1
|
Velasco Garcia WJ, Araripe Dos Santos Neto N, Borba Rios T, Rocha Maximiano M, Souza CMD, Franco OL. Genetic basis of antibiotic resistance in bovine mastitis and its possible implications for human and ecological health. Crit Rev Microbiol 2025; 51:427-440. [PMID: 38916977 DOI: 10.1080/1040841x.2024.2369140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Bovine mastitis is a mammary gland inflammation that can occur due to infectious pathogens, Staphylococcus aureus and Escherichia coli, which are, respectively, the most prevalent Gram-positive and Gram-negative bacteria associated with this disease. Currently, antibiotic treatment has become more complicated due to the presence of resistant pathogens. This review, therefore, aims to identify the most common resistance genes reported for these strains in the last four years. During the review, it was noted that blaZ, blaSHV, blaTEM, and blaampC are the most reported genes for S. aureus and E. coli, associated with drug inactivation, mainly β-lactamases. They are characterized by generating bacterial resistance to β-lactam antibiotics, the most common treatment in animal and human bacterial treatments (penicillins and cephalosporins, among others). Genes associated with efflux systems were also present in the two strains and included norA, tetA, tetC, and tetK, which generate resistance to macrolide and tetracycline antibiotics. Additionally, the effects of spreading resistance between animals and humans through direct contact (such as consumption of contaminated milk) or indirect contact (through environmental contamination) has been deeply discussed, emphasizing the importance of having adequate sanitation and antibiotic control and administration protocols.
Collapse
Affiliation(s)
- Wendy Johana Velasco Garcia
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nilton Araripe Dos Santos Neto
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Universidade de Brasília, Pós-Graduação em Patologia Molecular, Brasília, DF, Brazil
| | - Thuanny Borba Rios
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Mariana Rocha Maximiano
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Camila Maurmann de Souza
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Universidade de Brasília, Pós-Graduação em Patologia Molecular, Brasília, DF, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
2
|
Zhang D, Kukkar D, Bhatt P, Kim KH, Kaur K, Wang J. Novel nanomaterials-based combating strategies against drug-resistant bacteria. Colloids Surf B Biointerfaces 2025; 248:114478. [PMID: 39778220 DOI: 10.1016/j.colsurfb.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Numerous types of contemporary antibiotic treatment regimens have become ineffective with the increasing incidence of drug tolerance. As a result, it is pertinent to seek novel and innovative solutions such as antibacterial nanomaterials (NMs) for the prohibition and treatment of hazardous microbial infections. Unlike traditional antibiotics (e.g., penicillin and tetracycline), the unique physicochemical characteristics (e.g., size dependency) of NMs endow them with bacteriostatic and bactericidal potential. However, it is yet difficult to mechanistically predict or decipher the networks of molecular interaction (e.g., between NMs and the biological systems) and the subsequent immune responses. In light of such research gap, this review outlines various mechanisms accountable for the inception of drug tolerance in bacteria. It also delineates the primary factors governing the NMs-induced molecular mechanisms against microbes, specifically drug-resistant bacteria along with the various NM-based mechanisms of antibacterial activity. The review also explores future directions and prospects for NMs in combating drug-resistant bacteria, while addressing challenges to their commercial viability within the healthcare industry.
Collapse
Affiliation(s)
- Daohong Zhang
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, College of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India.
| | - Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| | - Kamalpreet Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab 140406, India
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Parvin N, Joo SW, Mandal TK. Nanomaterial-Based Strategies to Combat Antibiotic Resistance: Mechanisms and Applications. Antibiotics (Basel) 2025; 14:207. [PMID: 40001450 PMCID: PMC11852044 DOI: 10.3390/antibiotics14020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The rapid rise of antibiotic resistance has become a global health crisis, necessitating the development of innovative strategies to combat multidrug-resistant (MDR) pathogens. Nanomaterials have emerged as promising tools in this fight, offering unique physicochemical properties that enhance antibiotic efficacy, overcome resistance mechanisms, and provide alternative therapeutic approaches. This review explores the diverse nanomaterial-based strategies used to combat antibiotic resistance, focusing on their mechanisms of action and practical applications. Nanomaterials such as metal nanoparticles, carbon-based nanomaterials, and polymeric nanostructures exhibit antibacterial properties through various pathways, including the generation of reactive oxygen species (ROS), disruption of bacterial membranes, and enhancement of antibiotic delivery. Additionally, the ability of nanomaterials to bypass traditional resistance mechanisms, such as biofilm formation and efflux pumps, has been demonstrated in numerous studies. This review also discusses the synergistic effects observed when nanomaterials are combined with conventional antibiotics, leading to increased bacterial susceptibility and reduced required dosages. By highlighting the recent advancements and clinical applications of nanomaterial-antibiotic combinations, this paper provides a comprehensive overview of how nanomaterials are reshaping the future of antibacterial therapies. Future research directions and challenges, including toxicity and scalability, are also addressed to guide the development of safer, more effective nanomaterial-based antibacterial treatments.
Collapse
Affiliation(s)
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Tapas K. Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
4
|
Sung K, Park M, Kweon O, Paredes A, Savenka A, Khan SA. Proteomic insights into dual-species biofilm formation of E. coli and E. faecalis on urinary catheters. Sci Rep 2025; 15:3739. [PMID: 39885187 PMCID: PMC11782587 DOI: 10.1038/s41598-024-81953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/02/2024] [Indexed: 02/01/2025] Open
Abstract
Infections associated with urinary catheters are often caused by biofilms composed of various bacterial species that form on the catheters' surfaces. In this study, we investigated the intricate interplay between Escherichia coli and Enterococcus faecalis during biofilm formation on urinary catheter segments using a dual-species culture model. We analyzed biofilm formation and global proteomic profiles to understand how these bacteria interact and adapt within a shared environment. Our findings demonstrated dynamic population shifts within the biofilms, with E. coli initially thriving in the presence of E. faecalis, then declining during biofilm development. E. faecalis exhibited a rapid decrease in cell numbers after 48 h in both single- and dual-species biofilms. Interestingly, the composition of the dual-species biofilms was remarkably diverse, with some predominantly composed of E. coli or of E. faecalis; others showed a balanced ratio of both species. Notably, elongated E. faecalis cells were observed in dual-species biofilms, a novel finding in mixed-species biofilm cultures. Proteomic analysis revealed distinct adaptive strategies E. coli and E. faecalis employed within biofilms. E. coli exhibited a more proactive response, emphasizing motility, transcription, and protein synthesis for biofilm establishment; whereas E. faecalis displayed a more reserved strategy, potentially downregulating metabolic activity, transcription, and translation in response to cohabitation with E. coli. Both E. coli and E. faecalis displayed significant downregulation of virulence-associated proteins when coexisting in dual-species biofilms. By delving deeper into these dynamics, we can gain a more comprehensive understanding of challenging biofilm-associated infections, paving the way for novel strategies to combat them.
