1
|
Hou Z, Shi Z, Lu Z, Wang D, Yan Z, Jiang Y, Li K. Organobromine compounds in aquatic environments: Embryotoxicity linked to lipophilicity and molecular structure. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137550. [PMID: 39938363 DOI: 10.1016/j.jhazmat.2025.137550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Organobromine compounds, prevalent in marine environments due to both anthropogenic activities and natural processes, have been shown to exhibit significant toxicity toward aquatic organisms. This study investigates the embryotoxicity and teratogenic effects of six bromophenol compounds using zebrafish (Danio rerio) embryos as a model. The compounds exhibited varying degrees of toxicity, with BP-6 and BP-5 showing the lowest LC50 values. The study identified distinct embryonic malformations, including venous sinus edema, pericardial cysts, and craniofacial malformations. A correlation was observed between the toxicity of the bromophenols and their lipophilicity, with higher lipophilicity compounds demonstrating greater toxicity. Mechanistic insights into the toxicity of bromophenols were further explored through transcriptomic analysis, which identified significant effects on retinol metabolism, modulation of myocardial contraction via Ca²⁺/Na⁺ ion flux, stimulation of nonspecific immune responses, and suppression of primary bile acid synthesis. BP-2 exposure significantly altered calcium signaling and bile acid biosynthesis, indicating a potential mechanism for its enhanced toxicity. These findings underscore the need for further investigation into the environmental and health impacts of bromophenols, particularly as they accumulate in marine ecosystems and the food chain.
Collapse
Affiliation(s)
- Zhihao Hou
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenzhen Shi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhen Lu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Derui Wang
- College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| | - Zhi Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqiu Jiang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 210306, China
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
2
|
Jiang C, Liang J, Hu K, Ye Y, Yang J, Zhang X, Ye G, Zhang J, Zhang D, Zhong B, Yu P, Wang L, Zeng B. Identification of tryptophan metabolism-related biomarkers for nonalcoholic fatty liver disease through network analysis. Endocr Connect 2025; 14:e240470. [PMID: 40183447 PMCID: PMC12023734 DOI: 10.1530/ec-24-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/20/2025] [Accepted: 04/04/2025] [Indexed: 04/05/2025]
Abstract
Background Increasing evidence demonstrates that tryptophan metabolism is closely related to the development of nonalcoholic fatty liver disease (NAFLD). This study aimed to identify specific biomarkers of NAFLD associated with tryptophan metabolism and research its functional mechanism. Methods We downloaded NAFLD RNA-sequencing data from GSE89632 and GSE24807, and obtained tryptophan metabolism-related genes (TMRGs) from the MsigDB database. The R package limma and WGCNA were used to identify TMRGs-DEGs, and GO, KEGG and Cytoscape were used to analyze and visualize the data. Immune cell infiltration analysis was used to explore the immune mechanism of NAFLD and the biomarkers. We also validated extended levels of biomarkers. Results We identified 375 NAFLD differentially expressed genes (DEGs) and 85 TMRGs-DEGs. GO/KEGG analysis revealed that TMRGs-DEGs were mainly enriched in triglyceride and cholesterol metabolism. ROC curves identified CCL20 (AUC = 0.917), CD160 (AUC = 0.933) and CYP7A1 (AUC = 1) as biomarkers of NAFLD. Immune infiltration analysis showed significant differences in ten immune cells, and the activation of dendritic cells and mast cells were highly positively correlated with NAFLD. CCL20, CD160 and CYP7A1 were highly correlated with M2 macrophage, neutrophil and mast cells activation, respectively. Twenty-seven TMRGs correlated with hub genes, and gene set enrichment analysis demonstrated their function in tryptophan- and lysine-containing metabolic process. We identified 41 therapeutic drug matches which corresponded to two hub genes and four drugs which co-targeted CCL20 and CYP7A1. Finally, three hub genes were validated in our mouse model. Conclusions CCL20, CD160 and CYP7A1 are tryptophan metabolism-related biomarkers of NAFLD, related to glycerol ester and cholesterol metabolism. We screened four compounds which co-target CCL29 and CYP7A1 to provide potential experimental drugs for NAFLD.
Collapse
Affiliation(s)
- Cuihua Jiang
- Department of Pain Management, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Jianqi Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kaibo Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqing Ye
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiajia Yang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiaozhi Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Guilin Ye
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Bin Zhong
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liefeng Wang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
- China Medical University, Shenyang, China
| | - Bin Zeng
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- China Medical University, Shenyang, China
| |
Collapse
|
3
|
Mahgoup EM. "Gut Microbiota as a Therapeutic Target for Hypertension: Challenges and Insights for Future Clinical Applications" "Gut Microbiota and Hypertension Therapy". Curr Hypertens Rep 2025; 27:14. [PMID: 40261509 DOI: 10.1007/s11906-025-01331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE OF REVIEW Systemic hypertension is a major risk factor for cardiovascular disease and remains challenging to manage despite the widespread use of antihypertensive medications and lifestyle modifications. This review explores the role of gut microbiota in hypertension development and regulation, highlighting key mechanisms such as inflammation, gut-brain axis modulation, and bioactive metabolite production. We also assess the potential of microbiota-targeted therapies for hypertension management. RECENT FINDINGS Emerging evidence indicates that microbial dysbiosis, high-salt diets, and gut-derived metabolites such as short-chain fatty acids (SCFAs) and bile acids significantly influence blood pressure regulation. Preclinical and early clinical studies suggest that interventions targeting gut microbiota, including probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), and dietary modifications, may help modulate hypertension. However, variability in gut microbiota composition among individuals and limited human trial data pose challenges to translating these findings into clinical practice. While microbiota-based therapies show promise for hypertension management, further research is needed to establish their efficacy and long-term effects. Large-scale, standardized clinical trials are crucial for understanding the therapeutic potential and limitations of gut microbiota interventions. A deeper understanding of the gut-hypertension axis could lead to novel, personalized treatment strategies for hypertension.
Collapse
Affiliation(s)
- Elsayed M Mahgoup
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt.
- Department of Internal Medicine, Division of Cardiovascular Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Yu T, Humbert F, Li D, Savarin A, Zhang M, Cui Y, Wang H, Dong T, Wu Y. Effects of Chicken Protein Hydrolysate as a Protein Source to Partially Replace Chicken Meal on Gut Health, Gut Microbial Structure, and Metabolite Composition in Cats. Vet Sci 2025; 12:388. [PMID: 40284890 PMCID: PMC12031455 DOI: 10.3390/vetsci12040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Protein hydrolysates positively affect intestinal function in both humans and animals, but their impact on gut health and the gut microbial profile in cats has not been thoroughly investigated. In this study, a total of 30 adult cats were randomly assigned to one of three dietary treatments for a 60-day feeding trial. The three dietary treatments were as follows: (1) basal diet (CON), (2) diet containing 15% powdered chicken protein hydrolysate (HP15%), and (3) diet containing 15% liquid chicken protein hydrolysate (HL15%). Compared to the CON group, the HP15% group had a decreased calprotectin levels and fecal gases emissions (p < 0.05). A higher abundance of Bacteroidota, Veillonellaceae, and Bacteroidaceae, while a lower abundance of Firmicutes was showed in the HL15% group than that in the CON group (p < 0.05). At the genus level, compared with the CON group, an increased abundance of Bacteroides spp. and Bifidobacterium spp. was showed, whereas a reduced abundance of Alloprevotella spp. was presented in the HP15% and HL15% groups (p < 0.05). The metabolomic analysis revealed 1405 distinct metabolites between the HP15% and CON groups (p < 0.05, VIP-pred-OPLS-DA > 1), and the level of cholic acid decreased while the level of isodeoxycholic acid increased in the HP15% group (p < 0.05). The metabolomic analysis revealed 1910 distinct metabolites between the HL15% and CON groups (p < 0.05, VIP-pred-OPLS-DA > 1), and the levels of 4-coumaryl alcohol and enterolactone increased in the HL15% group (p < 0.05). In summary, this study suggested that partially replacing chicken meat with chicken protein hydrolysate in the diet of cats helps regulate the gut microbial community and metabolite profile and improves intestinal health.
Collapse
Affiliation(s)
- Tong Yu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Y.); (M.Z.); (Y.C.); (H.W.); (T.D.)
| | - Fabian Humbert
- Jiangxi Wing Biotechnology Co., Ltd., Shanghai 200001, China; (F.H.); (D.L.); (A.S.)
| | - Dan Li
- Jiangxi Wing Biotechnology Co., Ltd., Shanghai 200001, China; (F.H.); (D.L.); (A.S.)
| | - Arnaud Savarin
- Jiangxi Wing Biotechnology Co., Ltd., Shanghai 200001, China; (F.H.); (D.L.); (A.S.)
| | - Mingrui Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Y.); (M.Z.); (Y.C.); (H.W.); (T.D.)
| | - Yingyue Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Y.); (M.Z.); (Y.C.); (H.W.); (T.D.)
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Y.); (M.Z.); (Y.C.); (H.W.); (T.D.)
| | - Tianyu Dong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Y.); (M.Z.); (Y.C.); (H.W.); (T.D.)
| | - Yi Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Y.); (M.Z.); (Y.C.); (H.W.); (T.D.)
| |
Collapse
|
5
|
Urbani G, Rondini E, Distrutti E, Marchianò S, Biagioli M, Fiorucci S. Phenotyping the Chemical Communications of the Intestinal Microbiota and the Host: Secondary Bile Acids as Postbiotics. Cells 2025; 14:595. [PMID: 40277921 PMCID: PMC12025480 DOI: 10.3390/cells14080595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
The current definition of a postbiotic is a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics can be mainly classified as metabolites, derived from intestinal bacterial fermentation, or structural components, as intrinsic constituents of the microbial cell. Secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) are bacterial metabolites generated by the enzymatic modifications of primary bile acids by microbial enzymes. Secondary bile acids function as receptor ligands modulating the activity of a family of bile-acid-regulated receptors (BARRs), including GPBAR1, Vitamin D (VDR) receptor and RORγT expressed by various cell types within the entire human body. Secondary bile acids integrate the definition of postbiotics, exerting potential beneficial effects on human health given their ability to regulate multiple biological processes such as glucose metabolism, energy expenditure and inflammation/immunity. Although there is evidence that bile acids might be harmful to the intestine, most of this evidence does not account for intestinal dysbiosis. This review examines this novel conceptual framework of secondary bile acids as postbiotics and how these mediators participate in maintaining host health.
Collapse
Affiliation(s)
- Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Elena Rondini
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| |
Collapse
|
6
|
Cao J, Hu W, Chen Y, Ailikaiti A, Zhang Z, Rong L, Yu H, Wang H. Adrenal High-Expressional CYP27A1 Mediates Bile Acid Increase and Functional Impairment in Adult Male Offspring by Prenatal Dexamethasone Exposure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413299. [PMID: 39950753 PMCID: PMC11984885 DOI: 10.1002/advs.202413299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/16/2025] [Indexed: 04/12/2025]
Abstract
Prenatal dexamethasone exposure (PDE) can impact adrenal corticosteroid synthesis in adult offspring. Furthermore, the adrenal gland can autonomously synthesize bile acids, but local bile acids accumulation has cytotoxic effects. This study found that PDE increased histone 3 lysine 27 acetylation (H3K27ac) levels in the promoter region of cholesterol 27 hydroxylase (CYP27A1) and its expression, as well as total bile acids (TBA) concentrations and enhanced endoplasmic reticulum stress (ERS) and inhibit steroid synthesis in adult male offspring rat adrenal glands. However, it is reversed in females. Tracing back to the prenatal stage and in combination with cellular experiments, it is further revealed that dexamethasone can regulate glucocorticoid receptor (GR)/SET binding protein 1 (SETBP1)/CYP27A1 signal pathway, consequently cause intracellular increase of bile acids. Finally, administration of nilvadipine (CYP27A1 inhibitor) to male offspring for 4 weeks after birth resulted in the reversal of PDE-induced adrenal morphological and functional damage. In conclusion, PDE induces fetal adrenal corticosteroid dysfunction in adult male offspring by upregulating CYP27A1 promoter region H3K27ac levels and expression in the adrenal gland through the GR/SETBP1 signaling pathway. This effect persists beyond birth, leading to bile acids local increase and subsequent enhancement of ERS, ultimately inducing cellular dysfunction in adult adrenal glands.
Collapse
Affiliation(s)
- Jiangang Cao
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
- Institute of Clinical Pharmacy ResearchThe Affiliated Nanhua HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Wen Hu
- Department of PharmacyZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Yawen Chen
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
| | | | - Ziyi Zhang
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
| | - Lingbo Rong
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
| | - Hong Yu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| |
Collapse
|
7
|
Bajaj P, Brennan RJ, Laurent S, Sauzeat S, Dufault M, Richards B, Adkins K. Transcriptomic analysis in liver spheroids identifies a dog-specific mechanism of hepatotoxicity for amcenestrant. Toxicol Sci 2025; 204:228-241. [PMID: 39886943 DOI: 10.1093/toxsci/kfaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Therapeutic drugs can sometimes cause adverse effects in a nonclinical species that do not translate to other species, including human. Species-specific (rat, dog, and human) in vitro liver spheroids were employed to understand the human relevance of cholestatic liver injury observed with a selective estrogen receptor degrader (amcenestrant) in dog, but not in rat, during preclinical development. Amcenestrant showed comparable cytotoxicity in liver spheroids from all 3 species; however, its M5 metabolite (RA15400562) showed dog preferential cytotoxicity after 7 days of treatment. Whole genome transcript profiles generated from liver spheroids revealed downregulation of genes related to bile acid synthesis and transport indicative of strong farnesoid X receptor (FXR) antagonism following treatment with both amcenestrant and its M5 metabolite in the dog but not in rat or human. In human spheroids, upregulation of genes for detoxification enzymes indicative of pregnane X receptor (PXR) agonism was observed following amcenestrant treatment, whereas in the dog these genes were downregulated. The M5 metabolite showed gene dysregulation indicating PXR agonism in both rat and human, and antagonism in dog. Analysis of liver samples from a 3-mo dog toxicity study conducted with amcenestrant showed downregulation of several genes associated with PXR and FXR, corroborating the in vitro results. These results support the hypothesis that dogs are uniquely susceptible to cholestatic hepatotoxicity following administration of amcenestrant due to species-specific antagonism of FXR and highlight the value of in vitro liver spheroids to investigating mechanisms of toxicity and possible species differences.
