1
|
Muramatsu W, Maryanovich M, Akiyama T, Karagiannis GS. Thymus ad astra, or spaceflight-induced thymic involution. Front Immunol 2025; 15:1534444. [PMID: 39926601 PMCID: PMC11802524 DOI: 10.3389/fimmu.2024.1534444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/24/2024] [Indexed: 02/11/2025] Open
Abstract
Spaceflight imposes a constellation of physiological challenges-cosmic radiation, microgravity, disrupted circadian rhythms, and psychosocial stress-that critically compromise astronaut health. Among the most vulnerable organs is the thymus, a cornerstone of immune system functionality, tasked with generating naive T cells essential for adaptive immunity. The thymus is particularly sensitive to spaceflight conditions, as its role in maintaining immune homeostasis is tightly regulated by a balance of systemic and local factors easily disrupted in space. Cosmic radiation, an omnipresent hazard beyond Earth's magnetosphere, accelerates DNA damage and cellular senescence in thymic epithelial cells, impairing thymopoiesis and increasing the risk of immune dysregulation. Microgravity and circadian rhythm disruption exacerbate this by altering immune cell migration patterns and stromal support, critical for T-cell development. Psychosocial stressors, including prolonged isolation and mission-induced anxiety, further compound thymic atrophy by elevating systemic glucocorticoid levels. Ground-based analogs simulating cosmic radiation and microgravity have been instrumental in elucidating mechanisms of thymic involution and its downstream effects on immunity. These models reveal that long-duration missions result in diminished naive T-cell output, leaving astronauts vulnerable to infections and possibly at high risk for developing neoplasia. Advances in countermeasures, such as pharmacological interventions targeting thymic regeneration and bioengineering approaches to protect thymic architecture, are emerging as vital strategies to preserve immune resilience during prolonged space exploration. Focusing on the thymus as a central hub of immune vulnerability underscores its pivotal role in spaceflight-induced health risks. Understanding these dynamics will not only enhance the safety of human space missions but also provide critical insights into thymus biology under extreme conditions.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| | - Taishin Akiyama
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - George S. Karagiannis
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, United States
- The Marilyn and Stanely M. Katz Institute for Immunotherapy for Cancer and Inflammatory Disorders, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| |
Collapse
|
2
|
Yun S, Kiffer FC, Bancroft GL, Guzman CS, Soler I, Haas HA, Shi R, Patel R, Lara-Jiménez J, Kumar PL, Tran FH, Ahn KJ, Rong Y, Luitel K, Shay JW, Eisch AJ. The longitudinal behavioral effects of acute exposure to galactic cosmic radiation in female C57BL/6J mice: Implications for deep space missions, female crews, and potential antioxidant countermeasures. J Neurochem 2025; 169:e16225. [PMID: 39318241 DOI: 10.1111/jnc.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Galactic cosmic radiation (GCR) is an unavoidable risk to astronauts that may affect mission success. Male rodents exposed to 33-beam-GCR (33-GCR) show short-term cognitive deficits but reports on female rodents and long-term assessment are lacking. We asked: What are the longitudinal behavioral effects of 33-GCR on female mice? Also, can an antioxidant/anti-inflammatory compound (CDDO-EA) mitigate the impact of 33-GCR? Mature (6-month-old) C57BL/6J female mice received CDDO-EA (400 μg/g of food) or a control diet (vehicle, Veh) for 5 days and Sham-irradiation (IRR) or whole-body 33-GCR (0.75Gy) on the 4th day. Three-months post-IRR, mice underwent two touchscreen-platform tests: (1) location discrimination reversal (tests behavior pattern separation and cognitive flexibility, abilities reliant on the dentate gyrus) and (2) stimulus-response learning/extinction. Mice then underwent arena-based behavior tests (e.g. open field, 3-chamber social interaction). At the experiment's end (14.25-month post-IRR), an index relevant to neurogenesis was quantified (doublecortin-immunoreactive [DCX+] dentate gyrus immature neurons). Female mice exposed to Veh/Sham vs. Veh/33-GCR had similar pattern separation (% correct to 1st reversal). There were two effects of diet: CDDO-EA/Sham and CDDO-EA/33-GCR mice had better pattern separation vs. their respective control groups (Veh/Sham, Veh/33-GCR), and CDDO-EA/33-GCR mice had better cognitive flexibility (reversal number) vs. Veh/33-GCR mice. One radiation effect/CDDO-EA countereffect also emerged: Veh/33-GCR mice had slower stimulus-response learning (days to completion) vs. all other groups, including CDDO-EA/33-GCR mice. In general, all mice showed normal anxiety-like behavior, exploration, and habituation to novel environments. There was also a change relevant to neurogenesis: Veh/33-GCR mice had fewer DCX+ dentate gyrus immature neurons vs. Veh/Sham mice. Our study implies space radiation is a risk to a female crew's longitudinal mission-relevant cognitive processes and CDDO-EA is a potential dietary countermeasure for space-radiation CNS risks.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederico C Kiffer
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Grace L Bancroft
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Caterina S Guzman
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Soler
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Harley A Haas
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raymon Shi
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Riya Patel
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Jaysen Lara-Jiménez
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Priya L Kumar
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fionya H Tran
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Kyung Jin Ahn
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Yuying Rong
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Krishna Luitel
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Kumar K, Angdisen J, Ma J, Datta K, Fornace AJ, Suman S. Simulated Galactic Cosmic Radiation Exposure-Induced Mammary Tumorigenesis in ApcMin/+ Mice Coincides with Activation of ERα-ERRα-SPP1 Signaling Axis. Cancers (Basel) 2024; 16:3954. [PMID: 39682141 DOI: 10.3390/cancers16233954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Exposure to galactic cosmic radiation (GCR) is a breast cancer risk factor for female astronauts on deep-space missions. However, the specific signaling mechanisms driving GCR-induced breast cancer have not yet been determined. METHODS This study aimed to investigate the role of the estrogen-induced ERα-ERRα-SPP1 signaling axis in relation to mammary tumorigenesis in female ApcMin/+ mice exposed to simulated GCR (GCRsim) at 100-110 days post-exposure. RESULTS In GCRsim-exposed mice, we observed marked elevations in serum estradiol, increased ductal overgrowth, ERα activation, and upregulation of ERα target genes with pro-tumorigenic functions in mammary tissues that was coupled with a higher mammary tumorigenesis, relative to control. Additionally, the ERα target gene Esrra, which encodes ERRα, was also upregulated along with its oncogenic target gene Spp1, indicating the activation of the ERα-ERRα-SPP1 axis in mouse mammary tissues after GCRsim exposure. Using a human tissue microarray and human breast cancer gene expression analysis, we also highlighted the conserved nature of the ERα-ERRα-SPP1 signaling in human breast cancer development. CONCLUSIONS We identified the ERα-ERRα-SPP1 signaling axis as a potential key mediator in GCR-induced breast cancer with conserved activation in human breast cancer. These findings suggest that targeting this pathway could serve as a potential target for therapeutic intervention to safeguard female astronauts during and after a prolonged outer space mission.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jerry Angdisen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jinwenrui Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
