Chong
- Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yahui Liu
- National Institute of Metrology, Beijing 100029, China.
| |
Collapse
|
17
|
Tekin YS, Kul SM, Sagdic O, Rodthongkum N, Geiss B, Ozer T. Optical biosensors for diagnosis of COVID-19: nanomaterial-enabled particle strategies for post pandemic era. Mikrochim Acta 2024; 191:320. [PMID: 38727849 PMCID: PMC11087243 DOI: 10.1007/s00604-024-06373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
The COVID-19 pandemic underlines the need for effective strategies for controlling virus spread and ensuring sensitive detection of SARS-CoV-2. This review presents the potential of nanomaterial-enabled optical biosensors for rapid and low-cost detection of SARS-CoV-2 biomarkers, demonstrating a comprehensive analysis including colorimetric, fluorescence, surface-enhanced Raman scattering, and surface plasmon resonance detection methods. Nanomaterials including metal-based nanomaterials, metal-organic frame-based nanoparticles, nanorods, nanoporous materials, nanoshell materials, and magnetic nanoparticles employed in the production of optical biosensors are presented in detail. This review also discusses the detection principles, fabrication methods, nanomaterial synthesis, and their applications for the detection of SARS-CoV-2 in four categories: antibody-based, antigen-based, nucleic acid-based, and aptamer-based biosensors. This critical review includes reports published in the literature between the years 2021 and 2024. In addition, the review offers critical insights into optical nanobiosensors for the diagnosis of COVID-19. The integration of artificial intelligence and machine learning technologies with optical nanomaterial-enabled biosensors is proposed to improve the efficiency of optical diagnostic systems for future pandemic scenarios.
Collapse
Affiliation(s)
- Yusuf Samil Tekin
- Department of Biomedical Engineering, Graduate Education Institute, Malatya Turgut Ozal University, 44210, Battalgazi, Malatya, Turkey
| | - Seyda Mihriban Kul
- Department of Food Engineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Bangkok, 10330, Patumwan, Thailand
| | - Brian Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523-1019, USA.
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220, Istanbul, Turkey.
| |
Collapse
|
18
|
Wang Y, Pang F. Diagnosis of bovine viral diarrhea virus: an overview of currently available methods. Front Microbiol 2024; 15:1370050. [PMID: 38646626 PMCID: PMC11026595 DOI: 10.3389/fmicb.2024.1370050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the causative agent of bovine viral diarrhea (BVD), which results in significant economic losses in the global cattle industry. Fortunately, various diagnostic methods available for BVDV have been established. They include etiological methods, such as virus isolation (VI); serological methods, such as enzyme-linked immunosorbent assay (ELISA), immunofluorescence assay (IFA), and immunohistochemistry (IHC); molecular methods, such as reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR, digital droplet PCR (ddPCR), loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and CRISPR-Cas system; and biosensors. This review summarizes the current diagnostic methods for BVDV, discussing their advantages and disadvantages, and proposes future perspectives for the diagnosis of BVDV, with the intention of providing valuable guidance for effective diagnosis and control of BVD disease.
Collapse
Affiliation(s)
| | - Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
19
|
Agarwal S, Srivastava R, Kumar S, Prajapati YK. COVID-19 Detection Using Contemporary Biosensors and Machine Learning Approach: A Review. IEEE Trans Nanobioscience 2024; 23:291-299. [PMID: 38090858 DOI: 10.1109/tnb.2023.3342126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The current global pandemic not only claims countless human lives but also rocks the economies of every country on the planet. This fact needs the development of novel, productive, and efficient techniques to detect the SARS-CoV-2 virus. This review article discusses the current state of SARS-CoV-2 virus detection methods such as electrochemical, fluorescent, and electronic, etc., as well as the potential of optical sensors with a wide range of novel approaches and models. This review provides a comprehensive comparison of various detection methods by comparing the various techniques in depth. In addition, there is a brief discussion of the futuristic approach combining optical sensors with machine learning algorithms. It is believed that this study would prove to be critical for the scientific community to explore solutions for detecting viruses with improved functionality.
Collapse
|
20
|
Armani Khatibi E, Farshbaf Moghimi N, Rahimpour E. COVID-19: An overview on possible transmission ways, sampling matrices and diagnosis. BIOIMPACTS : BI 2024; 14:29968. [PMID: 39493896 PMCID: PMC11530968 DOI: 10.34172/bi.2024.29968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/17/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
COVID-19 is an RNA virus belonging to the SARS family of viruses and includes a wide range of symptoms along with effects on other body organs in addition to the respiratory system. The high speed of transmission, severe complications, and high death rate caused scientists to focus on this disease. Today, many different investigation types are performed on COVID-19 from various points of view in the literature. This review summarizes most of them to provide a useful guideline for researchers in this field. After a general introduction, this review is divided into three parts. In the first one, various transmission ways COVID-19 are classified and explained in detail. The second part reviews the used biological samples for the detection of virus and the final section describes the various methods reported for the diagnosis of COVID-19 in various biological matrices.
Collapse
Affiliation(s)
- Elina Armani Khatibi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran
| | - Nastaran Farshbaf Moghimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Brazaca LC, Imamura AH, Blasques RV, Camargo JR, Janegitz BC, Carrilho E. The use of biological fluids in microfluidic paper-based analytical devices (μPADs): Recent advances, challenges and future perspectives. Biosens Bioelectron 2024; 246:115846. [PMID: 38006702 DOI: 10.1016/j.bios.2023.115846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
The use of microfluidic paper-based analytical devices (μPADs) for aiding medical diagnosis is a growing trend in the literature mainly due to their low cost, easy use, simple manufacturing, and great potential for application in low-resource settings. Many important biomarkers (proteins, ions, lipids, hormones, DNA, RNA, drugs, whole cells, and more) and biofluids are available for precise detection and diagnosis. We have reviewed the advances μPADs in medical diagnostics have achieved in the last few years, focusing on the most common human biofluids (whole blood/plasma, sweat, urine, tears, and saliva). The challenges of detecting specific biomarkers in each sample are discussed, along with innovative techniques that overcome such limitations. Finally, the difficulties of commercializing μPADs are considered, and future trends are presented, including wearable devices and integrating multiple steps in a single platform.