Collapse
Affiliation(s)
- Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA 02141, United States
| | - Richard J Brennan
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA 02141, United States
| | | | | | - Michael Dufault
- Precision Medicine and Computational Biology, Sanofi, Cambridge, MA 02141, United States
| | - Brenda Richards
- Genetic Medicine Unit, Sanofi, Waltham, MA 02451, United States
| | - Karissa Adkins
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA 02141, United States
| |
Collapse
|
8
|
Lin YH, Chen TM, Lai CR, Tsai YL, Tsai WC, Chen Y. GW4064 inhibits migration and invasion in human glioblastoma multiforme through the downregulation of PKCα. Eur J Pharmacol 2025; 991:177329. [PMID: 39900326 DOI: 10.1016/j.ejphar.2025.177329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Glioblastoma multiforme (GBM) is a deadly type of brain tumor with low patient survival rates. Previous studies have shown that inhibiting the intracellular bile acid transport protein can suppress brain tumor growth, migration, and angiogenesis. This study aims to investigate the effects of the bile acid nuclear receptor (farnesoid X receptor, FXR) agonist GW4064 on the migration, and invasion in GBM cells. GW4064 treatment inhibited the migration and invasion of GBM cells. The protein expression of phosphorylated focal adhesion kinase and protein kinase C alpha (PKCα) and activity of matrix metalloproteinase-2 (MMP2) were decreased by GW4064. The PKC activator phorbol 12-myristate 13-acetate (PMA) reversed the GW4064-reduced invasion ability in LN229 cells. Moreover, GW4064 combined with temozolomide (TMZ) treatment inhibited tumor progression in null mice. According to the hematoxylin and eosin stain (HE) and immunostaining, the tumor area and p-PKCα were reduced in the GW4064 combined with TMZ group. These results suggested that GW4064 declined the progression of GBM cells, with the inhibition of invasion mediated through PKC signaling. Targeting FXR may contribute to future therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Tzu-Min Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Rui Lai
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
9
|
Nielsen G, Gondim DD, Cave MC, Heiger-Bernays WJ, Webster TF, Schlezinger JJ. Perfluorooctanoic acid increases serum cholesterol in a PPARα-dependent manner in female mice. Arch Toxicol 2025:10.1007/s00204-025-03984-7. [PMID: 40021516 DOI: 10.1007/s00204-025-03984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of persistent chemicals that are pervasive in the environment leading to widespread exposure for humans. Perfluorooctanoic acid (PFOA), one of the most commonly measured PFAS in people, disrupts liver and serum lipid homeostasis as shown in animal toxicity and human epidemiological studies. We tested the hypothesis that the effects of PFOA exposure in mice expressing mouse PPARα (mPPARα) are driven largely through PPARα-dependent mechanisms while non-PPARα dependent mechanisms will be more apparent in mice expressing human PPARα (hPPARα). Female and male mPPARα, hPPARα, and PPARα null mice were exposed to PFOA (0.5, 1.4 or 6.2 mg PFOA/L) via drinking water for 14 weeks. Concurrently, mice consumed an American diet containing human diet-relevant amounts of fat and cholesterol. Here, we focused on the effects in female mice, given the dearth of data reported on PFAS-induced effects in females. Increasing the duration of PFOA exposure reduced weight gain in all genotypes of female mice while end-of-study body fat was lower in PFOA exposed hPPARα and PPARα null mice. Serum cholesterol, but not triacylglyceride, concentrations were increased by PFOA exposure in a PPARα-dependent manner. Hepatic triacylglycerides were higher in vehicle-exposed mPPARα and PPARα null mice than hPPARα mice, and PFOA significantly reduced concentrations in mPPARα and PPARα null mice only. In contrast, PFOA increased hepatic cholesterol content in a PPARα-dependent manner. Changes in liver and serum cholesterol may be explained by a strong, PPARα-dependent downregulation of Cyp7a1 expression. PFOA significantly increased PPARα target gene expression in mPPARα mice. Other nuclear receptors were examined: CAR target gene expression was only induced by PFOA in hPPARα and PPARα null mice. PXR target gene expression was induced by PFOA in all genotypes. Results were similar in male mice with two exceptions: (1) vehicle-exposed male mice of all genotypes were equally susceptible to diet-induced hepatic steatosis; (2) male mice drank less water, resulting in lower serum PFOA levels, which may explain the less significant changes in lipid endpoints. Overall, our results show that PFOA modifies triacylglyceride and cholesterol homeostasis independently and that PPARα plays an important role in PFOA-induced increases in liver and serum cholesterol.
Collapse
Affiliation(s)
- G Nielsen
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA
| | - D D Gondim
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - M C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - W J Heiger-Bernays
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA
| | - T F Webster
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA
| | - J J Schlezinger
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA.
| |
Collapse
|
10
|
Wu N, Bayatpour S, Hylemon PB, Aseem SO, Brindley PJ, Zhou H. Gut Microbiome and Bile Acid Interactions: Mechanistic Implications for Cholangiocarcinoma Development, Immune Resistance, and Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:397-408. [PMID: 39730075 PMCID: PMC11841492 DOI: 10.1016/j.ajpath.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/29/2024]
Abstract
Cholangiocarcinoma (CCA) is a rare but highly malignant carcinoma of bile duct epithelial cells with a poor prognosis. The major risk factors of CCA carcinogenesis and progression are cholestatic liver diseases. The key feature of primary sclerosing cholangitis and primary biliary cholangitis is chronic cholestasis. It indicates a slowdown of hepatocyte secretion of biliary lipids and metabolites into bile as well as a slowdown of enterohepatic circulation (bile acid recirculation) of bile acids with dysbiosis of the gut microbiome. This leads to enterohepatic recirculation and an increase of toxic secondary bile acids. Alterations of serum and liver bile acid compositions via the disturbed enterohepatic circulation of bile acids and the disturbance of the gut microbiome then activate a series of hepatic and cancer cell signaling pathways that promote CCA carcinogenesis and progression. This review focuses on the mechanistic roles of bile acids and the gut microbiome in the pathogenesis and progression of CCA. It also evaluates the therapeutic potential of targeting the gut microbiome and bile acid-mediated signaling pathways for the therapy and prophylaxis of CCA.
Collapse
Affiliation(s)
- Nan Wu
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia
| | - Sareh Bayatpour
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Sayed O Aseem
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia; Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
11
|
Lei X, Li H, Chen S, Li B, Xia H, Li J, Guan F, Ge J. Tea leaf exosome-like nanoparticles (TELNs) improve oleic acid-induced lipid metabolism by regulating miRNAs in HepG-2 cells. BIORESOUR BIOPROCESS 2025; 12:9. [PMID: 39930300 PMCID: PMC11810870 DOI: 10.1186/s40643-025-00844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Tea is a widely consumed beverage globally, but the tea industry faces a significant waste management challenge. In this study, we developed tea leaf exosome-like nanoparticles (TELNs) with an average size of 274 ± 24.7 nm and a zeta potential of -20.6 ± 0.78 mV, using polyethylene glycol (PEG) 6000 precipitation followed by ultracentrifugation. Structural analysis confirmed that TELNs are composed of lipids, proteins, and RNAs. In vitro assays on HepG-2 cells revealed that TELNs are non-toxic at concentrations up to 300 µg/mL and can be efficiently internalized. TELNs exhibited significant antioxidant capacity and were able to significantly ameliorate H2O2-induced oxidative stress, increase the viability and reduce the accumulation of ROS in Hepg-2 cells. Notably, TELNs significantly alleviated OA-induced lipid metabolic disorders and hepatocellular injury. Further molecular analysis revealed that TELNs downregulated the expression of miR-21-5p, miR-17-3p, and miR-107, leading to the upregulation of their target genes PPARα, CYP7A1, and CPT-1A, which contributed to the improvement of lipid metabolism. This study is the first to demonstrate the lipid metabolism regulation potential of TELNs, providing new insights into their underlying mechanisms and helping to develop new therapeutic strategies for lipid metabolism-related diseases. Furthermore, it expands the scope of tea use and helps to reuse tea residues.
Collapse
Affiliation(s)
- Xuanhao Lei
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Haonan Li
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Sibei Chen
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Bing Li
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Huili Xia
- Taizhou Food and Drug Inspection and Research Institute, Taizhou, 318000, Zhejiang Province, People's Republic of China
| | - Jun Li
- Taizhou Food and Drug Inspection and Research Institute, Taizhou, 318000, Zhejiang Province, People's Republic of China
| | - Feng Guan
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Jian Ge
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China.
| |
Collapse
|
12
|
Lejeune N, Rouxel E, Monfort C, Tillaut H, Rouget F, Costet N, Giton F, Gaudreau É, Lainé F, Garlantézec R, Cordier S, Chevrier C, Warembourg C. Associations between prenatal exposure to PFAS and cardiometabolic health in preadolescents. ENVIRONMENTAL RESEARCH 2025; 266:120607. [PMID: 39672492 DOI: 10.1016/j.envres.2024.120607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
INTRODUCTION While a number of studies have examined the effects of prenatal exposure to per- and polyfluoroalkyl substances (PFAS) on childhood obesity, the results reported have been inconsistent and few studies have integrated biological markers. The aim of this study was to investigate the associations between prenatal exposure to PFAS and cardiometabolic health parameters at age 12, taking pubertal stage into consideration. METHOD This study included 394 mother-child pairs enrolled in the PELAGIE mother-child cohort (France). Nine PFAS were measured in umbilical cord blood, and the children attended a clinical examination at age 12. Anthropometry, blood metabolic markers, and blood pressure were measured and used to build an internal cardiometabolic score. Linear regression and Quantile G-computation models were used to evaluate individual and mixture PFAS effects, adjusting for confounders and stratifying by sex and pubertal stage. RESULTS No statistically significant association was observed between prenatal exposure to PFAS and cardiometabolic score at age 12. In post-menarche girls, perfluorohexane sulfonate (PFHxS) and perfluorodecanoic acid (PFDA) were statistically significantly associated with a decrease in a number of adiposity parameters (e.g., Body mass index z-score: beta [95%CI] = -0.37 [-0.67; -0.07]), as well as a decrease in low-density lipoproteins (LDL) and leptin levels. Similar results were observed with PFAS mixture, with statistically significantly decreased tricipital skinfolds (beta [95%CI] = -1.30 [(-2.54;-0.06)]). Isolated associations, including higher systolic blood pressure, changes in cholesterol levels, and lower adiponectin levels were observed in specific subgroups. CONCLUSION There is no clear evidence of an association between prenatal exposure to PFAS and the cardiometabolic health at earlier stage of pubertal development. However, inverse associations between PFAS and anthropometric measures have been observed in post-menarche girls. While the literature on this topic is scarce in pre-adolescents, these results suggest the importance of considering sex and pubertal stage in these associations.
Collapse
Affiliation(s)
- Naomi Lejeune
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Elke Rouxel
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Christine Monfort
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Hélène Tillaut
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Florence Rouget
- Université de Rennes, CHU Rennes, Inserm UMR S 1085, Irset, France
| | - Nathalie Costet
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Frank Giton
- AP-HP, Pôle Biologie-Pathologie Henri Mondor, Inserm, IMRB, 1 rue Gustave Eiffel, 94000, Créteil, France
| | - Éric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 Av. Wolfe, G1V 5B3, Québec, QC, Canada
| | - Fabrice Lainé
- Centre d'Investigation Clinique CHU-Rennes (CIC 1414), CHU Rennes, Institut National de la Santé et de la Recherche Médicale, Inserm, 2 rue Henri Le Guilloux 35033, Rennes, France
| | | | - Sylvaine Cordier
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Cécile Chevrier
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Charline Warembourg
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France.
| |
Collapse
|
13
|
Zhang J, Gong Y, Zhu Y, Zeng Q, Zhang H, Han R, Guo Y, Li D, Tian Y, Kang X, Yang Y, Li Z, Jiang R. Exploring the metabolic patterns and response mechanisms of bile acids during fasting: A study with poultry as an example. Poult Sci 2025; 104:104746. [PMID: 39799857 PMCID: PMC11770500 DOI: 10.1016/j.psj.2024.104746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025] Open
Abstract
Fasting is beneficial to alleviate fatty liver, lose weight and improve reproductive function. However, previous studies have shown that, during fasting, disorders of bile acid metabolism were strongly associated with intestinal inflammation. The physiological and biochemical parameters and gene expression of multiple tissues of chickens at every critical time node were measured by ELISA and qPCR. In addition, association analysis was performed based on liver transcriptome sequencing and cecum metabolome data. At the cellular level, the regulatory effects of cecal metabolites on host bile acid metabolism were verified. During fasting, hepatic FXR-SHP-CYP7A1 and ileum-hepatic FXR-SHP-FGF15/19-FGFR4-CYP7A1 negative feedback pathways were activated to inhibit hepatic bile acid synthesis. The ileum FXR-SHP-ASBT pathways are activated, hindered the ileal bile reflux. At the same time, it promotes the secretion of bile acids and cholesterol in the liver, accelerates the utilization of H2O and CO2, to maintain liver homeostasis during fasting. In addition, enhanced gallbladder contraction and increased hunger were observed in laying hens during fasting. At the cellular level, the correlation between CYP7A1 and L-valine was verified, revealing that cecal metabolites of laying hens was enabled to regulate host bile acid metabolism. This study explored the metabolic patterns of bile acids during fasting and identified the main reasons for the accumulation of bile acids in the cecum, which provides a basis for fasting research and offers a reference for the formulation of fasting protocols.
