1
|
Li E, Yang Q, Xie W, Gong Q, Guo X, Zhou J, Zhang J, Chuai X, Wang Y, Chiu S. An mpox quadrivalent mRNA vaccine elicits sustained and protective immunity in mice against lethal vaccinia virus challenge. Emerg Microbes Infect 2025; 14:2447619. [PMID: 39745170 PMCID: PMC11758793 DOI: 10.1080/22221751.2024.2447619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Assessing the long-term efficacy of MPXV vaccine candidates is crucial for the global response to the ongoing mpox epidemic. Built upon our previous study of the mpox quadrivalent mRNA vaccine, herein we reported that MPXV-1103 could elicit sustained humoral and cellular immunity in mice, including the induction of MPXV A35/B6/A29/M1-specific IgG antibodies, VACV neutralizing antibodies and activated cytotoxic CD8+T cells, which provides 100% protection against lethal VACV challenge even at 280 days after the first vaccination. Our results provide critical insights for orthopoxvirus vaccine development.
Collapse
Affiliation(s)
- Entao Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiyuan Yang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenyu Xie
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qizan Gong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoping Guo
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinge Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Jiachen Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xia Chuai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Yucai Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sandra Chiu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| |
Collapse
|
2
|
Marcheteau E, Mosca E, Frenois-Veyrat G, Kappler-Gratias S, Boutin L, Top S, Mathieu T, Colas C, Favetta P, Garnier T, Barbe P, Keck M, Gillet D, Mas A, Alejo A, Yu Y, Toth K, Abate G, Roy V, Skerry J, Wetzel KS, Shamblin JD, Golden JW, Panchal RG, Mucker EM, Mudhasani R, Agrofoglio LA, Iseni F, Gallardo F. Antiviral Activity of the Acyclic Nucleoside Phosphonate Prodrug LAVR-289 against Poxviruses and African Swine Fever Virus. ACS Infect Dis 2025. [PMID: 40400498 DOI: 10.1021/acsinfecdis.5c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Poxviruses are double-stranded DNA viruses including relevant zoonotic pathogens with high morbidity and potential biological warfare threats. Although African swine fever virus belongs to the Asfarviridae family and is not strictly classified as a Poxviridae member, both fall within the same class of Pokkesviricetes that replicate in the cytoplasm. Among compounds targeting these viruses, acyclic nucleoside phosphonate (ANP) prodrugs are promising inhibitors of viral DNA polymerases. However, some limitations related to their toxicity and the rapid emergence of resistance highlight the need for new antiviral molecules. In this study, we tested a new ANP called LAVR-289. This product effectively inhibits viral replication by targeting a specific domain in the poxvirus DNA polymerase. Using monkeypox virus models, the subcutaneous or oral administration of LAVR-289 demonstrated protective efficacy in infected animals without toxicity. Its in vivo half-life, long on-the-shelf stability and broad-spectrum efficacy make LAVR-289 a promising candidate for further development and stockpiling as a medical countermeasure against dsDNA virus outbreaks. LAVR-289 can be positioned in the context of recurrent viral epidemics, bioterrorism risk, and the emergence of resistant strains in the population.
Collapse
Affiliation(s)
| | - Estelle Mosca
- Virology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge 91220, France
- National Reference Center for Orthopoxviruses (CNR Orthopoxvirus), Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge 91220, France
| | - Gaelle Frenois-Veyrat
- Virology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge 91220, France
- National Reference Center for Orthopoxviruses (CNR Orthopoxvirus), Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge 91220, France
| | | | - Laetitia Boutin
- Virology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge 91220, France
- National Reference Center for Orthopoxviruses (CNR Orthopoxvirus), Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge 91220, France
| | | | - Thomas Mathieu
- Institute of Organic and Analytical Chemistry (ICOA UMR 7311), University of Orleans, CNRS, Orléans F-45067, France
| | - Cyril Colas
- Institute of Organic and Analytical Chemistry (ICOA UMR 7311), University of Orleans, CNRS, Orléans F-45067, France
| | - Patrick Favetta
- Institute of Organic and Analytical Chemistry (ICOA UMR 7311), University of Orleans, CNRS, Orléans F-45067, France
| | | | - Peggy Barbe
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette 91191, France
| | - Mathilde Keck
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette 91191, France
| | - Daniel Gillet
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette 91191, France
| | - Alicia Mas
- INMIVET, Animal Health Department, School of Veterinary Medicine, Complutense University of Madrid, Madrid 28040, Spain
| | - Ali Alejo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Valdeolmos, Madrid 28130, Spain
| | - Yinyi Yu
- School of Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, Saint Louis, Missouri 63110, United States
| | - Karoly Toth
- School of Medicine, Department of Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, Missouri 63110, United States
| | - Getahun Abate
- School of Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, Saint Louis, Missouri 63110, United States
| | - Vincent Roy
- Institute of Organic and Analytical Chemistry (ICOA UMR 7311), University of Orleans, CNRS, Orléans F-45067, France
| | - Janet Skerry
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Kelly S Wetzel
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Joshua D Shamblin
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Joseph W Golden
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Rekha G Panchal
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Eric M Mucker
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Rajini Mudhasani
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Luigi A Agrofoglio
- Institute of Organic and Analytical Chemistry (ICOA UMR 7311), University of Orleans, CNRS, Orléans F-45067, France
| | - Frederic Iseni
- Virology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge 91220, France
| | | |
Collapse
|
3
|
Zeng Y, Chen Z, Yan X, Gong S, Zhang T. Geographical characteristics and formation mechanisms of smallpox epidemics in Hubei Province, China, 1488-1949. PLoS One 2025; 20:e0317108. [PMID: 40359411 PMCID: PMC12074586 DOI: 10.1371/journal.pone.0317108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 12/22/2024] [Indexed: 05/15/2025] Open
Abstract
Smallpox is a highly contagious and ancient disease influenced by natural and social factors. These factors led to the wide spread of smallpox in Hubei Province of China during the historical period. We conducted the spatial and temporal distribution patterns of smallpox epidemics and their formation mechanism in Hubei Province of China during 1488-1949. Based on epidemic history and environmental data, we used M-K test, wavelet analysis, spatial autocorrelation model, epidemic center of gravity model and geographically weighted regression models.In terms of temporal changes, the earliest smallpox in Hubei Province can be traced to the Ming Dynasty. Smallpox epidemics in the Republic of China showed fluctuating and changing trends; in 1939, incidences of smallpox grew abruptly. Smallpox epidemics in the Republic of China occurred on a fluctuating cycle of two time scales: 8 years and 18 years. The epidemic season was mainly spring and summer.Smallpox epidemics in Hubei Province had a wide spatial scope and exhibited spreading and diffusion characteristics; three towns of Wuhan, Suixian and Yichang were the centers of the epidemics. Smallpox epidemics exhibited significant spatial concentrations; high concentration areas occurred mainly in Wuchang, Hankou and Hanyang. The center of gravity of the epidemics exhibited a small swing from east to west and gradually shifted to the west.River networks, road networks, wars and other factors promoted smallpox epidemics; river networks and war factors were significant in eastern Hubei Province; road network factors were significant in southern Hubei Province; and droughts somewhat inhibited smallpox epidemics in western Hubei Province. Temperature fluctuations, droughts and floods, and war outbreaks played dominant roles in the temporal characteristics of smallpox epidemics in Hubei Province, and topography, population distribution and population movement played dominant roles in the spatial distribution pattern of smallpox epidemics in Hubei Province. We must establish and improve an epidemic monitoring and early warning system, pay attention to key areas, strengthen inspection and quarantine, stockpile smallpox vaccines, develop therapeutic drugs, and strengthen prevention of bioterrorism. Our study revealed how smallpox spreads in terms of both spatial and temporal patterns and mechanisms, and based on this, we can propose preventive and control measures against smallpox reemergence and its similar viruses.
