1
|
Barrera-Hernández JI, Pérez-Velázquez JR, Ramírez-Trinidad Á, Oria-Hernández J, Hernández-Vázquez E. Imide-based enones: A new scaffold that inhibits biofilm formation in Gram-negative pathogens. Bioorg Med Chem Lett 2025; 122:130206. [PMID: 40132782 DOI: 10.1016/j.bmcl.2025.130206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
We prepared a series of enones containing different substituents as potential antibiofilm molecules. The design considered the structural features previously found in N-acylhomoserine lactones, but it replaced the labile furanone with different imides portions. After evaluation, some of the analogs inhibited 50 % or more the formation of the biofilm from P. aeruginosa or A. baumannii; moreover, substituents attached at the phenyl ring, the size of the enone as well as the type of imide seemed relevant for the selectivity against the tested pathogens. In the end, we performed a molecular docking study using the crystallized LasR to describe the main interactions of the ligand-receptor complex and propose a plausible mechanism of action.
Collapse
Affiliation(s)
- J Israel Barrera-Hernández
- Departamento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México (UNAM), CDMX, Mexico
| | - Jesús R Pérez-Velázquez
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud Ciudad de México, Mexico
| | - Ángel Ramírez-Trinidad
- Departamento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México (UNAM), CDMX, Mexico
| | - Jesús Oria-Hernández
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud Ciudad de México, Mexico
| | - Eduardo Hernández-Vázquez
- Departamento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México (UNAM), CDMX, Mexico.
| |
Collapse
|
2
|
Fatima N, Fatima H, Ahmad S, Hashmi MATS, Sheikh N. Understanding the role of Hedgehog signaling pathway and gut dysbiosis in fueling liver cancer. Mol Biol Rep 2025; 52:411. [PMID: 40261446 DOI: 10.1007/s11033-025-10504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Liver cancer is one of the most prevalent types of cancer worldwide with less than 20% of patients surviving in the past half a decade. Several molecular pathways have been uncovered that may lead to the development of liver cancer but more recently the Hedgehog pathway (HH) and its interactions with the gut microbiota has emerged as an underlying cause of the development of liver cancer. Gut-liver axis is vital to maintaining homeostasis. The HH pathway controls cellular differentiation, proliferation, and apoptosis evasions, its abnormal activation can lead to uncontrolled proliferation of liver cancer stem cells. Additionally, the intricate interplay between HH signaling and the gut microbiota introduces a novel dimension. Recent investigations suggest that potential modulation of HH activity by gut microbiota influence HCC progression. This review explores a crosstalk between HH signaling and the gut microbiota, uncovering intricate mechanisms by which it fuels liver cancer development. This interplay provides insights into gut dysbiosis, HCC etiology and potential therapeutic avenues, highlighting the cooperative role of HH signaling and gut microbiota in shaping the overall HCC landscape.
Collapse
Affiliation(s)
- Naz Fatima
- Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan.
- Department of Internal Medicine & Gastroenterology, University of Michigan, Ann Arbor, 48109, USA.
| | - Hooriya Fatima
- Institute of Zoology, University of Punjab (Quaid-i-Azam Campus), Lahore, 54590, Pakistan
| | - Sadia Ahmad
- Institute of Zoology, University of Punjab (Quaid-i-Azam Campus), Lahore, 54590, Pakistan
| | | | - Nadeem Sheikh
- Institute of Zoology, University of Punjab (Quaid-i-Azam Campus), Lahore, 54590, Pakistan
| |
Collapse
|
3
|
Shrivastava P, Mondal S, Thakur S, Manhas A, Mehra R. Systematic Investigation of CYP3A4 Using Side-by-Side Comparisons of Apo, Active Site, and Allosteric-Bound States. Chem Res Toxicol 2025; 38:583-597. [PMID: 40105732 DOI: 10.1021/acs.chemrestox.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Cytochrome P450 (CYP) 3A4 (CYP3A4) is a complex enzyme that metabolizes diverse substrates. It contains a large binding site accommodating diverse ligands, binding to active or allosteric sites. CYP3A4 does not always follow Michaelis-Menten kinetics. While Km reflects substrate affinity, it does not necessarily determine the enzyme's activity, though it is often considered indicative of substrate binding characteristics. The mechanism may be highly sophisticated and driven by multiple factors. This suggests that the ligand binding affinity alone may not explain the differential behavior of the enzyme conformational stability. Here, we analyzed sequence conserveness of 57 CYPs, followed by a detailed molecular dynamics simulation study (9 μs) on CYP3A4. We studied three CYP3A4 enzyme states (apo-state, active-site, and allosteric-site ligand-bound states) collected from the same experimental setup to reduce the systematic error. We found that the enzyme conformational stability followed a consistent trend of allosteric > active > apo states, which was inconsistent with the enzyme-ligand (active/allosteric) binding affinity and the ligand conformational stability. However, the heme group showed a significant protein affinity and stability pattern directly related to the enzyme stability, suggesting that the active/allosteric binding may work by influencing the heme-CYP3A4 binding affinity, and the allosteric ligand appeared to form the most stable enzyme state of the three studied states.
Collapse
Affiliation(s)
- Pranchal Shrivastava
- Department of Chemistry, Indian Institute of Technology Bhilai, Bhilai, Durg 491002, Chhattisgarh, India
| | - Somnath Mondal
- Department of Chemistry, Indian Institute of Technology Bhilai, Bhilai, Durg 491002, Chhattisgarh, India
| | - Shivani Thakur
- Department of Chemistry, Indian Institute of Technology Bhilai, Bhilai, Durg 491002, Chhattisgarh, India
| | - Anu Manhas
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gujarat 382426, India
| | - Rukmankesh Mehra
- Department of Chemistry, Indian Institute of Technology Bhilai, Bhilai, Durg 491002, Chhattisgarh, India
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Bhilai, Durg 491002, Chhattisgarh, India
| |
Collapse
|
4
|
Wang J, Nithianantham S, Chai SC, Jung YH, Yang L, Ong HW, Li Y, Zhang Y, Miller DJ, Chen T. Decoding the selective chemical modulation of CYP3A4. Nat Commun 2025; 16:3423. [PMID: 40210880 PMCID: PMC11985932 DOI: 10.1038/s41467-025-58749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Drug-drug interactions associate with concurrent uses of multiple medications. Cytochrome P450 (CYP) 3A4 metabolizes a large portion of marketed drugs. To maintain the efficacy of drugs metabolized by CYP3A4, pan-CYP3A inhibitors such as ritonavir are often co-administered. Although selective CYP3A4 inhibitors have greater therapeutic benefits as they avoid inhibiting unintended CYPs and undesirable clinical consequences, the high homology between CYP3A4 and CYP3A5 has hampered the development of such selective inhibitors. Here, we report a series of selective CYP3A4 inhibitors with scaffolds identified by high-throughput screening. Structural, functional, and computational analyses reveal that the differential C-terminal loop conformations and two distinct ligand binding surfaces disfavor the binding of selective CYP3A4 inhibitors to CYP3A5. Structure-guided design of compounds validates the model and yields analogs that are selective for CYP3A4 versus other major CYPs. These findings demonstrate the feasibility to selectively inhibit CYP3A4 and provide guidance for designing better CYP3A4 selective inhibitors.