Collapse
Affiliation(s)
- Jun Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Yidan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Qingduo Zeng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Hao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Yawei Yang
- Hongyan Molting Research Institute, Xianyang 712000, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| |
Collapse
|
14
|
Kumar J, Hasan M, Mohsin S, Alzaher MH, Nagar T, Jamil A, Ahmed A, Lavu VK, Kumar S. Assessing the efficacy of farnesoid X receptor agonists in the management of metabolic dysfunction-associated steatotic liver disease: A systematic review and meta-analysis: Efficacy of Farnesoid X Receptor Agonists in Metabolic Dysfunction-associated Steatotic Liver Disease: Systematic Review and Meta-analysis. Clin Res Hepatol Gastroenterol 2025; 49:102530. [PMID: 39805519 DOI: 10.1016/j.clinre.2025.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND AND AIMS Several randomized clinical trials have been conducted assessing the potential efficacy of Farnesoid X receptor (FXR) agonists in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). A comprehensive review and analysis were needed to evaluate the findings of these trials. Hence, this systematic review and meta-analysis aim to study the association between FXR agonists and hepatic outcomes in patients with MASLD. METHODS Systematic review and meta-analysis evaluating the efficacy of FXR agonists in 1,227 patients assigned to the FXR intervention group compared to 650 patients in the placebo group. Changes in liver enzymes and hepatic steatosis assessed by MRI-PDFF were evaluated. RESULTS FXR agonist use was associated with a significant reduction in levels of AST, (WMD= -4.51, 95% CI=[-8.39,-0.63], P=0.02); ALT (WMD= -13.02, 95% CI=[-17.85,-8.19], P<0.00001); GGT (WMD= -32.20, 95% CI=[-38.63,-25.98], P<0.00001); MRI-PDFF, (SMD= -1.14, 95% CI=[-1.92,-0.35], P=0.005). FXR agonists did not significantly affect ALP levels, (WMD= 25.04, 95% CI=[19.22,30.87], P<0.00001] CONCLUSION: Results show promising evidence supporting the efficacy of FXR agonists in reducing hepatic steatosis and biomarkers of hepatic injury such as ALT, AST, and GGT.
Collapse
Affiliation(s)
- Jai Kumar
- School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Misha Hasan
- College of Medicine, Ziauddin University, Karachi, Pakistan
| | - Sana Mohsin
- College of Medicine, Ziauddin University, Karachi, Pakistan
| | | | - Tripti Nagar
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Adeena Jamil
- Department of Medicine, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Ali Ahmed
- School of Medicine, Wayne State University, Detroit, MI, USA
| | | | - Sarwan Kumar
- School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
15
|
Yang H, Zhang Y, Hong Y, Wei Y, Zhu Y, Huang L, Yang Y, Sun R, Li J. Effect of SY009, a novel SGLT1 inhibitor, on the plasma metabolome and bile acids in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2025; 16:1487058. [PMID: 39936104 PMCID: PMC11810745 DOI: 10.3389/fendo.2025.1487058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Context As a novel SGLT1 inhibitor, SY-009 has been preliminarily confirmed in a phase Ib clinical study for its ability to reduce postprandial blood glucose in patients with type 2 diabetes mellitus (T2DM). However, the effects of SY-009 on human plasma metabolomics are still unknown. Objective This study aimed to explore the effects of SY-009 on plasma metabolomics in patients with T2DM and the potential metabolic regulatory mechanism involved. Study design In the phase Ib study, a total of 50 participants with T2DM were enrolled and randomly assigned to the 0.5 mg BID, 1 mg BID, 2 mg BID, 1 mg QD, and 2 mg QD dose groups, with a 4:1 random allocation within each group to receive either the SY-009 capsule or placebo. We conducted untargeted and targeted metabolomics analyses on plasma samples from the phase Ib clinical study. Results Untargeted metabolomics revealed that, after SY009 treatment, there were differences in metabolic pathways, including primary bile acid biosynthesis; biosynthesis of unsaturated fatty acid; steroid hormone biosynthesis; purine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis. In particular, the increase in bile acid-related metabolites in the 2 mg BID group was significantly greater than that in the placebo group, and unsaturated fatty acid-related metabolites decreased in both the 2 mg BID group and the placebo group, but there was no significant difference between the two groups. After comprehensive consideration, bile acids were taken as our target for accurate quantification via targeted metabolomics. Compared with those in the placebo group, the levels of several bile acids were significantly greater in the SY-009-treated groups. Moreover, the proportion of free bile acids decreased significantly, the proportion of glycine-conjugated bile acids increased significantly, the proportion of taurine-conjugated bile acids tended to be stable, and PBA/SBA significantly increased after SY-009 administration. Conclusions SY-009 caused a series of postprandial plasma metabolite changes in patients with T2DM, especially significant changes in the bile acid profile, which provides a new perspective on the mechanism by which SY-009 lowers blood glucose. Clinical trial registration https://www.clinicaltrials.gov, identifier NCT04345107.
Collapse
Affiliation(s)
- Haoyi Yang
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwen Zhang
- Department of Phase I Clinical Trials Unit, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| | - Yuxin Hong
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Wei
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuning Zhu
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Huang
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuanxun Yang
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Runbin Sun
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Phase I Clinical Trials Unit, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Juan Li
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Phase I Clinical Trials Unit, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Yu J, Yang H, Wang J, Huang Z, Chen S, Zhao H, Wang J, Wang Z. Comprehensive analysis of histophysiology, transcriptomics and metabolomics in goslings exposed to gossypol acetate: unraveling hepatotoxic mechanisms. Front Vet Sci 2025; 12:1527284. [PMID: 39906302 PMCID: PMC11792171 DOI: 10.3389/fvets.2025.1527284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Cottonseed meal is a promising alternative to soybean meal in poultry feed, but concerns over free gossypol limit its use. Although the general toxicity of free gossypol is well-known, its specific effects on the liver-the primary site where it accumulates-are less thoroughly studied, particularly at the molecular level. This study investigated the hepatotoxic effects of gossypol acetate (GA) on goslings through a comprehensive analysis combining morphology, transcriptomics, and metabolomics. Forty-eight 7-day-old male goslings with similar body weight (BW) were randomly assigned to two groups: a control group, receiving a saline solution (0.9%, 2.5 mL/kg BW), and a GA-treated group, administered GA at 50 mg/kg BW orally for 14 days. Histological analysis revealed signs of liver damage, including granular degeneration, hepatocyte enlargement, necrosis, and mitochondrial injury. Transcriptomic analysis identified 1,137 differentially expressed genes, with 702 upregulated and 435 downregulated. Key affected pathways included carbon metabolism, glycolysis/gluconeogenesis, pyruvate metabolism, propanoate metabolism, TCA cycle, fatty acid degradation, primary bile acid biosynthesis, tryptophan metabolism, cysteine and methionine metabolism, focal adhesion, and the PPAR signaling pathway. Metabolomic analysis revealed 109 differential metabolites, 82 upregulated and 27 downregulated, implicating disruptions in linoleic acid metabolism, arachidonic acid metabolism, cAMP signaling, and serotonergic synapse pathways. Overall, GA-induced hepatotoxicity involves impaired energy production, disrupted lipid metabolism, and abnormal liver focal adhesion, leading to liver cell dysfunction. These findings highlight the vulnerability of mitochondria and critical metabolic pathways, providing insights into the molecular mechanisms of GA toxicity and guiding future studies on mitigating GA-induced liver damage in goslings.
Collapse
Affiliation(s)
- Jun Yu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jian Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Zixin Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hongchang Zhao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Jun Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
Wei Y, Mao H, Liu Q, Fang W, Zhang T, Xu Y, Zhang W, Chen B, Zheng Y, Hu X. Lipid metabolism and microbial regulation analyses provide insights into the energy-saving strategies of hibernating snakes. Commun Biol 2025; 8:45. [PMID: 39800781 PMCID: PMC11725596 DOI: 10.1038/s42003-025-07493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Hibernation is a necessary means for animals to maintain survival while coping with low temperatures and food shortages. While most studies have largely focused on mammalian hibernation, its reptilian equivalent has been less studied. In order to provide insights into the energy metabolism and potential microbial regulatory mechanisms in hibernating snakes, the serum, liver, gut content samples were measured by multi-omic methods. Here we show the active snakes have more vigorous lipid metabolism, whereas snakes in hibernation groups have higher sphingolipid metabolism. Furthermore, the results indicate that the potential energy supply pathway was gluconeogenesis. Microbial analysis reveals that Proteobacteria and Firmicutes showed dynamic changes with the transformation among active, pre-hibernation and hibernation periods. The correlation analysis reveals the potential role of Romboutsia, Providencia and Vagococcus in regulating above metabolism by producing certain metabolites. The results advance the understanding of the complex energy-saving strategy in hibernating poikilotherms.
Collapse
Affiliation(s)
- Yuting Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qiuhong Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wenjie Fang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tianxiang Zhang
- Institute of Wildlife Conservation, Jiangxi Academy of Forestry, Nanchang, China
| | - Yongtao Xu
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, China
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Weiwei Zhang
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, China
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yunlin Zheng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
18
|
Liu Y, Chen H, Yang G, Feng F. Metabolomics and serum pharmacochemistry combined with network pharmacology uncover the potential effective ingredients and mechanisms of Yin-Chen-Si-Ni Decoction treating ANIT-induced cholestatic liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118713. [PMID: 39163894 DOI: 10.1016/j.jep.2024.118713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/22/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yin-Chen-Si-Ni Decoction is a classical traditional Chinese medicine (TCM) prescription that is used clinically for treating cholestatic liver injury (CLI) and other hepatic diseases. However, the material basis and underlying mechanisms of YCSND are not clear. AIM OF THE STUDY To investigate effective components and mechanisms of YCSND in the treatment of CLI using serum pharmacochemistry, metabolomics, and network pharmacology. MATERIALS AND METHODS Biochemical indicators, liver index, and histopathology analysis were adopted to evaluate the protective effect of YCSND on ANIT-induced CLI rats. Then, a UPLC-Q-Exactive Orbitrap MS/MS analysis of the migrant components in serum and liver including prototype and metabolic components was performed in YCSND. In addition, a study of the endogenous metabolites using serum and liver metabolomics was performed to discover potential biomarkers, metabolic pathways, and associated mechanisms. Further, the network pharmacology oriented by in vivo migrant components was also used to pinpoint the active ingredients, core targets, and signaling pathways of YCSND. Finally, molecular docking and molecular dynamics simulation (MDS) were used to predict the binding ability between components and core targets, and a real-time qPCR (RT-qPCR) experiment was used to measure the mRNA expression of the core target genes. RESULTS Pharmacodynamic studies suggest that YCSND could exert obvious hepatoprotective effects on CLI rats. Furthermore, 68 compounds, comprising 32 prototype components and 36 metabolic components from YCSND, were found by serum pharmacochemistry analysis. Network pharmacology combining molecular docking and MDS showed that apigenin, naringenin, 18β-glycyrrhetinic acid, and isoformononetin have better binding ability to 6 core targets (EGFR, AKT1, IL6, MMP9, CASP3, PPARG). Additionally, PI3K, TNF-α, MAPK3, and six core target genes in liver tissues were validated with RT-qPCR. Metabolomics revealed the anti-CLI effects of YCSND by regulating four metabolic pathways of primary bile acid and biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and arachidonic acid metabolism. Integrating metabolomics and network pharmacology identified four pathways related to CLI, including the PI3K-Akt, HIF-1, MAPK, and TNF signaling pathway, which revealed multiple mechanisms of YCSND against CLI that might involve anti-inflammatory and apoptosis. CONCLUSION The research based on serum pharmacochemistry, network pharmacology, and metabolomics demonstrates the beneficial hepatoprotective effects of YCSND on CLI rats by regulating multiple components, multiple targets, and multiple pathways, and provides a potent means of illuminating the material basis and mechanisms of TCM prescriptions.