4
|
Kozbenko T, Adam N, Grybas VS, Smith BJ, Alomar D, Hocking R, Abdelaziz J, Pace A, Boerma M, Azimzadeh O, Blattnig S, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to abnormal vascular remodeling. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:4-30. [PMID: 39440813 DOI: 10.1002/em.22636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are complex, encompassing many types of heart pathophysiologies and associated etiologies. Radiotherapy studies have shown that fractionated radiation exposure at high doses (3-17 Gy) to the heart increases the incidence of CVD. However, the effects of low doses of radiation on the cardiovascular system or the effects from space travel, where radiation and microgravity are important contributors to damage, are not clearly understood. Herein, the adverse outcome pathway (AOP) framework was applied to develop an AOP to abnormal vascular remodeling from the deposition of energy. Following the creation of a preliminary pathway with the guidance of field experts and authoritative reviews, a scoping review was conducted that informed final key event (KE) selection and evaluation of the Bradford Hill criteria for the KE relationships (KERs). The AOP begins with a molecular initiating event of deposition of energy; ionization events increase oxidative stress, which when persistent concurrently causes the release of pro-inflammatory mediators, suppresses anti-inflammatory mechanisms and alters stress response signaling pathways. These KEs alter nitric oxide levels leading to endothelial dysfunction, and subsequent abnormal vascular remodeling (the adverse outcome). The work identifies evidence needed to strengthen understanding of the causal associations for the KERs, emphasizing where there are knowledge gaps and uncertainties in both qualitative and quantitative understanding. The AOP is anticipated to direct future research to better understand the effects of space on the human body and potentially develop countermeasures to better protect future space travelers.
Collapse
Affiliation(s)
- Tatiana Kozbenko
- Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | - Amanda Pace
- Carleton University, Ottawa, Ontario, Canada
| | - Marjan Boerma
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, Neuherberg, Germany
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
5
|
Kumar K, Fornace AJ, Suman S. 8-OxodG: A Potential Biomarker for Chronic Oxidative Stress Induced by High-LET Radiation. DNA 2024; 4:221-238. [PMID: 39268222 PMCID: PMC11391509 DOI: 10.3390/dna4030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Oxidative stress-mediated biomolecular damage is a characteristic feature of ionizing radiation (IR) injury, leading to genomic instability and chronic health implications. Specifically, a dose- and linear energy transfer (LET)-dependent persistent increase in oxidative DNA damage has been reported in many tissues and biofluids months after IR exposure. Contrary to low-LET photon radiation, high-LET IR exposure is known to cause significantly higher accumulations of DNA damage, even at sublethal doses, compared to low-LET IR. High-LET IR is prevalent in the deep space environment (i.e., beyond Earth's magnetosphere), and its exposure could potentially impair astronauts' health. Therefore, the development of biomarkers to assess and monitor the levels of oxidative DNA damage can aid in the early detection of health risks and would also allow timely intervention. Among the recognized biomarkers of oxidative DNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodG) has emerged as a promising candidate, indicative of chronic oxidative stress. It has been reported to exhibit differing levels following equivalent doses of low- and high-LET IR. This review discusses 8-OxodG as a potential biomarker of high-LET radiation-induced chronic stress, with special emphasis on its potential sources, formation, repair mechanisms, and detection methods. Furthermore, this review addresses the pathobiological implications of high-LET IR exposure and its association with 8-OxodG. Understanding the association between high-LET IR exposure-induced chronic oxidative stress, systemic levels of 8-OxodG, and their potential health risks can provide a framework for developing a comprehensive health monitoring biomarker system to safeguard the well-being of astronauts during space missions and optimize long-term health outcomes.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
6
|
Rosh-Gorsky A, Coon A, Beck D, D'Onofrio R, Binney Q, Queen I, Barney A, Longton R, Long AC, Gouker P, Ledford K, Smith MA, Cascio E, Konomi K, Duncan B. 3D Printing of Composite Radiation Shielding for Broad Spectrum Protection of Electronic Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403822. [PMID: 38801326 DOI: 10.1002/adma.202403822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Indexed: 05/29/2024]
Abstract
The miniaturization of satellite systems has compounded the need to protect microelectronic components from damaging radiation. Current approaches to mitigate this damage, such as indiscriminate mass shielding, built-in redundancies, and radiation-hardened electronics, introduce high size, weight, power, and cost penalties that impact the overall performance of the satellite or launch opportunities. Additive manufacturing provides an appealing strategy to deposit radiation shielding only on susceptible components within an electronic assembly. Here, a versatile material platform and process to conformally print customized composite inks at room temperature directly and selectively onto commercial-off-the-shelf electronics is described. The suite of inks uses a flexible styrene-isoprene-styrene block copolymer binder that can be filled with particles of different atomic densities for diverging radiation shielding capabilities. Additionally, the system enables the combination of multiple distinct particle species within the same printed structure. The method can produce graded shielding that offers improved radiation attenuation by tailoring both shield geometry and composition to provide comprehensive protection from a broad range of radiation species. The authors anticipate this alternative to traditional shielding methods will enable the rapid proliferation of the next generation of compact satellite designs.