Collapse
Affiliation(s)
- Kidon Sung
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration (FDA), Jefferson, AR, U.S.A..
| | - Miseon Park
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration (FDA), Jefferson, AR, U.S.A
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration (FDA), Jefferson, AR, U.S.A
| | - Angel Paredes
- NCTR-ORA Nanotechnology Core Facility, FDA, Jefferson, AR, U.S.A
| | - Alena Savenka
- NCTR-ORA Nanotechnology Core Facility, FDA, Jefferson, AR, U.S.A
| | - Saeed A Khan
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration (FDA), Jefferson, AR, U.S.A
| |
Collapse
|
5
|
Bukari Z, Emmanuel T, Woodward J, Ferguson R, Ezughara M, Darga N, Lopes BS. The Global Challenge of Campylobacter: Antimicrobial Resistance and Emerging Intervention Strategies. Trop Med Infect Dis 2025; 10:25. [PMID: 39852676 PMCID: PMC11768457 DOI: 10.3390/tropicalmed10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Antimicrobial resistance (AMR) in Campylobacter species, particularly C. jejuni and C. coli, poses a significant public health threat. These bacteria, which are commonly found in livestock, poultry, companion animals, and wildlife, are the leading causes of foodborne illnesses, often transmitted through contaminated poultry. Extensive exposure to antibiotics in human and veterinary medicine creates selection pressure, driving resistance through mechanisms such as point mutations, horizontal gene transfer, and efflux pumps. Resistance to fluoroquinolones, macrolides, and tetracyclines complicates treatment and increases the risk of severe infections. Drug-resistant Campylobacter is transmitted to humans via contaminated food, water, and direct contact with animals, highlighting its zoonotic potential. Addressing this challenge requires effective interventions. Pre-harvest strategies like biosecurity and immune-based methods reduce bacterial loads on farms, while post-harvest measures, including carcass decontamination and freezing, limit contamination. Emerging approaches, such as bacteriocins and natural antimicrobials, offer chemical-free alternatives. Integrated, multidisciplinary interventions across the food chain are essential to mitigate AMR transmission and enhance food safety. Sustainable agricultural practices, antimicrobial stewardship, and innovative solutions are critical to curbing Campylobacter resistance and protecting global public health. Our review examines the dynamics of antimicrobial resistance in Campylobacter and presents current strategies to mitigate Campylobacter-related AMR, offering valuable insights for antimicrobial control in the poultry industry.
Collapse
Affiliation(s)
- Zubeiru Bukari
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Toyin Emmanuel
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Jude Woodward
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Richard Ferguson
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Martha Ezughara
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Nikhil Darga
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Bruno Silvester Lopes
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
6
|
Azeem K, Fatima S, Ali A, Ubaid A, Husain FM, Abid M. Biochemistry of Bacterial Biofilm: Insights into Antibiotic Resistance Mechanisms and Therapeutic Intervention. Life (Basel) 2025; 15:49. [PMID: 39859989 PMCID: PMC11767195 DOI: 10.3390/life15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Biofilms, composed of structured communities of bacteria embedded in a self-produced extracellular matrix, pose a significant challenge due to their heightened resistance to antibiotics and immune responses. This review highlights the mechanisms underpinning antibiotic resistance within bacterial biofilms, elucidating the adaptive strategies employed by microorganisms to withstand conventional antimicrobial agents. This encompasses the role of the extracellular matrix, altered gene expression, and the formation of persister cells, contributing to the recalcitrance of biofilms to eradication. A comprehensive understanding of these resistance mechanisms provides a for exploring innovative therapeutic interventions. This study explores promising avenues for future research, emphasizing the necessity of uncovering the specific genetic and phenotypic adaptations occurring within biofilms. The identification of vulnerabilities in biofilm architecture and the elucidation of key biofilm-specific targets emerge as crucial focal points for the development of targeted therapeutic strategies. In addressing the limitations of traditional antibiotics, this review discusses innovative therapeutic approaches. Nanomaterials with inherent antimicrobial properties, quorum-sensing inhibitors disrupting bacterial communication, and bacteriophages as biofilm-specific viral agents are highlighted as potential alternatives. The exploration of combination therapies, involving antimicrobial agents, biofilm-disrupting enzymes, and immunomodulators, is emphasized to enhance the efficacy of existing treatments and overcome biofilm resilience.
Collapse
Affiliation(s)
- Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| | - Sadaf Fatima
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| | - Asghar Ali
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
- Clinical Biochemistry Laboratory, Department of Biochemistry, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Ayesha Ubaid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| |
Collapse
|
7
|
Ifedinezi OV, Nnaji ND, Anumudu CK, Ekwueme CT, Uhegwu CC, Ihenetu FC, Obioha P, Simon BO, Ezechukwu PS, Onyeaka H. Environmental Antimicrobial Resistance: Implications for Food Safety and Public Health. Antibiotics (Basel) 2024; 13:1087. [PMID: 39596781 PMCID: PMC11591122 DOI: 10.3390/antibiotics13111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is a serious global health issue, aggravated by antibiotic overuse and misuse in human medicine, animal care, and agriculture. This study looks at the different mechanisms that drive AMR, such as environmental contamination, horizontal gene transfer, and selective pressure, as well as the severe implications of AMR for human and animal health. This study demonstrates the need for concerted efforts across the scientific, healthcare, agricultural, and policy sectors to control the emergence of AMR. Some crucial strategies discussed include developing antimicrobial stewardship (AMS) programs, encouraging targeted narrow-spectrum antibiotic use, and emphasizing the significance of strict regulatory frameworks and surveillance systems, like the Global Antimicrobial Resistance and Use Surveillance System (GLASS) and the Access, Watch, and Reserve (AWaRe) classification. This study also emphasizes the need for national and international action plans in combating AMR and promotes the One Health strategy, which unifies environmental, animal, and human health. This study concludes that preventing the spread of AMR and maintaining the effectiveness of antibiotics for future generations requires a comprehensive, multidisciplinary, and internationally coordinated strategy.