Collapse
Affiliation(s)
- Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.
| | - Amanda Hikari Imamura
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| | - Rodrigo Vieira Blasques
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Jéssica Rocha Camargo
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Bruno Campos Janegitz
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
22
|
Gunasinghe Pattiya Arachchillage KG, Chandra S, Williams A, Rangan S, Piscitelli P, Florence L, Ghosal Gupta S, Artes Vivancos JM. A single-molecule RNA electrical biosensor for COVID-19. Biosens Bioelectron 2023; 239:115624. [PMID: 37639885 DOI: 10.1016/j.bios.2023.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The COVID-19 pandemic shows a critical need for rapid, inexpensive, and ultrasensitive early detection methods based on biomarker analysis to reduce mortality rates by containing the spread of epidemics. This can be achieved through the electrical detection of nucleic acids at the single-molecule level. In particular, the scanning tunneling microscopic-assisted break junction (STM-BJ) method can be utilized to detect individual nucleic acid molecules with high specificity and sensitivity in liquid samples. Here, we demonstrate single-molecule electrical detection of RNA coronavirus biomarkers, including those of SARS-CoV-2 as well as those of different variants and subvariants. Our target sequences include a conserved sequence in the human coronavirus family, a conserved target specific for the SARS-CoV-2 family, and specific targets at the variant and subvariant levels. Our results demonstrate that it is possible to distinguish between different variants of the COVID-19 virus using electrical conductance signals, as recently suggested by theoretical approaches. Our results pave the way for future miniaturized single-molecule electrical biosensors that could be game changers for infectious diseases and other public health applications.
Collapse
Affiliation(s)
| | - Subrata Chandra
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Ajoke Williams
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Srijith Rangan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Patrick Piscitelli
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Lily Florence
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | | | - Juan M Artes Vivancos
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA.
| |
Collapse
|
23
|
Rong G, Xu Y, Sawan M. Machine Learning Techniques for Effective Pathogen Detection Based on Resonant Biosensors. BIOSENSORS 2023; 13:860. [PMID: 37754094 PMCID: PMC10526989 DOI: 10.3390/bios13090860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
We describe a machine learning (ML) approach to processing the signals collected from a COVID-19 optical-based detector. Multilayer perceptron (MLP) and support vector machine (SVM) were used to process both the raw data and the feature engineering data, and high performance for the qualitative detection of the SARS-CoV-2 virus with concentration down to 1 TCID50/mL was achieved. Valid detection experiments contained 486 negative and 108 positive samples, and control experiments, in which biosensors without antibody functionalization were used to detect SARS-CoV-2, contained 36 negative samples and 732 positive samples. The data distribution patterns of the valid and control detection dataset, based on T-distributed stochastic neighbor embedding (t-SNE), were used to study the distinguishability between positive and negative samples and explain the ML prediction performance. This work demonstrates that ML can be a generalized effective approach to process the signals and the datasets of biosensors dependent on resonant modes as biosensing mechanism.
Collapse
Affiliation(s)
| | | | - Mohamad Sawan
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China; (G.R.); (Y.X.)
| |
Collapse
|
24
|
Li Y, Chen J, Wei J, Liu X, Yu L, Yu L, Ding D, Yang Y. Metallic nanoplatforms for COVID-19 diagnostics: versatile applications in the pandemic and post-pandemic era. J Nanobiotechnology 2023; 21:255. [PMID: 37542245 PMCID: PMC10403867 DOI: 10.1186/s12951-023-01981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/03/2023] [Indexed: 08/06/2023] Open
Abstract
The COVID-19 pandemic, which originated in Hubei, China, in December 2019, has had a profound impact on global public health. With the elucidation of the SARS-CoV-2 virus structure, genome type, and routes of infection, a variety of diagnostic methods have been developed for COVID-19 detection and surveillance. Although the pandemic has been declared over, we are still significantly affected by it in our daily lives in the post-pandemic era. Among the various diagnostic methods, nanomaterials, especially metallic nanomaterials, have shown great potential in the field of bioanalysis due to their unique physical and chemical properties. This review highlights the important role of metallic nanosensors in achieving accurate and efficient detection of COVID-19 during the pandemic outbreak and spread. The sensing mechanisms of each diagnostic device capable of analyzing a range of targets, including viral nucleic acids and various proteins, are described. Since SARS-CoV-2 is constantly mutating, strategies for dealing with new variants are also suggested. In addition, we discuss the analytical tools needed to detect SARS-CoV-2 variants in the current post-pandemic era, with a focus on achieving rapid and accurate detection. Finally, we address the challenges and future directions of metallic nanomaterial-based COVID-19 detection, which may inspire researchers to develop advanced biosensors for COVID-19 monitoring and rapid response to other virus-induced pandemics based on our current achievements.
Collapse
Affiliation(s)
- Yuqing Li
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Mate-Rials & Devices, Soochow University, Suzhou, 215123, China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xueliang Liu
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Yu
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Linqi Yu
- Department of Immunization Program, Jing'an District Center for Disease Control and Prevention, Shanghai, 200072, China.
| | - Ding Ding
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yu Yang
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
25
|
Kizilkurtlu AA, Demirbas E, Agel HE. Electrochemical aptasensors for pathogenic detection toward point-of-care diagnostics. Biotechnol Appl Biochem 2023; 70:1460-1479. [PMID: 37277950 DOI: 10.1002/bab.2485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/20/2023] [Indexed: 06/07/2023]
Abstract
A biosensor system refers to a biomedical device, which detects biological, chemical, or biochemical components by converting those signals to an electrical signal by utilizing and uniting physical or chemical transducer with biorecognition elements. An electrochemical biosensor is generally based on the reaction of either production or consumption of electrons under a three-electrode system. Biosensor systems are exploited in a wide range of areas, such as medicine, agriculture, husbandry, food, industry, environment protection, quality control, waste disposal, and the military. Pathogenic infections are the third leading cause of death worldwide after cardiovascular diseases and cancer. Therefore, there is an urgent need for effective diagnostic tools to control food, water, and soil contamination result in protecting human life and health. Aptamers are peptide or oligonucleotide-based molecules that show very high affinity to their targets that are produced from large pools of random amino acid or oligonucleotide sequences. Generally, aptamers have been utilized for fundamental sciences and clinical implementations for their target-specific affinity and have been intensely exploited for different kinds of biosensor applications for approximately 30 years. The convergence of aptamers with biosensor systems enabled the construction of voltammetric, amperometric, and impedimetric biosensors for the detection of specific pathogens. In this review, electrochemical aptamer biosensors were evaluated by discussing the definition, types, and production techniques of aptamers, the advantages of aptamers as a biological recognition element against their alternatives, and a wide range of aptasensor examples from literature in the detection of specific pathogens.