Collapse
Affiliation(s)
- Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Nithianantham
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Young-Hwan Jung
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Han Wee Ong
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yong Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yifan Zhang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
5
|
Husain I, Abdulrahman B, Dale OR, Katragunta K, Idrisi M, Gurley BJ, Ali Z, Avula B, Chittiboyina AG, Khan IA, Ujah FO, Khan SI. Interaction of Phyllanthus amarus extract and its lignans with human xenobiotic receptors, drug metabolizing enzymes and drug transporters. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119142. [PMID: 39571700 DOI: 10.1016/j.jep.2024.119142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllanthus amarus is ethnomedicinally used to treat gallbladder stones, kidney stones and chronic liver diseases. P. amarus is gaining popularity as an ingredient in many botanical dietary supplements. AIM OF THE STUDY To evaluate the interaction of P. amarus extract and its lignans with human xenobiotic sensing receptors (PXR and AhR) and their downstream genes. MATERIALS AND METHODS Activation of PXR and AhR was measured by reporter gene assays. Gene expression analysis was performed in hepatic (HepG2) and intestinal (LS174T) cells by RT-PCR. CYP inhibition assays were carried out in baculosomes. The inhibitory effect on the ABC transporters (P-gp and BCRP) was investigated via rhodamine-123 and Hoechst 33342 uptake assays in Caco-2 and MDR-MDCK cells. Effect on CYP3A4 and CYP1A2 enzyme activity was measured in primary human hepatocytes. RESULTS P. amarus extract and its lignans activated AhR and PXR in respective reporter cells. Tested extract and lignans significantly increased CYP3A4 mRNA but inhibited CYP3A4 enzyme activity when tested in primary human hepatocytes and CYP3A4-specific baculosomes. In contrast, increased CYP1A2 mRNA was associated with increased CYP1A2 enzyme activity in hepatocytes. No inhibition of CYP1A2 activity was detected in baculosomes. A weak inhibitory effect on ABC-transporters was observed. CONCLUSIONS Results suggest that overconsumption of P. amarus or P. amarus-containing botanical supplements may change CYP homeostasis which could alter the pharmacokinetics of substrate drugs, thereby elevating the risk of herb-drug interactions (HDIs) when taken concomitantly with conventional medications. Further studies are warranted to strengthen the clinical relevance of these findings.
Collapse
Affiliation(s)
- Islam Husain
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Balkisu Abdulrahman
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States; Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Federal University Dutsin-Ma, Dutsin-Ma, Katsina State, 821101, Nigeria
| | - Olivia R Dale
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Kumar Katragunta
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Mantasha Idrisi
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States; Department of Bio-Molecular Sciences, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Frederick Oduh Ujah
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, Kano State, 700241, Nigeria
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States; Department of Bio-Molecular Sciences, School of Pharmacy, The University of Mississippi, MS, 38677, United States.
| |
Collapse
|
6
|
Zhang Y, Wang Z, Wang Y, Jin W, Zhang Z, Jin L, Qian J, Zheng L. CYP3A4 and CYP3A5: the crucial roles in clinical drug metabolism and the significant implications of genetic polymorphisms. PeerJ 2024; 12:e18636. [PMID: 39650550 PMCID: PMC11625447 DOI: 10.7717/peerj.18636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
CYP3A, a key member of the cytochrome P450 (CYP450) superfamily, is integral to drug metabolism, processing a substantial portion of medications. Their role in drug metabolism is particularly prominent, as CYP3A4 and CYP3A5 metabolize approximately 30-50% of known drugs. The genetic polymorphism of CYP3A4/5 is significant inter-individual variability in enzymatic activity, which can result in different pharmacokinetic profiles in response to the same drug among individuals. These polymorphisms can lead to either increased drug toxicity or reduced therapeutic effects, requiring dosage adjustments based on genetic profiles. Consequently, the study of the enzymatic activity of CYP3A4/5 gene variants is of great importance for the formulation of personalized treatment regimens. This article first reviews the role of CYP3A4/5 in drug metabolism in the human body, including inhibitors and inducers of CYP3A4/5 and drug-drug interactions. In terms of genetic polymorphism, it discusses the detection methods, enzymatic kinetic characteristics, and clinical guidelines for CYP3A5. Finally, the article summarizes the importance of CYP3A4/5 in clinical applications, including personalized therapy, management of drug-drug interactions, and adjustment of drug doses. This review contributes to the understanding of the functions and genetic characteristics of CYP3A4/5, allowing for more effective clinical outcomes through optimized drug therapy.
Collapse
Affiliation(s)
- Yuqing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziying Wang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuchao Wang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weikai Jin
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheyan Zhang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lehao Jin
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianchang Qian
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Long Zheng
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
8
|
Xu C, Fang X, Xu X, Wei X. Genetic engineering drives the breakthrough of pig models in liver disease research. LIVER RESEARCH 2024; 8:131-140. [PMID: 39957748 PMCID: PMC11771255 DOI: 10.1016/j.livres.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 02/18/2025]
Abstract
Compared with the widely used rodents, pigs are anatomically, physiologically, and genetically more similar to humans, making them high-quality models for the study of liver diseases. Here, we review the latest research progress on pigs as a model of human liver disease, including methods for establishing them and their advantages in studying cystic fibrosis liver disease, acute liver failure, liver regeneration, non-alcoholic fatty liver disease, liver tumors, and xenotransplantation. We also emphasize the importance of genetic engineering techniques, mainly the CRISPR/Cas9 system, which has greatly enhanced the utility of porcine models as a tool for substantially advancing liver disease research. Genetic engineering is expected to propel the pig as one of the irreplaceable animal models for future biomedical research.
Collapse
Affiliation(s)
- Chenhao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xixi Fang
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Tan BH, Ahemad N, Pan Y, Ong CE. Mechanism-based inactivation of cytochromes P450: implications in drug interactions and pharmacotherapy. Xenobiotica 2024; 54:575-598. [PMID: 39175333 DOI: 10.1080/00498254.2024.2395557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Cytochrome P40 (CYP) enzymes dominate the metabolism of numerous endogenous and xenobiotic substances. While it is commonly believed that CYP-catalysed reactions result in the detoxication of foreign substances, these reactions can also yield reactive intermediates that can bind to cellular macromolecules to cause cytotoxicity or irreversibly inactivate CYPs that create them.Mechanism-based inactivation (MBI) produces either irreversible or quasi-irreversible inactivation and is commonly caused by CYP metabolic bioactivation to an electrophilic reactive intermediate. Many drugs that have been known to cause MBI in CYPs have been discovered as perpetrators in drug-drug interactions throughout the last 20-30 years.This review will highlight the key findings from the recent literature about the mechanisms of CYP enzyme inhibition, with a focus on the broad mechanistic elements of MBI for widely used drugs linked to the phenomenon. There will also be a brief discussion of the clinical or pharmacokinetic consequences of CYP inactivation with regard to drug interaction and toxicity risk.Gaining knowledge about the selective inactivation of CYPs by common therapeutic drugs helps with the assessment of factors that affect the systemic clearance of co-administered drugs and improves comprehension of anticipated interactions with other drugs or xenobiotics.
Collapse
Affiliation(s)
- Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Kuala Lumpur, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Li R, Wu Y, Wen N, Wei W, Zhao W, Li Y, Zhou L, Wang M. Assessing environmental and human health risks: Insight from the enantioselective metabolism and degradation of fenpropidin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124214. [PMID: 38801883 DOI: 10.1016/j.envpol.2024.124214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Fenpropidin (FPD), a widely employed chiral fungicide, is frequently detected in diverse environments. In an in vitro rat liver microsomes cultivation (RLMs), the metabolism exhibited the order of R-FPD > S-FPD, with respective half-lives of 10.42 ± 0.11 and 12.06 ± 0.15 min, aligning with kinetic analysis results. CYP3A2 has been demonstrated to be the most significant oxidative enzyme through CYP450 enzyme inhibition experiments. Molecular dynamics simulations unveiled the enantioselective metabolic mechanism, demonstrating that R-FPD forms hydrogen bonds with the CYP3A2 protein, resulting in a higher binding affinity (-6.58 kcal mol-1) than S-FPD. Seven new metabolites were identified by Liquid chromatography time-of-flight high-resolution mass spectrometry, which were mainly generated through oxidation, reduction, hydroxylation, and N-dealkylation reactions. The toxicity of the major metabolites predicted by the TEST procedure was found to be stronger than the predicted toxicity of FPD. Moreover, the enantioselective fate of FPD was studied by examining its degradation in three soils with varying physical and chemical properties under aerobic, anaerobic, and sterile conditions. Enantioselective degradation of FPD occurred in soils without enantiomeric transformation, displaying a preference for R-FPD degradation. R-FPD is a low-risk stereoisomer both in the environment and in mammals. The research presented a systematic and comprehensive method for analyzing the metabolic and degradation system of FPD enantiomers. This approach aids in understanding the behavior of FPD in the environment and provides valuable insights into their potential risks to human health.