Collapse
Affiliation(s)
| | - Nnabueze Darlington Nnaji
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
| | | | | | | | | | - Promiselynda Obioha
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Blessing Oteta Simon
- Department of Public Health Sciences, National Open University of Nigeria, Abuja 900108, Nigeria
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
8
|
Canè C, Tammaro L, Duilio A, Di Somma A. Investigation of the Mechanism of Action of AMPs from Amphibians to Identify Bacterial Protein Targets for Therapeutic Applications. Antibiotics (Basel) 2024; 13:1076. [PMID: 39596769 PMCID: PMC11591259 DOI: 10.3390/antibiotics13111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial peptides (AMPs) from amphibians represent a promising source of novel antibacterial agents due to their potent and broad-spectrum antimicrobial activity, which positions them as valid alternatives to conventional antibiotics. This review provides a comprehensive analysis of the mechanisms through which amphibian-derived AMPs exert their effects against bacterial pathogens. We focus on the identification of bacterial protein targets implicated in the action of these peptides and on biological processes altered by the effect of AMPs. By examining recent advances in countering multidrug-resistant bacteria through multi-omics approaches, we elucidate how AMPs interact with bacterial membranes, enter bacterial cells, and target a specific protein. We discuss the implications of these interactions in developing targeted therapies and overcoming antibiotic resistance (ABR). This review aims to integrate the current knowledge on AMPs' mechanisms, identify gaps in our understanding, and propose future directions for research to harness amphibian AMPs in clinical applications.
Collapse
Affiliation(s)
- Carolina Canè
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (C.C.); (L.T.)
| | - Lidia Tammaro
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (C.C.); (L.T.)
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia 4, 80126 Napoli, Italy;
- National Institute of Biostructures and Biosystems (INBB), Via dei Carpegna 19, 00165 Roma, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia 4, 80126 Napoli, Italy;
| |
Collapse
|
9
|
Rodrigues SO, Santiago FR, Silva MS, Lima ASG, Godoy LE, De Waard M, Fouad D, Batiha GE, Santos TL, Pagnossa JP. Macrolide resistance outcomes after the Covid-19 pandemic: A one health approach investigation. Biomed Pharmacother 2024; 180:117437. [PMID: 39303450 DOI: 10.1016/j.biopha.2024.117437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
During the Covid-19 pandemic period, the indiscriminate use of macrolide-class antibiotics was frequent among the Brazilian population due to the lack of knowledge and information with a scientific basis. Thus, the class of drugs that includes azithromycin, clarithromycin, and erythromycin, which alter metabolic reactions in the body and act on the immune system, was widely used without medical prescription. Samples of bacterial strains from hospital environments were obtained during the most extensive spread of Covid-19 and studied in the present article, emphasizing the investigation for macrolide resistance genes (erm and msr) and bacteria of the genus Staphylococcus isolated from urinary tract infections. In addition, the physiological, genetic, immunological, and socio-epidemiological aspects were highlighted with a focus on the One Health approach and implications on the gut-brain axis in this integrative research, revealing that the inappropriate use of antibiotics directly affects entire communities, representing a significant concern for public and environmental health.
Collapse
Affiliation(s)
- Sarah O Rodrigues
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| | - Felipe R Santiago
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| | | | | | | | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, Saint-Egrève 38120, France; L'institut du thorax, INSERM, CNRS, UNIV NANTES, Nantes F-44007, France; Université de Nice Sophia-Antipolis, LabEx (Ion Channels, Science & Therapeutics), Valbonne F-06560, France.
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh 11495, Saudi Arabia.
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt.