Collapse
Affiliation(s)
- Yuxin Zeng
- Hubei Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan, Hubei, China
| | - Zhiyu Chen
- Hubei Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan, Hubei, China
| | - Xihao Yan
- Hubei Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan, Hubei, China
| | - Shengsheng Gong
- Hubei Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan, Hubei, China
| | - Tao Zhang
- Hubei Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Zajner C. The Impact of Public Health and Medical Theory on the Societal Response to the 1889 Russian Flu. THE JOURNAL OF MEDICAL HUMANITIES 2025:10.1007/s10912-025-09952-7. [PMID: 40332729 DOI: 10.1007/s10912-025-09952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
The 1889 Russian (also called 'Asiatic') Flu epidemic can be described as one of the first modern pandemics. The development of extensive railroad and shipping networks during and prior to this period facilitated the previously unprecedented movement of goods and people around the world. It additionally propagated the process of shrinking the barriers between the countryside and major metropolises. While the COVID-19 pandemic resulted in lockdown measures nearly worldwide and prompted widespread social, economic, and cultural disruptions, the Russian Flu was not accompanied by such drastic changes. In this article, it is argued that the blunted historical consciousness of this epidemic were a result of a combination of factors, including the nascent state of scientific research and understanding of infectious diseases, the circumscribed reach of media, implicit comparisons to other contemporary epidemics, temporal closeness to the Spanish Flu and suppression of memory, and most substantially the lack of an organized public health apparatus to act upon the epidemic. As a result, the 1889 Russian pandemic, though significant in terms of its mortality and economic impact, was quickly forgotten from the collective consciousness and has long been a hidden lesson from history.
Collapse
Affiliation(s)
- Chris Zajner
- Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
5
|
Arabian S, Sadr M, Ayati MH, İnce F, Zargaran A. The earliest report of smallpox oral vaccination by Bahā' al-Dawlah Rāzī in the 16th century. Vaccine 2025; 52:126949. [PMID: 40009948 DOI: 10.1016/j.vaccine.2025.126949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Smallpox is one of the viral and contagious diseases that were always talked about and deadly epidemics that killed many people for many centuries. Through the analysis of historical and textual material, this paper seeks to investigate the smallpox eradication process. It starts with a brief history of smallpox before listing the common methods of eradicating the illness throughout the 16th century. There was a type of traditional oral smallpox vaccination, reported by Bahā' al-Dawlah Rāzī, a Persian physician in his book, Khulāsāt al-Tajārib (The Summary of Experiences). This method could be considered the earliest remained report of practical solution to prevent smallpox; at least 3 centuries earlies than smallpox vaccination by Edward Jenner.
Collapse
Affiliation(s)
- Samaneh Arabian
- Department of History of Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; Scientific Student Association of History of Medicine, Pharmacy, and Veterinary, Student Scientific Researcher Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadr
- Department of History of Medicine, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Ayati
- Department of History of Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; Guest Professor, Beijing University of Chinese Medicine, Beijing, China
| | - Fuat İnce
- Department of History of Medicine and Ethics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkiye
| | - Arman Zargaran
- Department of History of Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Murphy CT, Bachelder EM, Ainslie KM. Mast cell activators as adjuvants for intranasal mucosal vaccines. Int J Pharm 2025; 672:125300. [PMID: 39914508 DOI: 10.1016/j.ijpharm.2025.125300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
Mast cells have roles in immune regulation, allergy, and host response to pathogens. Compounds that activate mast cells (MCAs) can serve as vaccine adjuvants, potentially outperforming current FDA-approved options, especially for mucosal vaccines. While most vaccines are administered intramuscularly, intranasal and needle-free formulations offer benefits like improved compliance and accessibility. However, the lack of effective adjuvants limits mucosal vaccine development. This review explores MCAs as promising alternatives to traditional adjuvants, aiming to enhance mucosal vaccine efficacy. We summarize the nascent work of formulating MCAs like compound 48/80 into nanoparticles, with excipients such as chitosan and chitosan/alginate. Other MCAs like the peptide mastoparan 7 complexed with CpG have formed nanoparticle complexes that illustrate protective mucosal immunity in a model of influenza. The small molecule MCA ST101036, when encapsulated in acetalated dextran particles, has demonstrated enhanced immune responses and protection in a West Nile Virus model of infection. This review highlights the potential of MCAs as potent vaccine adjuvants, particularly for mucosal vaccines, and summarizes, recent advancements in formulating these activators into nanoparticles to enhance immune responses and protection.
Collapse
Affiliation(s)
- Connor T Murphy
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC Chapel Hill NC USA
| | - Eric M Bachelder
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC Chapel Hill NC USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC Chapel Hill NC USA; Department of Biomedical Engineering NC State/UNC Chapel Hill NC USA; Department of Microbiology and Immunology, School of Medicine, UNC Chapel Hill NC USA.
| |
Collapse
|
7
|
Goh E, Chavatte JM, Lin RTP, Ng LFP, Rénia L, Oon HH. Vaccines in Dermatology-Present and Future: A Review. Vaccines (Basel) 2025; 13:125. [PMID: 40006672 PMCID: PMC11860801 DOI: 10.3390/vaccines13020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Dermatological vaccines have emerged as critical tools in preventing and managing a wide spectrum of skin conditions ranging from infectious diseases to malignancies. By synthesizing evidence from existing literature, this review aims to comprehensively evaluate the efficacy, safety, and immunogenicity of vaccines used in dermatology, including both approved vaccines and those currently being researched. Vaccines discussed in this paper include those targeting dermatoses and malignancies (e.g., acne vulgaris, atopic dermatitis, and melanoma); infectious diseases (e.g., human papillomavirus (HPV); varicella zoster virus (VZV); herpes zoster (HZ); warts; smallpox; mpox (monkeypox); hand, foot, and mouth disease (HFMD); candidiasis and Group B Streptococcus (GBS); and neglected tropical diseases (e.g., Buruli ulcer, leprosy, and leishmaniasis). Through this review, we aim to provide a detailed understanding of the role of vaccines in dermatology, identify knowledge gaps, and propose areas for future research.
Collapse
Affiliation(s)
- Eyan Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
| | - Jean-Marc Chavatte
- National Public Health Laboratory, Singapore 308442, Singapore; (J.-M.C.); (R.T.P.L.)
| | - Raymond T. P. Lin
- National Public Health Laboratory, Singapore 308442, Singapore; (J.-M.C.); (R.T.P.L.)