Collapse
Affiliation(s)
- Yanru Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hui Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Gongjun Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Fang Feng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
19
|
Gautam R, Maan P, Patel AK, Vasudevan S, Arora T. Unveiling the complex interplay between gut microbiota and polycystic ovary syndrome: A narrative review. Clin Nutr 2024; 43:199-208. [PMID: 39481287 DOI: 10.1016/j.clnu.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/11/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND & AIM Polycystic Ovary Syndrome (PCOS) is a complex endocrine disorder that affects women throughout their reproductive age and characterised via polycystic ovaries, hyperandrogenism, and irregular menstruation. There is rising evidence that the pathophysiology of PCOS is significantly affected via the gut microbiota and its metabolic products. METHODS This narrative review synthesizes current literature exploring the relationship between gut microbiota and PCOS. A comprehensive search of electronic databases was conducted to identify relevant studies. Further this review also analysed therapeutic options of probiotics, prebiotics, Fecal Microbiota Transplant (FMT), high fiber and poly phenol rich diet and novel therapeutic agents in treatment of PCOS. RESULTS Emerging evidence suggests alterations in the composition and diversity of gut microbiota in women with PCOS. The current literature showed a complex relationship of gut microbiota, short chain fatty acids (SCFAs) metabolism, intestinal permeability and LPS (Lipid Polysaccharide) metabolism, gut-brain axis and bile acid (BA) pathway within etiology and pathophysiology of PCOS. Additionally, the factors such as diet, lifestyle, genetics, and environmental influences may all contribute to alterations in gut microbiota that could potentially exacerbate or mitigate PCOS symptoms. CONCLUSION The review provides valuable insights into the intricate interplay between the gut and female reproductive health. The present evidence suggested that alterations in diversity and function of the gut microbiota may lead to specific pathogenic changes that lead to development of PCOS. A comprehensive understanding of these microbial dynamics may lead to new therapeutic approaches that target the gut micro biome.
Collapse
Affiliation(s)
- Rohit Gautam
- Division of Reproductive Child Health and Nutrition, Indian Council of Medical Research, New Delhi, India
| | - Pratibha Maan
- Division of Reproductive Child Health and Nutrition, Indian Council of Medical Research, New Delhi, India
| | - Arbind Kumar Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudharsan Vasudevan
- Division of Reproductive Child Health and Nutrition, Indian Council of Medical Research, New Delhi, India
| | - Taruna Arora
- Division of Reproductive Child Health and Nutrition, Indian Council of Medical Research, New Delhi, India.
| |
Collapse
|
20
|
Shearn CT, Anderson AL, Devereaux MW, Koch SD, Larsen LD, Spencer LA, Orlicky DJ, Colgan SP, Steiner CA, Sokol RJ. Overexpression of TNFα in TNF∆ARE+/- mice increases hepatic periportal inflammation and alters bile acid signaling in mice. Hepatol Commun 2024; 8:e0589. [PMID: 39585296 PMCID: PMC11596574 DOI: 10.1097/hc9.0000000000000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/05/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Intestinal inflammation is a common factor in ~70% of patients diagnosed with primary sclerosing cholangitis. The TNF∆ARE+/- mouse overexpresses TNFα and spontaneously develops ileitis after weaning. The aim of this study was to examine the influence of ileitis and TNFα overexpression on hepatic injury, fibrosis, inflammation, and bile acid homeostasis. METHODS Using serum, hepatic, and ileal tissue isolated from 24- to 26-week-old C57BL/6 and TNF∆ARE+/- mice, hepatic injury and fibrosis, inflammation, ductal proliferation, and regulation of bile acid synthesis were assessed by immunohistochemical and quantitative PCR methods. RESULTS Compared to age-matched C57BL/6 mice, TNF∆ARE+/- mice exhibited increased serum AST, ALT, and serum bile acids, which corresponded to increased hepatic picrosirius red staining, and an increase in hepatic mRNA expression of Tgfb, Timp1, Col1a1, and MMP9 supporting induction of fibrosis. Examining inflammation, immunohistochemical staining revealed a significant periportal increase in MPO+ neutrophils, CD3+ lymphocytes, and a panlobular increase in F4/80+ macrophages. Importantly, periportal inflammation corresponded to significantly increased proinflammatory chemokines as well as hepatic cytokeratin 7 staining supporting increased ductular proliferation. In the liver, increased mRNA expression of bile acid transporters was associated with suppression of classical but not alternative bile acid synthesis. In the ileum, increased inflammation correlated with suppression of Nr1h4 and increased Fgf15 and Nr0b2 mRNA expression. CONCLUSIONS Increased TNFα expression is sufficient to promote both intestinal and hepatobiliary inflammation and fibrotic injury and contributes to hepatic dysregulation of FXR signaling and bile acid homeostasis. Overall, these results suggest that the TNF∆ARE+/- mouse may be a useful model for studying chronic hepatic inflammation.
Collapse
Affiliation(s)
- Colin T. Shearn
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
- The Digestive Health Institute, Aurora, Colorado, USA
| | - Aimee L. Anderson
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael W. Devereaux
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Samuel D. Koch
- Mucosal Inflammation Program, Division of Gastroenterology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Leigha D. Larsen
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lisa A. Spencer
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sean P. Colgan
- Mucosal Inflammation Program, Division of Gastroenterology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Calen A. Steiner
- Mucosal Inflammation Program, Division of Gastroenterology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ronald J. Sokol
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
- The Digestive Health Institute, Aurora, Colorado, USA
- Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
21
|
Wang Q, Peng J, Tian Y, Li J, Cai J, Qin W. Evaluation of the Decreased Cholesterol Potential of Levilactobacillus brevis M-10 Isolated from Spontaneously Fermented Sour Porridge in Mice with High-Cholesterol Levels. Curr Microbiol 2024; 82:24. [PMID: 39614913 DOI: 10.1007/s00284-024-03974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/24/2024] [Indexed: 01/12/2025]
Abstract
Excessive cholesterol levels can lead to hypercholesterolemia, which is related to cardiovascular diseases (CVDs), and CVDs are a serious threat to human health. Therefore, lowering cholesterol levels is necessary, and diet intervention is safer than drugs are. The cholesterol-lowering effect of Levilactobacillus brevis M-10 isolated from spontaneously fermented millet sour porridge was investigated in fifty C57BL/6N male mice. After a 4-week intervention, the food intake, weight gains and organ indices were calculated; the lipid contents in the serum, liver, and feces were determined; the histopathology of the liver tissues was observed; the expression of metabolism-related genes was determined; and short-chain fatty acid (SCFA) levels in the droppings were monitored. The results showed that administration of a high dose of L. brevis M-10 (1 × 1010 CFU/mL) significantly reduced food intake, suppressed weight gain; prevented excessive liver growth; and reduced the total serum cholesterol, triglycerides, low-density lipoproteins; and total hepatic cholesterol and triglyceride contents (P < 0.05) in high-cholesterol mice. Moreover, a high dose of L. brevis M-10 significantly promoted the fecal excretion of cholesterol and triglycerides (P < 0.05) and alleviated liver damage induced by a high-cholesterol diet. Furthermore, a high dose of L. brevis M-10 significantly downregulated the cholesterol metabolism-related gene expression of NPC1L1, ACAT2, HMG-CoA, and SREBP2 but upregulated the gene expression of ABCG5, CYP7A1, and LXR-α (P < 0.05). Additionally, a high dose of L. brevis M-10 significantly increased SCFA contents, including those of acetic acid, propionic acid and n-butyric acid (P < 0.05). These findings could provide support for the use of L. brevis M-10 in the application of functional foods to alleviate hypercholesterolemia.
Collapse
Affiliation(s)
- Qi Wang
- Nutritional Department, Shanxi Traditional Chinese Medical Hospital, Bingzhou, Taiyuan, 030012, Shanxi, China
- School of Life Science, Shanxi University, Nanzhonghuan, Taiyuan, 030031, Shanxi, China
| | - Jiawei Peng
- School of Life Science, Shanxi University, Nanzhonghuan, Taiyuan, 030031, Shanxi, China
| | - Ye Tian
- Shanxi Provincial People's Hospital, Shuangta, Taiyuan, 030001, Shanxi, China
| | - Jianhua Li
- China Institute of Radiation Protection, Keji, Taiyuan, 036000, Shanxi, China
| | - Jin Cai
- Institute of Applied Chemistry, Shanxi University, Wucheng, Taiyuan, 030006, Shanxi, China
| | - Wenjun Qin
- Nutritional Department, Shanxi Traditional Chinese Medical Hospital, Bingzhou, Taiyuan, 030012, Shanxi, China.
| |
Collapse
|
22
|
Chang S, Lei X, Xu W, Guan F, Ge J, Nian F. Preparation and characterization of Tobacco polysaccharides and its modulation on hyperlipidemia in high-fat-diet-induced mice. Sci Rep 2024; 14:26860. [PMID: 39500936 PMCID: PMC11538525 DOI: 10.1038/s41598-024-77514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
This study aimed to investigate the structural properties of tobacco polysaccharide (TP) and its mechanism of modulating hyperlipidemia in high-fat diet-induced mice. The structural properties of TP were characterized by FT-IR, 1HNMR, SEM, AFM and thermogravimetric analysis. And the regulatory mechanism of TP on lipid metabolism was investigated in hyperlipidemia mice. These results showed that TP had a high composition of reducing monosaccharide and the glycosidic bond type was α-glycosidic bond. The intervention by TP resulted in a significant reduction of body weight and improvement in lipid accumulation. And the modulation mechanism by which TP ameliorated the abnormalities of lipid metabolism was associated with the expression levels of lipid metabolism-related genes and serum exosomes miRNA-128-3p, as well as the modulation of structure and abundance of the gut microbiota in mice. In addition, TP treatment significantly increased the content of short-chain fatty acids (SCFAs) in mice feces. The results of molecular docking and dual-luciferase assay exhibited a good interaction between propionic acid and PPAR-α, and it was hypothesized that the interaction might further ameliorate the hyperlipidemia. Therefore, TP can regulate the expression levels of lipid metabolism-related genes through miRNAs from serum exosomes and SCFAs from gut microbiota.
Collapse
Affiliation(s)
- Shuaishuai Chang
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Xuanhao Lei
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Weijia Xu
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Feng Guan
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Jian Ge
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China.
| | - Fuzhao Nian
- Yunnan Agricultural University School of Tobacco Science, Kunming, 650201, China
| |
Collapse
|
23
|
Li T, Chen X, Tong W. Bridging organ transcriptomics for advancing multiple organ toxicity assessment with a generative AI approach. NPJ Digit Med 2024; 7:310. [PMID: 39501092 PMCID: PMC11538515 DOI: 10.1038/s41746-024-01317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Translational research in toxicology has significantly benefited from transcriptomic profiling, particularly in drug safety. However, its application has predominantly focused on limited organs, notably the liver, due to resource constraints. This paper presents TransTox, an innovative AI model using a generative adversarial network (GAN) method to facilitate the bidirectional translation of transcriptomic profiles between the liver and kidney under drug treatment. TransTox demonstrates robust performance, validated across independent datasets and laboratories. First, the concordance between real experimental data and synthetic data generated by TransTox was demonstrated in characterizing toxicity mechanisms compared to real experimental settings. Second, TransTox proved valuable in gene expression predictive models, where synthetic data could be used to develop gene expression predictive models or serve as "digital twins" for diagnostic applications. The TransTox approach holds the potential for multi-organ toxicity assessment with AI and advancing the field of precision toxicology.
Collapse
Affiliation(s)
- Ting Li
- FDA National Center for Toxicological Research, Jefferson, AR, USA
| | - Xi Chen
- FDA National Center for Toxicological Research, Jefferson, AR, USA
| | - Weida Tong
- FDA National Center for Toxicological Research, Jefferson, AR, USA.
| |
Collapse
|
24
|
Yang NV, Chao JY, Garton KA, Tran T, King SM, Orr J, Oei JH, Crawford A, Kang M, Zalpuri R, Jorgens DM, Konchadi P, Chorba JS, Theusch E, Krauss RM. TOMM40 regulates hepatocellular and plasma lipid metabolism via an LXR-dependent pathway. Mol Metab 2024; 90:102056. [PMID: 39489289 PMCID: PMC11600064 DOI: 10.1016/j.molmet.2024.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE The gene encoding TOMM40 (Transporter of Outer Mitochondrial Membrane 40) is adjacent to that encoding APOE, which has a central role in lipid and lipoprotein metabolism. While human genetic variants near APOE and TOMM40 have been shown to be strongly associated with plasma lipid levels, a specific role for TOMM40 in lipid metabolism has not been established, and the present study was aimed at assessing this possibility. METHODS TOMM40 was knocked down by siRNA in human hepatoma HepG2 cells, and effects on mitochondrial function, lipid phenotypes, and crosstalk between mitochondria, ER, and lipid droplets were examined. Additionally, hepatic and plasma lipid levels were measured in mice following shRNA-induced knockdown of Tomm40 shRNA. RESULTS In HepG2 cells, TOMM40 knockdown upregulated expression of APOE and LDLR in part via activation of LXRB (NR1H2) by oxysterols, with consequent increased uptake of VLDL and LDL. This is in part due to disruption of mitochondria-endoplasmic reticulum contact sites, with resulting accrual of reactive oxygen species and non-enzymatically derived oxysterols. With TOMM40 knockdown, cellular triglyceride and lipid droplet content were increased, effects attributable in part to receptor-mediated VLDL uptake, since lipid staining was significantly reduced by concomitant suppression of either LDLR or APOE. In contrast, cellular cholesterol content was reduced due to LXRB-mediated upregulation of the ABCA1 transporter as well as increased production and secretion of oxysterol-derived cholic acid. Consistent with the findings in hepatoma cells, in vivo knockdown of TOMM40 in mice resulted in significant reductions of plasma triglyceride and cholesterol concentrations, reduced hepatic cholesterol and increased triglyceride content, and accumulation of lipid droplets leading to development of steatosis. CONCLUSIONS These findings demonstrate a role for TOMM40 in regulating hepatic lipid and plasma lipoprotein levels and identify mechanisms linking mitochondrial function with lipid metabolism.