| | - Tamara L Santos
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| | - Jorge P Pagnossa
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| |
Collapse
|
10
|
da Silva Monteiro Wanderley BR, de Lima ND, Deolindo CTP, Ansiliero R, Kempka AP, Moroni LS, Louredo FJC, Gonzaga LV, Costa ACO, Amboni RDDMC, de Sena Aquino ACM, Fritzen-Freire CB. Orange passion fruit (Passiflora caerulea L.) as a new raw material for acetic fermentation: evaluation of organic acids and phenolic profile, in vitro digestion, and biological activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8275-8289. [PMID: 38877535 DOI: 10.1002/jsfa.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND This study evaluated for the first time the potential of orange passion fruit as a base for alcoholic and acetic fermentations, with a view to assessing its profile of organic acids and polyphenols, in vitro digestion, and biological activities. RESULTS In terms of aliphatic organic acids, malic acid was the majority in the wine (3.19 g L-1), while in the vinegar, it was acetic acid (46.84 g L-1). 3,4-Dihydroxybenzoic acid (3,4-DHB) was the major phenolic compound in the wine and vinegar samples (3443.93 and 2980.00 μg L-1, respectively). After the in vitro gastrointestinal simulation stage, the wine showed high bioaccessibility for the compounds sinipaldehyde (82.97%) and 2,4-dihydroxybenzoic acid (2,4-DHBA, 81.27%), while the vinegar exhibited high bioaccessibility for sinipaldehyde (89.39%). Through multivariate analysis, it was observed that 3,4-DHB was highly concentrated in the different digested fractions obtained from the wine. In contrast, in the vinegar, the stability of isorahmenetin and Quercetin 3-o-rhamnoside was observed during the in vitro digestion simulation. Lastly, the vinegar stood out for its inhibition rates of α-amylase (23.93%), α-glucoside (18.34%), and angiotensin-converting enzyme (10.92%). In addition, the vinegar had an inhibitory effect on the pathogenic microorganisms Salmonella enteritidis, Escherichia coli, and Listeria monocytogenes. CONCLUSION Orange passion fruit has proved to be a promising raw material for the development of fermented beverages. Therefore, this study provides an unprecedented perspective on the use and valorization of orange passion fruit, contributing significantly to the advancement of knowledge about fermented products and the associated nutritional and functional possibilities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Natália Duarte de Lima
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | | | - Rafaela Ansiliero
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Pinhalzinho, Brazil
| | - Aniela Pinto Kempka
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Pinhalzinho, Brazil
| | - Liziane Schittler Moroni
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Pinhalzinho, Brazil
| | | | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | | | | | | |
Collapse
|
11
|
Oliveira M, Antunes W, Mota S, Madureira-Carvalho Á, Dinis-Oliveira RJ, Dias da Silva D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024; 12:1920. [PMID: 39338594 PMCID: PMC11434382 DOI: 10.3390/microorganisms12091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR), frequently considered a major global public health threat, requires a comprehensive understanding of its emergence, mechanisms, advances, and implications. AMR's epidemiological landscape is characterized by its widespread prevalence and constantly evolving patterns, with multidrug-resistant organisms (MDROs) creating new challenges every day. The most common mechanisms underlying AMR (i.e., genetic mutations, horizontal gene transfer, and selective pressure) contribute to the emergence and dissemination of new resistant strains. Therefore, mitigation strategies (e.g., antibiotic stewardship programs-ASPs-and infection prevention and control strategies-IPCs) emphasize the importance of responsible antimicrobial use and surveillance. A One Health approach (i.e., the interconnectedness of human, animal, and environmental health) highlights the necessity for interdisciplinary collaboration and holistic strategies in combating AMR. Advancements in novel therapeutics (e.g., alternative antimicrobial agents and vaccines) offer promising avenues in addressing AMR challenges. Policy interventions at the international and national levels also promote ASPs aiming to regulate antimicrobial use. Despite all of the observed progress, AMR remains a pressing concern, demanding sustained efforts to address emerging threats and promote antimicrobial sustainability. Future research must prioritize innovative approaches and address the complex socioecological dynamics underlying AMR. This manuscript is a comprehensive resource for researchers, policymakers, and healthcare professionals seeking to navigate the complex AMR landscape and develop effective strategies for its mitigation.
Collapse
Affiliation(s)
- Manuela Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Wilson Antunes
- Instituto Universitário Militar, CINAMIL, Unidade Militar Laboratorial de Defesa Biológica e Química, Avenida Doutor Alfredo Bensaúde, 4 piso, do LNM, 1849-012 Lisbon, Portugal
| | - Salete Mota
- ULSEDV—Unidade Local De Saúde De Entre Douro Vouga, Unidade de Santa Maria da Feira e Hospital S. Sebastião, Rua Dr. Cândido Pinho, 4520-211 Santa Maria da Feira, Portugal
| | - Áurea Madureira-Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Avenida Dr. Mário Moutinho 33-A, 1400-136 Lisbon, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- REQUIMTE/LAQV, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
12
|
Li Y, Bi S, Guan W, Iddrisu L, Wei S, Chen Y, Sun L, Deng Q, Jiang Y, Fang Z, Gooneratne R. Antibiotic susceptibility of Vibrio parahaemolyticus isolated from prawns and oysters marketed in Zhanjiang, China. MARINE POLLUTION BULLETIN 2024; 206:116712. [PMID: 39018820 DOI: 10.1016/j.marpolbul.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
To evaluate the antibiotic susceptibility of Vibrio parahaemolyticus from prawns and oysters marketed in Zhanjiang, Guangdong, China. 84 strains of V. parahaemolyticus were isolated from prawns and oysters sampled from 9 major markets. The results showed that 84 V. parahaemolyticus strains had the highest rate of antibiotic resistance to oxytetracycline (69.05 %, 58/84) and the lowest rate of antibiotic resistance to enrofloxacin (1.19 %, 1/84), ciprofloxacin (4.76 %, 4/84) and norfloxacin (7.14 %, 6/84) in quinolone. Meanwhile, 96.42 % of the strains showed multiple antibiotic resistance (MAR). PCR results showed that the resistance phenotype was closely related to the antibiotic resistance genes and efflux pump genes (p < 0.01), and the efflux pump gene was the key causing MAR. The combination of antibiotics significantly eliminated multidrug resistance. In addition, efflux pump inhibitors also reduce MAR. This study may provide information on antibiotic susceptibility, antibiotic resistance and strategies for the control of V. parahaemolyticus.
Collapse
Affiliation(s)
- Yongbin Li
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Siyuan Bi
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China
| | - Wenhao Guan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lukman Iddrisu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yinyan Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongqing Jiang
- Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China; Shenzhen Lvshiyuan Biotechnology Co., Ltd., Shenzhen 510100, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury 7647, New Zealand
| |
Collapse
|
13
|
Engle K, Kumar G. Tackling multi-drug resistant fungi by efflux pump inhibitors. Biochem Pharmacol 2024; 226:116400. [PMID: 38945275 DOI: 10.1016/j.bcp.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
The emergence of multidrug-resistant fungi is of grave concern, and its infections are responsible for significant deaths among immunocompromised patients. The treatment of fungal infections primarily relies on a clinical class of antibiotics, including azoles, polyenes, echinocandins, polyketides, and a nucleotide analogue. However, the incidence of fungal infections is increasing as the treatment for human and plant fungal infections overlaps with antifungal drugs. The need for new antifungal agents acting on different targets than known targets is undeniable. Also, the pace at which loss of fungal susceptibility to antibiotics cannot be undermined. There are several modes by which fungi can develop resistance to antibiotics, including reduced drug uptake, drug target alteration, and a reduction in the cellular concentration of the drug due to active extrusions and biofilm formation. The efflux pump's overexpression in the fungi primarily reduced the antibiotic's concentration to a sub-lethal concentration, thus responsible for developing resistant fungus strains. Several strategies are used to check antibiotic resistance in multi-drug resistant fungi, including synthesizing antibiotic analogs and giving antibiotics in combination therapies. Among them, the efflux pump protein inhibitors are considered potential adjuvants to antibiotics and can block the efflux of antibiotics by inhibiting efflux pump protein transporters. Moreover, it can sensitize the antifungal drugs to multi-drug resistant fungi with overexpressed efflux pump proteins. This review discusses the natural lead molecules, repurposable drugs, and formulation strategies to overcome the efflux pump activity in the fungi.