- National University Hospital Singapore, Singapore 119077, Singapore
| | - Lisa F. P. Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- A*STAR Infectious Diseases Labs (A*STAR IDL), Agency for Science, Technology, and Research (A*STAR), Singapore 138648, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Laurent Rénia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- A*STAR Infectious Diseases Labs (A*STAR IDL), Agency for Science, Technology, and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Hazel H. Oon
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National Skin Centre and Skin Research Institute of Singapore, Singapore 308205, Singapore
| |
Collapse
|
8
|
Talbot A, de Koning-Ward TF, Layton D. Left out in the cold - inequity in infectious disease control due to cold chain disparity. Vaccine 2025; 45:126648. [PMID: 39708516 DOI: 10.1016/j.vaccine.2024.126648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Vaccines and diagnostic tools stand out as among the most influential advancements in public health, credited with averting an estimated 6 million deaths annually and substantially alleviating the burden of infectious disease. Despite this progress, the global imperative to prevent, detect, and combat infectious disease persists. Regrettably, hundreds of thousands of lives are still lost due to inadequate access to vaccines and diagnostics. A critical obstacle in accessibility lies in the requirement of reliable cold chain for their transportation and storage, a resource that remains inadequate in many regions, particularly in the developing world. Various factors, including socio-economic disparities, biological complexities, and manufacturing processes, exert significant influence on the availability and integrity of vaccines and diagnostic materials. This review aims to explore the multifaceted issue of inequality in access to disease control tools, examining the vulnerabilities of vaccines and diagnostics while also investigating recent advancements that offer promising solutions to improve thermal stability.
Collapse
Affiliation(s)
- Aimee Talbot
- CSIRO, Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia; School of Medicine, Deakin University, Geelong, Victoria, Australia; Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Geelong, Victoria, Australia; Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Daniel Layton
- CSIRO, Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia.
| |
Collapse
|
9
|
Umar M, Afzal H, Murtaza A, Cheng LT. Lipoprotein Signal Peptide as Adjuvants: Leveraging Lipobox-Driven TLR2 Activation in Modern Vaccine Design. Vaccines (Basel) 2025; 13:36. [PMID: 39852815 PMCID: PMC11769378 DOI: 10.3390/vaccines13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Toll-like receptor 2 (TLR2) signaling is a pivotal component of immune system activation, and it is closely linked to the lipidation of bacterial proteins. This lipidation is guided by bacterial signal peptides (SPs), which ensure the precise targeting and membrane anchoring of these proteins. The lipidation process is essential for TLR2 recognition and the activation of robust immune responses, positioning lipidated bacterial proteins as potent immunomodulators and adjuvants for vaccines against bacterial-, viral-, and cancer-related antigens. The structural diversity and cleavage pathways of bacterial SPs are critical in determining lipidation efficiency and protein localization, influencing their immunogenic potential. Recent advances in bioinformatics have significantly improved the prediction of SP structures and cleavage sites, facilitating the rational design of recombinant lipoproteins optimized for immune activation. Moreover, the use of SP-containing lipobox motifs, as adjuvants to lipidate heterologous proteins, has expanded the potential of vaccines targeting a broad range of pathogens. However, challenges persist in expressing lipidated proteins, particularly within heterologous systems. These challenges can be addressed by optimizing expression systems, such as engineering E. coli strains for enhanced lipidation. Thus, lipoprotein signal peptides (SPs) demonstrate remarkable versatility as adjuvants in vaccine development, diagnostics, and immune therapeutics, highlighting their essential role in advancing immune-based strategies to combat diverse pathogens.
Collapse
Affiliation(s)
- Muhammad Umar
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Haroon Afzal
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Asad Murtaza
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT—The Arctic University of Norway, P.O. Box 6050 Tromsø, Norway
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
10
|
Hancks DC. An Evolutionary Framework Exploiting Virologs and Their Host Origins to Inform Poxvirus Protein Functions. Methods Mol Biol 2025; 2860:257-272. [PMID: 39621273 DOI: 10.1007/978-1-0716-4160-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Poxviruses represent evolutionary successful infectious agents. As a family, poxviruses can infect a wide variety of species including humans, fish, and insects. While many other viruses are species-specific, an individual poxvirus species is often capable of infecting diverse hosts and cell types. For example, the prototypical poxvirus, vaccinia, is well known to infect numerous human cell types but can also infect cells from divergent hosts like frog neurons. Notably, poxvirus infections result in both detrimental human and animal diseases. The most infamous disease linked to a poxvirus is smallpox caused by variola virus. Poxviruses are large double-stranded DNA viruses, which uniquely replicate in the cytoplasm of cells. The model poxvirus genome encodes ~200 nonoverlapping protein-coding open reading frames (ORFs). Poxvirus gene products impact various biological processes like the production of virus particles, the host range of infectivity, and disease pathogenesis. In addition, poxviruses and their gene products have biomedical application with several species commonly engineered for use as vaccines and oncolytic virotherapy. Nevertheless, we still have an incomplete understanding of the functions associated with many poxvirus genes. In this chapter, we outline evolutionary insights that can complement ongoing studies of poxvirus gene functions and biology, which may serve to elucidate new molecular activities linked to this biomedically relevant class of viruses.
Collapse
Affiliation(s)
- Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Munjita SM. Understanding vaccine hesitancy: Insights from social media on polio, human papilloma virus, and COVID-19 in Zambia. Digit Health 2025; 11:20552076251326131. [PMID: 40109405 PMCID: PMC11920985 DOI: 10.1177/20552076251326131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
Objectives Vaccine hesitancy remains a critical challenge to public health in Zambia and globally, necessitating a deeper understanding of the factors influencing this phenomenon. The study analyzed user-generated Facebook comments from January 2021 to December 2023 to understand the factors influencing vaccine hesitancy in Zambia. Methods This study employed a qualitative case study design, focusing on the official Facebook page of the Ministry of Health in Zambia. A purposeful sampling technique was used, collecting comments that discussed vaccine hesitancy related to polio, human papilloma virus (HPV), and coronavirus disease 2019 (COVID-19) vaccines. Results The analysis revealed that men contributed 77.5% of comments followed by women with 22.5%. The majority of comments (82.5%) pertained to COVID-19 vaccines, followed by polio (14.1%) and HPV (3.4%). Notably, women expressed greater hesitancy toward polio vaccines (60%) compared to COVID-19 (19.9%) and HPV (12.5%). Thematic analysis highlighted significant hesitancy against vaccines shaped by vaccine safety and efficacy concerns, frequent calls for vaccination particularly against polio, conspiracy theories, distrust in health authorities, and poor communication from health authorities. Other drivers of vaccine hesitancy were reliance on spiritual beliefs, herbal remedies and natural immunity, and the pervasive spread of misinformation. Conclusion These findings underscore the barriers to vaccine acceptance, emphasizing the critical need for transparent communication and community engagement. To improve vaccine uptake, public health strategies must address community-specific concerns, foster trust, and enhance the effectiveness of health communication efforts.