Collapse
Affiliation(s)
| | - Erhan Demirbas
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hatice Esra Agel
- BioNano Functional Materials Technologies Research Group TÜBİTAK - Marmara Research Center, Gebze, Kocaeli, Turkey
| |
Collapse
|
26
|
Alshammari A, van Zalinge H, Sandall I. In Situ Monitoring of Aptamer-Protein Binding on a ZnO Surface Using Spectroscopic Ellipsometry. SENSORS (BASEL, SWITZERLAND) 2023; 23:6353. [PMID: 37514647 PMCID: PMC10385375 DOI: 10.3390/s23146353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The dissolution of zinc oxide is investigated using spectroscopic ellipsometry to investigate its suitability as a platform for biosensing applications. The results indicate that once the ZnO surface has been functionalised, it is suitably protected, and no significant dissolving of the ZnO occurs. The binding kinetics of the SARS-CoV-2 spike protein on aptamer-functionalised zinc oxide surfaces are subsequently investigated. Values are extracted for the refractive index and associated optical constants for both the aptamer layer used and the protein itself. It is shown that upon an initial exposure to the protein, a rapid fluctuation in the surface density is observed. After around 20 min, this effect stabilises, and a fixed increase in the surface density is observed, which itself increases as the concentration of the protein is increased. This technique and setup are demonstrated to have a limit-of-detection down to 1 nanomole (nM) and display a linear response to concentrations up to 100 nM.
Collapse
Affiliation(s)
- Adeem Alshammari
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Harm van Zalinge
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Ian Sandall
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| |
Collapse
|
27
|
Tomichan R, Sharma A, Akash K, Siddiqui AA, Dubey A, Upadhyay TK, Kumar D, Pandey S, Nagraik R. Insight of smart biosensors for COVID-19: A review. LUMINESCENCE 2023; 38:1102-1110. [PMID: 36577837 PMCID: PMC9880657 DOI: 10.1002/bio.4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
The review discusses the diagnostic application of biosensors as point-of-care devices in the COVID-19 pandemic. Biosensors are important analytical tools that can be used for the robust and effective detection of infectious diseases in real-time. In this current scenario, the utilization of smart, efficient biosensors for COVID-19 detection is increasing and we have included a few smart biosensors such as smart and intelligent based biosensors, plasmonic biosensors, field effect transistor (FET) biosensors, smart optical biosensors, surface enhanced Raman scattering (SERS) biosensor, screen printed electrode (SPE)-based biosensor, molecular imprinted polymer (MIP)-based biosensor, MXene-based biosensor and metal-organic frame smart sensor. Their significance as well as the benefits and drawbacks of each kind of smart sensor are mentioned in depth. Furthermore, we have compiled a list of various biosensors which have been developed across the globe for COVID-19 and have shown promise as commercial detection devices. Significant challenges in the development of effective diagnostic methods are discussed and recommendations have been made for better diagnostic outcomes to manage the ongoing pandemic effectively.
Collapse
Affiliation(s)
- Rosemary Tomichan
- Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| | - Avinash Sharma
- Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| | - K. Akash
- Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| | - Adeeb Ahmad Siddiqui
- Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| | - Amit Dubey
- Computational Chemistry and Drug Discovery DivisionQuanta Calculus Pvt. LtdKushinagarUttar PradeshIndia
- Department of Pharmacology, Saveetha Dental College and HospitalSaveetha Institute of Medical and Technical SciencesChennaiTamil NaduIndia
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences, Animal Cell Culture and Immunobiochemistry LabParul UniversityVadodaraGujaratIndia
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | - Sadanand Pandey
- Department of Chemistry, College of Natural SciencesYeungnam UniversityGyeongsanGyeongbukSouth Korea
| | - Rupak Nagraik
- Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| |
Collapse
|
28
|
Abstract
Optical biosensors are frontrunners for the rapid and real-time detection of analytes, particularly for low concentrations. Among them, whispering gallery mode (WGM) resonators have recently attracted a growing focus due to their robust optomechanical features and high sensitivity, measuring down to single binding events in small volumes. In this review, we provide a broad overview of WGM sensors along with critical advice and additional "tips and tricks" to make them more accessible to both biochemical and optical communities. Their structures, fabrication methods, materials, and surface functionalization chemistries are discussed. We propose this reflection under a pedagogical approach to describe and explain these biochemical sensors with a particular focus on the most recent achievements in the field. In addition to highlighting the advantages of WGM sensors, we also discuss and suggest strategies to overcome their current limitations, leaving room for further development as practical tools in various applications. We aim to provide new insights and combine different knowledge and perspectives to advance the development of the next generation of WGM biosensors. With their unique advantages and compatibility with different sensing modalities, these biosensors have the potential to become major game changers for biomedical and environmental monitoring, among many other relevant target applications.
Collapse
Affiliation(s)
- Médéric Loyez
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Maxwell Adolphson
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Jie Liao
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Lan Yang
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| |
Collapse
|
29
|
Kumari S, Samara M, Ampadi Ramachandran R, Gosh S, George H, Wang R, Pesavento RP, Mathew MT. A Review on Saliva-Based Health Diagnostics: Biomarker Selection and Future Directions. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-18. [PMID: 37363139 PMCID: PMC10243891 DOI: 10.1007/s44174-023-00090-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
The human body has a unique way of saying when something is wrong with it. The molecules in the body fluids can be helpful in the early detection of diseases by enabling health and preventing disease progression. These biomarkers enabling better healthcare are becoming an extensive area of research interest. Biosensors that detect these biomarkers are becoming the future, especially Point Of Care (POC) biosensors that remove the need to be physically present in the hospital. Detection of complex and systemic diseases using biosensors has a long way to go. Saliva-based biosensors are gaining attention among body fluids due to their non-invasive collection and ability to detect periodontal disease and identify systemic diseases. The possibility of saliva-based diagnostic biosensors has gained much publicity, with companies sending home kits for ancestry prediction. Saliva-based testing for covid 19 has revealed effective clinical use and relevance of the economic collection. Based on universal biomarkers, the detection of systemic diseases is a booming research arena. Lots of research on saliva-based biosensors is available, but it still poses challenges and limitations as POC devices. This review paper talks about the relevance of saliva and its usefulness as a biosensor. Also, it has recommendations that need to be considered to enable it as a possible diagnostic tool. Graphical Abstract
Collapse
Affiliation(s)
- Swati Kumari
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | - Mesk Samara
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | | | - Sujoy Gosh
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | - Haritha George
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL USA
| | - Rong Wang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL USA
| | - Russell P. Pesavento
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | - Mathew T. Mathew
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
30
|
Cheng L, Lan L, Ramalingam M, He J, Yang Y, Gao M, Shi Z. A review of current effective COVID-19 testing methods and quality control. Arch Microbiol 2023; 205:239. [PMID: 37195393 DOI: 10.1007/s00203-023-03579-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
COVID-19 is a highly infectious disease caused by the SARS-CoV-2 virus, which primarily affects the respiratory system and can lead to severe illness. The virus is extremely contagious, early and accurate diagnosis of SARS-CoV-2 is crucial to contain its spread, to provide prompt treatment, and to prevent complications. Currently, the reverse transcriptase polymerase chain reaction (RT-PCR) is considered to be the gold standard for detecting COVID-19 in its early stages. In addition, loop-mediated isothermal amplification (LMAP), clustering rule interval short palindromic repeats (CRISPR), colloidal gold immunochromatographic assay (GICA), computed tomography (CT), and electrochemical sensors are also common tests. However, these different methods vary greatly in terms of their detection efficiency, specificity, accuracy, sensitivity, cost, and throughput. Besides, most of the current detection methods are conducted in central hospitals and laboratories, which is a great challenge for remote and underdeveloped areas. Therefore, it is essential to review the advantages and disadvantages of different COVID-19 detection methods, as well as the technology that can enhance detection efficiency and improve detection quality in greater details.