Collapse
Affiliation(s)
- Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar 500037, India
| | - Gautam Kumar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
14
|
Almutairy B. Extensively and multidrug-resistant bacterial strains: case studies of antibiotics resistance. Front Microbiol 2024; 15:1381511. [PMID: 39027098 PMCID: PMC11256239 DOI: 10.3389/fmicb.2024.1381511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
The development of antibiotic resistance compromises the effectiveness of our most effective defenses against bacterial infections, presenting a threat to global health. To date, a large number of research articles exist in the literature describing the case reports associated with extensively drug-resistant (XDR) and multidrug-resistant (MDR) bacterial strains. However, these findings are scattered, making it time-consuming for researchers to locate promising results and there remains a need for a comparative study to compile these case reports from various geographical regions including the Kingdom of Saudi Arabia. Additionally, no study has yet been published that compares the genetic variations and case reports of MDR and XDR strains identified from Saudi Arabia, the Middle East, Central Europe, and Asian countries. This study attempts to provide a comparative analysis of several MDR and XDR case reports from Saudi Arabia alongside other countries. Furthermore, the purpose of this work is to demonstrate the genetic variations in the genes underlying the resistance mechanisms seen in MDR and XDR bacterial strains that have been reported in Saudi Arabia and other countries. To cover the gap, this comprehensive review explores the complex trends in antibiotic resistance and the growing risk posed by superbugs. We provide context on the concerning spread of drug-resistant bacteria by analyzing the fundamental mechanisms of antibiotic resistance and looking into individual case reports. In this article, we compiled various cases and stories associated with XDR and MDR strains from Saudi Arabia and various other countries including China, Egypt, India, Poland, Pakistan, and Taiwan. This review will serve as basis for highlighting the growing threat of MDR, XDR bacterial strains in Saudi Arabia, and poses the urgent need for national action plans, stewardship programs, preventive measures, and novel antibiotics research in the Kingdom.
Collapse
Affiliation(s)
- Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
15
|
Shafique I, Rafiq M, Rana NF, Menaa F, Almalki F, Aljuaid A, Alnasser SM, Alotaibi AS, Masood MBE, Tanweer T. Computational evaluation of efflux pump homologues and lignans as potent inhibitors against multidrug-resistant Salmonella typhi. PLoS One 2024; 19:e0303285. [PMID: 38917154 PMCID: PMC11198855 DOI: 10.1371/journal.pone.0303285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/22/2024] [Indexed: 06/27/2024] Open
Abstract
Typhoid fever, caused by Salmonella enterica serovar typhi, presents a substantial global health threat, particularly in regions with limited healthcare infrastructure. The rise of multidrug-resistant strains of S. typhi exacerbates this challenge, severely compromising conventional treatment efficacy due to over activity of efflux pumps. In our study, a comprehensive exploration of two fundamental aspects to combat MDR in S. typhi is carried out; i.e. employing advanced bioinformatics analyses and AlphaFold AI, We successfully identified and characterised a putative homologue, ABC-TPA, reminiscent of the P-glycoprotein (P-gp) known for its role in multidrug resistance in diverse pathogens. This discovery provides a critical foundation for understanding the potential mechanisms driving antibiotic resistance in S. typhi. Furthermore, employing computational methodologies, We meticulously assessed the potential of lignans, specifically Schisandrin A, B, and C, as promising Efflux Pump Inhibitors (EPIs) against the identified P-gp homologue in S. typhi. Noteworthy findings revealed robust binding interactions of Schisandrin A and B with the target protein, indicating substantial inhibitory capabilities. In contrast, Schisandrin C exhibited instability, showing varied effectiveness among the evaluated lignans. Pharmacokinetics and toxicity predictions underscored the favourable attributes of Schisandrin A, including prolonged action duration. Furthermore, high systemic stability and demanished toxicity profile of SA and SB present their therapeutic efficacy against MDR. This comprehensive investigation not only elucidates potential therapeutic strategies against MDR strains of S. typhi but also highlights the relevance of computational approaches in identifying and evaluating promising candidates. These findings lay a robust foundation for future empirical studies to address the formidable challenges antibiotic resistance poses in this clinically significant infectious diseases.