Collapse
Affiliation(s)
- Samuel Munalula Munjita
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| |
Collapse
|
12
|
Medina GN, Diaz San Segundo F. Virulence and Immune Evasion Strategies of FMDV: Implications for Vaccine Design. Vaccines (Basel) 2024; 12:1071. [PMID: 39340101 PMCID: PMC11436118 DOI: 10.3390/vaccines12091071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Foot-and-mouth disease (FMD) is globally recognized as a highly economically devastating and prioritized viral disease affecting livestock. Vaccination remains a crucial preventive measure against FMD. The improvement of current vaccine platforms could help control outbreaks, leading to the potential eradication of the disease. In this review, we describe the variances in virulence and immune responses among FMD-susceptible host species, specifically bovines and pigs, highlighting the details of host-pathogen interactions and their impact on the severity of the disease. This knowledge serves as an important foundation for translating our insights into the rational design of vaccines and countermeasure strategies, including the use of interferon as a biotherapeutic agent. Ultimately, in this review, we aim to bridge the gap between our understanding of FMDV biology and the practical approaches to control and potentially eradicate FMD.
Collapse
Affiliation(s)
- Gisselle N Medina
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Orient Point, NY 11957, USA
| | | |
Collapse
|
13
|
Squires K, Viner M, Hoban W, Loynes R, Van Schaik K, Piombino-Mascali D. The "angioletti" of Palermo: the health and development of mummified non-adults in late modern Palermo, Sicily (1787-1880 CE). Front Med (Lausanne) 2024; 11:1443291. [PMID: 39323467 PMCID: PMC11422078 DOI: 10.3389/fmed.2024.1443291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/05/2024] [Indexed: 09/27/2024] Open
Abstract
The Capuchin Catacombs in Palermo, Sicily, have been home to non-adult mummified remains since the seventeenth century CE. Despite the increasing numbers of scientific studies conducted at this site, very little research has focused specifically on the youngest members of late modern (1787-1880 CE) society. This research aims to redress the balance by examining 43 individuals to gain insight into the demographic profile of mummified non-adults, to characterize their health status and possible cause of death, and to better understand the funerary treatment offered to the youngest members of society. A portable X-ray unit was used to capture anteroposterior and lateral images of each mummy; this facilitated age estimation, the identification of pathological and/traumatic lesions, and evidence of conservation and the mummification process more generally. This study revealed that regardless of age and health status at the time of death, the mortuary rite performed was primarily influenced by the wealth and social standing of the deceased's kin. No demographic trends were observed in the data and the lack of evidence of metabolic, neoplastic, and traumatic bone lesions suggest these non-adults died from short-term, acute illnesses. Even when individuals did display evidence of chronic health conditions that would have impacted their day-to-day lives (e.g., B035), they were not excluded from this mortuary tradition on the basis of their long-term health and care requirements in life. Artifacts were found with all individuals examined and were associated with the mummification process, conservation of mummies, and/or their display. This research has ultimately demonstrated that non-invasive imaging can be used to gain a more comprehensive understanding of the lives and deaths of non-adults inhabiting late modern Palermo.
Collapse
Affiliation(s)
- Kirsty Squires
- School of Health, Education, Policing and Sciences, Staffordshire University, Stoke-on-Trent, United Kingdom
| | - Mark Viner
- Cranfield Forensic Institute, Cranfield University, Cranfield, United Kingdom
- Reveal Imaging Ltd., Whitley Bay, United Kingdom
| | - Wayne Hoban
- Reveal Imaging Ltd., Whitley Bay, United Kingdom
| | - Robert Loynes
- KNH Centre for Biomedical Egyptology, The University of Manchester, Manchester, United Kingdom
| | - Katherine Van Schaik
- Department of Radiology and Radiologic Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Classical and Mediterranean Studies, Vanderbilt University, Nashville, TN, United States
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
| | - Dario Piombino-Mascali
- Department of Anatomy, Histology, and Anthropology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
14
|
Dias RA. Towards a Comprehensive Definition of Pandemics and Strategies for Prevention: A Historical Review and Future Perspectives. Microorganisms 2024; 12:1802. [PMID: 39338476 PMCID: PMC11433773 DOI: 10.3390/microorganisms12091802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The lack of a universally accepted definition of a pandemic hinders a comprehensive understanding of and effective response to these global health crises. Current definitions often lack quantitative criteria, rendering them vague and limiting their utility. Here, we propose a refined definition that considers the likelihood of susceptible individuals contracting an infectious disease that culminates in widespread global transmission, increased morbidity and mortality, and profound societal, economic, and political consequences. Applying this definition retrospectively, we identify 22 pandemics that occurred between 165 and 2024 AD and were caused by a variety of diseases, including smallpox (Antonine and American), plague (Justinian, Black Death, and Third Plague), cholera (seven pandemics), influenza (two Russian, Spanish, Asian, Hong Kong, and swine), AIDS, and coronaviruses (SARS, MERS, and COVID-19). This work presents a comprehensive analysis of past pandemics caused by both emerging and re-emerging pathogens, along with their epidemiological characteristics, societal impact, and evolution of public health responses. We also highlight the need for proactive measures to reduce the risk of future pandemics. These strategies include prioritizing surveillance of emerging zoonotic pathogens, conserving biodiversity to counter wildlife trafficking, and minimizing the potential for zoonotic spillover events. In addition, interventions such as promoting alternative protein sources, enforcing the closure of live animal markets in biodiversity-rich regions, and fostering global collaboration among diverse stakeholders are critical to preventing future pandemics. Crucially, improving wildlife surveillance systems will require the concerted efforts of local, national and international entities, including laboratories, field researchers, wildlife conservationists, government agencies and other stakeholders. By fostering collaborative networks and establishing robust biorepositories, we can strengthen our collective capacity to detect, monitor, and mitigate the emergence and transmission of zoonotic pathogens.
Collapse
Affiliation(s)
- Ricardo Augusto Dias
- School of Veterinary Medicine, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 05508-270, Brazil
| |
Collapse
|
15
|
Bæk O, Schaltz-Buchholzer F, Campbell A, Amenyogbe N, Campbell J, Aaby P, Benn CS, Kollmann TR. The mark of success: The role of vaccine-induced skin scar formation for BCG and smallpox vaccine-associated clinical benefits. Semin Immunopathol 2024; 46:13. [PMID: 39186134 PMCID: PMC11347488 DOI: 10.1007/s00281-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Skin scar formation following Bacille Calmette-Guérin (BCG) or smallpox (Vaccinia) vaccination is an established marker of successful vaccination and 'vaccine take'. Potent pathogen-specific (tuberculosis; smallpox) and pathogen-agnostic (protection from diseases unrelated to the intentionally targeted pathogen) effects of BCG and smallpox vaccines hold significant translational potential. Yet despite their use for centuries, how scar formation occurs and how local skin-based events relate to systemic effects that allow these two vaccines to deliver powerful health promoting effects has not yet been determined. We review here what is known about the events occurring in the skin and place this knowledge in the context of the overall impact of these two vaccines on human health with a particular focus on maternal-child health.