Collapse
Affiliation(s)
- Neil V Yang
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Justin Y Chao
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Kelly A Garton
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Tommy Tran
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Sarah M King
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Joseph Orr
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Jacob H Oei
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Alexandra Crawford
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Misun Kang
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Reena Zalpuri
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Danielle M Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Pranav Konchadi
- Department of Medicine, University of California, San Francisco, CA, USA
| | - John S Chorba
- Department of Medicine, University of California, San Francisco, CA, USA; Division of Cardiology, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Elizabeth Theusch
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Ronald M Krauss
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
25
|
Kim J, Spears I, Erice C, Kim HYH, Porter NA, Tressler C, Tucker EW. Spatially heterogeneous lipid dysregulation in tuberculous meningitis. Neurobiol Dis 2024; 202:106721. [PMID: 39489454 DOI: 10.1016/j.nbd.2024.106721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
Tuberculous (TB) meningitis is the deadliest form of extrapulmonary TB which disproportionately affects children and immunocompromised individuals. Studies in pulmonary TB have shown that Mycobacterium tuberculosis can alter host lipid metabolism to evade the immune system. Cholesterol lowering drugs (i.e., statins) reduce the risk of infection, making them a promising host-directed therapy in pulmonary TB. However, the effect of M. tuberculosis infection on the young or adult brain lipidome has not been studied. The brain is the second-most lipid-rich organ, after adipose tissue, with a temporally and spatially heterogeneous lipidome that changes from infancy to adulthood. The young, developing brain in children may be uniquely vulnerable to alterations in lipid composition and homeostasis, as perturbations in cholesterol metabolism can cause developmental disorders leading to intellectual disabilities. To begin to understand the alterations to the brain lipidome in pediatric TB meningitis, we utilized our previously published young rabbit model of TB meningitis and applied mass spectrometry (MS) techniques to elucidate spatial differences. We used matrix assisted laser desorption/ionization-MS imaging (MALDI-MSI) and complemented it with region-specific liquid chromatography (LC)-MS/MS developed to identify and quantify sterols and oxysterols difficult to identify by MALDI-MSI. MALDI-MSI revealed several sphingolipids, glycerolipids and glycerophospholipids that were downregulated in brain lesions. LC-MS/MS revealed the downregulation of cholesterol, several sterol intermediates along the cholesterol biosynthesis pathway and enzymatically produced oxysterols as a direct result of M. tuberculosis infection. However, oxysterols produced by oxidative stress were increased in brain lesions. Together, these results demonstrate significant spatially regulated brain lipidome dysregulation in pediatric TB meningitis.
Collapse
Affiliation(s)
- John Kim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ian Spears
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Clara Erice
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hye-Young H Kim
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Caitlin Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer, Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Elizabeth W Tucker
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
26
|
Bendi A, Vashisth C, Yadav S, Pundeer R, Raghav N. Recent advances in the synthesis of cholesterol-based triazoles and their biological applications. Steroids 2024; 211:109499. [PMID: 39155033 DOI: 10.1016/j.steroids.2024.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Double-headed warheads focusing on the pharmacological aspects as well as membrane permeability can contribute a lot to medicinal chemistry. Over the past few decades, a lot of research has been conducted on steroid-heterocycle conjugates as possible therapeutic agents against a variety of disorders. In the second half of the 20th century, successful research was conducted on cholesterol-based heterocyclic moieties. Keeping in view the biological significance of various triazoles, research on fusion with cholesterol has emerged. This review has been designed to explore the chemistry of cholesterol-based triazoles for the duration from 2010 to 2023 and their significance in medicinal chemistry.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Rajanukunte, Itgalpura, Bangalore 560064, Karnataka, India
| | - Chanchal Vashisth
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119 India.
| | - Sidhant Yadav
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari 122502, Haryana, India
| | - Rashmi Pundeer
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari 122502, Haryana, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119 India.
| |
Collapse
|
27
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
28
|
Yamane T, Okumoto T, Tamura T, Oishi Y. Acute ultraviolet B irradiation increases cholesterol and decreases Cyp7a1 expression in the liver of female mice. Lipids 2024; 59:181-191. [PMID: 38958246 DOI: 10.1002/lipd.12407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
Recent studies have demonstrated that ultraviolet B (UVB) irradiation impacts both skin and hepatic functions. In this study, we investigated the effects of UVB irradiation on cholesterol metabolism in the liver. Hairless mice were exposed to UVB (1.6 J/cm2) irradiation. Dorsal skin and liver samples were collected 24 h after exposure. Total RNA was extracted from the skin and liver tissues, and used for DNA microarray analysis and real-time polymerase chain reaction (PCR). Hepatic mRNA expression of Cyp7a1 revealed a 4.4-fold decrease in the UVB (+) group compared to that in the UVB (-) group. No differences were observed in the expression of the other genes related to cholesterol metabolism. Additionally, the level of hepatic total cholesterol in the UVB (+) group was significantly higher than in the UVB (-) group. These findings suggest that acute UVB irradiation increases total cholesterol levels and decreases Cyp7a1 expression in the liver.
Collapse
Affiliation(s)
- Takumi Yamane
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Takahiro Okumoto
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomoko Tamura
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuichi Oishi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
29
|
Rapacciuolo P, Finamore C, Giorgio CD, Fiorillo B, Massa C, Urbani G, Marchianò S, Bordoni M, Cassiano C, Morretta E, Spinelli L, Lupia A, Moraca F, Biagioli M, Sepe V, Monti MC, Catalanotti B, Fiorucci S, Zampella A. Design, Synthesis, and Pharmacological Evaluation of Dual FXR-LIFR Modulators for the Treatment of Liver Fibrosis. J Med Chem 2024; 67:18334-18355. [PMID: 39382988 DOI: 10.1021/acs.jmedchem.4c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Although multiple approaches have been suggested, treating mild-to-severe fibrosis in the context of metabolic dysfunction associated with liver disease (MASLD) remains a challenging area in drug discovery. Pathogenesis of liver fibrosis is multifactorial, and pathogenic mechanisms are deeply intertwined; thus, it is well accepted that future treatment requires the development of multitarget modulators. Harnessing the 3,4,5-trisubstituted isoxazole scaffold, previously described as a key moiety in Farnesoid X receptor (FXR) agonism, herein we report the discovery of a novel class of hybrid molecules endowed with dual activity toward FXR and the leukemia inhibitory factor receptor (LIFR). Up to 27 new derivatives were designed and synthesized. The pharmacological characterization of this series resulted in the identification of 3a as a potent FXR agonist and LIFR antagonist with excellent ADME properties. In vitro and in vivo characterization identified compound 3a as the first-in-class hybrid LIFR inhibitor and FXR agonist that protects against the development of acute liver fibrosis and inflammation.
Collapse
Affiliation(s)
- Pasquale Rapacciuolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Claudia Finamore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Cristina Di Giorgio
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Bianca Fiorillo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Lucio Spinelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Antonio Lupia
- Department of Life and Environmental Sciences, University of Cagliari, Via Università, 40, Cagliari 09124, Italy
| | - Federica Moraca
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| |
Collapse
|
30
|
Liu X, Xia N, Yu Q, Jin M, Wang Z, Fan X, Zhao W, Li A, Jiang Z, Zhang L. Silybin Meglumine Mitigates CCl 4-Induced Liver Fibrosis and Bile Acid Metabolism Alterations. Metabolites 2024; 14:556. [PMID: 39452937 PMCID: PMC11509150 DOI: 10.3390/metabo14100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Altered patterns of bile acids (BAs) are frequently present in liver fibrosis, and BAs function as signaling molecules to initiate inflammatory responses. Silybin meglumine (SLB-M) is widely used in treating various liver diseases including liver fibrosis. However, research on its effects on bile acid (BA) metabolism is limited. This study investigated the therapeutic effects of SLB-M on liver fibrosis and BA metabolism in a CCl4-induced murine model. METHODS A murine liver fibrosis model was induced by CCl4. Fibrosis was evaluated using HE, picrosirius red, and Masson's trichrome staining. Liver function was assessed by serum and hepatic biochemical markers. Bile acid (BA) metabolism was analyzed using LC-MS/MS. Bioinformatics analyses, including PPI network, GO, and KEGG pathway analyses, were employed to explore molecular mechanisms. Gene expression alterations in liver tissue were examined via qRT-PCR. RESULTS SLB-M treatment resulted in significant histological improvements in liver tissue, reducing collagen deposition and restoring liver architecture. Biochemically, SLB-M not only normalized serum liver enzyme levels (ALT, AST, TBA, and GGT) but also mitigated disruptions in both systemic and hepatic BA metabolism by increased unconjugated BAs like cholic acid and chenodeoxycholic acid but decreased conjugated BAs including taurocholic acid and taurodeoxycholic acid, compared to that in CCl4-induced murine model. Notably, SLB-M efficiently improved the imbalance of BA homeostasis in liver caused by CCl4 via activating Farnesoid X receptor. CONCLUSIONS These findings underscore SLB-M decreased inflammatory response, reconstructed BA homeostasis possibly by regulating key pathways, and gene expressions in BA metabolism.
Collapse
Affiliation(s)
- Xiaoxin Liu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Ninglin Xia
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Qinwei Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Ming Jin
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Zifan Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Xue Fan
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Wen Zhao
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Anqin Li
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Luyong Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
31
|
Mokgalaboni K, Phoswa WN, Mokgalabone TT, Dlamini S, Ndhlala AR, Modjadji P, Lebelo SL. Effect of Abelmoschus esculentus L. (Okra) on Dyslipidemia: Systematic Review and Meta-Analysis of Clinical Studies. Int J Mol Sci 2024; 25:10922. [PMID: 39456704 PMCID: PMC11507881 DOI: 10.3390/ijms252010922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The global prevalence of cardiovascular diseases (CVDs), including dyslipidemia and atherosclerosis, is rising. While pharmacological treatments for dyslipidemia and associated CVDs exist, not all individuals can afford them, and those who do often experience adverse side effects. Preclinical studies have indicated the potential benefits of Abelmoschus esculentus and its active phytochemicals in addressing dyslipidemia in rodent models of diabetes. However, there is limited clinical evidence on lipid parameters. Thus, this study aimed to assess the potential impact of Abelmoschus esculentus on dyslipidemia. A literature search was performed on PubMed, Scopus, and Cochrane Library for relevant trials published from inception until 11 August 2024. Data analysis was performed using Jamovi software version 2.4.8 and Review Manager (version 5.4), with effect estimates reported as standardized mean differences (SMDs) and 95% confidence intervals (CI). The evidence from eight studies with nine treatment arms showed that Abelmoschus esculentus reduces total cholesterol (TC), SMD = -0.53 (95% CI: -1.00 to -0.07), p = 0.025), compared to placebo. Additionally, triglyceride (TG) was reduced in Abelmoschus esculentus compared to placebo, SMD = -0.24 (95% CI: -0.46 to -0.02), p = 0.035. Furthermore, low-density lipoprotein (LDL) was also reduced, SMD = -0.35 (95% CI: -0.59 to -0.11), p = 0.004 in Abelmoschus esculentus versus placebo. This remedy substantially increased high-density lipoprotein (HDL), SMD = 0.34 (95% CI: 0.07 to 0.61), p = 0.014). Abelmoschus esculentus substantially improved lipid profile in prediabetes, T2D, obesity, and diabetic nephropathy. While the evidence confirms the potential benefits of Abelmoschus esculentus in reducing dyslipidemia, it is important for future clinical studies to standardize the effective dosage for more reliable results. Therefore, future trials should focus on these markers in well-designed trials with sufficient sample sizes. Furthermore, Abelmoschus esculentus can be supplemented to the diet of the relevant populations to alleviate dyslipidemia.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (K.M.); (A.R.N.); (P.M.)
| | - Wendy N. Phoswa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (K.M.); (A.R.N.); (P.M.)
| | - Tyson T. Mokgalabone
- Green Biotechnologies Research Centre of Excellence, Department of Plant Production, Soil Science and Agricultural Engineering, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa;
| | - Sanele Dlamini
- School of Chemicals and Physical Sciences, Faculty of Agriculture and Natural Science, University of Mpumalanga, Mbombela 1200, South Africa;
| | - Ashwell R. Ndhlala
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (K.M.); (A.R.N.); (P.M.)
- Green Biotechnologies Research Centre of Excellence, Department of Plant Production, Soil Science and Agricultural Engineering, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa;
| | - Perpetua Modjadji
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (K.M.); (A.R.N.); (P.M.)