Collapse
Affiliation(s)
- Rui Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yingying Wu
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Nuanhui Wen
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Wenjie Wei
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Wei Zhao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yanhong Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Liangliang Zhou
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
11
|
Musyoka K, Chan CW, Gutiérrez Rico EM, Omondi P, Kijogi C, Okai T, Kongere J, Ngara M, Kagaya W, Kanoi BN, Hiratsuka M, Kido Y, Gitaka J, Kaneko A. Genetic variation present in the CYP3A4 gene in Ni-Vanuatu and Kenyan populations in malaria endemicity. Drug Metab Pharmacokinet 2024; 57:101029. [PMID: 39079373 DOI: 10.1016/j.dmpk.2024.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024]
Abstract
Cytochrome P450 3A4 (CYP3A4) enzyme is involved in the metabolism of about 30 % of clinically used drugs, including the antimalarials artemether and lumefantrine. CYP3A4 polymorphisms yield enzymatic variants that contribute to inter-individual variation in drug metabolism. Here, we examined CYP3A4 polymorphisms in populations from malaria-endemic islands in Lake Victoria, Kenya, and Vanuatu, to expand on the limited data sets. We used archived dried blood spots collected from 142 Kenyan and 263 ni-Vanuatu adults during cross-sectional malaria surveys in 2013 and 2005-13, respectively, to detect CYP3A4 variation by polymerase chain reaction (PCR) and sequencing. In Kenya, we identified 14 CYP3A4 single nucleotide polymorphisms (SNPs), including the 4713G (CYP3A4∗1B; allele frequency 83.9 %) and 19382A (CYP3A4∗15; 0.7 %) variants that were previously linked to altered metabolism of antimalarials. In Vanuatu, we detected 15 SNPs, including the 4713A (CYP3A4∗1A; 88.6 %) and 25183C (CYP3A4∗18; 0.6 %) variants. Additionally, we detected a rare and novel SNP C4614T (0.8 %) in the 5' untranslated region. A higher proportion of CYP3A4 genetic variance was found among ni-Vanuatu populations (16 %) than among Lake Victoria Kenyan populations (8 %). Our work augments the scarce data sets and contributes to improved precision medicine approaches, particularly to anti-malarial chemotherapy, in East African and Pacific Islander populations.
Collapse
Affiliation(s)
- Kelvin Musyoka
- Department of Virology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Chim W Chan
- Department of Parasitology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Evelyn Marie Gutiérrez Rico
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Protus Omondi
- Department of Virology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Caroline Kijogi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takatsugu Okai
- Department of Virology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - James Kongere
- Department of Virology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mtakai Ngara
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wataru Kagaya
- Department of Eco-epidemiology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Bernard N Kanoi
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya; Centre for Malaria Elimination, Mount Kenya University, Thika, Kenya
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasutoshi Kido
- Department of Virology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Jesse Gitaka
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya; Centre for Malaria Elimination, Mount Kenya University, Thika, Kenya
| | - Akira Kaneko
- Department of Parasitology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan; Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Shao M, Pan Q, Tan H, Wu J, Lee HW, Huber AD, Wright WC, Cho JH, Yu J, Peng J, Chen T. CYP3A5 unexpectedly regulates glucose metabolism through the AKT-TXNIP-GLUT1 axis in pancreatic cancer. Genes Dis 2024; 11:101079. [PMID: 38560501 PMCID: PMC10980945 DOI: 10.1016/j.gendis.2023.101079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 04/04/2024] Open
Abstract
CYP3A5 is a cytochrome P450 (CYP) enzyme that metabolizes drugs and contributes to drug resistance in cancer. However, it remains unclear whether CYP3A5 directly influences cancer progression. In this report, we demonstrate that CYP3A5 regulates glucose metabolism in pancreatic ductal adenocarcinoma. Multi-omics analysis showed that CYP3A5 knockdown results in a decrease in various glucose-related metabolites through its effect on glucose transport. A mechanistic study revealed that CYP3A5 enriches the glucose transporter GLUT1 at the plasma membrane by restricting the translation of TXNIP, a negative regulator of GLUT1. Notably, CYP3A5-generated reactive oxygen species were proved to be responsible for attenuating the AKT-4EBP1-TXNIP signaling pathway. CYP3A5 contributes to cell migration by maintaining high glucose uptake in pancreatic cancer. Taken together, our results, for the first time, reveal a role of CYP3A5 in glucose metabolism in pancreatic ductal adenocarcinoma and identify a novel mechanism that is a potential therapeutic target.
Collapse
Affiliation(s)
- Ming Shao
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
13
|
Miglionico R, Matera I, Ventola GM, Marchese G, Abruzzese V, Monné M, Ostuni A, Bisaccia F. Gene Expression Reprogramming by Citrate Supplementation Reduces HepG2 Cell Migration and Invasion. Int J Mol Sci 2024; 25:6509. [PMID: 38928215 PMCID: PMC11203947 DOI: 10.3390/ijms25126509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Citrate, which is obtained from oxaloacetate and acetyl-CoA by citrate synthase in mitochondria, plays a key role in both normal and cancer cell metabolism. In this work, we investigated the effect of 10 mM extracellular citrate supplementation on HepG2 cells. Gene expression reprogramming was evaluated by whole transcriptome analysis using gene set enrichment analysis (GSEA). The transcriptomic data were validated through analyzing changes in the mRNA levels of selected genes by qRT-PCR. Citrate-treated cells exhibited the statistically significant dysregulation of 3551 genes; 851 genes were upregulated and 822 genes were downregulated. GSEA identified 40 pathways affected by differentially expressed mRNAs. The most affected biological processes were related to lipid and RNA metabolism. Several genes of the cytochrome P450 family were upregulated in treated cells compared to controls, including the CYP3A5 gene, a tumor suppressor in hepatocellular carcinoma (HCC) that plays an important protective role in HCC metastasis. The citrate-induced dysregulation of cytochromes could both improve the effectiveness of chemotherapeutics used in combination and reduce the aggressiveness of tumors by diminishing cell migration and invasion.
Collapse
Affiliation(s)
- Rocchina Miglionico
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (R.M.); (I.M.); (V.A.); (M.M.)
| | - Ilenia Matera
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (R.M.); (I.M.); (V.A.); (M.M.)
| | | | - Giovanna Marchese
- Genomix4Life Srl, 84081 Baronissi, Italy; (G.M.V.); (G.M.)
- Genome Research Center for Health-CRGS, 84081 Baronissi, Italy
| | - Vittorio Abruzzese
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (R.M.); (I.M.); (V.A.); (M.M.)
| | - Magnus Monné
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (R.M.); (I.M.); (V.A.); (M.M.)
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (R.M.); (I.M.); (V.A.); (M.M.)
| | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (R.M.); (I.M.); (V.A.); (M.M.)
| |
Collapse
|
14
|
Liu R, Ma B, Mok MM, Murray BP, Subramanian R, Lai Y. Assessing Pleiotropic Effects of a Mixed-Mode Perpetrator Drug, Rifampicin, by Multiple Endogenous Biomarkers in Dogs. Drug Metab Dispos 2024; 52:236-241. [PMID: 38123963 DOI: 10.1124/dmd.123.001564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Rifampicin (RIF) is a mixed-mode perpetrator that produces pleiotropic effects on liver cytochrome P450 enzymes and drug transporters. To assess the complex drug-drug interaction liabilities of RIF in vivo, a known probe substrate, midazolam (MDZ), along with multiple endogenous biomarkers were simultaneously monitored in beagle dogs before and after a 7-day treatment period by RIF at 20 mg/kg per day. Confirmed by the reduced MDZ plasma exposure and elevated 4β-hydroxycholesterol (4β-HC, biomarker of CYP3A activities) level, CYP3A was significantly induced after repeated RIF doses, and such induction persisted for 3 days after cessation of the RIF administration. On the other hand, increased plasma levels of coproporphyrin (CP)-I and III [biomarkers of organic anion transporting polypeptides 1b (Oatp1b) activities] were observed after the first dose of RIF. Plasma CPs started to decline as RIF exposure decreased, and they returned to baseline 3 days after cessation of the RIF administration. The data suggested the acute (inhibitory) and chronic (inductive) effects of RIF on Oatp1b and CYP3A enzymes, respectively, and a 3-day washout period is deemed adequate to remove superimposed Oatp1b inhibition from CYP3A induction. In addition, apparent self-induction of RIF was observed as its terminal half-life was significantly altered after multiple doses. Overall, our investigation illustrated the need for appropriate timing of modulator dosing to differentiate between transporter inhibition and enzyme induction. As further indicated by the CP data, induction of Oatp1b activities was not likely after repeated RIF administration. SIGNIFICANCE STATEMENT: This investigation demonstrated the utility of endogenous biomarkers towards complex drug-drug interactions by rifampicin (RIF) and successfully determined the optimal timing to differentiate between transporter inhibition and enzyme induction. Based on experimental evidence, Oatp1b induction following repeated RIF administration was unlikely, and apparent self-induction of RIF elimination was observed.