Collapse
Affiliation(s)
- Ole Bæk
- University of Copenhagen, Copenhagen, Denmark
| | | | | | - Nelly Amenyogbe
- Telethon Kids Institute, Perth, Australia
- Dalhousie University, 5980 University Ave #5850, 4th floor Goldbloom Pavilion, Halifax, NS, B3K 6R8, Canada
- Bandim Health Project, Bissau, Guinea-Bissau
| | | | - Peter Aaby
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Christine Stabell Benn
- University of Southern Denmark, Copenhagen, Denmark
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Tobias R Kollmann
- Telethon Kids Institute, Perth, Australia.
- Dalhousie University, 5980 University Ave #5850, 4th floor Goldbloom Pavilion, Halifax, NS, B3K 6R8, Canada.
- Bandim Health Project, Bissau, Guinea-Bissau.
| |
Collapse
|
16
|
Gezehagn Kussia G, Tessema TS. The Potential of Single-Chain Variable Fragment Antibody: Role in Future Therapeutic and Diagnostic Biologics. J Immunol Res 2024; 2024:1804038. [PMID: 39156005 PMCID: PMC11329312 DOI: 10.1155/2024/1804038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/09/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
The advancement of genetic engineering has revolutionized the field of immunology by allowing the utilization of intrinsic antibody structures. One of the biologics that are being produced by recombinant antibody technology is single-chain fragments variable (scFv). Genes of variable regions, the heavy and light chains that are genetically linked into a single transcript by a short flexible linker peptide, are used to generate this fragment from cellular and synthetic libraries. The specificity and affinity of these molecules are comparable to those of parental antibodies. Fusion with marker proteins and other potent molecules improves their stability, circulation half-life, activity, and efficient purification. Besides, this review comprises construction protocols, therapeutics, and diagnostic applications of scFv, as well as related challenges. Nonetheless, there are still issues with efficacy, stability, safety, intracellular administration, and production costs that need to be addressed.
Collapse
Affiliation(s)
- Getachew Gezehagn Kussia
- Genomics and BioinformaticsBio and Emerging Technology Institute, Addis Ababa 5954, Ethiopia
- Institute of BiotechnologyAddis Ababa University, Addis Ababa 1176, Ethiopia
| | | |
Collapse
|
17
|
Shafique M, Khurshid M, Muzammil S, Arshad MI, Malik IR, Rasool MH, Khalid A, Khalid R, Asghar R, Baloch Z, Aslam B. Traversed dynamics of climate change and One Health. ENVIRONMENTAL SCIENCES EUROPE 2024; 36:135. [DOI: 10.1186/s12302-024-00931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/12/2024] [Indexed: 01/11/2025]
Abstract
AbstractClimate change, caused by both natural and human activities, poses significant threats to global health, including rising temperatures, extreme weather events, and environmental disruptions. The One Health concept, emphasizing the interconnectedness of human, animal, and environmental health, is crucial in addressing these challenges. Climate change is linked to the emergence and resurgence of infectious diseases, resulting in substantial economic losses worldwide due to outbreaks, floods, and disrupted trade, among other factors. Therefore, it is crucial to adapt to this changing climate to safeguard One Health. By implementing a One Health approach, we can effectively address the consequences of climate change and make substantial contributions to health and food safety. This approach also holds the potential to mitigate economic losses, particularly in low and middle-income countries. Additionally, in the future, research interventions based on the One Health framework may offer sustainable solutions to combat climate change.
Collapse
|
18
|
Shafique M, Khurshid M, Muzammil S, Arshad MI, Malik IR, Rasool MH, Khalid A, Khalid R, Asghar R, Baloch Z, Aslam B. Traversed dynamics of climate change and One Health. ENVIRONMENTAL SCIENCES EUROPE 2024; 36:135. [DOI: doi.org/10.1186/s12302-024-00931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/12/2024] [Indexed: 04/10/2025]
Abstract
AbstractClimate change, caused by both natural and human activities, poses significant threats to global health, including rising temperatures, extreme weather events, and environmental disruptions. The One Health concept, emphasizing the interconnectedness of human, animal, and environmental health, is crucial in addressing these challenges. Climate change is linked to the emergence and resurgence of infectious diseases, resulting in substantial economic losses worldwide due to outbreaks, floods, and disrupted trade, among other factors. Therefore, it is crucial to adapt to this changing climate to safeguard One Health. By implementing a One Health approach, we can effectively address the consequences of climate change and make substantial contributions to health and food safety. This approach also holds the potential to mitigate economic losses, particularly in low and middle-income countries. Additionally, in the future, research interventions based on the One Health framework may offer sustainable solutions to combat climate change.
Collapse
|
19
|
Hsu J, Kim S, Anandasabapathy N. Vaccinia Virus: Mechanisms Supporting Immune Evasion and Successful Long-Term Protective Immunity. Viruses 2024; 16:870. [PMID: 38932162 PMCID: PMC11209207 DOI: 10.3390/v16060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Vaccinia virus is the most successful vaccine in human history and functions as a protective vaccine against smallpox and monkeypox, highlighting the importance of ongoing research into vaccinia due to its genetic similarity to other emergent poxviruses. Moreover, vaccinia's ability to accommodate large genetic insertions makes it promising for vaccine development and potential therapeutic applications, such as oncolytic agents. Thus, understanding how superior immunity is generated by vaccinia is crucial for designing other effective and safe vaccine strategies. During vaccinia inoculation by scarification, the skin serves as a primary site for the virus-host interaction, with various cell types playing distinct roles. During this process, hematopoietic cells undergo abortive infections, while non-hematopoietic cells support the full viral life cycle. This differential permissiveness to viral replication influences subsequent innate and adaptive immune responses. Dendritic cells (DCs), key immune sentinels in peripheral tissues such as skin, are pivotal in generating T cell memory during vaccinia immunization. DCs residing in the skin capture viral antigens and migrate to the draining lymph nodes (dLN), where they undergo maturation and present processed antigens to T cells. Notably, CD8+ T cells are particularly significant in viral clearance and the establishment of long-term protective immunity. Here, we will discuss vaccinia virus, its continued relevance to public health, and viral strategies permissive to immune escape. We will also discuss key events and populations leading to long-term protective immunity and remaining key gaps.
Collapse
Affiliation(s)
- Joy Hsu
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Suyon Kim
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
20
|
Araf Y, Nipa JF, Naher S, Maliha ST, Rahman H, Arafat KI, Munif MR, Uddin MJ, Jeba N, Saha S, Zhai J, Hasan SMN, Xue M, Hossain MG, Zheng C. Insights into the Transmission, Host Range, Genomics, Vaccination, and Current Epidemiology of the Monkeypox Virus. Vet Med Int 2024; 2024:8839830. [PMID: 38836166 PMCID: PMC11150048 DOI: 10.1155/2024/8839830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
This review delves into the historical context, current epidemiological landscape, genomics, and pathobiology of monkeypox virus (MPXV). Furthermore, it elucidates the present vaccination status and strategies to curb the spread of monkeypox. Monkeypox, caused by the Orthopoxvirus known as MPXV, is a zoonotic ailment. MPXV can be transmitted from person to person through respiratory droplets during prolonged face-to-face interactions. While many cases of monkeypox are self-limiting, vulnerable groups such as young children, pregnant women, and immunocompromised individuals may experience severe manifestations. Diagnosis predominantly relies on clinical presentations, complemented by laboratory techniques like RT-PCR. Although treatment is often not required, severe cases necessitate antiviral medications like tecovirimat, cidofovir, and brincidofovir. Vaccination, particularly using the smallpox vaccine, has proven instrumental in outbreak control, exhibiting an efficacy of at least 85% against mpox as evidenced by data from Africa. Mitigating transmission requires measures like wearing surgical masks, adequately covering skin lesions, and avoiding handling wild animals.