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa
| | - Sogolo L. Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (K.M.); (A.R.N.); (P.M.)
| |
Collapse
|
32
|
Di Ciaula A, Khalil M, Baffy G, Portincasa P. Advances in the pathophysiology, diagnosis and management of chronic diarrhoea from bile acid malabsorption: a systematic review. Eur J Intern Med 2024; 128:10-19. [PMID: 39069430 DOI: 10.1016/j.ejim.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Bile acid malabsorption (BAM) is an important disorder of digestive pathophysiology as it generates chronic diarrhoea. This condition originates from intricate pathways involving bile acid synthesis and metabolism in the liver and gut, the composition of gut microbiota, enterohepatic circulation and key receptors as farnesoid X receptor (FXR), fibroblast growth factor receptor 4 (FGFR4), and the G-protein bile acid receptor-1 (GPBAR-1). Although symptoms can resemble those related to disorders of gut brain interaction, accurate diagnosis of BAM may greatly benefit the patient. The empiric diagnosis of BAM is primarily based on the clinical response to bile acid sequestrants. Specific tests including the 48-hour fecal bile acid test, serum levels of 7α-hydroxy-4-cholesten-3-one (C4) and fibroblast growth factor 19 (FGF19), and the 75Selenium HomotauroCholic Acid Test (SeHCAT) are not widely available. Nevertheless, lack of diagnostic standardization of BAM may account for poor recognition and delayed management. Beyond bile acid sequestrants, therapeutic approaches include the use of FXR agonists, FGF19 analogues, glucagon-like peptide-1 (GLP-1) receptor agonists, and microbiota modulation. These novel agents can best make their foray into the therapeutic armamentarium if BAM does not remain a diagnosis of exclusion. Ignoring BAM as a specific condition may continue to contribute to increased healthcare costs and reduced quality of life. Here, we aim to provide a comprehensive review of the pathophysiology, diagnosis, and management of BAM.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Medical School, Bari, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Medical School, Bari, Italy.
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA, USA.
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Medical School, Bari, Italy.
| |
Collapse
|
33
|
Liu J, Xu F, Guo M, Song Y. Triclosan exposure causes abnormal bile acid metabolism through IL-1β-NF-κB-Fxr signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116989. [PMID: 39260212 DOI: 10.1016/j.ecoenv.2024.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Triclosan (TCS) is an eminent antibacterial agent. However, extensive usage causes potential health risks like hepatotoxicity, intestinal damage, kidney injury, etc. Existing studies suggested that TCS would disrupt bile acid (BA) enterohepatic circulation, but its toxic mechanism remains unclear. Hence, the current study established an 8-week TCS exposure model to explore its potential toxic mechanism. The results discovered 8 weeks consecutive administration of TCS induced distinct programmed cell death, inflammatory cell activation and recruitment, and excessive BA accumulation in liver. Furthermore, the expression of BA synthesis and transport associated genes were significantly dysregulated upon TCS treatment. Additional mechanism exploration revealed that Fxr inhibition induced by TCS would be the leading cause for unusual BA biosynthesis and transport. Subsequent Fxr up-stream investigation uncovered TCS exposure caused pyroptosis and its associated IL-1β would be the reason for Fxr reduction mediated by NF-κB. NF-κB blocking by dimethylaminoparthenolide ameliorated TCS induced BA disorder which confirmed the contribution of NF-κB in Fxr repression. To sum up, our findings conclud TCS-caused BA disorder is attributed to Fxr inhibition, which is regulated by the IL-1β-NF-κB signaling pathway. Hence, we suggest Fxr would be a potential target for abnormal BA stimulated by TCS and its analogs.
Collapse
Affiliation(s)
- Jing Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fang Xu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Mingzhu Guo
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
34
|
Sun K, Zhu NL, Huang SL, Qu H, Gu YP, Qin L, Liu J, Leng Y. A new mechanism of thyroid hormone receptor β agonists ameliorating nonalcoholic steatohepatitis by inhibiting intestinal lipid absorption via remodeling bile acid profiles. Acta Pharmacol Sin 2024; 45:2134-2148. [PMID: 38789494 PMCID: PMC11420233 DOI: 10.1038/s41401-024-01303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Excessive dietary calories lead to systemic metabolic disorders, disturb hepatic lipid metabolism, and aggravate nonalcoholic steatohepatitis (NASH). Bile acids (BAs) play key roles in regulating nutrition absorption and systemic energy homeostasis. Resmetirom is a selective thyroid hormone receptor β (THRβ) agonist and the first approved drug for NASH treatment. It is well known that the THRβ activation could promote intrahepatic lipid catabolism and improve mitochondrial function, however, its effects on intestinal lipid absorption and BA compositions remain unknown. In the present study, the choline-deficient, L-amino acid defined, high-fat diet (CDAHFD) and high-fat diet plus CCl4 (HFD+CCl4)-induced NASH mice were used to evaluate the effects of resmetirom on lipid and BA composition. We showed that resmetirom administration (10 mg·kg-1·d-1, i.g.) significantly altered hepatic lipid composition, especially reduced the C18:2 fatty acyl chain-containing triglyceride (TG) and phosphatidylcholine (PC) in the two NASH mouse models, suggesting that THRβ activation inhibited intestinal lipid absorption since C18:2 fatty acid could be obtained only from diet. Targeted analysis of BAs showed that resmetirom treatment markedly reduced the hepatic and intestinal 12-OH to non-12-OH BAs ratio by suppressing cytochrome P450 8B1 (CYP8B1) expression in both NASH mouse models. The direct inhibition by resmetirom on intestinal lipid absorption was further verified by the BODIPY gavage and the oral fat tolerance test. In addition, disturbance of the altered BA profiles by exogenous cholic acid (CA) supplementation abolished the inhibitory effects of resmetirom on intestinal lipid absorption in both normal and CDAHFD-fed mice, suggesting that resmetirom inhibited intestinal lipid absorption by reducing 12-OH BAs content. In conclusion, we discovered a novel mechanism of THRβ agonists on NASH treatment by inhibiting intestinal lipid absorption through remodeling BAs composition, which highlights the multiple regulation of THRβ activation on lipid metabolism and extends the current knowledge on the action mechanisms of THRβ agonists in NASH treatment.
Collapse
Affiliation(s)
- Kai Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan-Lin Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Su-Ling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi-Pei Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Wang W, Xu M, Diao H, Long Q, Gan F, Mao Y. Effects of grape seed proanthocyanidin extract on cholesterol metabolism and antioxidant status in finishing pigs. Sci Rep 2024; 14:21117. [PMID: 39256553 PMCID: PMC11387843 DOI: 10.1038/s41598-024-72075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Grape seed proanthocyanidin extract (GSPE) is a natural polyphenolic compound, which plays an important role in anti-inflammatory and antioxidant. The present study aimed to investigate the effects of GSPE supplementation on the cholesterol metabolism and antioxidant status of finishing pigs. In longissimus dorse (LD) muscle, the data showed that GSPE significantly decreased the contents of total cholesterol (T-CHO) and triglyceride (TG), and decreased the mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR) and Fatty acid synthase (FAS), while increased the mRNA expression of carnitine palmitoyl transferase-1b (CPT1b), peroxisome proliferator-activated receptors (PPARα) and peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α). GSPE also reduced the enzyme activities of HMG-CoAR and FAS, and meanwhile amplified the activity of CPT1b in LD muscle of finishing pigs. Furthermore, dietary GSPE supplementation increased the serum catalase (CAT) and total antioxidant capacity (T-AOC), serum and liver total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) levels, while reduced serum and liver malondialdehyde (MDA) level in finishing pigs. In the liver, Superoxide Dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase 1 (GPX1), Nuclear Factor erythroid 2-Related Factor 2 (NRF2) mRNA levels were increased by GSPE. In conclusion, this study showed that GSPE might be an effective dietary supplement for improving cholesterol metabolism and antioxidant status in finishing pigs.
Collapse
Affiliation(s)
- Wenjing Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Meng Xu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
| | - Hui Diao
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co. Ltd, Chengdu, 610066, China
| | - Qingtao Long
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Fang Gan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Yi Mao
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| |
Collapse
|
36
|
Carvalho MBD, Jorge GMCP, Zanardo LW, Hamada LM, Izabel LDS, Santoro S, Magdalon J. The role of FGF19 in metabolic regulation: insights from preclinical models to clinical trials. Am J Physiol Endocrinol Metab 2024; 327:E279-E289. [PMID: 39017679 DOI: 10.1152/ajpendo.00156.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Fibroblast growth factor 19 (FGF19) is a hormone synthesized in enterocytes in response to bile acids. This review explores the pivotal role of FGF19 in metabolism, addressing the urgent global health concern of obesity and its associated pathologies, notably type 2 diabetes. The intriguing inverse correlation between FGF19 and body mass or visceral adiposity, as well as its rapid increase following bariatric surgery, emphasizes its potential as a therapeutic target. This article meticulously examines the impact of FGF19 on metabolism by gathering evidence primarily derived from studies conducted in animal models or cell lines, using both FGF19 treatment and genetic modifications. Overall, these studies demonstrate that FGF19 has antidiabetic and antiobesogenic effects. A thorough examination across metabolic tissues, including the liver, adipose tissue, skeletal muscle, and the central nervous system, is conducted, unraveling the intricate interplay of FGF19 across diverse organs. Moreover, we provide a comprehensive overview of clinical trials involving an FGF19 analog called aldafermin, emphasizing promising results in diseases such as nonalcoholic steatohepatitis and diabetes. Therefore, we aim to foster a deeper understanding of FGF19 role and encourage further exploration of its clinical applications, thereby advancing the field and offering innovative approaches to address the escalating global health challenge of obesity and related metabolic conditions.
Collapse
Affiliation(s)
- Marcela Botelho de Carvalho
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Luiza Wolf Zanardo
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Leticia Miho Hamada
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Larissa Dos Santos Izabel
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Juliana Magdalon
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
37
|
Zhang X, Xu J, Dong X, Tang J, Xie Y, Yang J, Zou L, Wu L, Fan J. Bifidobacterium longumBL-19 inhibits oxidative stress and inflammatory damage in the liver of mice with NAFLD by regulating the production of butyrate in the intestine. Food Sci Nutr 2024; 12:6442-6460. [PMID: 39554323 PMCID: PMC11561819 DOI: 10.1002/fsn3.4279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 11/19/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease, but there is currently no effective treatment method. Probiotics have been used as an adjunct therapy for NAFLD, but the mechanism is not clear. This study used Bifidobacterium longum BL19 (BL-19) to treat the NAFLD mice induced by a high-fat diet, and explored the treatment mechanism through gut microbiota and serum metabolomics techniques. We found that BL-19 effectively prevented rapid weight gain in NAFLD mice and reduced their overall food and energy intake, decreased liver inflammatory factors expressions, and increased the bile acid synthetase enzyme CYP7A1 and superoxide dismutase. After BL-19 treatment, the abundances of butyric acid bacteria (Oscillospira and Coprococcus) in the feces of mice increased significantly, and the concentration of butyric acid also increased significantly. We believe that BL-19 promotes the production of butyrate in the intestines, which in turn regulates the activity of CYP7A1 in the liver and bile acid synthesis, ultimately treating liver inflammation and lipid accumulation in NAFLD mice. Serum metabolomics results indicated that BL-19 affected multiple pathways related to inflammation and lipid metabolism in NAFLD mice. These findings suggest that BL-19 shows promise as an adjunct therapy for NAFLD, as it can significantly improve oxidative stress, reduce inflammation in the liver, and decrease lipid accumulation.
Collapse
Affiliation(s)
- Xiajun Zhang
- Department of Laboratory MedicineThe People's Hospital of DanyangZhenjiangJiangsuChina
| | - Jingwen Xu
- Department of Cardiology, Jurong HospitalAffiliated to Jiangsu UniversityZhenjiangJiangsuChina
| | - Xueyun Dong
- Department of Laboratory Medicine, School of MedicineJiangsu UniversityZhenjiangJiangsuChina
| | - Jiajun Tang
- Department of Laboratory Medicine, School of MedicineJiangsu UniversityZhenjiangJiangsuChina
| | - Yan Xie
- Department of Laboratory Medicine, School of MedicineJiangsu UniversityZhenjiangJiangsuChina
| | - Jie Yang
- Department of Laboratory MedicineThe People's Hospital of DanyangZhenjiangJiangsuChina
| | - Limin Zou
- Department of Laboratory MedicineThe People's Hospital of DanyangZhenjiangJiangsuChina
| | - Liang Wu
- Department of Laboratory Medicine, School of MedicineJiangsu UniversityZhenjiangJiangsuChina
| | - Jilong Fan
- Hepatobiliary SurgeryLianyungang Second People's Hospital Affiliated to Jiangsu UniversityLianyungangChina
| |
Collapse
|
38
|
Aguchem RN, Okagu IU, Okorigwe EM, Uzoechina JO, Nnemolisa SC, Ezeorba TPC. Role of CETP, PCSK-9, and CYP7-alpha in cholesterol metabolism: Potential targets for natural products in managing hypercholesterolemia. Life Sci 2024; 351:122823. [PMID: 38866219 DOI: 10.1016/j.lfs.2024.122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide, primarily affecting the heart and blood vessels, with atherosclerosis being a major contributing factor to their onset. Epidemiological and clinical studies have linked high levels of low-density lipoprotein (LDL) emanating from distorted cholesterol homeostasis as its major predisposing factor. Cholesterol homeostasis, which involves maintaining the balance in body cholesterol level, is mediated by several proteins or receptors, transcription factors, and even genes, regulating cholesterol influx (through dietary intake or de novo synthesis) and efflux (by their conversion to bile acids). Previous knowledge about CVDs management has evolved around modulating these receptors' activities through synthetic small molecules/antibodies, with limited interest in natural products. The central roles of the cholesteryl ester transfer protein (CETP), proprotein convertase subtilisin/kexin type 9 (PCSK9), and cytochrome P450 family 7 subfamily A member 1 (CYP7A1), among other proteins or receptors, have fostered growing scientific interests in understanding more on their regulatory activities and potential as drug targets. We present up-to-date knowledge on the contributions of CETP, PCSK9, and CYP7A1 toward CVDs, highlighting the clinical successes and failures of small molecules/antibodies to modulate their activities. In recommendation for a new direction to improve cardiovascular health, we have presented recent findings on natural products (including functional food, plant extracts, phytochemicals, bioactive peptides, and therapeutic carbohydrates) that also modulate the activities of CETP, PCSK-9, and CYP7A1, and emphasized the need for more research efforts redirected toward unraveling more on natural products potentials even at clinical trial level for CVD management.