Collapse
Affiliation(s)
- Iqra Shafique
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Science & Technology, Islamabad, Pakistan
| | - Mehak Rafiq
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Science & Technology, Islamabad, Pakistan
| | - Nosheen Fatima Rana
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Science & Technology, Islamabad, Pakistan
| | - Farid Menaa
- Department of Medicine and Nanomedicine, California Innovations Corporation, San Diego, CA, United States of America
| | - Fatemah Almalki
- Department of Biology, College of Science and Humanities, Shaqra University, Al Quwaiiyah, Saudi Arabia
| | - Alya Aljuaid
- Department of Biology, College of Science and Humanities, Shaqra University, Al Quwaiiyah, Saudi Arabia
| | | | - Amenah S. Alotaibi
- Department of Biology, Genomic & Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Madahiah Bint E. Masood
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Science & Technology, Islamabad, Pakistan
| | - Tahreem Tanweer
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Science & Technology, Islamabad, Pakistan
| |
Collapse
|
16
|
Wang M, Zheng J, Sun S, Wu Z, Shao Y, Xiang J, Yin C, Sedjoah RCAA, Xin Z. An Integrated Pipeline and Overexpression of a Novel Efflux Transporter, YoeA, Significantly Increases Plipastatin Production in Bacillus subtilis. Foods 2024; 13:1785. [PMID: 38891014 PMCID: PMC11171584 DOI: 10.3390/foods13111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Plipastatin, an antimicrobial peptide produced by Bacillus subtilis, exhibits remarkable antimicrobial activity against a diverse range of pathogenic bacteria and fungi. However, the practical application of plipastatin has been significantly hampered by its low yield in wild Bacillus species. Here, the native promoters of both the plipastatin operon and the sfp gene in the mono-producing strain M-24 were replaced by the constitutive promoter P43, resulting in plipastatin titers being increased by 27% (607 mg/mL) and 50% (717 mg/mL), respectively. Overexpression of long chain fatty acid coenzyme A ligase (LCFA) increased the yield of plipastatin by 105% (980 mg/mL). A new efflux transporter, YoeA, was identified as a MATE (multidrug and toxic compound extrusion) family member, overexpression of yoeA enhanced plipastatin production to 1233 mg/mL, an increase of 157%, and knockout of yoeA decreased plipastatin production by 70%; in contrast, overexpression or knockout of yoeA in mono-producing surfactin and iturin engineered strains only slightly affected their production, demonstrating that YoeA acts as the major exporter for plipastatin. Co-overexpression of lcfA and yoeA improved plipastatin production to 1890 mg/mL, which was further elevated to 2060 mg/mL after abrB gene deletion. Lastly, the use of optimized culture medium achieved 2514 mg/mL plipastatin production, which was 5.26-fold higher than that of the initial strain. These results suggest that multiple strain engineering is an effective strategy for increasing lipopeptide production, and identification of the novel transport efflux protein YoeA provides new insights into the regulation and industrial application of plipastatin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.W.); (J.Z.); (S.S.); (Z.W.); (Y.S.); (J.X.); (C.Y.); (R.C.A.A.S.)
| |
Collapse
|
17
|
Jaiswal N, Kumar A. Modulators of Candida albicans Membrane Drug Transporters: A Lucrative Portfolio for the Development of Effective Antifungals. Mol Biotechnol 2024; 66:960-974. [PMID: 38206530 DOI: 10.1007/s12033-023-01017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
The escalating prevalence of membrane drug transporters and drug efflux pumps in pathogenic yeast like Candida albicans necessitates a comprehensive understanding of their roles in MDR. The overexpression of drug transporter families, ABC and MFS, implicated in MDR through drug efflux and poses a significant challenge in the diagnosis and treatment of fungal infection. Various mechanisms have been proposed for MDR; however, the upregulation of ABC and MFS superfamily transporters is most noticeable in MDR. The direct inhibition of these transporters seems an efficient strategy to overcome this problem. The goal of the article is to present an overview of the prospect of utilizing these modulators of C. albicans drug transports as effective antifungal molecules against MDR addressing a critical gap in the field. The review tries to address to prevent drug extrusion by modulating the expression of drug transporters of C. albicans. The review discussed the progress in identifying potent, selective, and non-toxic modulators of these transporters to develop some effective antifungals and overcome MDR. We reviewed major studies in this area and found that recent work has shifted toward the exploration of natural compounds as potential modulators to restore drug sensitivity in MDR fungal cells. The focus of this review is to survey and interpret current research information on modulators of C. albicans drug transporters from natural sources emphasizing those compounds that are potent antifungal agents.
Collapse
Affiliation(s)
- Neha Jaiswal
- Department of Biotechnology, National Institute of Technology, Raipur, CG, 492010, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, CG, 492010, India.
| |
Collapse
|
18
|
Samreen, Ahmad I, Siddiqui SA, Naseer A, Nazir A. Efflux Pump Inhibition-Based Screening and Anti-Infective Evaluation of Punica granatum Against Bacterial Pathogens. Curr Microbiol 2023; 81:51. [PMID: 38151670 DOI: 10.1007/s00284-023-03572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023]
Abstract
Drug efflux pumps contribute to bacterial multidrug resistance (MDR), reducing antibiotic effectiveness and causing treatment failures. Besides their role in MDR, efflux pumps also assist in the transportation of quorum sensing (QS) signal molecules and increased the tolerance of biofilms. Recently, the search for efflux pump inhibitors from natural sources, including anti-infective plants, has gained attention as a potential therapy against drug-resistant bacteria. In this study, 19 traditional Indian medicinal plants were screened for their efflux pump inhibitory activity against Escherichia coli TGI. The promising extract, i.e., Punica granatum was subsequently fractioned in the solvents of increasing polarity. Among them, at sub-MIC active EPI fraction was PGEF (P. granatum ethyl acetate fraction), further investigated for anti-infective potential against Chromobacterium violaceum 12,472, Pseudomonas aeruginosa PAO1, and Serratia marcescens MTCC 97. PGEF was also evaluated for in vivo efficacy in Caenorhabditis elegans model. Major phytocompounds were analyzed by mass spectroscopic techniques. At respective Sub-MIC, PGEF reduced violacein production by 71.14% in C. violaceum 12,472. Moreover, PGEF inhibited pyocyanin (64.72%), pyoverdine (48.17%), protease (51.35%), and swarming motility (44.82%) of P. aeruginosa PAO1. Furthermore, PGEF reduced the production of prodigiosin and exoprotease by 64.73% and 61.80%, respectively. Similarly, at sub-MIC, PGEF inhibited (≥ 50%) biofilm development in all test pathogens. The key phytocompounds detected in active fraction include 5-hydroxymethylfurfural, trans-p-coumaric acid 4- glucoside, (-)-Epicatechin 3'-O-glucuronide, and ellagic acid. Interestingly, PGEF also demonstrated anti-infective efficacy against the PAO1-infected C. elegans test model and highlighting its therapeutic potential as an anti-infective agent to combat drug-resistant problems.