Collapse
Affiliation(s)
- Yusha Araf
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jannatul Ferdous Nipa
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka 1212, Bangladesh
| | - Sabekun Naher
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Sumaiya Tasnim Maliha
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Faculty of Life Sciences, Gopalganj, Bangladesh
| | - Kazi Ifthi Arafat
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Faculty of Life Sciences, Gopalganj, Bangladesh
| | - Mohammad Raguib Munif
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Nurejunnati Jeba
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - S M Nazmul Hasan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan 450001, China
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Chunfu Zheng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Mahony TJ, Briody TE, Ommeh SC. Can the Revolution in mRNA-Based Vaccine Technologies Solve the Intractable Health Issues of Current Ruminant Production Systems? Vaccines (Basel) 2024; 12:152. [PMID: 38400135 PMCID: PMC10893269 DOI: 10.3390/vaccines12020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
To achieve the World Health Organization's global Sustainable Development Goals, increased production of high-quality protein for human consumption is required while minimizing, ideally reducing, environmental impacts. One way to achieve these goals is to address losses within current livestock production systems. Infectious diseases are key limiters of edible protein production, affecting both quantity and quality. In addition, some of these diseases are zoonotic threats and potential contributors to the emergence of antimicrobial resistance. Vaccination has proven to be highly successful in controlling and even eliminating several livestock diseases of economic importance. However, many livestock diseases, both existing and emerging, have proven to be recalcitrant targets for conventional vaccination technologies. The threat posed by the COVID-19 pandemic resulted in unprecedented global investment in vaccine technologies to accelerate the development of safe and efficacious vaccines. While several vaccination platforms emerged as front runners to meet this challenge, the clear winner is mRNA-based vaccination. The challenge now is for livestock industries and relevant stakeholders to harness these rapid advances in vaccination to address key diseases affecting livestock production. This review examines the key features of mRNA vaccines, as this technology has the potential to control infectious diseases of importance to livestock production that have proven otherwise difficult to control using conventional approaches. This review focuses on the challenging diseases of ruminants due to their importance in global protein production. Overall, the current literature suggests that, while mRNA vaccines have the potential to address challenges in veterinary medicine, further developments are likely to be required for this promise to be realized for ruminant and other livestock species.
Collapse
Affiliation(s)
- Timothy J. Mahony
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia; (T.E.B.); (S.C.O.)
| | | | | |
Collapse
|
22
|
Siddalingaiah N, Dhanya K, Lodha L, Pattanaik A, Mani RS, Ma A. Tracing the journey of poxviruses: insights from history. Arch Virol 2024; 169:37. [PMID: 38280957 DOI: 10.1007/s00705-024-05971-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/29/2024]
Abstract
The historical significance of the poxviruses is profound, largely due to the enduring impact left by smallpox virus across many centuries. The elimination of smallpox is a remarkable accomplishment in the history of science and medicine, with centuries of devoted efforts resulting in the development and widespread administration of smallpox vaccines. This review provides insight into the pivotal historical events involving medically significant poxviruses. Understanding the remarkable saga of combatting smallpox is crucial, serving as a guidepost for potential future encounters with poxvirus infections. There is a continual need for vigilant observation of poxvirus evolution and spillover from animals to humans, considering the expansive range of susceptible hosts. The recent occurrence of monkeypox cases in non-endemic countries stands as a stark reminder of the ease with which infections can be disseminated through international travel and trade. This backdrop encourages introspection about our journey and the current status of poxvirus research.
Collapse
Affiliation(s)
- Nayana Siddalingaiah
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - K Dhanya
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Lonika Lodha
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Amrita Pattanaik
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Reeta S Mani
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Ashwini Ma
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.
| |
Collapse
|
23
|
Kumar S. The Overview of Potential Antiviral Bioactive Compounds in Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:331-336. [PMID: 38801588 DOI: 10.1007/978-3-031-57165-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses belong to the family of double-stranded DNA viruses, and it is pathogenic for humans and spread worldwide. These viruses cause infections and various diseases in human. So, it is required to develop new drugs for the treatment of smallpox or other poxvirus infections. Very few potential compounds for the treatment of poxvirus such as smallpox, chickenpox, and monkeypox have been reported. Most of the compounds has used as vaccines. Cidofovir is most commonly used as a vaccine for the treatment of poxviruses. There are no phytochemicals reported for the treatment of poxviruses. Very few phytochemicals are under investigation for the treatment of poxviruses.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Sant Kavi Baba Baijnath Government P.G. College Harakh, Barabanki (UP), 225121, India.
- Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, 224001, India.
| |
Collapse
|
24
|
Asadi Noghabi F, G. Rizk J, Makkar D, Roozbeh N, Ghelichpour S, Zarei A. Managing Monkeypox Virus Infections: A Contemporary Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:1-9. [PMID: 38322157 PMCID: PMC10839137 DOI: 10.30476/ijms.2022.96738.2837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 11/22/2022] [Indexed: 02/08/2024]
Abstract
Monkeypox is an infectious and contagious zoonotic disease caused by the Orthopoxvirus species and was first identified in Africa. Recently, this infectious disease has spread widely in many parts of the world. Fever, fatigue, headache, and rash are common symptoms of monkeypox. The presence of lymphadenopathy is another prominent and key symptom of monkeypox, which distinguishes this disease from other diseases and is useful for diagnosing the disease. This disease is transmitted to humans through contact with or eating infected animals as well as objects infected with the virus. One of the ways to diagnose this disease is through PCR testing of lesions and secretions. To prevent the disease, vaccines such as JYNNEOS and ACAM2000 are available, but they are not accessible to all people in the world, and their effectiveness and safety need further investigation. However, preventive measures such as avoiding contact with people infected with the virus and using appropriate personal protective equipment are mandatory. The disease therapy is based on medicines such as brincidofovir, cidofovir, and Vaccinia Immune Globulin Intravenous. The injectable format of tecovirimat was approved recently, in May 2022. Considering the importance of clinical care in this disease, awareness about the side effects of medicines, nutrition, care for conjunctivitis, skin rash, washing and bathing at home, and so on can be useful in controlling and managing the disease.