Collapse
Affiliation(s)
- Rita Ngozi Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Innocent Uzochukwu Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Ekezie Matthew Okorigwe
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Chemistry and Biochemistry, College of Sciences, University of Notre Dame, 46556 Notre Dame, IN, United States
| | - Jude Obiorah Uzoechina
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Biochemistry and Molecular Biology, Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, PR China
| | | | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
39
|
Song Q, Kobayashi S, Kataoka Y, Oda H. Direct Molecular Action of Taurine on Hepatic Gene Expression Associated with the Amelioration of Hypercholesterolemia in Rats. Antioxidants (Basel) 2024; 13:990. [PMID: 39199235 PMCID: PMC11351134 DOI: 10.3390/antiox13080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Taurine can ameliorate hypercholesterolemia by facilitating cholesterol efflux and increasing cytochrome P450 7A1 (CYP7A1) without clear underlying molecular mechanisms. This study aims to elucidate the molecular action of taurine in diet-induced hypercholesterolemia. Male Wistar rats were fed a high cholesterol diet containing 5% taurine for 14 days. Three-dimensional primary hepatocytes from rats were exposed to 10 mM taurine for 24 h. Transcriptome analyses of both the liver and hepatocytes were performed using DNA microarray. Taurine significantly decreased serum cholesterol levels and increased hepatic CYP7A1 mRNA levels and transcription rates in rats. Taurine altered the expression of seventy-seven genes in the liver, involving lipid, drug, amino acid metabolism, and gluconeogenesis pathways. The small heterodimer partner (SHP), a transcription factor regulated by taurine, was suppressed. "Network analysis" revealed a negative correlation between the SHP and induction of CYP7A1 and cytochrome P450 8B1 (CYP8B1). However, CYP7A1 and CYP8B1 levels were not altered by taurine in 3D-primary hepatocytes. Venn diagram analyses of the transcriptomes in both hepatocytes and the liver indicated a consistent upregulation of organic anion transporting polypeptide 2 (OATP2) and betaine homocysteine methyltransferase (BHMT). Taurine ameliorated hypercholesterolemia in rats fed a high cholesterol diet by directly enhancing the hepatic expression of BHMT and OATP2, which modulated the SHP and induced CYP7A1 and CYP8B1, thereby promoting cholesterol catabolism and lowering blood cholesterol levels.
Collapse
Affiliation(s)
| | | | | | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
40
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [PMID: 38663779 DOI: 10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dan-shen Yin (DSY), a traditional prescription, has been demonstrated to be effective in decreasing hyperlipidemia and preventing atherosclerosis (AS), but its mechanism remains unknown. We hypothesized that DSY activates farnesoid X receptor (FXR) to promote bile acid metabolism and excretion, thereby alleviating AS. AIM OF THE STUDY This study was designed to explore whether DSY reduces liver lipid accumulation and prevents AS by activating FXR and increasing cholesterol metabolism and bile acid excretion. MATERIALS AND METHODS The comprehensive chemical characterization of DSY was analyzed by UHPLC-MS/MS. The AS models of ApoE-/- mice and SD rats was established by high-fat diet and high-fat diet combined with intraperitoneal injection of vitamin D3, respectively. The aortic plaque and pathological changes were used to evaluate AS. Lipid levels, H&E staining and oil red O staining were used to evaluate liver lipid accumulation. The cholesterol metabolism and bile acid excretion were evaluated by enzyme-linked immunosorbent assay, UPLC-QQQ/MS. In vitro, the lipid and FXR/bile salt export pump (BSEP) levels were evaluated by oil red O staining, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. RESULTS A total of 36 ingredients in DSY were identified by UPLC-MS/MS analysis. In vivo, high-dose DSY significantly inhibited aortic intimal thickening, improved arrangement disorder, tortuosity, and rupture of elastic fibers, decreased lipid levels, and reduced the number of fat vacuoles and lipid droplets in liver tissue in SD rats and ApoE-/- mice. Further studies found that high-dose DSY significantly reduced liver lipid and total bile acids levels, increased liver ursodeoxycholic acid (UDCA) and other non-conjugated bile acids levels, increased fecal total cholesterol (TC) levels, and augmented FXR, BSEP, cholesterol 7-alpha hydroxylase (CYP7A1), ATP binding cassette subfamily G5/G8 (ABCG5/8) expression levels, while decreasing ASBT expression levels. In vitro studies showed that DSY significantly reduced TC and TG levels, as well as lipid droplets, while also increasing the expression of ABCG5/8, FXR, and BSEP in both HepG2 and Nr1h4 knockdown HepG2 cells. CONCLUSION This study demonstrated that DSY promotes bile acid metabolism and excretion to prevent AS by activating FXR. For the prevent of AS and drug discovery provided experimental basis.
Collapse
Affiliation(s)
- Yingkun Sheng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guibing Meng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Min Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaopeng Chen
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xin Chai
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Lifeng Han
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qilong Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Miaomiao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
41
|
Lee K, Kim HJ, Kim JY, Shim JJ, Lee JH. A Mixture of Lactobacillus HY7601 and KY1032 Regulates Energy Metabolism in Adipose Tissue and Improves Cholesterol Disposal in High-Fat-Diet-Fed Mice. Nutrients 2024; 16:2570. [PMID: 39125449 PMCID: PMC11314552 DOI: 10.3390/nu16152570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
We aimed to characterize the anti-obesity and anti-atherosclerosis effects of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 using high-fat diet (HFD)-fed obese C57BL/6 mice. We divided the mice into control (CON), HFD, HFD with 108 CFU/kg/day probiotics (HFD + KL, HY7301:KY1032 = 1:1), and HFD with 109 CFU/kg/day probiotics (HFD + KH, HY7301:KY1032 = 1:1) groups and fed/treated them during 7 weeks. The body mass, brown adipose tissue (BAT), inguinal white adipose tissue (iWAT), and epididymal white adipose tissue (eWAT) masses and the total cholesterol and triglyceride concentrations were remarkably lower in probiotic-treated groups than in the HFD group in a dose-dependent manner. In addition, the expression of uncoupling protein 1 in the BAT, iWAT, and eWAT was significantly higher in probiotic-treated HFD mice than in the HFD mice, as demonstrated by immunofluorescence staining and Western blotting. We also measured the expression of cholesterol transport genes in the liver and jejunum and found that the expression of those encoding liver-X-receptor α, ATP-binding cassette transporters G5 and G8, and cholesterol 7α-hydroxylase were significantly higher in the HFD + KH mice than in the HFD mice. Thus, a Lactobacillus HY7601 and KY1032 mixture with 109 CFU/kg/day concentration can assist with body weight regulation through the management of lipid metabolism and thermogenesis.
Collapse
Affiliation(s)
| | | | - Joo-Yun Kim
- R&BD Center, Hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (K.L.); (H.-J.K.); (J.-J.S.); (J.-H.L.)
| | | | | |
Collapse
|
42
|
Khobragade NH, Sheth DB, Patel CA, Beladiya JV, Patel S, Dalal M. Polycystic ovary syndrome: Insights into its prevalence, diagnosis, and management with special reference to gut microbial dysbiosis. Steroids 2024; 208:109455. [PMID: 38876407 DOI: 10.1016/j.steroids.2024.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Polycystic ovary syndrome (PCOS) represents major endocrine and metabolic disorder among women largely characterized by hyperandrogenism and oligomenorrhea precipitates serious complications such as type 2 diabetes, early atherosclerosis, infertility, and endometrial cancer. Several etiological theories were proposed to define the exact cause of the PCOS, which is characterized, by the hypothalamic-pituitary axis, ovarian morphology, and release of adrenal steroid hormones, metabolic syndrome, and hereditary factors. The review explored the role of dysbiosis and the mechanisms through which microbial dysbiosis can affect PCOS development. In recent time, various research groups highlighted the role of microbial gut dysbiosis associated with obesity as potential etiological factor for the PCOS. In the present review, we reviewed the mechanisms attributed to the microbial dysbiosis and treatment approaches to deal with the situation.
Collapse
Affiliation(s)
- Nisha H Khobragade
- Research Scholar, Department of Pharmacology, Gujarat Technological University, Ahmedabad, Gujarat, India; Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Devang B Sheth
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India.
| | - Chirag A Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Jayesh V Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Sandip Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Mittal Dalal
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| |
Collapse
|
43
|
Luo Z, Zhou W, Xie T, Xu W, Shi C, Xiao Z, Si Y, Ma Y, Ren Q, Di L, Shan J. The role of botanical triterpenoids and steroids in bile acid metabolism, transport, and signaling: Pharmacological and toxicological implications. Acta Pharm Sin B 2024; 14:3385-3415. [PMID: 39220868 PMCID: PMC11365449 DOI: 10.1016/j.apsb.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) are synthesized by the host liver from cholesterol and are delivered to the intestine, where they undergo further metabolism by gut microbes and circulate between the liver and intestines through various transporters. They serve to emulsify dietary lipids and act as signaling molecules, regulating the host's metabolism and immune homeostasis through specific receptors. Therefore, disruptions in BA metabolism, transport, and signaling are closely associated with cholestasis, metabolic disorders, autoimmune diseases, and others. Botanical triterpenoids and steroids share structural similarities with BAs, and they have been found to modulate BA metabolism, transport, and signaling, potentially exerting pharmacological or toxicological effects. Here, we have updated the research progress on BA, with a particular emphasis on new-found microbial BAs. Additionally, the latest advancements in targeting BA metabolism and signaling for disease treatment are highlighted. Subsequently, the roles of botanical triterpenoids in BA metabolism, transport, and signaling are examined, analyzing their potential pharmacological, toxicological, or drug interaction effects through these mechanisms. Finally, a research paradigm is proposed that utilizes the gut microbiota as a link to interpret the role of these important natural products in BA signaling.
Collapse
Affiliation(s)
- Zichen Luo
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Xie
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Shi
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihan Xiao
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Si
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingling Ren
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
44
|
Levy C, Caldwell S, Mantry P, Luketic V, Landis CS, Huang J, Mena E, Maheshwari R, Rank K, Xu J, Malkov VA, Billin AN, Liu X, Lu X, Barchuk WT, Watkins TR, Chung C, Myers RP, Kowdley KV. Cilofexor in Patients With Compensated Cirrhosis Due to Primary Sclerosing Cholangitis: An Open-Label Phase 1B Study. Clin Transl Gastroenterol 2024; 15:e00744. [PMID: 38976363 PMCID: PMC11346858 DOI: 10.14309/ctg.0000000000000744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
INTRODUCTION This proof-of-concept, open-label phase 1b study evaluated the safety and efficacy of cilofexor, a potent selective farnesoid X receptor agonist, in patients with compensated cirrhosis due to primary sclerosing cholangitis. METHODS Escalating doses of cilofexor (30 mg [weeks 1-4], 60 mg [weeks 5-8], 100 mg [weeks 9-12]) were administered orally once daily over 12 weeks. The primary endpoint was safety. Exploratory measures included cholestasis and fibrosis markers and pharmacodynamic biomarkers of bile acid homeostasis. RESULTS Eleven patients were enrolled (median age: 48 years; 55% men). The most common treatment-emergent adverse events (TEAEs) were pruritus (8/11 [72.7%]), fatigue, headache, nausea, and upper respiratory tract infection (2/11 [18.2%] each). Seven patients experienced a pruritus TEAE (one grade 3) considered drug-related. One patient temporarily discontinued cilofexor owing to peripheral edema. There were no deaths, serious TEAEs, or TEAEs leading to permanent discontinuation. Median changes (interquartile ranges) from baseline to week 12 (predose, fasting) were -24.8% (-35.7 to -7.4) for alanine transaminase, -13.0% (-21.9 to -8.6) for alkaline phosphatase, -43.5% (-52.1 to -30.8) for γ-glutamyl transferase, -12.7% (-25.0 to 0.0) for total bilirubin, and -21.2% (-40.0 to 0.0) for direct bilirubin. Least-squares mean percentage change (95% confidence interval) from baseline to week 12 at trough was -55.3% (-70.8 to -31.6) for C4 and -60.5% (-81.8 to -14.2) for cholic acid. Fasting fibroblast growth factor 19 levels transiently increased after cilofexor administration. DISCUSSION Escalating doses of cilofexor over 12 weeks were well tolerated and improved cholestasis markers in patients with compensated cirrhosis due to primary sclerosing cholangitis (NCT04060147).