Collapse
Affiliation(s)
- Avery Rosh-Gorsky
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421, USA
| | - Austin Coon
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421, USA
| | - Devon Beck
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421, USA
| | - Richard D'Onofrio
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421, USA
| | - Quinn Binney
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421, USA
| | - Isaiah Queen
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421, USA
| | - Andrea Barney
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421, USA
| | - Robert Longton
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421, USA
| | - Ashley Carlton Long
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421, USA
| | - Pascale Gouker
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421, USA
| | - Keri Ledford
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421, USA
| | - Melissa Alyson Smith
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421, USA
| | - Ethan Cascio
- Francis H. Burr Proton Therapy Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ksenofon Konomi
- Radiation Laboratory, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Bradley Duncan
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421, USA
| |
Collapse
|
7
|
An R, Blackwell VK, Harandi B, Gibbons AC, Siu O, Irby I, Rees A, Cornejal N, Sattler KM, Sheng T, Syracuse NC, Loftus D, Santa Maria SR, Cekanaviciute E, Reinsch SS, Ray HE, Paul AM. Influence of the spaceflight environment on macrophage lineages. NPJ Microgravity 2024; 10:63. [PMID: 38862517 PMCID: PMC11166655 DOI: 10.1038/s41526-023-00293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/25/2023] [Indexed: 06/13/2024] Open
Abstract
Spaceflight and terrestrial spaceflight analogs can alter immune phenotypes. Macrophages are important immune cells that bridge the innate and adaptive immune systems and participate in immunoregulatory processes of homeostasis. Furthermore, macrophages are critically involved in initiating immunity, defending against injury and infection, and are also involved in immune resolution and wound healing. Heterogeneous populations of macrophage-type cells reside in many tissues and cause a variety of tissue-specific effects through direct or indirect interactions with other physiological systems, including the nervous and endocrine systems. It is vital to understand how macrophages respond to the unique environment of space to safeguard crew members with appropriate countermeasures for future missions in low Earth orbit and beyond. This review highlights current literature on macrophage responses to spaceflight and spaceflight analogs.
Collapse
Affiliation(s)
- Rocky An
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Cornell University, Department of Biological and Environmental Engineering and Sibley School of Mechanical and Aerospace Engineering, Ithaca, NY, 14853, USA
| | - Virginia Katherine Blackwell
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, 02139, USA
| | - Bijan Harandi
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Tufts University, Department of Chemistry, Medford, MA, 02155, USA
| | - Alicia C Gibbons
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- University of California San Diego, Department of Cellular and Molecular Medicine, La Jolla, CA, 92093, USA
| | - Olivia Siu
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA
| | - Iris Irby
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Amy Rees
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Nadjet Cornejal
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Brooklyn College, Department of Natural and Behavioral Sciences, Brooklyn, NY, 11210, USA
| | - Kristina M Sattler
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Ohio State University, Department of Physiology and Cell Biology, Columbus, OH, 43210, USA
| | - Tao Sheng
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- University of Pittsburgh, Department of Computer Science, Pittsburgh, PA, 15260, USA
| | - Nicholas C Syracuse
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- North Carolina State University, Department of Molecular and Structural Biochemistry and Department of Biological Sciences, Raleigh, NC, 27695, USA
| | - David Loftus
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Sergio R Santa Maria
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Egle Cekanaviciute
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Sigrid S Reinsch
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Hami E Ray
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
- ASRC Federal, Inc, Beltsville, MD, 20705, USA
| | - Amber M Paul
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA.
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA.
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA.
| |
Collapse
|
8
|
Luitel K, Siteni S, Barron S, Shay JW. Simulated galactic cosmic radiation-induced cancer progression in mice. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:43-51. [PMID: 38670651 DOI: 10.1016/j.lssr.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/29/2023] [Accepted: 01/28/2024] [Indexed: 04/28/2024]
Abstract
Prolonged manned space flight exposure risks to galactic comic radiation, has led to uncertainties in a variety of health risks. Our previous work, utilizing either single ion or multiple ion radiation exposure conducted at the NSRL (NASA Space Radiation Laboratory, Brookhaven, NY) demonstrated that HZE ion components of the GCR result in persistent inflammatory signaling, increased mutations, and higher rates of cancer initiation and progression. With the development of the 33-beam galactic cosmic radiation simulations (GCRsim) at the NSRL, we can more closely test on earth the radiation environment found in space. With a previously used lung cancer susceptible mouse model (K-rasLA-1), we performed acute exposure experiments lasting 1-2 h, and chronic exposure experiments lasting 2-6 weeks with a total dose of 50 cGy and 75 cGy. We obtained histological samples from a subset of mice 100 days post-irradiation, and the remaining mice were monitored for overall survival up to 1-year post-irradiation. When we compared acute exposures (1-2 hrs.) and chronic exposure (2-6 weeks), we found a trend in the increase of lung adenocarcinoma respectively for a total dose of 50 cGy and 75 cGy. Furthermore, when we added neutron exposure to the 75 cGy of GCRsim, we saw a further increase in the incidence of adenocarcinoma. We interpret these findings to suggest that the risks of carcinogenesis are heightened with doses anticipated during a round trip to Mars, and this risk is magnified when coupled with extra neutron exposure that are expected on the Martian surface. We also observed that risks are reduced when the NASA official 33-beam GCR simulations are provided at high dose rates compared to low dose rates.