Collapse
Affiliation(s)
- Renmeng Liu
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Bin Ma
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Marilyn M Mok
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | | | | | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| |
Collapse
|
15
|
Yumoto Y, Endo T, Harada H, Kobayashi K, Nakabayashi T, Abe Y. High-throughput assay to simultaneously evaluate activation of CYP3A and the direct and time-dependent inhibition of CYP3A, CYP2C9, and CYP2D6 using liquid chromatography-tandem mass spectrometry. Xenobiotica 2024; 54:45-56. [PMID: 38265764 DOI: 10.1080/00498254.2024.2308818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
In the early stages of drug discovery, adequate evaluation of the potential drug-drug interactions (DDIs) of drug candidates is important. Several CYP3A activators are known to lead to underestimation of DDIs. These compounds affect midazolam 1'-hydroxylation but not midazolam 4-hydroxylation.We used both metabolic reactions of midazolam to evaluate the activation and inhibition of CYP3A activators simultaneously. For our CYP inhibition assay using cocktail probe substrates, simultaneous liquid chromatography-tandem mass spectrometry monitoring of 1'-hydroxymidazolam and 4-hydroxymidazolam for CYP3A was established in addition to monitoring of 4-hydroxydiclofenac and 1'-hydroxybufuralol for CYP2C9 and CYP2D6.The results of our cocktail inhibition assay were well correlated with those of a single inhibition assay, as were the estimated inhibition parameters for typical CYP3A inhibitors. In our assay, a proprietary compound that activated midazolam 1'-hydroxylation and tended to inhibit 4-hydroxylation was evaluated along with known CYP3A activators. All compounds were well characterised by comparison of the results of midazolam 1'- and 4-hydroxylation.In conclusion, our CYP cocktail inhibition assay can detect CYP3A activation and assess the direct and time-dependent inhibition potentials for CYP3A, CYP2C9, and CYP2D6. This method is expected to be very efficient in the early stages of drug discovery.
Collapse
Affiliation(s)
- Yu Yumoto
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Takuro Endo
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Hiroshi Harada
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Kaoru Kobayashi
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Takeshi Nakabayashi
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Yoshikazu Abe
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| |
Collapse
|
16
|
Lee J, Beers JL, Geffert RM, Jackson KD. A Review of CYP-Mediated Drug Interactions: Mechanisms and In Vitro Drug-Drug Interaction Assessment. Biomolecules 2024; 14:99. [PMID: 38254699 PMCID: PMC10813492 DOI: 10.3390/biom14010099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Drug metabolism is a major determinant of drug concentrations in the body. Drug-drug interactions (DDIs) caused by the co-administration of multiple drugs can lead to alteration in the exposure of the victim drug, raising safety or effectiveness concerns. Assessment of the DDI potential starts with in vitro experiments to determine kinetic parameters and identify risks associated with the use of comedication that can inform future clinical studies. The diverse range of experimental models and techniques has significantly contributed to the examination of potential DDIs. Cytochrome P450 (CYP) enzymes are responsible for the biotransformation of many drugs on the market, making them frequently implicated in drug metabolism and DDIs. Consequently, there has been a growing focus on the assessment of DDI risk for CYPs. This review article provides mechanistic insights underlying CYP inhibition/induction and an overview of the in vitro assessment of CYP-mediated DDIs.
Collapse
Affiliation(s)
- Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| | | | | | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| |
Collapse
|
17
|
Richard-St-Hilaire A, Gamache I, Pelletier J, Grenier JC, Poujol R, Hussin JG. Signatures of Co-evolution and Co-regulation in the CYP3A and CYP4F Genes in Humans. Genome Biol Evol 2024; 16:evad236. [PMID: 38207129 PMCID: PMC10805436 DOI: 10.1093/gbe/evad236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
Cytochromes P450 (CYP450) are hemoproteins generally involved in the detoxification of the body of xenobiotic molecules. They participate in the metabolism of many drugs and genetic polymorphisms in humans have been found to impact drug responses and metabolic functions. In this study, we investigate the genetic diversity of CYP450 genes. We found that two clusters, CYP3A and CYP4F, are notably differentiated across human populations with evidence for selective pressures acting on both clusters: we found signals of recent positive selection in CYP3A and CYP4F genes and signals of balancing selection in CYP4F genes. Furthermore, an extensive amount of unusual linkage disequilibrium is detected in this latter cluster, indicating co-evolution signatures among CYP4F genes. Several of the selective signals uncovered co-localize with expression quantitative trait loci (eQTL), which could suggest epistasis acting on co-regulation in these gene families. In particular, we detected a potential co-regulation event between CYP3A5 and CYP3A43, a gene whose function remains poorly characterized. We further identified a causal relationship between CYP3A5 expression and reticulocyte count through Mendelian randomization analyses, potentially involving a regulatory region displaying a selective signal specific to African populations. Our findings linking natural selection and gene expression in CYP3A and CYP4F subfamilies are of importance in understanding population differences in metabolism of nutrients and drugs.
Collapse
Affiliation(s)
- Alex Richard-St-Hilaire
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, QC, Canada
- Sainte-Justine Hospital, Research Center, Montreal, QC, Canada
| | - Isabel Gamache
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| | - Justin Pelletier
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, QC, Canada
- McGill CERC in Genomic Medicine, McGill University, Montreal, Canada
| | | | - Raphaël Poujol
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| | - Julie G Hussin
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
- Département de médecine, Université de Montréal, Montreal, QC, Canada
- Mila-Quebec AI institute, Montreal, QC, Canada
| |
Collapse
|
18
|
Panek A, Wójcik P, Świzdor A, Szaleniec M, Janeczko T. Biotransformation of Δ 1-Progesterone Using Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products' Bioactivity. Int J Mol Sci 2023; 25:508. [PMID: 38203679 PMCID: PMC10779271 DOI: 10.3390/ijms25010508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
This research aimed at obtaining new derivatives of pregn-1,4-diene-3,20-dione (Δ1-progesterone) (2) through microbiological transformation. For the role of catalysts, we used six strains of entomopathogenic filamentous fungi (Beauveria bassiana KCh J1.5, Beauveria caledonica KCh J3.3, Isaria fumosorosea KCh J2, Isaria farinosa KCh KW1.1, Isaria tenuipes MU35, and Metarhizium robertsii MU4). The substrate (2) was obtained by carrying out an enzymatic 1,2-dehydrogenation on an increased scale (3.5 g/L) using a recombinant cholest-4-en-3-one Δ1-dehydrogenase (AcmB) from Sterolibacterium denitrificans. All selected strains were characterized by the high biotransformation capacity for the used substrate. As a result of the biotransformation, six steroid derivatives were obtained: 11α-hydroxypregn-1,4-diene-3,20-dione (3), 6β,11α-dihydroxypregn-1,4-diene-3,20-dione (4), 6β-hydroxypregn-1,4-diene-3,11,20-trione (5), 6β,17α-dihydroxypregn-1,4-diene-3,20-dione (6), 6β,17β-dihydroxyandrost-1,4-diene-3-one (7), and 12β,17α-dihydroxypregn-1,4-diene-3,20-dione (8). The results show evident variability of the biotransformation process between strains of the tested biocatalysts from different species described as entomopathogenic filamentous fungi. The obtained products were tested in silico using cheminformatics tools for their pharmacokinetic and pharmacodynamic properties, proving their potentially high biological activities. This study showed that the obtained compounds may have applications as effective inhibitors of testosterone 17β-dehydrogenase. Most of the obtained products should, also with a high probability, find potential uses as androgen antagonists, a prostate as well as menopausal disorders treatment. They should also demonstrate immunosuppressive, erythropoiesis-stimulating, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Anna Panek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Patrycja Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.W.); (M.S.)
| | - Alina Świzdor
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.W.); (M.S.)