Collapse
Affiliation(s)
- Lijia Cheng
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| | - Liang Lan
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Murugan Ramalingam
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Jianrong He
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Yimin Yang
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Min Gao
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Zheng Shi
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
31
|
Mobed A, Kohansal F, Dolati S, Hasanzadeh M. Label-free immunosensing of telomerase using bio-conjugation of biotinylated antibody to poly(chitosan) gold nanoparticles. Bioanalysis 2023; 15:567-580. [PMID: 37170535 DOI: 10.4155/bio-2023-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Aim: This study aimed to establish a label-free electrochemical biosensor for telomerase detection in human biofluid. Method: Synthesized green nanocomposite (poly[chitosan] decorated by gold nanoparticles) was used for the efficient immobilization of biotinylated antibody of telomerase and immunocomplex of antigen-antibody. Poly(chitosan) was decorated by gold nanoparticles on the surface of a glassy carbon electrode using an electrochemical coating technique. Results: The constructed immunosensor exhibited wide dynamic range (0.078-160 IU/ml-1) with a low limit of quantification of 0.078 IU/ml-1, which present a unique manner for telomerase assays in early prognosis for cancers. Conclusion: This study encourages scientists and scholars to design and develop new biosensor platforms for point-of-care diagnostics for telomerase management, an interesting reference for future research.
Collapse
Affiliation(s)
- Ahmad Mobed
- Infectious & Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Physical Medicine & Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Fereshteh Kohansal
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Sanam Dolati
- Physical Medicine & Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| |
Collapse
|
32
|
Yang LY, Xu XW, Lin Y, Ye CL, Liu WQ, Liu ZJ, Zhong GX, Xu YF, Lin XH, Chen JY. Nucleic Acid Amplification by Template-Dominated Click Chemistry for Ultrasensitive DNA/RNA Detection on an Electrochemical Readout Platform. Anal Chem 2023; 95:5331-5339. [PMID: 36926822 DOI: 10.1021/acs.analchem.2c05421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
As an enzyme-free exponential nucleic acid amplification method, the click chemistry-mediated ligation chain reaction (ccLCR) has shown great prospects in the molecular diagnosis. However, the current optics-based ccLCR is challenged by remarkable nonspecific amplification, severely hindering its future application. This study demonstrated that the severe nonspecific amplification was generated probably due to high random collision in the high DNA probe concentration (μM level). To solve this hurdle, a nucleic acid template-dominated ccLCR was constructed using nM-level DNA probes and read on an electrochemical platform (cc-eLCR). Under the optimal conditions, the proposed cc-eLCR detected a low-level nucleic acid target (1 fM) with a single-base resolution. Furthermore, this assay was applied to detect the target of interest in cell extracts with a satisfactory result. The proposed cc-eLCR offers huge possibility for click chemistry-mediated enzyme-free exponential nucleic acid amplification in the application of medical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Liang-Yong Yang
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.,Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiong-Wei Xu
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yan Lin
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Chen-Liu Ye
- Department of Pharmacy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Wei-Qiang Liu
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zhou-Jie Liu
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Guang-Xian Zhong
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou 350122, China
| | - Yan-Fang Xu
- Department of Nephrology, the Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xin-Hua Lin
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jin-Yuan Chen
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
33
|
Liu L, Ma W, Wang X, Li S. Recent Progress of Surface-Enhanced Raman Spectroscopy for Bacteria Detection. BIOSENSORS 2023; 13:350. [PMID: 36979564 PMCID: PMC10046079 DOI: 10.3390/bios13030350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
There are various pathogenic bacteria in the surrounding living environment, which not only pose a great threat to human health but also bring huge losses to economic development. Conventional methods for bacteria detection are usually time-consuming, complicated and labor-intensive, and cannot meet the growing demands for on-site and rapid analyses. Sensitive, rapid and effective methods for pathogenic bacteria detection are necessary for environmental monitoring, food safety and infectious bacteria diagnosis. Recently, benefiting from its advantages of rapidity and high sensitivity, surface-enhanced Raman spectroscopy (SERS) has attracted significant attention in the field of bacteria detection and identification as well as drug susceptibility testing. Here, we comprehensively reviewed the latest advances in SERS technology in the field of bacteria analysis. Firstly, the mechanism of SERS detection and the fabrication of the SERS substrate were briefly introduced. Secondly, the label-free SERS applied for the identification of bacteria species was summarized in detail. Thirdly, various SERS tags for the high-sensitivity detection of bacteria were also discussed. Moreover, we emphasized the application prospects of microfluidic SERS chips in antimicrobial susceptibility testing (AST). In the end, we gave an outlook on the future development and trends of SERS in point-of-care diagnoses of bacterial infections.