Collapse
Affiliation(s)
- Samreen
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Shirjeel Ahmad Siddiqui
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Anam Naseer
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Aamir Nazir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| |
Collapse
|
19
|
Kurćubić VS, Raketić SV, Mašković JM, Mašković PZ, Kurćubić LV, Heinz V, Tomasevic IB. Evaluation of Antimicrobial Activity of Kitaibelia vitifolia Extract against Proven Antibiotic-Susceptible and Multidrug-Resistant (MDR) Strains of Bacteria of Clinical Origin. PLANTS (BASEL, SWITZERLAND) 2023; 12:3236. [PMID: 37765400 PMCID: PMC10537753 DOI: 10.3390/plants12183236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
The goal of the present research was to screen the antimicrobial activity of an ethanolic extract of Kitaibelia vitifolia against 30 multidrug-resistant (MDR) bacterial strains isolated from healthcare-associated infections. Minimum inhibitory concentrations (MICs) of the samples against the tested bacteria were determined using the microdilution method. MDR bacterial strains were characterized using standard biochemical tests and the commercial identification systems API 20 NE and API 20 E as: Klebsiella spp. (18 isolates-I); methicillin-resistant Staphylococcus aureus (MRSA)-3; Acinetobacter spp.-3; Pseudomonas aeruginosa-5; vancomycin-resistant Enterococcus (VRE)-1. The sensitivity of isolated bacterial strains was determined using the disc diffusion method against 25 commonly used antibiotics. The highest level of sensitivity to K. vitifolia extract was confirmed in 88.89% of Klebsiella spp. isolates, E. coli ATCC 25922, two strains of MRSA (1726, 1063), Acinetobacter spp. strain 1578, and VRE strain 30, like Enterococcus faecalis ATCC 29212 (MIC =< 2.44 μg/mL). The lowest sensitivity was exhibited by 75.00% of Acinetobacter spp. (strains 1577 and 6401), where the highest values for MICs were noted (1250 μg/mL). The results indicate that the extract of K. vitifolia could be a possible source for creating new, efficient, and effective natural medicines for combat against MDR strains of bacteria.
Collapse
Affiliation(s)
- Vladimir S. Kurćubić
- Department of Food Technology, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia;
| | - Svetlana V. Raketić
- Microbiology Laboratory for Food and Water, Public Health Institute Čačak, Veselina Milikića 7, 32000 Čačak, Serbia;
| | - Jelena M. Mašković
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia; (J.M.M.); (P.Z.M.)
| | - Pavle Z. Mašković
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia; (J.M.M.); (P.Z.M.)
| | - Luka V. Kurćubić
- Department of Medical Microbiology, University Clinical Center of Serbia, Pasterova 2, 11000 Beograd, Serbia;
| | - Volker Heinz
- DIL German Institute of Food Technology, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
| | - Igor B. Tomasevic
- DIL German Institute of Food Technology, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
20
|
Abutayyem H, Alam MK, Kanwal B, Alswairki HJ, Alogaibi YA. Sterilizing orthodontic appliances: A systematic review and meta-analysis on the available methods. J Orthod Sci 2023; 12:51. [PMID: 37881658 PMCID: PMC10597368 DOI: 10.4103/jos.jos_53_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 10/27/2023] Open
Abstract
Infection control is essential to protect both the doctor and the patient by preventing the spread of infectious diseases. There is no exception in the field of dentistry, particularly in orthodontics, where numerous appliances are used for a variety of functions and also because the mouth cavity has the highest concentration of bacteria of any body part. Through this systematic review, we aimed to assess the various methods of sterilization employed in an orthodontic setting. Using relevant keywords, reference searches, and citation searches, the databases such as PubMed, MEDLINE, Web of Science, Cochrane, and Scopus were all searched; a total of 206 documents were found, of which 113 were initially selected. The remaining 23 distinct papers were initially made available after 90 publications that were identical to or similar to one another were eliminated. The final selection was made from eight documents that met all inclusion and exclusion requirements. The existing methods of sterilization were found to be competent in dealing with the microorganisms found in a typical orthodontic setting. The chemical method of sterilization was the norm in most of the studies that we assessed, with glutaraldehyde and peracetic acid (PAA) being the most commonly employed compounds for disinfection. PROSPERO Registration Number: CRD42022380831.
Collapse
Affiliation(s)
- Huda Abutayyem
- Department of Clinical Sciences, Center of Medical and Bio-Allied Health Sciences Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Mohammad Khursheed Alam
- Orthodontic Division, Preventive Dentistry Department, Orthodontic Division, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
- Department of Dental Research Cell, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Department of Public Health, Faculty of Allied Health Sciences, Daffodil lnternational University, Ashulia, Dhaka, Bangladesh
| | - Bushra Kanwal
- Orthodontic Specialist, Practicing in Dental Clinic, AlBaha, Saudi Arabia
| | | | - Yahya A. Alogaibi
- Orthodontic Consultant, Aseer Specialized Dental Center, Abha, Saudi Arabia
| |
Collapse
|
21
|
Costa da Silva MM, Bezerra de Araújo Neto J, Lucas dos Santos AT, de Morais Oliveira-Tintino CD, de Araújo ACJ, Freitas PR, da Silva LE, do Amaral W, Deschamps C, de Azevedo FR, Gonçalves Lima CM, Golubkina N, Calixto-Júnior JT, Ribeiro-Filho J, Coutinho HDM, Caruso G, Tintino SR. Antibiotic-Potentiating Activity of the Schinus terebinthifolius Raddi Essential Oil against MDR Bacterial Strains. PLANTS (BASEL, SWITZERLAND) 2023; 12:1587. [PMID: 37111810 PMCID: PMC10144370 DOI: 10.3390/plants12081587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus are the primary bacteria that cause clinical infections, such as urinary and intestinal infections, pneumonia, endocarditis, and sepsis. Bacterial resistance is an innate natural occurrence in microorganisms, resulting from mutations or the lateral exchange of genetic material. This serves as evidence for the association between drug consumption and pathogen resistance. Evidence has demonstrated that the association between conventional antibiotics and natural products is a promising pharmacological strategy to overcome resistance mechanisms. Considering the large body of research demonstrating the significant antimicrobial activities of Schinus terebinthifolius Raddi, the present study aimed to evaluate the chemical composition and antibiotic-enhancing effects of Schinus terebinthifolius Raddi essential oil (STEO) against the standard and multidrug-resistant strains of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The STEO was extracted by hydrodistillation using a Clevenger-type vacuum rotary evaporator. The Minimum Inhibitory Concentration (MIC) of the STEO was assessed by the microdilution method to evaluate the antibacterial activity. The antibiotic-enhancing activity of the essential oil was assessed by determining the MIC of antibiotics in the presence of a sub-inhibitory concentration (MIC/8) of the natural product. The GC-MS analysis revealed alpha-pinene (24.3%), gamma-muurolene (16.6%), and myrcene (13.7%) as major constituents of the STEO. The STEO potentiated the enhanced antibacterial activity of norfloxacin and gentamicin against all the strains and increased the action of penicillin against the Gram-negative strains. Therefore, it is concluded that although the STEO does not exhibit clinically effective antibacterial activity, its association with conventional antibiotics results in enhanced antibiotic activity.