Collapse
Affiliation(s)
- Krishna Luitel
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Silvia Siteni
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Summer Barron
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
9
|
Burke M, Wong K, Talyansky Y, Mhatre SD, Mitchell C, Juran CM, Olson M, Iyer J, Puukila S, Tahimic CGT, Christenson LK, Lowe M, Rubinstein L, Shirazi-Fard Y, Sowa MB, Alwood JS, Ronca AE, Paul AM. Sexual dimorphism during integrative endocrine and immune responses to ionizing radiation in mice. Sci Rep 2024; 14:7334. [PMID: 38409284 PMCID: PMC10897391 DOI: 10.1038/s41598-023-33629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/16/2023] [Indexed: 02/28/2024] Open
Abstract
Exposure to cosmic ionizing radiation is an innate risk of the spaceflight environment that can cause DNA damage and altered cellular function. In astronauts, longitudinal monitoring of physiological systems and interactions between these systems are important to consider for mitigation strategies. In addition, assessments of sex-specific biological responses in the unique environment of spaceflight are vital to support future exploration missions that include both females and males. Here we assessed sex-specific, multi-system immune and endocrine responses to simulated cosmic radiation. For this, 24-week-old, male and female C57Bl/6J mice were exposed to simplified five-ion, space-relevant galactic cosmic ray (GCRsim) radiation at 15 and 50 cGy, to simulate predicted radiation exposures that would be experienced during lunar and Martian missions, respectively. Blood and adrenal tissues were collected at 3- and 14-days post-irradiation for analysis of immune and endocrine biosignatures and pathways. Sexually dimorphic adrenal gland weights and morphology, differential total RNA expression with corresponding gene ontology, and unique immune phenotypes were altered by GCRsim. In brief, this study offers new insights into sexually dimorphic immune and endocrine kinetics following simulated cosmic radiation exposure and highlights the necessity for personalized translational approaches for astronauts during exploration missions.
Collapse
Affiliation(s)
- Marissa Burke
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kelly Wong
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuli Talyansky
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Siddhita D Mhatre
- KBR, Houston, TX, 77002, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Carol Mitchell
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
| | - Cassandra M Juran
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| | - Makaila Olson
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
| | - Janani Iyer
- KBR, Houston, TX, 77002, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Universities Space Research Association, Mountain View, CA, 94043, USA
| | - Stephanie Puukila
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Oak Ridge Associated Universities, Oak Ridge, TN, 37830, USA
| | - Candice G T Tahimic
- Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Lane K Christenson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Moniece Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
- Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Linda Rubinstein
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Universities Space Research Association, Mountain View, CA, 94043, USA
- The Joseph Sagol Neuroscience Center, Sheba Research Hospital, Ramat Gan 52621, Israel
| | - Yasaman Shirazi-Fard
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.
- Departments of Obstetrics & Gynecology, Wake Forest Medical School, Winston-Salem, NC, USA.
| | - Amber M Paul
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA.
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA.
| |
Collapse
|
10
|
Dobney W, Mols L, Mistry D, Tabury K, Baselet B, Baatout S. Evaluation of deep space exploration risks and mitigations against radiation and microgravity. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1225034. [PMID: 39355042 PMCID: PMC11440958 DOI: 10.3389/fnume.2023.1225034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2024]
Abstract
Ionizing radiation and microgravity are two considerable health risks encountered during deep space exploration. Both have deleterious effects on the human body. On one hand, weightlessness is known to induce a weakening of the immune system, delayed wound healing and musculoskeletal, cardiovascular, and sensorimotor deconditioning. On the other hand, radiation exposure can lead to long-term health effects such as cancer and cataracts as well as have an adverse effect on the central nervous and cardiovascular systems. Ionizing radiation originates from three main sources in space: galactic cosmic radiation, solar particle events and solar winds. Furthermore, inside the spacecraft and inside certain space habitats on Lunar and Martian surfaces, the crew is exposed to intravehicular radiation, which arises from nuclear reactions between space radiation and matter. Besides the approaches already in use, such as radiation shielding materials (such as aluminium, water or polyethylene), alternative shielding materials (including boron nanotubes, complex hybrids, composite hybrid materials, and regolith) and active shielding (using fields to deflect radiation particles) are being investigated for their abilities to mitigate the effects of ionizing radiation. From a biological point of view, it can be predicted that exposure to ionizing radiation during missions beyond Low Earth Orbit (LEO) will affect the human body in undesirable ways, e.g., increasing the risks of cataracts, cardiovascular and central nervous system diseases, carcinogenesis, as well as accelerated ageing. Therefore, it is necessary to assess the risks related to deep space exploration and to develop mitigation strategies to reduce these risks to a tolerable level. By using biomarkers for radiation sensitivity, space agencies are developing extensive personalised medical examination programmes to determine an astronaut's vulnerability to radiation. Moreover, researchers are developing pharmacological solutions (e.g., radioprotectors and radiomitigators) to proactively or reactively protect astronauts during deep space exploration. Finally, research is necessary to develop more effective countermeasures for use in future human space missions, which can also lead to improvements to medical care on Earth. This review will discuss the risks space travel beyond LEO poses to astronauts, methods to monitor astronauts' health, and possible approaches to mitigate these risks.