Collapse
Affiliation(s)
- Lulu Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenrui Ma
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiang Wang
- Department of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
34
|
Cetinkaya A, Kaya SI, Ozkan SA. A Comprehensive Overview of Sensors Applications for the Diagnosis of SARS-CoV-2 and of Drugs Used in its Treatment. Crit Rev Anal Chem 2023; 54:2517-2537. [PMID: 36877165 DOI: 10.1080/10408347.2023.2186693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
During the COVID-19 process, determination-based analytical chemistry studies have had a major place at every stage. Many analytical techniques have been used in both diagnostic studies and drug analysis. Among these, electrochemical sensors are frequently preferred due to their high sensitivity, selectivity, short analysis time, reliability, ease of sample preparation, and low use of organic solvents. For the determination of drugs used in the SARS-CoV-2, such as favipiravir, molnupiravir, ribavirin, etc., electrochemical (nano)sensors are widely used in both pharmaceutical and biological samples. Diagnosis is the most critical step in the management of the disease, and electrochemical sensor tools are widely preferred for this purpose. Diagnostic electrochemical sensor tools can be biosensor-, nano biosensor-, or MIP-based sensors and utilize a wide variety of analytes such as viral proteins, viral RNA, antibodies, etc. This review overviews the sensor applications in SARS-CoV-2 in terms of diagnosis and determination of drugs by evaluating the most recent studies in the literature. In this way, it is aimed to compile the developments so far by shedding light on the most recent studies and giving ideas to researchers for future studies.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
- Graduate School of Health Sciences, Ankara University, Ankara, Türkiye
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Türkiye
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
| |
Collapse
|
35
|
Hatta MHM, Matmin J, Malek NANN, Kamisan FH, Badruzzaman A, Batumalaie K, Ling Lee S, Abdul Wahab R. COVID‐19: Prevention, Detection, and Treatment by Using Carbon Nanotubes‐Based Materials. ChemistrySelect 2023. [DOI: 10.1002/slct.202204615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Mohd Hayrie Mohd Hatta
- Centre for Research and Development Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Juan Matmin
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Nik Ahmad Nizam Nik Malek
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Department of Biosciences, Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Farah Hidayah Kamisan
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Aishah Badruzzaman
- Centre for Foundation, Language and General Studies Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Siew Ling Lee
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| |
Collapse
|
36
|
Truong PL, Yin Y, Lee D, Ko SH. Advancement in COVID-19 detection using nanomaterial-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20210232. [PMID: 37323622 PMCID: PMC10191025 DOI: 10.1002/exp.20210232] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/11/2022] [Indexed: 06/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has exemplified how viral growth and transmission are a significant threat to global biosecurity. The early detection and treatment of viral infections is the top priority to prevent fresh waves and control the pandemic. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified through several conventional molecular methodologies that are time-consuming and require high-skill labor, apparatus, and biochemical reagents but have a low detection accuracy. These bottlenecks hamper conventional methods from resolving the COVID-19 emergency. However, interdisciplinary advances in nanomaterials and biotechnology, such as nanomaterials-based biosensors, have opened new avenues for rapid and ultrasensitive detection of pathogens in the field of healthcare. Many updated nanomaterials-based biosensors, namely electrochemical, field-effect transistor, plasmonic, and colorimetric biosensors, employ nucleic acid and antigen-antibody interactions for SARS-CoV-2 detection in a highly efficient, reliable, sensitive, and rapid manner. This systematic review summarizes the mechanisms and characteristics of nanomaterials-based biosensors for SARS-CoV-2 detection. Moreover, continuing challenges and emerging trends in biosensor development are also discussed.
Collapse
Affiliation(s)
- Phuoc Loc Truong
- Laser and Thermal Engineering LabDepartment of Mechanical EngineeringGachon UniversitySeongnamKorea
| | - Yiming Yin
- New Materials InstituteDepartment of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingboChina
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National UniversityGwanak‐guSeoulKorea
| | - Daeho Lee
- Laser and Thermal Engineering LabDepartment of Mechanical EngineeringGachon UniversitySeongnamKorea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National UniversityGwanak‐guSeoulKorea
- Institute of Advanced Machinery and Design (SNU‐IAMD)/Institute of Engineering ResearchSeoul National UniversityGwanak‐guSeoulKorea
| |
Collapse
|
37
|
Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20220072. [PMID: 37323623 PMCID: PMC10190953 DOI: 10.1002/exp.20220072] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
The methodological advancements in surface-enhanced Raman scattering (SERS) technique with nanoscale materials based on noble metals, Au, Ag, and their bimetallic alloy Au-Ag, has enabled the highly efficient sensing of chemical and biological molecules at very low concentration values. By employing the innovative various type of Au, Ag nanoparticles and especially, high efficiency Au@Ag alloy nanomaterials as substrate in SERS based biosensors have revolutionized the detection of biological components including; proteins, antigens antibodies complex, circulating tumor cells, DNA, and RNA (miRNA), etc. This review is about SERS-based Au/Ag bimetallic biosensors and their Raman enhanced activity by focusing on different factors related to them. The emphasis of this research is to describe the recent developments in this field and conceptual advancements behind them. Furthermore, in this article we apex the understanding of impact by variation in basic features like effects of size, shape varying lengths, thickness of core-shell and their influence of large-scale magnitude and morphology. Moreover, the detailed information about recent biological applications based on these core-shell noble metals, importantly detection of receptor binding domain (RBD) protein of COVID-19 is provided.
Collapse
Affiliation(s)
- Gul Awiaz
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
38
|
Hetta HF, Ramadan YN, Al-Harbi AI, A. Ahmed E, Battah B, Abd Ellah NH, Zanetti S, Donadu MG. Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives. Biomedicines 2023; 11:biomedicines11020413. [PMID: 36830949 PMCID: PMC9953167 DOI: 10.3390/biomedicines11020413] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles' distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Correspondence: (H.F.H.); (M.G.D.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia
| | - Esraa A. Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, 36822 Damascus, Syria
| | - Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Assiut, Naser City, Assiut 2014101, Egypt
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
- Correspondence: (H.F.H.); (M.G.D.)
| |
Collapse
|
39
|
Tamiya E, Osaki S, Tsuchihashi T, Ushijima H, Tsukinoki K. Point-of-Care Diagnostic Biosensors to Monitor Anti-SARS-CoV-2 Neutralizing IgG/sIgA Antibodies and Antioxidant Activity in Saliva. BIOSENSORS 2023; 13:167. [PMID: 36831933 PMCID: PMC9953869 DOI: 10.3390/bios13020167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Monitoring biomarkers is a great way to assess daily physical condition, and using saliva instead of blood samples is more advantageous as the process is simple and allows individuals to test themselves. In the present study, we analyzed the titers of neutralizing antibodies, IgG and secretory IgA (sIgA), in response to the SARS-CoV-2 vaccine, in saliva. A total of 19 saliva and serum samples were collected over a 10-month period 3 weeks after the first vaccine, 8 months after the second vaccine, and 1 month after the third vaccine. The ranges of antibody concentrations post-vaccination were: serum IgG: 81-15,000 U/mL, salivary IgG: 3.4-330 U/mL, and salivary IgA: 58-870 ng/mL. A sharp increase in salivary IgG levels was observed after the second vaccination. sIgA levels also showed an increasing trend. A correlation with trends in serum IgG levels was observed, indicating the possibility of using saliva to routinely assess vaccine efficacy. The electrochemical immunosensor assay developed in this study based on the gold-linked electrochemical immunoassay, and the antioxidant activity measurement based on luminol electrochemiluminescence (ECL), can be performed using portable devices, which would prove useful for individual-based diagnosis using saliva samples.