Collapse
Affiliation(s)
- Fariba Asadi Noghabi
- Department of Nursing, School of Nursing and Midwifery, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - John G. Rizk
- Department of Pharmaceutical Health Services Research Center, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | | | - Nasibeh Roozbeh
- Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Soleyman Ghelichpour
- Student Research Committee, School of Nursing and Midwifery, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Aref Zarei
- Department of Nursing, School of Nursing and Midwifery, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
25
|
ElSherif M, Halperin SA. Benefits of Combining Molecular Biology and Controlled Human Infection Model Methodologies in Advancing Vaccine Development. J Mol Biol 2023; 435:168322. [PMID: 37866477 DOI: 10.1016/j.jmb.2023.168322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Infectious diseases continue to account for a significant portion of global deaths despite the use of vaccines for several centuries. Immunization programs around the world are a testament to the great success of multiple vaccines, yet there are still diseases without vaccines and others that require safer more effective ones. Addressing uncontrolled and emerging disease threats is restrained by the limitations and bottlenecks encountered with traditional vaccine development paradigms. Recent advances in modern molecular biology technologies have enhanced the interrogation of host pathogen interaction and deciphered complex pathways, thereby uncovering the myriad interplay of biological events that generate immune protection against foreign agents. Consequent to insights into the immune system, modern biology has been instrumental in the development and production of next generation 21st century vaccines. As these biological tools, commonly and collectively referred to as 'omics, became readily available, there has been a renewed consideration of Controlled Human Infection Models (CHIMs). Successful and reproducible CHIMs can complement modern molecular biology for the study of infectious diseases and development of effective vaccines in a regulated process that mitigates risk, cost, and time, with capacity to discern immune correlates of protection.
Collapse
Affiliation(s)
- May ElSherif
- Canadian Center for Vaccinology, IWK Health, Nova Scotia Health, and Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Scott A Halperin
- Canadian Center for Vaccinology, IWK Health, Nova Scotia Health, and Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
26
|
Guzmán-Solís AA, Navarro MA, Ávila-Arcos MC, Blanco-Melo D. A Glimpse into the Past: What Ancient Viral Genomes Reveal About Human History. Annu Rev Virol 2023; 10:49-75. [PMID: 37268008 DOI: 10.1146/annurev-virology-111821-123859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Humans have battled viruses for millennia. However, directly linking the symptomatology of disease outbreaks to specific viral pathogens was not possible until the twentieth century. With the advent of the genomic era and the development of advanced protocols for isolation, sequencing, and analysis of ancient nucleic acids from diverse human remains, the identification and characterization of ancient viruses became feasible. Recent studies have provided invaluable information about past epidemics and made it possible to examine assumptions and inferences on the origin and evolution of certain viral families. In parallel, the study of ancient viruses also uncovered their importance in the evolution of the human lineage and their key roles in shaping major events in human history. In this review, we describe the strategies used for the study of ancient viruses, along with their limitations, and provide a detailed account of what past viral infections have revealed about human history.
Collapse
Affiliation(s)
- Axel A Guzmán-Solís
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Alejandro Navarro
- Licenciatura en Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México;
| | - María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México;
| | - Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| |
Collapse
|
27
|
Herrera-Serrano JE, Guerrero-Díaz-de-León JA, Medina-Ramírez IE, Macías-Díaz JE. A multiconsistent computational methodology to resolve a diffusive epidemiological system with effects of migration, vaccination and quarantine. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 236:107526. [PMID: 37098304 DOI: 10.1016/j.cmpb.2023.107526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND We provide a compartmental model for the transmission of some contagious illnesses in a population. The model is based on partial differential equations, and takes into account seven sub-populations which are, concretely, susceptible, exposed, infected (asymptomatic or symptomatic), quarantined, recovered and vaccinated individuals along with migration. The goal is to propose and analyze an efficient computer method which resembles the dynamical properties of the epidemiological model. MATERIALS AND METHODS A non-local approach is utilized for finding approximate solutions for the mathematical model. To that end, a non-standard finite-difference technique is introduced. The finite-difference scheme is a linearly implicit model which may be rewritten using a suitable matrix. Under suitable circumstances, the matrices representing the methodology are M-matrices. RESULTS Analytically, the local asymptotic stability of the constant solutions is investigated and the next generation matrix technique is employed to calculate the reproduction number. Computationally, the dynamical consistency of the method and the numerical efficiency are investigated rigorously. The method is thoroughly examined for its convergence, stability, and consistency. CONCLUSIONS The theoretical analysis of the method shows that it is able to maintain the positivity of its solutions and identify equilibria. The method's local asymptotic stability properties are similar to those of the continuous system. The analysis concludes that the numerical model is convergent, stable and consistent, with linear order of convergence in the temporal domain and quadratic order of convergence in the spatial variables. A computer implementation is used to confirm the mathematical properties, and it confirms the ability in our scheme to preserve positivity, and identify equilibrium solutions and their local asymptotic stability.
Collapse
Affiliation(s)
- Jorge E Herrera-Serrano
- Basic Sciences Faculty, Aguascalientes Autonomous University, Ave. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags. 201000, Mexico; Academic Direction of Information Technologies and Mechatronics, Technological University of the North of Aguascalientes, Ave. Universidad 1001, La Estación Rincón, Rincón de Romos, Ags. 20400, Mexico.
| | - José A Guerrero-Díaz-de-León
- Department of Statistics, Aguascalientes Autonomous University, Ave. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags. 20100, Mexico.
| | - Iliana E Medina-Ramírez
- Department of Chemistry, Aguascalientes Autonomous University, Ave. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags. 20100, Mexico.
| | - Jorge E Macías-Díaz
- Department of Mathematics and Didactics of Mathematics, School of Digital Technologies, Tallinn University, Narva Rd. 25, 10120 Tallinn, Estonia; Department of Mathematics and Physics, Aguascalientes Autonomous University, Ave. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags. 20100, Mexico.
| |
Collapse
|
28
|
Zhou H, Li Q, Zhang Z, Wang X, Niu H. Recent Advances in Superhydrophobic and Antibacterial Cellulose-Based Fibers and Fabrics: Bio-inspiration, Strategies, and Applications. ADVANCED FIBER MATERIALS 2023; 5:1-37. [PMID: 37361104 PMCID: PMC10201051 DOI: 10.1007/s42765-023-00297-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
Cellulose-based fabrics are ubiquitous in our daily lives. They are the preferred choice for bedding materials, active sportswear, and next-to-skin apparels. However, the hydrophilic and polysaccharide characteristics of cellulose materials make them vulnerable to bacterial attack and pathogen infection. The design of antibacterial cellulose fabrics has been a long-term and on-going effort. Fabrication strategies based on the construction of surface micro-/nanostructure, chemical modification, and the application of antibacterial agents have been extensively investigated by many research groups worldwide. This review systematically discusses recent research on super-hydrophobic and antibacterial cellulose fabrics, focusing on morphology construction and surface modification. First, natural surfaces showing liquid-repellent and antibacterial properties are introduced and the mechanisms behind are explained. Then, the strategies for fabricating super-hydrophobic cellulose fabrics are summarized, and the contribution of the liquid-repellent function to reducing the adhesion of live bacteria and removing dead bacteria is elucidated. Representative studies on cellulose fabrics functionalized with super-hydrophobic and antibacterial properties are discussed in detail, and their potential applications are also introduced. Finally, the challenges in achieving super-hydrophobic antibacterial cellulose fabrics are discussed, and the future research direction in this area is proposed. Graphical Abstract The figure summarizes the natural surfaces and the main fabrication strategies of superhydrophobic antibacterial cellulose fabrics and their potential applications. Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00297-1.