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| |
Collapse
|
19
|
He R, Dai Z, Finel M, Zhang F, Tu D, Yang L, Ge G. Fluorescence-Based High-Throughput Assays for Investigating Cytochrome P450 Enzyme-Mediated Drug-Drug Interactions. Drug Metab Dispos 2023; 51:1254-1272. [PMID: 37349113 DOI: 10.1124/dmd.122.001068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
The cytochrome P450 enzymes (CYPs), a group of heme-containing enzymes, catalyze oxidative metabolism of a wide range of drugs and xenobiotics, as well as different endogenous molecules. Strong inhibition of human CYPs is the most common cause of clinically associated pharmacokinetic drug-drug/herb-drug interactions (DDIs/HDIs), which may result in serious adverse drug reactions, even toxicity. Accurate and rapid assessing of the inhibition potentials on CYP activities for therapeutic agents is crucial for the prediction of clinically relevant DDIs/HDIs. Over the past few decades, significant efforts have been invested into developing optical substrates for the human CYPs, generating a variety of powerful tools for high-throughput assays to detect CYP activities in biologic specimens and for screening of CYP inhibitors. This minireview focuses on recent advances in optical substrates developments for human CYPs, as well as their applications in screening CYP inhibitors and DDIs/HDIs studies. The examples for rational design and optimization of highly specific optical substrates for the target CYP enzyme, as well as applications in investigating CYP-mediated DDIs, are illustrated. Finally, the challenges and future perspectives in this field are proposed. Collectively, this review summarizes the reported optical-based biochemical assays for highly efficient CYP activities detection, which strongly facilitated the discovery of CYP inhibitors and the investigations on CYP-mediated DDIs. SIGNIFICANCE STATEMENT: Optical substrates for cytochrome P450 enzymes (CYPs) have emerged as powerful tools for the construction of high-throughput assays for screening of CYP inhibitors. This mini-review covers the advances and challenges in the development of highly specific optical substrates for sensing human CYP isoenzymes, as well as their applications in constructing fluorescence-based high-throughput assays for investigating CYP-mediated drug-drug interactions.
Collapse
Affiliation(s)
- Rongjing He
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (R.H., F.Z., D.T., L.Y., G.G.); Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.D.); and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Ziru Dai
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (R.H., F.Z., D.T., L.Y., G.G.); Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.D.); and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Moshe Finel
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (R.H., F.Z., D.T., L.Y., G.G.); Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.D.); and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Feng Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (R.H., F.Z., D.T., L.Y., G.G.); Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.D.); and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Dongzhu Tu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (R.H., F.Z., D.T., L.Y., G.G.); Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.D.); and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Ling Yang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (R.H., F.Z., D.T., L.Y., G.G.); Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.D.); and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Guangbo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (R.H., F.Z., D.T., L.Y., G.G.); Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.D.); and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| |
Collapse
|
20
|
Lim SH, Bae S, Lee HS, Han HK, Choi CI. Effect of Betanin, the Major Pigment of Red Beetroot ( Beta vulgaris L.), on the Activity of Recombinant Human Cytochrome P450 Enzymes. Pharmaceuticals (Basel) 2023; 16:1224. [PMID: 37765032 PMCID: PMC10537618 DOI: 10.3390/ph16091224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Most of the currently available drugs are derived from natural sources, but they are used only after extensive chemical modifications to improve their safety and efficacy. Natural products are used in health supplements and cosmetic preparations and have been used as auxiliary drugs or alternative medicines. When used in combination with conventional drugs, these herbal products are known to alter their pharmacokinetics and pharmacodynamics, reducing their therapeutic effects. Moreover, herb-drug interactions (HDIs) may have serious side effects, which is one of the major concerns in health practice. It is postulated that HDIs affect the pathways regulating cytochrome P450 enzymes (CYPs). Betanin, the chief pigment of red beetroot (Beta vulgaris L.), has various types of pharmacological activity, such as anti-inflammatory, antioxidant, and anticancer effects. However, the potential risk of HDIs for betanin has not yet been studied. Thus, we aimed to predict more specific HDIs by evaluating the effects of betanin on CYPs (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4), the major phase I metabolic enzymes, using fluorescence-/luminescence-based assays. Our results showed that betanin inhibited CYP3A4 activity in a dose-dependent manner (IC50 = 20.97 µΜ). Moreover, betanin acted as a competitive inhibitor of CYP3A4, as confirmed by evaluating Lineweaver-Burk plots (Ki value = 19.48 µΜ). However, no significant inhibitory effects were observed on other CYPs. Furthermore, betanin had no significant effect on CYP1A2, CYP2B6, or CYP2C9 induction in HepG2 cells. In conclusion, betanin acted as a competitive inhibitor of CYP3A4, and thus it should be used cautiously with other drugs that require metabolic enzymes as substrates. Additional in vivo studies and clinical trials are needed to further elucidate the HDIs of betanin.
Collapse
Affiliation(s)
- Sung Ho Lim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (S.H.L.); (S.B.); (H.S.L.)
| | - Seoungpyo Bae
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (S.H.L.); (S.B.); (H.S.L.)
| | - Ho Seon Lee
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (S.H.L.); (S.B.); (H.S.L.)
| | - Hyo-Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea;
| | - Chang-Ik Choi
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (S.H.L.); (S.B.); (H.S.L.)
| |
Collapse
|
21
|
Zhang J, Huang Y, Pei Y, Wang Y, Li M, Chen H, Liang X, Martyniuk CJ. Biotransformation, metabolic response, and toxicity of UV-234 and UV-326 in larval zebrafish (Danio rerio). ENVIRONMENT INTERNATIONAL 2023; 174:107896. [PMID: 36966637 DOI: 10.1016/j.envint.2023.107896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are emerging pollutants that are widely detected in aquatic ecosystems. While structure-dependent effects of BUVSs are reported, the relationship between biotransformation and toxicity outcomes remains unclear. In this study, zebrafish embryos were exposed to two common BUVSs (UV-234 and UV-326) at 1, 10, and 100 µg/L for up to 7 days. Comparison of their uptake and biotransformation revealed that the bioaccumulation capacity of UV-234 was higher than that of UV-326, while UV-326 was more extensively biotransformed with additional conjugation reactions. However, UV-326 showed low metabolism due to inhibited phase II enzymes, which may result in the comparable internal concentrations of both BUVSs in larval zebrafish. Both BUVSs induced oxidative stress while decreased MDA, suggesting the disturbance of lipid metabolism. The subsequent metabolomic profiling revealed that UV-234 and UV-326 exerted different effects on arachidonic acid, lipid, and energy metabolism. However, both BUVSs negatively impacted the cyclic guanosine monophosphate / protein kinase G pathway. This converged metabolic change resulted in comparable toxicity of UV-234 and UV-326, which was confirmed by the induction of downstream apoptosis, neuroinflammation, and abnormal locomotion behavior. These data have important implications for understanding the metabolism, disposition, and toxicology of BUVSs in aquatic organisms.