Collapse
Affiliation(s)
- Eiichi Tamiya
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Osaka, Japan
| | - Shuto Osaki
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | - Hiromi Ushijima
- BioDevice Technology Ltd., 2-3 Asahidai, Nomi 923-1211, Ishikawa, Japan
| | - Keiichi Tsukinoki
- Department of Environmental Pathology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-0003, Kanagawa, Japan
| |
Collapse
|
40
|
de Moraes Pontes JG, Dos Santos RV, Tasic L. NMR-Metabolomics in COVID-19 Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:197-209. [PMID: 37378768 DOI: 10.1007/978-3-031-28012-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
COVID-19 stands for Corona Virus Disease 2019, which starts as a viral infection that provokes illness with different symptoms and severity. The infected individuals can be asymptomatic or present with mild, moderate, severe, and critical illness with acute respiratory distress syndrome (ARDS), acute cardiac injury, and multiorgan failure. When the virus enters the cells, it replicates and provokes responses. Most diseased individuals resolve the problems in a short time but unfortunately, some may die, and almost 3 years after the first reported cases, COVID-19 still kills thousands per day worldwide. One of the problems in not curing the viral infection is that the virus passes by undetected in cells. This can be caused by the lack of pathogen-associated molecular patterns (PAMPs) that start an orchestrated immune response, such as activation of type 1 interferons (IFNs), inflammatory cytokines, chemokines, and antiviral defenses. Before all of these events can happen, the virus uses the infected cells and numerous small molecules as sources of energy and building blocks for newly synthesized viral nanoparticles that travel to and infect other host cells. Therefore, studying the cell metabolome and metabolomic changes in biofluids might give insights into the state of the viral infection, viral loads, and defense response. NMR-metabolomics can help in solving the real-time host interactions by monitoring concentration changes in metabolites. This chapter addresses the state of the art of COVIDomics by NMR analyses and presents exemplified biomolecules identified in different world regions and gravities of illness as potential biomarkers.
Collapse
Affiliation(s)
| | - Roney Vander Dos Santos
- Laboratory of Chemical Biology, Institute of Chemistry, University of Campinas (UNICAMP), CampinaEs, Sao Paulo, Brazil
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Institute of Chemistry, University of Campinas (UNICAMP), CampinaEs, Sao Paulo, Brazil.
| |
Collapse
|
41
|
Suzaei FM, Daryanavard SM, Abdel-Rehim A, Bassyouni F, Abdel-Rehim M. Recent molecularly imprinted polymers applications in bioanalysis. CHEMICAL PAPERS 2023; 77:619-655. [PMID: 36213319 PMCID: PMC9524737 DOI: 10.1007/s11696-022-02488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
Molecular imprinted polymers (MIPs) as extraordinary compounds with unique features have presented a wide range of applications and benefits to researchers. In particular when used as a sorbent in sample preparation methods for the analysis of biological samples and complex matrices. Its application in the extraction of medicinal species has attracted much attention and a growing interest. This review focus on articles and research that deals with the application of MIPs in the analysis of components such as biomarkers, drugs, hormones, blockers and inhibitors, especially in biological matrices. The studies based on MIP applications in bioanalysis and the deployment of MIPs in high-throughput settings and optimization of extraction methods are presented. A review of more than 200 articles and research works clearly shows that the superiority of MIP techniques lies in high accuracy, reproducibility, sensitivity, speed and cost effectiveness which make them suitable for clinical usage. Furthermore, this review present MIP-based extraction techniques and MIP-biosensors which are categorized on their classes based on common properties of target components. Extraction methods, studied sample matrices, target analytes, analytical techniques and their results for each study are described. Investigations indicate satisfactory results using MIP-based bioanalysis. According to the increasing number of studies on method development over the last decade, the use of MIPs in bioanalysis is growing and will further expand the scope of MIP applications for less studied samples and analytes.
Collapse
Affiliation(s)
- Foad Mashayekhi Suzaei
- Toxicology Laboratories, Monitoring the Human Hygiene Condition & Standard of Qeshm (MHCS Company), Qeshm Island, Iran
| | - Seyed Mosayeb Daryanavard
- grid.444744.30000 0004 0382 4371Department of Chemistry, Faculty of Science, University of Hormozgan, Bandar-Abbas, Iran
| | - Abbi Abdel-Rehim
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK
| | - Fatma Bassyouni
- grid.419725.c0000 0001 2151 8157Chemistry of Natural and Microbial Products Department, Pharmaceutical industry Research Division, National Research Centre, Cairo, 12622 Egypt
| | - Mohamed Abdel-Rehim
- grid.5037.10000000121581746Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden and Med. Solutions, Stockholm, Sweden
| |
Collapse
|
42
|
Chaudhary KR, Kujur S, Singh K. Recent advances of nanotechnology in COVID 19: A critical review and future perspective. OPENNANO 2023; 9. [PMCID: PMC9749399 DOI: 10.1016/j.onano.2022.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The global anxiety and economic crisis causes the deadly pandemic coronavirus disease of 2019 (COVID 19) affect millions of people right now. Subsequently, this life threatened viral disease is caused due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, morbidity and mortality of infected patients are due to cytokines storm syndrome associated with lung injury and multiorgan failure caused by COVID 19. Thereafter, several methodological advances have been approved by WHO and US-FDA for the detection, diagnosis and control of this wide spreadable communicable disease but still facing multi-challenges to control. Herein, we majorly emphasize the current trends and future perspectives of nano-medicinal based approaches for the delivery of anti-COVID 19 therapeutic moieties. Interestingly, Nanoparticles (NPs) loaded with drug molecules or vaccines resemble morphological features of SARS-CoV-2 in their size (60–140 nm) and shape (circular or spherical) that particularly mimics the virus facilitating strong interaction between them. Indeed, the delivery of anti-COVID 19 cargos via a nanoparticle such as Lipidic nanoparticles, Polymeric nanoparticles, Metallic nanoparticles, and Multi-functionalized nanoparticles to overcome the drawbacks of conventional approaches, specifying the site-specific targeting with reduced drug loading and toxicities, exhibit their immense potential. Additionally, nano-technological based drug delivery with their peculiar characteristics of having low immunogenicity, tunable drug release, multidrug delivery, higher selectivity and specificity, higher efficacy and tolerability switch on the novel pathway for the prevention and treatment of COVID 19.
Collapse
Affiliation(s)
- Kabi Raj Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India,Department of Research and Development, United Biotech (P) Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India,Corresponding author at: Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, MOGA, Punjab 142001, India
| | - Sima Kujur
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
| | - Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India,Department of Research and Development, United Biotech (P) Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India
| |
Collapse
|
43
|
Abstract
Surface plasmon resonance (SPR) is an optical technique that is utilized for detecting molecular interactions that occur in direct protein-protein interactions. Binding of a mobile molecule (analyte) to a molecule immobilized on a thin metal film (ligand) changes the refractive index of the film. The angle of extinction of light that is completely reflected, after polarized light impinges upon the surface, is altered and monitored as a change in detector position for a dip in reflected intensity (the surface plasmon resonance phenomenon). Because the method strictly detects mass, there is no need to label the interacting components, thus eliminating possible changes of their molecular properties. One of the advantages in SPR is its high sensitivity, compatible with the need for purification of small amounts of protein for analysis. This chapter concentrates on practical methodologies for performing surface plasmon resonance analysis.