Collapse
Affiliation(s)
- Maria Milene Costa da Silva
- Department of Biological Sciences, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| | - José Bezerra de Araújo Neto
- Department of Biological Sciences, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| | - Antonia Thassya Lucas dos Santos
- Department of Biological Sciences, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| | | | - Ana Carolina Justino de Araújo
- Department of Biological Chemistry, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| | - Priscilla Ramos Freitas
- Department of Biological Chemistry, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| | - Luiz Everson da Silva
- Postgraduate Program in Sustainable Territorial Development, Coastal Sector, Federal University of Paraná, Curitiba 80060-000, PR, Brazil
| | - Wanderlei do Amaral
- Postgraduate Program in Sustainable Territorial Development, Coastal Sector, Federal University of Paraná, Curitiba 80060-000, PR, Brazil
| | - Cícero Deschamps
- Postgraduate Program in Sustainable Territorial Development, Coastal Sector, Federal University of Paraná, Curitiba 80060-000, PR, Brazil
| | | | | | - Nadezhda Golubkina
- Federal Scientific Center of Vegetable Production, Selectsionnaya 14, VNIISSOK, Odintsovo District, 143072 Moscow, Russia
| | - João Tavares Calixto-Júnior
- Department of Biological Sciences, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| | - Jaime Ribeiro-Filho
- Oswaldo Cruz Foundation (Fiocruz), Fiocruz Ceará, Eusébio 61773-270, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Saulo Relison Tintino
- Department of Biological Sciences, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| |
Collapse
|
22
|
Peng S, Song D, Zhou B, Hua Q, Lin X, Wang Y. Persistence of Salmonella Typhimurium and antibiotic resistance genes in different types of soil influenced by flooding and soil properties. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114330. [PMID: 36436254 DOI: 10.1016/j.ecoenv.2022.114330] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Salmonella is a zoonotic foodborne bacterial pathogen that can seriously harm health. Persistence of Salmonella and antibiotic resistance genes (ARGs) in different types of soil under flooding and natural conditions are rare explored. This study investigated the dynamic changes of the Salmonella, ARGs and bacterial communities in three types of soils applied with pig manure in lab scale. Abundance of the Salmonella Typhimurium in soils reduced to the detection limit varied from 40 to 180 days, most of the Salmonella did not survive in soil for more than 90 days. Flooding and soil texture (content of sand) promote the decline rate of Salmonella. No Salmonella was found have acquired resistance gene from the soil or manure after 90 days. 64 ARGs and 11 MGEs were quantified, abundance of these genes and risky ARGs both gradually decline along with the extension of time. Most of the extrinsic ARGs cannot colonize in soil, cellular protection and antibiotic deactivation were their main resistance mechanism. Multidrug resistance and efflux pump were the dominant class and mechanism of soil intrinsic ARGs. Flooding can affect the ARGs profiles by reducing the types of extrinsic ARGs invaded into soil and inhibit the proliferation of intrinsic genes. Soil sand content, soil moisture and nutrition concentrations had significant direct effect on the abundance or profile of ARGs. Soil bacterial community structures also changed along with the extension of time and affected by flooding. Network analyses between ARGs and bacteria taxa revealed that Actinobacteria and Myxococcia were the main hosts of intrinsic ARGs, some taxa may play a role in inhibiting extrinsic ARGs colonization in the soils. These findings unveil that saturate soil with water may play a positive role in reducing potential risk of Salmonella and ARGs in the farmland environment.
Collapse
Affiliation(s)
- Shuang Peng
- College of Environment and Ecology, Jiangsu Open University, Nanjing, Jiangsu 210017, PR China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, PR China
| | - Dan Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Beibei Zhou
- College of Environment and Ecology, Jiangsu Open University, Nanjing, Jiangsu 210017, PR China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Qingqing Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
23
|
Alonso VPP, Furtado MM, Iwase CHT, Brondi-Mendes JZ, Nascimento MDS. Microbial resistance to sanitizers in the food industry: review. Crit Rev Food Sci Nutr 2022; 64:654-669. [PMID: 35950465 DOI: 10.1080/10408398.2022.2107996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hygiene programs which comprise the cleaning and sanitization steps are part of the Good Hygiene Practices (GHP) and are considered essential to ensure food safety and quality. Inadequate hygiene practices may contribute to the occurrence of foodborne diseases, development of microbial resistance to sanitizers, and economic losses. In general, the sanitizer resistance is classified as intrinsic or acquired. The former is an inherent characteristic, naturally present in some microorganisms, whereas the latter is linked to genetic modifications that can occur at random or after continuous exposure to a nonnormal condition. The resistance mechanisms can involve changes in membrane permeability or in the efflux pump, and enzymatic activity. The efflux pump mechanism is the most elucidated in relation to the resistance caused by the use of different types of sanitizers. In addition, microbial resistance to sanitizers can also be favored in the presence of biofilms due to the protection given by the glycocalyx matrix and genetic changes. Therefore, this review aimed to show the main microbial resistance mechanisms to sanitizers, including genetic modifications, biofilm formation, and permeability barrier.
Collapse
Affiliation(s)
| | - Marianna Miranda Furtado
- Department of Food Science and Nutrition, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | | | | | | |
Collapse
|