Collapse
Affiliation(s)
- Jiye Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ying Huang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Youjun Pei
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuyang Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Mingwan Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
22
|
Hvizdak M, Kandel SE, Work HM, Gracey EG, McCullough RL, Lampe JN. Per- and polyfluoroalkyl substances (PFAS) inhibit cytochrome P450 CYP3A7 through direct coordination to the heme iron and water displacement. J Inorg Biochem 2023; 240:112120. [PMID: 36638633 PMCID: PMC10016736 DOI: 10.1016/j.jinorgbio.2023.112120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/17/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a chemical class of highly stable, fluorinated compounds popular for use in a variety of consumer products. PFAS environmental persistence in drinking water contributes to acute exposure in humans and subsequent bioaccumulation of the compounds in the liver and lung tissue. Prenatal PFAS exposure has been associated with lowered birth weight, premature birth, and developmental defects including cranio-facial abnormalities. The cytochrome P450 enzyme CYP3A7 is responsible for facilitating a variety of reactions essential for proper fetal development in humans. In addition to drug metabolism, CYP3A7 is responsible for metabolizing endogenous ligands in the developing human liver, including the steroid precursor dehydroepiandrosterone 3-sulfate (DHEA-S), essential for estriol synthesis during pregnancy, along with the morphogen all-trans-retinoic acid (atRA). Interference with estriol synthesis during pregnancy, as well as atRA clearance, is known to result in similar effects associated with prenatal PFAS exposure including lowered birth weight, premature birth, and developmental defects. We hypothesized that PFAS compounds bind to the CYP3A7 enzyme resulting in its inhibition. We implemented a series of binding studies using spectral characterization of six PFAS compounds (PFOA, PFOS, GenX, PFNA, PFNS, and PFHxS), and evaluated their interactions with recombinant CYP3A7. In addition, we screened PFAS for their ability to inhibit CYP3A7 oxidative activity using dibenzylfluorescein, a fluorescent probe, and DHEA-S, an endogenous substrate of CYP3A7. Our data demonstrate that of the six PFAS tested, PFOA, PFOS, PFNA, and PFHxS bind to and inhibit CYP3A7.
Collapse
Affiliation(s)
- Michaela Hvizdak
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Hannah M Work
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Emily G Gracey
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Rebecca L McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America; Structural Biology and Biochemistry Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| |
Collapse
|
23
|
Cheng A, Lei S, Zhu J, Lu J, Paine MF, Xie W, Ma X. Chemical basis of pregnane X receptor activators in the herbal supplement Gancao (licorice). LIVER RESEARCH 2022; 6:251-257. [PMID: 39957905 PMCID: PMC11791855 DOI: 10.1016/j.livres.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
Background and aims The herbal supplement Gancao, also known as licorice, belongs to the genus Glycyrrhiza and has been used worldwide for its hepatoprotective effect. Recent studies have raised concerns about potential herb-drug interactions associated with Gancao via pregnane X receptor (PXR)-mediated induction of hepatic cytochrome P450 3A4 (CYP3A4). The current work aimed to determine the phytochemicals in Gancao that activate PXR and induce CYP3A4. Methods DPX2 cells were used for cell-based PXR reporter assays. The phytochemicals in Gancao extract were identified using a metabolomics approach. The effects of PXR activators identified from in vitro studies were further investigated in PXR- and CYP3A4-humanized mouse models. Results Gancao was verified to be a PXR-activating herb. Two major phytochemicals in Gancao, glycyrrhizin (GZ) and glycyrrhetinic acid (GA), did not activate PXR in the cell-based reporter assays. However, glabridin was shown to activate PXR in a dose-dependent manner. In vivo studies confirmed that GZ is not a PXR activator and glabridin is a weak PXR activator. Although GA did not active PXR in vitro, it induced CYP3A4 expression in a PXR-dependent manner in the PXR- and CYP3A4-humanized mice. Conclusions GZ is not a PXR activator. GA could not activate PXR in cell-based reporter assays but it could activate PXR in vivo. Glabridin is a weak PXR activator. This work provides novel insights into the underlying mechanisms of Gancao-related herb-drug interactions via PXR.
Collapse
Affiliation(s)
- Anqi Cheng
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Saifei Lei
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jie Lu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary F. Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Specific Gene Duplication and Loss of Cytochrome P450 in Families 1-3 in Carnivora (Mammalia, Laurasiatheria). Animals (Basel) 2022; 12:ani12202821. [PMID: 36290207 PMCID: PMC9597770 DOI: 10.3390/ani12202821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary In this study we investigated the specific duplication and loss events of cytochrome P450 (CYP) genes in families 1-3 in Carnivora. These genes have been recognized as essential detoxification enzymes, and, using genomic data, we demonstrated a synteny analysis of the CYP coding cluster and a phylogenetic analysis of these genes. We discovered the CYP2Cs and CYP3As expansion in omnivorous species such as the badger, the brown bear, the black bear, and the dog. Furthermore, phylogenetic analysis revealed the evolution of CYP2Cs and 3As in Carnivora. These findings are essential for the appropriate estimation of pharmacokinetics or toxicokinetic in wild carnivorans. Abstract Cytochrome P450s are among the most important xenobiotic metabolism enzymes that catalyze the metabolism of a wide range of chemicals. Through duplication and loss events, CYPs have created their original feature of detoxification in each mammal. We performed a comprehensive genomic analysis to reveal the evolutionary features of the main xenobiotic metabolizing family: the CYP1-3 families in Carnivora. We found specific gene expansion of CYP2Cs and CYP3As in omnivorous animals, such as the brown bear, the black bear, the dog, and the badger, revealing their daily phytochemical intake as providing the causes of their evolutionary adaptation. Further phylogenetic analysis of CYP2Cs revealed Carnivora CYP2Cs were divided into CYP2C21, 2C41, and 2C23 orthologs. Additionally, CYP3As phylogeny also revealed the 3As’ evolution was completely different to that of the Caniformia and Feliformia taxa. These studies provide us with fundamental genetic and evolutionary information on CYPs in Carnivora, which is essential for the appropriate interpretation and extrapolation of pharmacokinetics or toxicokinetic data from experimental mammals to wild Carnivora.
Collapse
|
25
|
Lenoir C, Terrier J, Gloor Y, Gosselin P, Daali Y, Combescure C, Desmeules JA, Samer CF, Reny JL, Rollason V. Impact of the Genotype and Phenotype of CYP3A and P-gp on the Apixaban and Rivaroxaban Exposure in a Real-World Setting. J Pers Med 2022; 12:jpm12040526. [PMID: 35455642 PMCID: PMC9028714 DOI: 10.3390/jpm12040526] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Apixaban and rivaroxaban are the two most prescribed direct factor Xa inhibitors. With the increased use of DOACs in real-world settings, safety and efficacy concerns have emerged, particularly regarding their concomitant use with other drugs. Increasing evidence highlights drug−drug interactions with CYP3A/P-gp modulators leading to adverse events. However, current recommendations for dose adjustment do not consider CYP3A/P-gp genotype and phenotype. We aimed to determine their impact on apixaban and rivaroxaban blood exposure. Three-hundred hospitalized patients were included. CYP3A and P-gp phenotypic activities were assessed by the metabolic ratio of midazolam and AUC0−6h of fexofenadine, respectively. Relevant CYP3A and ABCB1 genetic polymorphisms were also tested. Capillary blood samples collected at four time-points after apixaban or rivaroxaban administration allowed the calculation of pharmacokinetic parameters. According to the developed multivariable linear regression models, P-gp activity (p < 0.001) and creatinine clearance (CrCl) (p = 0.01) significantly affected apixaban AUC0−6h. P-gp activity (p < 0.001) also significantly impacted rivaroxaban AUC0−6h. The phenotypic switch (from normal to poor metabolizer) of P-gp led to an increase of apixaban and rivaroxaban AUC0−6h by 16% and 25%, respectively, equivalent to a decrease of 38 mL/min in CrCl according to the apixaban model. CYP3A phenotype and tested SNPs of CYP3A/P-gp had no significant impact. In conclusion, P-gp phenotypic activity, rather than known CYP3A/P-gp polymorphisms, could be relevant for dose adjustment.
Collapse
Affiliation(s)
- Camille Lenoir
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Jean Terrier
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Department of Medicine, Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (P.G.); (J.-L.R.)
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Yvonne Gloor
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
| | - Pauline Gosselin
- Department of Medicine, Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (P.G.); (J.-L.R.)
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Youssef Daali
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Christophe Combescure
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
- Department of Health and Community Medicine, Division of Clinical Epidemiology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Jules Alexandre Desmeules
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Caroline Flora Samer
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Jean-Luc Reny
- Department of Medicine, Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (P.G.); (J.-L.R.)