Collapse
Affiliation(s)
- William Dobney
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- School of Aeronautical, Automotive, Chemical and Materials Engineering, Loughborough University, Loughborough, United Kingdom
| | - Louise Mols
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Dhruti Mistry
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
- Department of Molecular Biotechnology, UGhent, Gent, Belgium
- Department of Human Structure & Repair, UGhent, Gent, Belgium
| |
Collapse
|
11
|
Babu B, Pawar S, Mittal A, Kolanthai E, Neal CJ, Coathup M, Seal S. Nanotechnology enabled radioprotectants to reduce space radiation-induced reactive oxidative species. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1896. [PMID: 37190884 DOI: 10.1002/wnan.1896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Interest in space exploration has seen substantial growth following recent launch and operation of modern space technologies. In particular, the possibility of travel beyond low earth orbit is seeing sustained support. However, future deep space travel requires addressing health concerns for crews under continuous, longer-term exposure to adverse environmental conditions. Among these challenges, radiation-induced health issues are a major concern. Their potential to induce chronic illness is further potentiated by the microgravity environment. While investigations into the physiological effects of space radiation are still under investigation, studies on model ionizing radiation conditions, in earth and micro-gravity conditions, can provide needed insight into relevant processes. Substantial formation of high, sustained reactive oxygen species (ROS) evolution during radiation exposure is a clear threat to physiological health of space travelers, producing indirect damage to various cell structures and requiring therapeutic address. Radioprotection toward the skeletal system components is essential to astronaut health, due to the high radio-absorption cross-section of bone mineral and local hematopoiesis. Nanotechnology can potentially function as radioprotectant and radiomitigating agents toward ROS and direct radiation damage. Nanoparticle compositions such as gold, silver, platinum, carbon-based materials, silica, transition metal dichalcogenides, and ceria have all shown potential as viable radioprotectants to mitigate space radiation effects with nanoceria further showing the ability to protect genetic material from oxidative damage in several studies. As research into space radiation-induced health problems develops, this review intends to provide insights into the nanomaterial design to ameliorate pathological effects from ionizing radiation exposure. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Craig J Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Melanie Coathup
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- College of Medicine, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
12
|
Pal Chowdhury R, Stegeman LA, Lund ML, Fry D, Madzunkov S, Bahadori AA. Hybrid methods of radiation shielding against deep-space radiation. LIFE SCIENCES IN SPACE RESEARCH 2023; 38:67-78. [PMID: 37481310 DOI: 10.1016/j.lssr.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 07/24/2023]
Abstract
In the last decade, NASA and other space exploration organizations have focused on making crewed missions to different locations in our solar system a priority. To ensure the crew members' safety in a harsh radiation environment outside the protection of the geomagnetic field and atmosphere, a robust radiation protection system needs to be in place. Passive shielding methods, which use mass shielding, are insufficient as a standalone means of radiation protection for long-term deep-space missions. Active shielding methods, which use electromagnetic fields to deflect charged particles, have the potential to be a solution that can be used along with passive shielding to make deep-space travel safer and more feasible. Past active shielding studies have demonstrated that substantial technological advances are required for active shielding to be a reality. However, active shielding has shown potential for near-future implementation when used to protect against solar energetic particles, which are less penetrating than galactic cosmic rays (GCRs). This study uses a novel approach to investigate the impacts of passive and active shielding for protection against extreme solar particle events (SPEs) and free-space GCR spectra under solar minimum and solar maximum conditions. Hybrid shielding configuration performance is assessed in terms of effective dose and radiobiological effectiveness (RBE)-weighted dose reduction. A novel electrostatic shielding configuration consisting of multiple charged planes and charged rods was chosen as the base active shielding configuration. After a rigorous optimization process, two hybrid shielding configurations were chosen based on their ability to reduce RBE-weighted dose and effective dose. For protection against the extreme SPE, a hybrid active-passive shielding configuration was chosen, where active shielding was placed outside of passive shielding. In the case of GCRs, to gain additional reduction compared to passive shielding, the passive shielding configuration was placed before the active shielding to intentionally fragment HZE ions to improve shielding performance.
Collapse
Affiliation(s)
- Rajarshi Pal Chowdhury
- Alan Levin Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States of America.
| | - Luke A Stegeman
- Alan Levin Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States of America
| | - Matthew L Lund
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Dan Fry
- Space Radiation Analysis Group, NASA Lyndon B. Johnson Space Center, Houston, TX, United States of America
| | - Stojan Madzunkov
- Earth and Planetary Sciences, Jet Propulsion Laboratory, Pasadena, CA, United States of America
| | - Amir A Bahadori
- Alan Levin Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States of America.
| |
Collapse
|
13
|