Collapse
Affiliation(s)
- Hua Zhou
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Qingshuo Li
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Zhong Zhang
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Xungai Wang
- JC STEM Lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Haitao Niu
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
29
|
Chauhan RP, Fogel R, Limson J. Overview of Diagnostic Methods, Disease Prevalence and Transmission of Mpox (Formerly Monkeypox) in Humans and Animal Reservoirs. Microorganisms 2023; 11:1186. [PMID: 37317160 DOI: 10.3390/microorganisms11051186] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Mpox-formerly monkeypox-is a re-emerging zoonotic virus disease, with large numbers of human cases reported during multi-country outbreaks in 2022. The close similarities in clinical symptoms that Mpox shares with many orthopoxvirus (OPXV) diseases make its diagnosis challenging, requiring laboratory testing for confirmation. This review focuses on the diagnostic methods used for Mpox detection in naturally infected humans and animal reservoirs, disease prevalence and transmission, clinical symptoms and signs, and currently known host ranges. Using specific search terms, up to 2 September 2022, we identified 104 relevant original research articles and case reports from NCBI-PubMed and Google Scholar databases for inclusion in the study. Our analyses observed that molecular identification techniques are overwhelmingly being used in current diagnoses, especially real-time PCR (3982/7059 cases; n = 41 studies) and conventional PCR (430/1830 cases; n = 30 studies) approaches being most-frequently-used to diagnose Mpox cases in humans. Additionally, detection of Mpox genomes, using qPCR and/or conventional PCR coupled to genome sequencing methods, offered both reliable detection and epidemiological analyses of evolving Mpox strains; identified the emergence and transmission of a novel clade 'hMPXV-1A' lineage B.1 during 2022 outbreaks globally. While a few current serologic assays, such as ELISA, reported on the detection of OPXV- and Mpox-specific IgG (891/2801 cases; n = 17 studies) and IgM antibodies (241/2688 cases; n = 11 studies), hemagglutination inhibition (HI) detected Mpox antibodies in human samples (88/430 cases; n = 6 studies), most other serologic and immunographic assays used were OPXV-specific. Interestingly, virus isolation (228/1259 cases; n = 24 studies), electron microscopy (216/1226 cases; n = 18 studies), and immunohistochemistry (28/40; n = 7 studies) remain useful methods of Mpox detection in humans in select instances using clinical and tissue samples. In animals, OPXV- and Mpox-DNA and antibodies were detected in various species of nonhuman primates, rodents, shrews, opossums, a dog, and a pig. With evolving transmission dynamics of Mpox, information on reliable and rapid detection methods and clinical symptoms of disease is critical for disease management.
Collapse
Affiliation(s)
- Ravendra P Chauhan
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa
| | - Ronen Fogel
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa
| | - Janice Limson
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa
| |
Collapse
|
30
|
Letafati A, Sakhavarz T. Monkeypox virus: A review. Microb Pathog 2023; 176:106027. [PMID: 36758824 PMCID: PMC9907786 DOI: 10.1016/j.micpath.2023.106027] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
While monkeypox was previously found in Africa, the bulk of occurrences in the present outbreak are being reported in many countries. It is not yet known how this outbreak began, and as the COVID-19 crisis begins to abate, numerous nations throughout the world are now contending with a novel outbreak. Monkeypox is a transmissible virus between animals and humans, belonging to the Orthopoxvirus genus of the Poxviridae family. In the 1970s, cases of monkeypox began increasing due to the cessation of vaccination against smallpox, which drew international attention. The virus was named monkeypox because it was first observed in macaque monkeys. It is thought to be transmitted by several different rodents and small mammals, though the origin of the virus is not known. Monkeypox, while occasionally transmitted from one human to another, can be disseminated through the inhalation of droplets or through contact with the skin lesions of an infected individual. Unfortunately, there is no definitive cure for monkeypox; however, supportive care can be offered to ameliorate its symptoms. In severe cases, medications like tecovirimat may be administered. However, there are no established guidelines for symptom management in monkeypox cases. In this article we have discussed about different aspects of monkeypox including viral structure, transmission, replication, clinical manifestations, vaccination, treatment and current prevalence in the world to understand it better and give insight to the future studies.
Collapse
Affiliation(s)
- Arash Letafati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Tannaz Sakhavarz
- Department of Biochemistry, Faculty of Biological Science, Kharazmi University, Tehran, Iran.
| |
Collapse
|
31
|
Bruneau RC, Tazi L, Rothenburg S. Cowpox Viruses: A Zoo Full of Viral Diversity and Lurking Threats. Biomolecules 2023; 13:325. [PMID: 36830694 PMCID: PMC9953750 DOI: 10.3390/biom13020325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Cowpox viruses (CPXVs) exhibit the broadest known host range among the Poxviridae family and have caused lethal outbreaks in various zoo animals and pets across 12 Eurasian countries, as well as an increasing number of human cases. Herein, we review the history of how the cowpox name has evolved since the 1700s up to modern times. Despite early documentation of the different properties of CPXV isolates, only modern genetic analyses and phylogenies have revealed the existence of multiple Orthopoxvirus species that are currently constrained under the CPXV designation. We further chronicle modern outbreaks in zoos, domesticated animals, and humans, and describe animal models of experimental CPXV infections and how these can help shaping CPXV species distinctions. We also describe the pathogenesis of modern CPXV infections in animals and humans, the geographic range of CPXVs, and discuss CPXV-host interactions at the molecular level and their effects on pathogenicity and host range. Finally, we discuss the potential threat of these viruses and the future of CPXV research to provide a comprehensive review of CPXVs.
Collapse
Affiliation(s)
| | | | - Stefan Rothenburg
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
32
|
QMR- History of Modern Pandemics. Presse Med 2022; 51:104147. [DOI: 10.1016/j.lpm.2022.104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
33
|
A New Role for Old Friends: Effects of Helminth Infections on Vaccine Efficacy. Pathogens 2022; 11:pathogens11101163. [PMID: 36297220 PMCID: PMC9608950 DOI: 10.3390/pathogens11101163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Vaccines are one of the most successful medical inventions to enable the eradication or control of common and fatal diseases. Environmental exposure of hosts, including helminth infections, plays an important role in immune responses to vaccines. Given that helminth infections are among the most common infectious diseases in the world, evaluating vaccine efficiency in helminth-infected populations may provide critical information for selecting optimal vaccination programs. Here, we reviewed the effects of helminth infections on vaccination and its underlying immunological mechanisms, based on findings from human studies and animal models. Moreover, the potential influence of helminth infections on SARS-CoV-2 vaccine was also discussed. Based on these findings, there is an urgent need for anthelmintic treatments to eliminate helminth suppressive impacts on vaccination effectiveness during implementing mass vaccination in parasite endemic areas.
Collapse
|
34
|
Application of microneedle-based vaccines in biosecurity. JOURNAL OF BIOSAFETY AND BIOSECURITY 2022. [DOI: 10.1016/j.jobb.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|