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Victoria Rollason
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
- Correspondence:
| |
Collapse
|
26
|
Wang J, Buchman CD, Seetharaman J, Miller DJ, Huber AD, Wu J, Chai SC, Garcia-Maldonado E, Wright WC, Chenge J, Chen T. Unraveling the Structural Basis of Selective Inhibition of Human Cytochrome P450 3A5. J Am Chem Soc 2021; 143:18467-18480. [PMID: 34648292 DOI: 10.1021/jacs.1c07066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human cytochrome P450 (CYP) CYP3A4 and CYP3A5 enzymes metabolize more than one-half of marketed drugs. They share high structural and substrate similarity and are often studied together as CYP3A4/5. However, CYP3A5 preferentially metabolizes several clinically prescribed drugs, such as tacrolimus. Genetic polymorphism in CYP3A5 makes race-based dosing adjustment of tacrolimus necessary to minimize acute rejection after organ transplantation. Moreover, the differential tissue distribution and expression levels of CYP3A4 and CYP3A5 can aggravate toxicity during treatment. Therefore, selective inhibitors of CYP3A5 are needed to distinguish the role of CYP3A5 from that of CYP3A4 and serve as starting points for potential therapeutic development. To this end, we report the crystal structure of CYP3A5 in complex with a previously reported selective inhibitor, clobetasol propionate (CBZ). This is the first CYP3A5 structure with a type I inhibitor, which along with the previously reported substrate-free and type II inhibitor-bound structures, constitute the main CYP3A5 structural modalities. Supported by structure-guided mutagenesis analyses, the CYP3A5-CBZ structure showed that a unique conformation of the F-F' loop in CYP3A5 enables selective binding of CBZ to CYP3A5. Several polar interactions, including hydrogen bonds, stabilize the position of CBZ to interact with this unique F-F' loop conformation. In addition, functional and biophysical assays using CBZ analogs highlight the importance of heme-adjacent moieties for selective CYP3A5 inhibition. Our findings can be used to guide further development of more potent and selective CYP3A5 inhibitors.
Collapse
Affiliation(s)
- Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Cameron D Buchman
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Efren Garcia-Maldonado
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jude Chenge
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
27
|
Lim SYM, Alshagga MA, Alshawsh MA, Ong CE, Pan Y. In vitro effects of 95% khat ethanol extract (KEE) on human recombinant cytochrome P450 (CYP)1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5. Drug Metab Pers Ther 2021; 37:55-67. [PMID: 35146975 DOI: 10.1515/dmpt-2021-1000196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Khat, a natural amphetamine-like psychostimulant plant, are widely consumed globally. Concurrent intake of khat and xenobiotics may lead to herb-drug interactions and adverse drug reactions (ADRs). This study is a continuation of our previous study, targeted to evaluate the in vitro inhibitory effects of khat ethanol extract (KEE) on human cytochrome (CYP) 1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, and CYP3A5, major human drug metabolizing enzymes. METHODS In vitro fluorescence enzyme assays were employed to assess CYPs inhibition with the presence and absence of various KEE concentrations. RESULTS KEE reversibly inhibited CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 but not CYP1A2 with IC50 values of 25.5, 99, 4.5, 21, 27, 17, and 10 μg/mL respectively. No irreversible inhibition of KEE on all the eight CYPs were identified. The Ki values of CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 were 20.9, 85, 4.8, 18.3, 59.3, 3, and 21.7 μg/mL, respectively. KEE inhibited CYP2B6 via competitive or mixed inhibition; CYP2E1 via un-competitive or mixed inhibition; while CYP2A6, CYP2C8, CYP2C19, CYP2J2 and CYP3A5 via non-competitive or mixed inhibition. CONCLUSIONS Caution should be taken by khat users who are on medications metabolized by CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, and CYP3A5.
Collapse
Affiliation(s)
- Sharoen Yu Ming Lim
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Mustafa Ahmed Alshagga
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| | | | - Chin Eng Ong
- School of Pharmacy, International Medical University, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Yan Pan
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
28
|
Zhang W, Sun Y, Wei S, Wei B, Xu X, Tang Y. Untargeted metabolomics reveals the mechanism of quercetin enhancing the bioavailability of ticagrelor. Biomed Chromatogr 2021; 35:e5206. [PMID: 34185878 DOI: 10.1002/bmc.5206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/07/2022]
Abstract
Ticagrelor is a first-line clinical drug for the treatment of acute coronary syndrome, but its oral bioavailability is relatively low. Flavonoids (polyphenol compounds commonly found in plant foods) seriously affect human metabolism and health. This study compared the effects of quercetin, luteolin and catechin on the pharmacokinetic parameters of ticagrelor and found that quercetin can significantly increase the Cmax and area under the curve from time zero to 36 h (AUC0-36 ) of ticagrelor, that is, quercetin can enhance the bioavailability of ticagrelor, but luteolin and catechin cannot. The difference between the ticagrelor group and the combination of quercetin and ticagrelor was analyzed through untargeted metabolomics methods and multivariate data analysis, which identified changes in the levels of seven metabolites (deoxycholic acid, taurocholic acid, glycocholic acid, glycoursodeoxycholic acid, tryptophan, phenylalanine and kynurenine). Based on the changes of these metabolites, we found that the metabolic pathways of phenylalanine, tyrosine and tryptophan and the biosynthetic pathway of bile acids were changed. A metabolomics study revealed that quercetin improves the oral bioavailability of ticagrelor and that this might rely on changing the metabolic pathways of phenylalanine, tyrosine and tryptophan and the biosynthetic pathway of bile acids. The research results at the metabolic level provide us with a strong basis and direction for further exploring the mechanism underlying quercetin's ability to enhance the bioavailability of ticagrelor, and this may be useful for finding new agents that enhance the bioavailability.
Collapse
Affiliation(s)
- Weijie Zhang
- Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yaxin Sun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Shuangyan Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Youcai Tang
- Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
29
|
de Souza TC, de Souza TC, Rovadoscki GA, Coutinho LL, Mourão GB, de Camargo GMF, Costa RB, de Carvalho GGP, Pedrosa VB, Pinto LFB. Genome-wide association for plasma urea concentration in sheep. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Triarico S, Romano A, Attinà G, Capozza MA, Maurizi P, Mastrangelo S, Ruggiero A. Vincristine-Induced Peripheral Neuropathy (VIPN) in Pediatric Tumors: Mechanisms, Risk Factors, Strategies of Prevention and Treatment. Int J Mol Sci 2021; 22:4112. [PMID: 33923421 PMCID: PMC8073828 DOI: 10.3390/ijms22084112] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Vincristine-induced peripheral neurotoxicity (VIPN) is a very common side effect of vincristine chemotherapy among pediatric patients with cancer. Neuropathy may be sensory, motor and/or autonomic, with consequent reduction, delay or discontinuation of vincristine-chemotherapy, but also pain, disability, reduced quality of life of patients and an increase in medical costs. Vincristine acts out its antineoplastic function by altering the normal assembly and disassembly of microtubules, with their consequent mitosis block and death. Vincristine leads to VIPN through a complex mechanism of damage, which occurs not only on the microtubules, but also on the endothelium and the mitochondria of nerve cells. Furthermore, both patient-related risk factors (age, race, ethnicity and genetic polymorphisms) and treatment-related risk factors (dose, time of infusion and drug-drug interactions) are involved in the pathogenesis of VIPN. There is a lack of consensus about the prophylaxis and treatment of VIPN among pediatric oncologic patients, despite several molecules (such as gabapentin, pyridoxine and pyridostigmine, glutamic acid and glutamine) having been already investigated in clinical trials. This review describes the molecular mechanisms of VIPN and analyzes the risk factors and the principal drugs adopted for the prophylaxis and treatment of VIPN in pediatric patients with cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.T.); (A.R.); (G.A.); (M.A.C.); (P.M.); (S.M.)