Kumar K, Kumar S, Datta K, Fornace AJ, Suman S. High-LET-Radiation-Induced Persistent DNA Damage Response Signaling and Gastrointestinal Cancer Development. Curr Oncol 2023; 30:5497-5514. [PMID: 37366899 DOI: 10.3390/curroncol30060416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Ionizing radiation (IR) dose, dose rate, and linear energy transfer (LET) determine cellular DNA damage quality and quantity. High-LET heavy ions are prevalent in the deep space environment and can deposit a much greater fraction of total energy in a shorter distance within a cell, causing extensive DNA damage relative to the same dose of low-LET photon radiation. Based on the DNA damage tolerance of a cell, cellular responses are initiated for recovery, cell death, senescence, or proliferation, which are determined through a concerted action of signaling networks classified as DNA damage response (DDR) signaling. The IR-induced DDR initiates cell cycle arrest to repair damaged DNA. When DNA damage is beyond the cellular repair capacity, the DDR for cell death is initiated. An alternative DDR-associated anti-proliferative pathway is the onset of cellular senescence with persistent cell cycle arrest, which is primarily a defense mechanism against oncogenesis. Ongoing DNA damage accumulation below the cell death threshold but above the senescence threshold, along with persistent SASP signaling after chronic exposure to space radiation, pose an increased risk of tumorigenesis in the proliferative gastrointestinal (GI) epithelium, where a subset of IR-induced senescent cells can acquire a senescence-associated secretory phenotype (SASP) and potentially drive oncogenic signaling in nearby bystander cells. Moreover, DDR alterations could result in both somatic gene mutations as well as activation of the pro-inflammatory, pro-oncogenic SASP signaling known to accelerate adenoma-to-carcinoma progression during radiation-induced GI cancer development. In this review, we describe the complex interplay between persistent DNA damage, DDR, cellular senescence, and SASP-associated pro-inflammatory oncogenic signaling in the context of GI carcinogenesis.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
14
|
Nemec-Bakk AS, Sridharan V, Desai P, Landes RD, Hart B, Allen AR, Boerma M. Effects of Simulated 5-Ion Galactic Cosmic Radiation on Function and Structure of the Mouse Heart. Life (Basel) 2023; 13:life13030795. [PMID: 36983950 PMCID: PMC10057791 DOI: 10.3390/life13030795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Missions into deep space will expose astronauts to the harsh space environment, and the degenerative tissue effects of space radiation are largely unknown. To assess the risks, in this study, male BALB/c mice were exposed to 500 mGy 5-ion simulated GCR (GCRsim) at the NASA Space Radiation Laboratory. In addition, male and female CD1 mice were exposed to GCRsim and administered a diet containing Transforming Growth Factor-beta (TGF-β)RI kinase (ALK5) inhibitor IPW-5371 as a potential countermeasure. An ultrasound was performed to investigate cardiac function. Cardiac tissue was collected to determine collagen deposition, the density of the capillary network, and the expression of the immune mediator toll-like receptor 4 (TLR4) and immune cell markers CD2, CD4, and CD45. In male BALB/c mice, the only significant effects of GCRsim were an increase in the CD2 and TLR4 markers. In male CD1 mice, GCRsim caused a significant increase in total collagens and a decrease in the expression of TLR4, both of which were mitigated by the TGF-β inhibitor diet. In female CD1 mice, GCRsim caused an increase in the number of capillaries per tissue area in the ventricles, which may be explained by the decrease in the left ventricular mass. However, this increase was not mitigated by TGF-β inhibition. In both male and female CD1 mice, the combination of GCRsim and TGF-β inhibition caused changes in left ventricular immune cell markers that were not seen with GCRsim alone. These data suggest that GCRsim results in minor changes to cardiac tissue in both an inbred and outbred mouse strain. While there were few GCRsim effects to be mitigated, results from the combination of GCRsim and the TGF-β inhibitor do point to a role for TGF-β in maintaining markers of immune cells in the heart after exposure to GCR.
Collapse
Affiliation(s)
- Ashley S. Nemec-Bakk
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence:
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Parth Desai
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Reid D. Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Barry Hart
- Innovation Pathways, LLC of Palo Alto, Palo Alto, CA 94301, USA
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
15
|
Huff JL, Poignant F, Rahmanian S, Khan N, Blakely EA, Britten RA, Chang P, Fornace AJ, Hada M, Kronenberg A, Norman RB, Patel ZS, Shay JW, Weil MM, Simonsen LC, Slaba TC. Galactic cosmic ray simulation at the NASA space radiation laboratory - Progress, challenges and recommendations on mixed-field effects. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:90-104. [PMID: 36682835 DOI: 10.1016/j.lssr.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/17/2023]
Abstract
For missions beyond low Earth orbit to the moon or Mars, space explorers will encounter a complex radiation field composed of various ion species with a broad range of energies. Such missions pose significant radiation protection challenges that need to be solved in order to minimize exposures and associated health risks. An innovative galactic cosmic ray simulator (GCRsim) was recently developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The GCRsim technology is intended to represent major components of the space radiation environment in a ground analog laboratory setting where it can be used to improve understanding of biological risks and serve as a testbed for countermeasure development and validation. The current GCRsim consists of 33 energetic ion beams that collectively simulate the primary and secondary GCR field encountered by humans in space over the broad range of particle types, energies, and linear energy transfer (LET) of interest to health effects. A virtual workshop was held in December 2020 to assess the status of the NASA baseline GCRsim. Workshop attendees examined various aspects of simulator design, with a particular emphasis on beam selection strategies. Experimental results, modeling approaches, areas of consensus, and questions of concern were also discussed in detail. This report includes a summary of the GCRsim workshop and a description of the current status of the GCRsim. This information is important for future advancements and applications in space radiobiology.
Collapse
Affiliation(s)
- Janice L Huff
- NASA Langley Research Center, Hampton, VA, 23681, United States of America.