Collapse
Affiliation(s)
- Cynthia Levy
- Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
- Schiff Center for Liver Diseases, University of Miami, Miami, Florida, USA;
| | - Stephen Caldwell
- University of Virginia School of Medicine, Charlottesville, Virginia, USA;
| | - Parvez Mantry
- Methodist Transplant Specialists, Dallas, Texas, USA;
| | - Velimir Luketic
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA;
| | - Charles S. Landis
- Univerisity of Washington School of Medicine, Seattle, Washington, USA;
| | - Jonathan Huang
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA;
| | - Edward Mena
- Pasadena Liver Center, Pasadena, California, USA;
| | | | - Kevin Rank
- MNGI Digestive Health, Minneapolis, Minnesota, USA;
| | - Jun Xu
- Gilead Sciences, Inc., Foster City, California, USA;
| | | | | | - Xiangyu Liu
- Gilead Sciences, Inc., Foster City, California, USA;
| | - Xiaomin Lu
- Gilead Sciences, Inc., Foster City, California, USA;
| | | | | | - Chuhan Chung
- Gilead Sciences, Inc., Foster City, California, USA;
| | | | | |
Collapse
|
45
|
Brascher TC, de Bortoli L, Toledo-Silva G, Zacchi FL, Razzera G. In silico structural features of the CgNR5A: CgDAX complex and its role in regulating gene expression of CYP target genes in Crassostrea gigas. CHEMOSPHERE 2024; 361:142443. [PMID: 38815811 DOI: 10.1016/j.chemosphere.2024.142443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Contamination of aquatic environments has been steadily increasing due to human activities. The Pacific oyster Crassostrea gigas has been used as a key species in studies assessing the impacts of contaminants on human health and the aquatic biome. In this context, cytochrome P450 (CYPs) play a crucial role in xenobiotic metabolism. In vertebrates many of these CYPs are regulated by nuclear receptors (NRs) and little is known about the NRs role in C. gigas. Particularly, the CgNR5A represents a homologue of SF1 and LRH-1 found in vertebrates. Members of this group can regulate genes of CYPs involved in lipid/steroid metabolism, with their activity regulated by other NR, called as DAX-1, generating a NR complex on DNA response elements (REs). As C. gigas does not exhibit steroid biosynthesis pathways, CgNR5A may play other physiological roles. To clarify this issue, we conducted an in silico investigation of the interaction between CgNR5A and DNA to identify potential C. gigas CYP target genes. Using molecular docking and dynamics simulations of the CgNR5A on DNA molecules, we identified a monomeric interaction with extended REs. This RE was found in the promoter region of 30 CYP genes and also the NR CgDAX. When the upstream regulatory region was analyzed, CYP2C39, CYP3A11, CYP4C21, CYP7A1, CYP17A1, and CYP27C1 were mapped as the main genes regulated by CgNR5A. These identified CYPs belong to families known for their involvement in xenobiotic and lipid/steroid metabolism. Furthermore, we reconstructed a trimeric complex, previously proposed for vertebrates, with CgNR5A:CgDAX and subjected it to molecular dynamics simulations analysis. Heterotrimeric complex remained stable during the simulations, suggesting that CgDAX may modulate CgNR5A transcriptional activity. This study provides insights into the potential physiological processes involving these NRs in the regulation of CYPs associated with xenobiotic and steroid/lipid metabolism.
Collapse
Affiliation(s)
- Theo Cardozo Brascher
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Leonardo de Bortoli
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Genômica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Guilherme Toledo-Silva
- Laboratório de Genômica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Flávia Lucena Zacchi
- Laboratório de Moluscos Marinhos, Universidade Federal de Santa Catarina, Florianópolis, SC, 88061-600, Brazil
| | - Guilherme Razzera
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
46
|
Dicks L, Schuh-von Graevenitz K, Prehn C, Sadri H, Murani E, Hosseini Ghaffari M, Häussler S. Bile acid profiles and mRNA abundance of bile acid-related genes in adipose tissue of dairy cows with high versus normal body condition. J Dairy Sci 2024; 107:6288-6307. [PMID: 38490538 DOI: 10.3168/jds.2024-24346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Besides their lipid-digestive role, bile acids (BA) influence overall energy homeostasis, such as glucose and lipid metabolism. We hypothesized that BA along with their receptors, regulatory enzymes, and transporters are present in subcutaneous adipose tissue (scAT). In addition, we hypothesized that their mRNA abundance varies with the body condition of dairy cows around calving. Therefore, we analyzed BA in serum and scAT as well as the mRNA abundance of BA-related enzymes, transporters, and receptors in scAT during the transition period in cows with different body conditions around calving. In a previously established animal model, 38 German Holstein cows were divided into either a high (HBCS; n = 19) or normal BCS (NBCS; n = 19) group based on their BCS and back-fat thickness (BFT). Cows were fed different diets to achieve the targeted differences in BCS and BFT (NBCS: BCS <3.5, BFT <1.2 cm; HBCS: BCS >3.75, BFT >1.4 cm) until dry-off at 7 wk antepartum. During the dry period and subsequent lactation, both groups were fed the same diets according to their energy demands. Using a targeted metabolomics approach via liquid chromatography-electrospray ionization-MS /MS, BA were analyzed in serum and scAT at wk -7, 1, 3, and 12 relative to parturition. In serum, 15 BA were observed: cholic acid (CA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA), taurocholic acid (TCA), glycochenodeoxycholic acid (GCDCA), taurochenodeoxycholic acid, deoxycholic acid (DCA), lithocholic acid, glycodeoxycholic acid (GDCA), glycolithocholic acid, taurodeoxycholic acid, taurolithocholic acid, β-muricholic acid, tauromuricholic acid (sum of α and β), and glycoursodeoxycholic acid, whereas in scAT 7 BA were detected: CA, GCA, TCA, GCDCA, taurochenodeoxycholic acid, GDCA, and taurodeoxycholic acid. In serum and scAT samples, the primary BA CA and its conjugate GCA were predominantly detected. Increasing serum concentrations of CA, CDCA, TCA, GCA, GCDCA, DCA, and β-muricholic acid with the onset of lactation might be related to the increasing DMI after parturition. Furthermore, serum concentrations of CA, CDCA, GCA, DCA, GCDCA, TCA, lithocholic acid, and GDCA were lower in HBCS cows compared with NBCS cows, concomitant with increased lipolysis in HBCS cows. The correlation between CA in serum and scAT may point to the transport of CA across cell membranes. Overall, the findings of the present study suggest a potential role of BA in lipid metabolism depending on the body condition of periparturient dairy cows.
Collapse
Affiliation(s)
- Lena Dicks
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Katharina Schuh-von Graevenitz
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Cornelia Prehn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Metabolomics and Proteomics Core, 85764 Neuherberg, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Eduard Murani
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | | | - Susanne Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
47
|
Gallucci GM, Hayes CM, Boyer JL, Barbier O, Assis DN, Ghonem NS. PPAR-Mediated Bile Acid Glucuronidation: Therapeutic Targets for the Treatment of Cholestatic Liver Diseases. Cells 2024; 13:1296. [PMID: 39120326 PMCID: PMC11312002 DOI: 10.3390/cells13151296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Cholestatic liver diseases, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), result from an impairment of bile flow that leads to the hepatic retention of bile acids, causing liver injury. Until recently, the only approved treatments for PBC were ursodeoxycholic acid (UDCA) and obeticholic acid (OCA). While these therapies slow the progression of PBC in the early stage of the disease, approximately 40% of patients respond incompletely to UDCA, and advanced cases do not respond. UDCA does not improve survival in patients with PSC, and patients often have dose-limiting pruritus reactions to OCA. Left untreated, these diseases can progress to fibrosis and cirrhosis, resulting in liver failure and the need for transplantation. These shortcomings emphasize the urgent need for alternative treatment strategies. Recently, nuclear hormone receptors have been explored as pharmacological targets for adjunct therapy because they regulate enzymes involved in bile acid metabolism and detoxification. In particular, the peroxisome proliferator-activated receptor (PPAR) has emerged as a therapeutic target for patients with PBC or PSC who experience an incomplete response to UDCA. PPARα is predominantly expressed in the liver, and it plays an essential role in the regulation of cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, both of which are critical enzyme families involved in the regulation of bile acid metabolism and glucuronidation, respectively. Importantly, PPARα agonists, e.g., fenofibrate, have shown therapeutic benefits in reducing elevated markers of cholestasis in patients with PBC and PSC, and elafibranor, the first PPAR (dual α, β/δ) agonist, has been FDA-approved for the second-line treatment of PBC. Additionally, newer PPAR agonists that target various PPAR isoforms (β/δ, γ) are under development as an adjunct therapy for PBC or PSC, although their impact on glucuronidation pathways are less characterized. This review will focus on PPAR-mediated bile acid glucuronidation as a therapeutic pathway to improve outcomes for patients with PBC and PSC.
Collapse
Affiliation(s)
- Gina M. Gallucci
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Colleen M. Hayes
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - James L. Boyer
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, USA
| | - Olivier Barbier
- Faculty of Pharmacy, Laval University, Québec, QC G1V 0A6, Canada
| | - David N. Assis
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nisanne S. Ghonem
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
48
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [DOI: https:/doi.org/10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
|
49
|
Newman NK, Monnier PM, Rodrigues RR, Gurung M, Vasquez-Perez S, Hioki KA, Greer RL, Brown K, Morgun A, Shulzhenko N. Host response to cholestyramine can be mediated by the gut microbiota. MICROBIOME RESEARCH REPORTS 2024; 3:40. [PMID: 39741955 PMCID: PMC11684918 DOI: 10.20517/mrr.2023.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 01/03/2025]
Abstract
Background: The gut microbiota has been implicated as a major factor contributing to metabolic diseases and the response to drugs used for the treatment of such diseases. In this study, we tested the effect of cholestyramine, a bile acid sequestrant that reduces blood cholesterol, on the murine gut microbiota and metabolism. We also explored the hypothesis that some effects of this drug on systemic metabolism can be attributed to alterations in the gut microbiota. Methods: We used a Western diet (WD) for 8 weeks to induce metabolic disease in mice, then treated some mice with cholestyramine added to WD. Metabolic phenotyping, gene expression in liver and ileum, and microbiota 16S rRNA genes were analyzed. Then, transkingdom network analysis was used to find candidate microbes for the cholestyramine effect. Results: We observed that cholestyramine decreased glucose and epididymal fat levels and detected dysregulation of genes known to be regulated by cholestyramine in the liver and ileum. Analysis of gut microbiota showed increased alpha diversity in cholestyramine-treated mice, with fourteen taxa showing restoration of relative abundance to levels resembling those in mice fed a control diet. Using transkingdom network analysis, we inferred two amplicon sequence variants (ASVs), one from the Lachnospiraceae family (ASV49) and the other from the Muribaculaceae family (ASV1), as potential regulators of cholestyramine effects. ASV49 was also negatively linked with glucose levels, further indicating its beneficial role. Conclusion: Our results indicate that the gut microbiota has a role in the beneficial effects of cholestyramine and suggest specific microbes as targets of future investigations.
Collapse
Affiliation(s)
- Nolan K. Newman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Philip M. Monnier
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Richard R. Rodrigues
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Manoj Gurung
- Department of Biomedical Sciences, Carson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Stephany Vasquez-Perez
- Department of Biomedical Sciences, Carson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Kaito A. Hioki
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Renee L. Greer
- Department of Biomedical Sciences, Carson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Kevin Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Andrey Morgun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Natalia Shulzhenko
- Department of Biomedical Sciences, Carson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
50
|
Zhou Y, Bai F, Xiao R, Chen M, Sun Y, Ye J. Proteomics and Its Combined Analysis with Transcriptomics: Liver Fat-Lowering Effect of Taurine in High-Fat Fed Grouper ( Epinephelus coioides). Animals (Basel) 2024; 14:2039. [PMID: 39061501 PMCID: PMC11274106 DOI: 10.3390/ani14142039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In order to understand the intervention effect of taurine on liver fat deposition induced by high fat intake in the orange-spotted grouper (Epinephelus coioides), we performed proteomic analysis and association analysis with previously obtained transcriptomic data. Three isoproteic (47% crude protein) diets were designed to contain two levels of fat and were named as the 10% fat diet (10F), 15% fat diet (15F), and 15% fat with 1% taurine (15FT). The 10F diet was used as the control diet. After 8 weeks of feeding, the 15F diet exhibited comparable weight gain, feed conversion ratio, and hepatosomatic index as the 10F diet, but the former increased liver fat content vs. the latter. Feeding with the 15FT diet resulted in an improvement in weight gain and a reduction in feed conversion ratio, hepatosomatic index, and liver fat content compared with feeding the 15F diet. When comparing liver proteomic data between the 15F and 15FT groups, a total of 133 differentially expressed proteins (DEPs) were identified, of which 51 were upregulated DEPs and 82 were downregulated DEPs. Among these DEPs, cholesterol 27-hydroxylase, phosphatidate phosphatase LPIN, phosphatidylinositol phospholipase C, and 6-phosphofructo-2-kinase were further screened out and were involved in primary bile acid biosynthesis, glycerolipid metabolism, the phosphatidylinositol signaling system, and the AMPK signaling pathway as key DEPs in terms of alleviating liver fat deposition of taurine in high-fat fed fish. With the association analysis of transcriptomic and proteomic data through KEGG, three differentially expressed genes (atp1a, arf1_2, and plcd) and four DEPs (CYP27α1, LPIN, PLCD, and PTK2B) were co-enriched into five pathways related to fat metabolism including primary bile acid synthesis, bile secretion, glycerolipid metabolism, phospholipid D signaling, or/and phosphatidylinositol signaling. The results showed that dietary taurine intervention could trigger activation of bile acid biosynthesis and inhibition of triglyceride biosynthesis, thereby mediating the liver fat-lowering effects in high-fat fed orange-spotted grouper. The present study contributes some novel insight into the liver fat-lowering effects of dietary taurine in high-fat fed groupers.
Collapse
Affiliation(s)
| | | | | | | | | | - Jidan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China; (Y.Z.); (F.B.); (R.X.); (M.C.); (Y.S.)
| |
Collapse
|