Collapse
Affiliation(s)
- Dennis G Drescher
- Departments of Otolaryngology and Biochemistry-Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Marian J Drescher
- Departments of Otolaryngology and Biochemistry-Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
44
|
Li C, Che B, Deng L. Electrochemical Biosensors Based on Carbon Nanomaterials for Diagnosis of Human Respiratory Diseases. BIOSENSORS 2022; 13:12. [PMID: 36671847 PMCID: PMC9855565 DOI: 10.3390/bios13010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In recent years, respiratory diseases have increasingly become a global concern, largely due to the outbreak of Coronavirus Disease 2019 (COVID-19). This inevitably causes great attention to be given to the development of highly efficient and minimal or non-invasive methods for the diagnosis of respiratory diseases. And electrochemical biosensors based on carbon nanomaterials show great potential in fulfilling the requirement, not only because of the superior performance of electrochemical analysis, but also given the excellent properties of the carbon nanomaterials. In this paper, we review the most recent advances in research, development and applications of electrochemical biosensors based on the use of carbon nanomaterials for diagnosis of human respiratory diseases in the last 10 years. We first briefly introduce the characteristics of several common human respiratory diseases, including influenza, COVID-19, pulmonary fibrosis, tuberculosis and lung cancer. Then, we describe the working principles and fabrication of various electrochemical biosensors based on carbon nanomaterials used for diagnosis of these respiratory diseases. Finally, we summarize the advantages, challenges, and future perspectives for the currently available electrochemical biosensors based on carbon nanomaterials for detecting human respiratory diseases.
Collapse
|
45
|
Alhamid G, Tombuloglu H, Motabagani D, Motabagani D, Rabaan AA, Unver K, Dorado G, Al-Suhaimi E, Unver T. Colorimetric and fluorometric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for diagnosis of SARS-CoV-2. Funct Integr Genomics 2022; 22:1391-1401. [PMID: 36089609 PMCID: PMC9464610 DOI: 10.1007/s10142-022-00900-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/19/2022] [Accepted: 09/04/2022] [Indexed: 11/04/2022]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused millions of infections and deaths worldwide since it infected humans almost 3 years ago. Improvements of current assays and the development of new rapid tests or to diagnose SARS-CoV-2 are urgent. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a rapid and propitious assay, allowing to detect both colorimetric and/or fluorometric nucleic acid amplifications. This study describes the analytical and clinical evaluation of RT-LAMP assay for detection of SARS-CoV-2, by designing LAMP primers targeting N (nucleocapsid phosphoprotein), RdRp (polyprotein), S (surface glycoprotein), and E (envelope protein) genes. The assay's performance was compared with the gold standard RT-PCR, yielding 94.6% sensitivity and 92.9% specificity. Among the tested primer sets, the ones for S and N genes had the highest analytical sensitivity, showing results in about 20 min. The colorimetric and fluorometric comparisons revealed that the latter is faster than the former. The limit of detection (LoD) of RT-LAMP reaction in both assays is 50 copies/µl of the reaction mixture. However, the simple eye-observation advantage of the colorimetric assay (with a color change from yellow to red) serves a promising on-site point-of-care testing method anywhere, including, for instance, laboratory and in-house applications.
Collapse
Affiliation(s)
- Galyah Alhamid
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
- Biotechnology Postgraduate Program at Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia.
| | - Dalal Motabagani
- College of Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Dana Motabagani
- College of Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan
| | - Kubra Unver
- Ficus Biotechnology, Ostim OSB Mah, 100. Yil Blv, No: 55, Yenimahalle, Ankara, Turkey
| | - Gabriel Dorado
- Dep. Bioquímica Y Biología Molecular, Universidad de Córdoba, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), 14071, Córdoba, Spain
| | - Ebtesam Al-Suhaimi
- Biology Department, College of Science and Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Turgay Unver
- Ficus Biotechnology, Ostim OSB Mah, 100. Yil Blv, No: 55, Yenimahalle, Ankara, Turkey.
| |
Collapse
|
46
|
The evolving epidemiology of monkeypox virus. Cytokine Growth Factor Rev 2022; 68:1-12. [PMID: 36244878 PMCID: PMC9547435 DOI: 10.1016/j.cytogfr.2022.10.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 02/07/2023]
Abstract
Monkeypox, caused by the monkeypox virus (MPXV), is a zoonotic disease endemic mainly in West and Central Africa. As of 27 September 2022, human monkeypox has occurred in more than 100 countries (mostly in non-endemic regions) and caused over 66,000 confirmed cases, which differs from previous epidemics that mainly affected African countries. Due to the increasing number of confirmed cases worldwide, the World Health Organization (WHO) has declared the monkeypox outbreak as a Public Health Emergency of International Concern on July 23, 2022. The international outbreak of human monkeypox represents a novel route of transmission for MPXV, with genital lesions as the primary infection, and the emergence of monkeypox in the current outbreak is also new, as novel variants emerge. Clinical physicians and scientists should be aware of this emerging situation, which presents a different scenario from previous outbreaks. In this review, we will discuss the molecular virology, evasion of antiviral immunity, epidemiology, evolution, and detection of MPXV, as well as prophylaxis and treatment strategies for monkeypox. This review also emphasizes the integration of relevant epidemiological data with genomic surveillance data to obtain real-time data, which could formulate prevention and control measures to curb this outbreak.
Collapse
|
47
|
Ucci S, Spaziani S, Quero G, Vaiano P, Principe M, Micco A, Sandomenico A, Ruvo M, Consales M, Cusano A. Advanced Lab-on-Fiber Optrodes Assisted by Oriented Antibody Immobilization Strategy. BIOSENSORS 2022; 12:1040. [PMID: 36421158 PMCID: PMC9688615 DOI: 10.3390/bios12111040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Lab-on-fiber (LoF) optrodes offer several advantages over conventional techniques for point-of-care platforms aimed at real-time and label-free detection of clinically relevant biomarkers. Moreover, the easy integration of LoF platforms in medical needles, catheters, and nano endoscopes offer unique potentials for in vivo biopsies and tumor microenvironment assessment. The main barrier to translating the vision close to reality is the need to further lower the final limit of detection of developed optrodes. For immune-biosensing purposes, the assay sensitivity significantly relies on the capability to correctly immobilize the capture antibody in terms of uniform coverage and correct orientation of the bioreceptor, especially when very low detection limits are requested as in the case of cancer diagnostics. Here, we investigated the possibility to improve the immobilization strategies through the use of hinge carbohydrates by involving homemade antibodies that demonstrated a significantly improved recognition of the antigen with ultra-low detection limits. In order to create an effective pipeline for the improvement of biofunctionalization protocols to be used in connection with LoF platforms, we first optimized the protocol using a microfluidic surface plasmon resonance (mSPR) device and then transferred the optimized strategy onto LoF platforms selected for the final validation. Here, we selected two different LoF platforms: a biolayer interferometry (BLI)-based device (commercially available) and a homemade advanced LoF biosensor based on optical fiber meta-tips (OFMTs). As a clinically relevant scenario, here we focused our attention on a promising serological biomarker, Cripto-1, for its ability to promote tumorigenesis in breast and liver cancer. Currently, Cripto-1 detection relies on laborious and time-consuming immunoassays. The reported results demonstrated that the proposed approach based on oriented antibody immobilization was able to significantly improve Cripto-1 detection with a 10-fold enhancement versus the random approach. More interestingly, by using the oriented antibody immobilization strategy, the OFMTs-based platform was able to reveal Cripto-1 at a concentration of 0.05 nM, exhibiting detection capabilities much higher (by a factor of 250) than those provided by the commercial LoF platform based on BLI and similar to the ones shown by the commercial and well-established bench-top mSPR Biacore 8K system. Therefore, our work opened new avenues into the development of high-sensitivity LoF biosensors for the detection of clinically relevant biomarkers in the sub-ng/mL range.