| |
Collapse
|
31
|
Jonsson-Schmunk K, Ghose R, Croyle MA. Immunization and Drug Metabolizing Enzymes: Focus on Hepatic Cytochrome P450 3A. Expert Rev Vaccines 2021; 20:623-634. [PMID: 33666138 DOI: 10.1080/14760584.2021.1899818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Infectious disease emergencies like the 2013-2016 Ebola epidemic and the 2009 influenza and current SARS-CoV-2 pandemics illustrate that vaccines are now given to diverse populations with preexisting pathologies requiring pharmacological management. Many natural biomolecules (steroid hormones, fatty acids, vitamins) and ~60% of prescribed medications are processed by hepatic cytochrome P450 (CYP) 3A4. The objective of this work was to determine the impact of infection and vaccines on drug metabolism. METHODS The impact of an adenovirus-based vaccine expressing Ebola glycoprotein (AdEBO) and H1N1 and H3N2 influenza viruses on hepatic CYP 3A4 and associated nuclear receptors was evaluated in human hepatocytes (HC-04 cells) and in mice. RESULTS CYP3A activity was suppressed by 55% in mice 24 h after administration of mouse-adapted H1N1, while ˂10% activity remained in HC-04 cells after infection with H1N1 and H3N2 due to global suppression of cellular translation capacity, indicated by reduction (70%, H1N1, 56%, H3N2) of phosphorylated eukaryotic translation initiation factor 4e (eIF4E). AdEBO suppressed CYP3A activity in vivo (44%) and in vitro (26%) 24 hours after infection. CONCLUSION As the clinical evaluation of vaccines for SARS-CoV-2 and other global pathogens rise, studies to evaluate the impact of new vaccines and emerging pathogens on CYP3A4 and other metabolic enzymes are warranted to avoid therapeutic failures that could further compromise the public health during infectious disease emergencies.
Collapse
Affiliation(s)
- Kristina Jonsson-Schmunk
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas, Austin, Texas, USA
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Maria A Croyle
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas, Austin, Texas, USA.,LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
32
|
Zheng T, Jia R, Cao L, Du J, Gu Z, He Q, Xu P, Yin G. Effects of chronic glyphosate exposure on antioxdative status, metabolism and immune response in tilapia (GIFT, Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108878. [PMID: 32861895 DOI: 10.1016/j.cbpc.2020.108878] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022]
Abstract
Glyphosate (Gly) is an active ingredient of herbicide, its underlying toxicity on fish is still unclear. The aim of this study was to evaluate chronic toxicity of Gly on tilapia via determining antioxidative status, metabolism, inflammation and immune response. The fish were exposed to different concentrations of Gly (0, 0.2, 0.8, 4 and 16 mg/L) for 80 days. The blood, liver, gills and spleen were collected to assay biochemical parameters and genes expression after 80 days of exposure. The results showed that treatments with higher Gly (4 and/16 mg/L) significantly increased the levels of TC, TG, AST, ALT, LDL-C and MDA, and apparently decreased the levels of SOD, GSH, CAT, HDL-C, HK, G3PDH, FBPase and G6PD in serum, liver and/or gills. The gene expression data showed that the treatments with Gly adversely affected Nrf2 pathway in liver, gills and spleen, as shown by significant changes of nrf2, keap1, ho-1, nqo1 and gsta mRNA levels. Meanwhile, inflammatory response was activated via enhancing the mRNA levels of nf-κb2, rel, rela tnf-α, and il-1β, and immunotoxicity was caused through downregulating the genes expression of c-lzm, hep, igm, hsp70 and c3 in liver, gills and/or spleen of tilapia after Gly exposure. Moreover, the mRNA levels of cyp1a and cyp3a were upregulated in 16 or 0.2 mg/kg Gly group in liver. Overall results suggested chronic Gly exposure reduced antioxidative ability, disturbed liver metabolism, promoted inflammation and suppressed immunity. Interestingly, the Nrf2 and NF-κB signaling pathways played key roles in Gly chronic toxicity.
Collapse
Affiliation(s)
- Tao Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhengyan Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Qin He
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
33
|
Beverage-Drug Interaction: Effects of Green Tea Beverage Consumption on Atorvastatin Metabolism and Membrane Transporters in the Small Intestine and Liver of Rats. MEMBRANES 2020; 10:membranes10090233. [PMID: 32937767 PMCID: PMC7559440 DOI: 10.3390/membranes10090233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Green tea (GT) beverages are popular worldwide and may prevent the development of many chronic diseases including cardiovascular disease and cancer. To investigate whether the consumption of a GT beverage causes drug interactions, the effects of GT beverage consumption on atorvastatin metabolism and membrane transporters were evaluated. Male rats were fed a chow diet with tap water or the GT beverage for 3 weeks. Then, the rats were given a single oral dose (10 mg/kg body weight (BW)) of atorvastatin (ATV), and blood was collected at various time points within 6 h. The results show that GT consumption increased the plasma concentrations (AUC0–6h) of ATV (+85%) and 2-OH ATV (+93.3%). GT also increased the 2-OH ATV (+40.9%) and 4-OH ATV (+131.6%) contents in the liver. Decreased cytochrome P450 (CYP) 3A enzyme activity, with no change in P-glycoprotein expression in the intestine, was observed in rats treated with GT. Additionally, GT increased hepatic CYP3A-mediated ATV metabolism and decreased organic anion transporting polypeptides (OATP) 2 membrane protein expression. There was no significant difference in the membrane protein expression of OATP2B1 and P-glycoprotein in the intestine and liver after the GT treatment. The results show that GT consumption may lower hepatic OATP2 and, thus, limit hepatic drug uptake and increase plasma exposure to ATV and 2-OH ATV.
Collapse
|
34
|
Feltrin C, Farias IV, Sandjo LP, Reginatto FH, Simões CMO. Effects of Standardized Medicinal Plant Extracts on Drug Metabolism Mediated by CYP3A4 and CYP2D6 Enzymes. Chem Res Toxicol 2020; 33:2408-2419. [DOI: 10.1021/acs.chemrestox.0c00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Clarissa Feltrin
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ingrid Vicente Farias
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Louis Pergaud Sandjo
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Flávio Henrique Reginatto
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Cláudia Maria Oliveira Simões
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| |
Collapse
|
35
|
Wright WC, Chenge J, Wang J, Girvan HM, Yang L, Chai SC, Huber AD, Wu J, Oladimeji PO, Munro AW, Chen T. Clobetasol Propionate Is a Heme-Mediated Selective Inhibitor of Human Cytochrome P450 3A5. J Med Chem 2020; 63:1415-1433. [PMID: 31965799 PMCID: PMC7087482 DOI: 10.1021/acs.jmedchem.9b02067] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The human cytochrome P450 (CYP) enzymes CYP3A4 and CYP3A5 metabolize most drugs and have high similarities in their structure and substrate preference. Whereas CYP3A4 is predominantly expressed in the liver, CYP3A5 is upregulated in cancer, contributing to drug resistance. Selective inhibitors of CYP3A5 are, therefore, critical to validating it as a therapeutic target. Here we report clobetasol propionate (clobetasol) as a potent and selective CYP3A5 inhibitor identified by high-throughput screening using enzymatic and cell-based assays. Molecular dynamics simulations suggest a close proximity of clobetasol to the heme in CYP3A5 but not in CYP3A4. UV-visible spectroscopy and electron paramagnetic resonance analyses confirmed the formation of an inhibitory type I heme-clobetasol complex in CYP3A5 but not in CYP3A4, thus explaining the CYP3A5 selectivity of clobetasol. Our results provide a structural basis for selective CYP3A5 inhibition, along with mechanistic insights, and highlight clobetasol as an important chemical tool for target validation.
Collapse
Affiliation(s)
- William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
- Integrated Biomedical Sciences Program, University of
Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jude Chenge
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Hazel M. Girvan
- Manchester Institute of Biotechnology, School of Natural
Sciences, Department of Chemistry, The University of Manchester, Manchester, M1 7DN,
UK
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Sergio C. Chai
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Peter O. Oladimeji
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Andrew W. Munro
- Manchester Institute of Biotechnology, School of Natural
Sciences, Department of Chemistry, The University of Manchester, Manchester, M1 7DN,
UK
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| |
Collapse
|
36
|
Ding WX, Yang L. Alcohol and drug-induced liver injury: Metabolism, mechanisms, pathogenesis and potential therapies ☆. LIVER RESEARCH 2019; 3:129-131. [PMID: 32309012 PMCID: PMC7164802 DOI: 10.1016/j.livres.2019.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|