| | - Floriane Poignant
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Shirin Rahmanian
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Nafisah Khan
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Eleanor A Blakely
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States of America
| | - Richard A Britten
- Department of Radiation Oncology, Department of Microbiology and Molecular Cell Biology, Leroy T Canoles Jr. Cancer Center, School of Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, United States of America
| | - Polly Chang
- SRI International, Menlo Park, CA, 94025, United States of America
| | - Albert J Fornace
- Georgetown University, Washington, DC, 20057, United States of America
| | - Megumi Hada
- Prairie View A&M University, Prairie View, TX, 77446, United States of America
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States of America
| | - Ryan B Norman
- NASA Langley Research Center, Hampton, VA, 23681, United States of America
| | - Zarana S Patel
- KBR Inc., Houston, TX, 77058, United States of America; NASA Johnson Space Center, Houston, TX, 77058, United States of America
| | - Jerry W Shay
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Michael M Weil
- Colorado State University, Fort Collins, CO, 80523, United States of America
| | - Lisa C Simonsen
- NASA Headquarters, Washington, DC, 20546, United States of America
| | - Tony C Slaba
- NASA Langley Research Center, Hampton, VA, 23681, United States of America
| |
Collapse
|
16
|
Alaghband Y, Klein PM, Kramár EA, Cranston MN, Perry BC, Shelerud LM, Kane AE, Doan NL, Ru N, Acharya MM, Wood MA, Sinclair DA, Dickstein DL, Soltesz I, Limoli CL, Baulch JE. Galactic cosmic radiation exposure causes multifaceted neurocognitive impairments. Cell Mol Life Sci 2023; 80:29. [PMID: 36607431 PMCID: PMC9823026 DOI: 10.1007/s00018-022-04666-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/01/2022] [Accepted: 12/11/2022] [Indexed: 01/07/2023]
Abstract
Technological advancements have facilitated the implementation of realistic, terrestrial-based complex 33-beam galactic cosmic radiation simulations (GCR Sim) to now probe central nervous system functionality. This work expands considerably on prior, simplified GCR simulations, yielding new insights into responses of male and female mice exposed to 40-50 cGy acute or chronic radiations relevant to deep space travel. Results of the object in updated location task suggested that exposure to acute or chronic GCR Sim induced persistent impairments in hippocampus-dependent memory formation and reconsolidation in female mice that did not manifest robustly in irradiated male mice. Interestingly, irradiated male mice, but not females, were impaired in novel object recognition and chronically irradiated males exhibited increased aggressive behavior on the tube dominance test. Electrophysiology studies used to evaluate synaptic plasticity in the hippocampal CA1 region revealed significant reductions in long-term potentiation after each irradiation paradigm in both sexes. Interestingly, network-level disruptions did not translate to altered intrinsic electrophysiological properties of CA1 pyramidal cells, whereas acute exposures caused modest drops in excitatory synaptic signaling in males. Ultrastructural analyses of CA1 synapses found smaller postsynaptic densities in larger spines of chronically exposed mice compared to controls and acutely exposed mice. Myelination was also affected by GCR Sim with acutely exposed mice exhibiting an increase in the percent of myelinated axons; however, the myelin sheathes on small calibur (< 0.3 mm) and larger (> 0.5 mm) axons were thinner when compared to controls. Present findings might have been predicted based on previous studies using single and mixed beam exposures and provide further evidence that space-relevant radiation exposures disrupt critical cognitive processes and underlying neuronal network-level plasticity, albeit not to the extent that might have been previously predicted.
Collapse
Affiliation(s)
- Yasaman Alaghband
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, Palo Alto, CA, 94305, USA
| | - Eniko A Kramár
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, 92697-2695, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, 92697-2695, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 92697-2695, USA
| | - Michael N Cranston
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, 20817, USA
| | - Bayley C Perry
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, 20817, USA
| | - Lukas M Shelerud
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 0211, USA
| | - Alice E Kane
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 0211, USA
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Ning Ru
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Munjal M Acharya
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, 92697-2695, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, 92697-2695, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 0211, USA
| | - Dara L Dickstein
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, 20817, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Palo Alto, CA, 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, 94305, USA
| | - Charles L Limoli
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Janet E Baulch
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA.
| |
Collapse
|
17
|
Kolenda T, Paszkowska A, Braska A, Kozłowska-Masłoń J, Guglas K, Poter P, Wojtczak P, Bliźniak R, Lamperska K, Teresiak A. Host gene and its guest: short story about relation of long-noncoding MIR31HG transcript and microRNA miR-31. Rep Pract Oncol Radiother 2023; 28:114-134. [PMID: 37122913 PMCID: PMC10132190 DOI: 10.5603/rpor.a2023.0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/25/2023] [Indexed: 05/02/2023] Open
Abstract
Epigenetics is the changes in a cellular phenotype without changes in the genotype. This term is not limited only to the modification of chromatin and DNA but also relates to some RNAs, like non-coding RNAs (ncRNAs), both short and long RNAs (lncRNAs) acting as molecular modifiers. Mobile RNAs, as a free form or encapsulated in exosomes, can regulate neighboring cells or be placed in distant locations. It underlines the vast capacity of ncRNAs as epigenetic elements of transmission information and message of life. One of the amazing phenomena is long non-coding microRNA-host-genes (lnc-MIRHGs) whose processed transcripts function as lncRNAs and also as short RNAs named microRNAs (miRNAs). MIR31HG functions as a modulator of important biological and cellular processes including cell proliferation, apoptosis, cell cycle regulation, EMT process, metastasis, angiogenesis, hypoxia, senescence, and inflammation. However, in most cases, the role of MIR31HG is documented only by one study and there is a lack of exact description of molecular pathways implicated in these processes, and for some of them, such as response to irradiation, no studies have been done. In this review, MIR31HG, as an example of lnc-MIRHGs, was described in the context of its known function and its potential uses as a biomarker in oncology.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
| | - Anna Paszkowska
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
- Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Alicja Braska
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, Poznań, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Paulina Poter
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Greater Poland Cancer Center, Poznan, Poland
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
| |
Collapse
|
18
|
Simmons P, Trujillo M, McElroy T, Binz R, Pathak R, Allen AR. Evaluating the effects of low-dose simulated galactic cosmic rays on murine hippocampal-dependent cognitive performance. Front Neurosci 2022; 16:908632. [PMID: 36561122 PMCID: PMC9765097 DOI: 10.3389/fnins.2022.908632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/12/2022] [Indexed: 12/12/2022] Open
Abstract
Space exploration has advanced substantially over recent decades and plans to increase the duration of deep space missions are in preparation. One of the primary health concerns is potential damage to the central nervous system (CNS), resulting in loss of cognitive abilities and function. The majority of ground-based research on space radiation-induced health risks has been conducted using single particle simulations, which do not effectively model real-world scenarios. Thus, to improve the safety of space missions, we must expand our understanding of the effects of simulated galactic cosmic rays (GCRs) on the CNS. To assess the effects of low-dose GCR, we subjected 6-month-old male BALB/c mice to 50 cGy 5-beam simplified GCR spectrum (1H, 28Si, 4He, 16O, and 56Fe) whole-body irradiation at the NASA Space Radiation Laboratory. Animals were tested for cognitive performance with Y-maze and Morris water maze tests 3 months after irradiation. Irradiated animals had impaired short-term memory and lacked spatial memory retention on day 5 of the probe trial. Glial cell analysis by flow cytometry showed no significant changes in oligodendrocytes, astrocytes, microglia or neural precursor cells (NPC's) between the sham group and GCR group. Bone marrow cytogenetic data showed a significant increase in the frequency of chromosomal aberrations after GCR exposure. Finally, tandem mass tag proteomics identified 3,639 proteins, 113 of which were differentially expressed when comparing sham versus GCR exposure (fold change > 1.5; p < 0.05). Our data suggest exposure to low-dose GCR induces cognitive deficits by impairing short-term memory and spatial memory retention.