Collapse
Affiliation(s)
- Sarassunta Ucci
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy
| | - Sara Spaziani
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Giuseppe Quero
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Patrizio Vaiano
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
| | - Maria Principe
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
| | - Alberto Micco
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Annamaria Sandomenico
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy
| | - Marco Consales
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Andrea Cusano
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| |
Collapse
|
48
|
Alhamid G, Tombuloglu H, Rabaan AA, Al-Suhaimi E. SARS-CoV-2 detection methods: A comprehensive review. Saudi J Biol Sci 2022; 29:103465. [PMID: 36186678 PMCID: PMC9512523 DOI: 10.1016/j.sjbs.2022.103465] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/28/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
The ongoing novel COVID-19 has remained the center of attention, since its declaration as a pandemic in March 2020, due to its rapid and uncontrollable worldwide spread. Diagnostic tests are the first line of defense against the transmission of this infectious disease among individuals, with reverse-transcription quantitative polymerase chain reaction (RT-qPCR) being the approved gold standard for showing high sensitivity and specificity in detecting SARS-CoV-2. However, alternative tests are being invested due to the global demand for facilities, reagents, and healthcare workers needed for rapid population-based testing. Also, the rapid evolution of the viral genome and the emergence of new variants necessitates updating the existing methods. Scientists are aiming to improve tests to be affordable, simple, fast, and at the same time accurate, and efficient, as well as friendly user testing. The current diagnostic methods are either molecular-based that detect nucleic acids abundance, like RT-qPCR and reverse-transcription loop-mediated isothermal amplification (RT-LAMP); or immunologically based that detect the presence of antigens or antibodies in patients' specimens, like enzyme-linked immunosorbent assay (ELISA), lateral flow assay (LFA), chemiluminescent immunoassay (CLIA), and neutralization assay. In addition to these strategies, sensor-based or CRISPR applications are promising tools for the rapid detection of SARS-CoV-2. This review summarizes the most recent updates on the SARS-CoV-2 detection methods with their limitations. It will guide researchers, epidemiologists, and clinicians in identifying a more rapid, reliable, and sensitive method of diagnosing SARS-CoV-2 including the most recent variant of concern Omicron.
Collapse
Affiliation(s)
- Galyah Alhamid
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Biotechnology Master Program, Imam Abdulrahman bin Faisal University, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Ebtesam Al-Suhaimi
- Department of Biology, College of Science and Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| |
Collapse
|
49
|
Talebipour A, Ghannad AH, Sharifi E, Pirzadeh M, Hasanzadeh Moghadam H, Saviz M, Badieirostami M, Karimi Reikandeh P, Mobasheri H, Faraji-Dana R. Nonlinear dielectric spectroscopy biosensor for SARS-CoV-2 detection. Sci Rep 2022; 12:17080. [PMID: 36224267 PMCID: PMC9554844 DOI: 10.1038/s41598-022-20961-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 01/04/2023] Open
Abstract
The coronavirus disease caused by the SARS-CoV-2 virus has affected people worldwide for more than two years. Here we present a new diagnostic method based on nonlinear dielectric spectroscopy to detect the presence of the SARS-CoV-2 virus in swab samples. A known current is injected into the virus sample suspension, and the biomarker is the third harmonic detected in the power spectrum of the recorded signal. Computational modeling of harmonic production supports the hypothesis of ion channels (the E-protein) with nonlinear current-voltage characteristics being present on the virus envelope as a possible origin of harmonics. The developed system is able to distinguish between positive and negative samples with 5-10 dBc (decibels relative to the carrier) higher third harmonic ratios in positive samples, in agreement with the computational estimation. Our early results demonstrate that this method can detect the virus in solution. This is the first time harmonic signatures are used to detect SARS-CoV-2 in swab samples.
Collapse
Affiliation(s)
- Ali Talebipour
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amir Hosein Ghannad
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elham Sharifi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Morteza Pirzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamed Hasanzadeh Moghadam
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrdad Saviz
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
- Biophysics Workgroup, University Consortium of Covid-19, Tehran, Iran.
| | - Majid Badieirostami
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Biophysics Workgroup, University Consortium of Covid-19, Tehran, Iran
| | - Parham Karimi Reikandeh
- Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamid Mobasheri
- Biophysics Workgroup, University Consortium of Covid-19, Tehran, Iran.
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Reza Faraji-Dana
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Biophysics Workgroup, University Consortium of Covid-19, Tehran, Iran
- Center of Excellence on Applied Electromagnetic Systems, University of Tehran, Tehran, Iran
| |
Collapse
|
50
|
Castrejón-Jiménez NS, García-Pérez BE, Reyes-Rodríguez NE, Vega-Sánchez V, Martínez-Juárez VM, Hernández-González JC. Challenges in the Detection of SARS-CoV-2: Evolution of the Lateral Flow Immunoassay as a Valuable Tool for Viral Diagnosis. BIOSENSORS 2022; 12:bios12090728. [PMID: 36140114 PMCID: PMC9496238 DOI: 10.3390/bios12090728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 is an emerging infectious disease of zoonotic origin that caused the coronavirus disease in late 2019 and triggered a pandemic that has severely affected human health and caused millions of deaths. Early and massive diagnosis of SARS-CoV-2 infected patients is the key to preventing the spread of the virus and controlling the outbreak. Lateral flow immunoassays (LFIA) are the simplest biosensors. These devices are clinical diagnostic tools that can detect various analytes, including viruses and antibodies, with high sensitivity and specificity. This review summarizes the advantages, limitations, and evolution of LFIA during the SARS-CoV-2 pandemic and the challenges of improving these diagnostic devices.
Collapse
Affiliation(s)
- Nayeli Shantal Castrejón-Jiménez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Blanca Estela García-Pérez
- Department of Microbiology, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, México City 11340, Mexico
| | - Nydia Edith Reyes-Rodríguez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Vicente Vega-Sánchez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Víctor Manuel Martínez-Juárez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Juan Carlos Hernández-González
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
- Correspondence: ; Tel.: +52-775-756-0308
| |
Collapse
|