Collapse
Affiliation(s)
- Pilar Simmons
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Taylor McElroy
- Department of Aging, University of Florida, Gainesville, FL, United States
| | - Regina Binz
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rupak Pathak
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States,*Correspondence: Antiño R. Allen,
| |
Collapse
|
19
|
Suman S, Kumar S, Kallakury BVS, Moon BH, Angdisen J, Datta K, Fornace AJ. Predominant contribution of the dose received from constituent heavy-ions in the induction of gastrointestinal tumorigenesis after simulated space radiation exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:631-637. [PMID: 36167896 DOI: 10.1007/s00411-022-00997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Gastrointestinal (GI) cancer risk among astronauts after encountering galactic cosmic radiation (GCR) is predicted to exceed safe permissible limits in long duration deep-space missions. Current predictions are based on relative biological effectiveness (RBE) values derived from in-vivo studies using single-ion beams, while GCR is essentially a mixed radiation field composed of protons (H), helium (He), and heavy ions. Therefore, a sequentially delivered proton (H) → Helium (He) → Oxygen (O) → Silicon (Si) beam was designed to simulate simplified-mixed-field GCR (Smf-GCR), and Apc1638N/+ mice were total-body irradiated to sham or γ (157Cs) or Smf-GCR followed by assessment of GI-tumorigenesis at 150 days post-exposure. Further, GI-tumor data from equivalent doses of heavy-ions (i.e., 0.05 Gy of O and Si) in 0.5 Gy of Smf-GCR were compared to understand the contributions of heavy-ions in GI-tumorigenesis. The Smf-GCR-induced tumor and carcinoma count were significantly greater than γ-rays, and male preponderance for GI-tumorigenesis was consistent with our earlier findings. Comparison of tumor data from Smf-GCR and equivalent doses of heavy ions revealed an association between higher GI-tumorigenesis where dose received from heavy-ions contributed to > 95% of the total GI-tumorigenic effect observed after Smf-GCR. This study provides the first experimental evidence that cancer risk after GCR exposure could largely depend on doses received from constituent heavy-ions.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington, DC, 20057, USA.
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington, DC, 20057, USA
| | - Bhaskar V S Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Bo-Hyun Moon
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington, DC, 20057, USA
| | - Jerry Angdisen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington, DC, 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington, DC, 20057, USA
- Department of Biochemistry and Molecular and Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington, DC, 20057, USA
- Department of Biochemistry and Molecular and Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| |
Collapse
|
20
|
Putt KS, Du Y, Fu H, Zhang ZY. High-throughput screening strategies for space-based radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:88-104. [PMID: 36336374 DOI: 10.1016/j.lssr.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As humanity begins to venture further into space, approaches to better protect astronauts from the hazards found in space need to be developed. One particular hazard of concern is the complex radiation that is ever present in deep space. Currently, it is unlikely enough spacecraft shielding could be launched that would provide adequate protection to astronauts during long-duration missions such as a journey to Mars and back. In an effort to identify other means of protection, prophylactic radioprotective drugs have been proposed as a potential means to reduce the biological damage caused by this radiation. Unfortunately, few radioprotectors have been approved by the FDA for usage and for those that have been developed, they protect normal cells/tissues from acute, high levels of radiation exposure such as that from oncology radiation treatments. To date, essentially no radioprotectors have been developed that specifically counteract the effects of chronic low-dose rate space radiation. This review highlights how high-throughput screening (HTS) methodologies could be implemented to identify such a radioprotective agent. Several potential target, pathway, and phenotypic assays are discussed along with potential challenges towards screening for radioprotectors. Utilizing HTS strategies such as the ones proposed here have the potential to identify new chemical scaffolds that can be developed into efficacious radioprotectors that are specifically designed to protect astronauts during deep space journeys. The overarching goal of this review is to elicit broader interest in applying drug discovery techniques, specifically HTS towards the identification of radiation countermeasures designed to be efficacious towards the biological insults likely to be encountered by astronauts on long duration voyages.
Collapse
Affiliation(s)
- Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907 USA.
| |
Collapse
|
21
|
McNerlin C, Guan F, Bronk L, Lei K, Grosshans D, Young DW, Gaber MW, Maletic-Savatic M. Targeting hippocampal neurogenesis to protect astronauts' cognition and mood from decline due to space radiation effects. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:170-179. [PMID: 36336363 DOI: 10.1016/j.lssr.2022.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Neurogenesis is an essential, lifelong process during which neural stem cells generate new neurons within the hippocampus, a center for learning, memory, and mood control. Neural stem cells are vulnerable to environmental insults spanning from chronic stress to radiation. These insults reduce their numbers and diminish neurogenesis, leading to memory decline, anxiety, and depression. Preserving neural stem cells could thus help prevent these neurogenesis-associated pathologies, an outcome particularly important for long-term space missions where environmental exposure to radiation is significantly higher than on Earth. Multiple developments, from mechanistic discoveries of radiation injury on hippocampal neurogenesis to new platforms for the development of selective, specific, effective, and safe small molecules as neurogenesis-protective agents hold great promise to minimize radiation damage on neurogenesis. In this review, we summarize the effects of space-like radiation on hippocampal neurogenesis. We then focus on current advances in drug discovery and development and discuss the nuclear receptor TLX/NR2E1 (oleic acid receptor) as an example of a neurogenic target that might rescue neurogenesis following radiation.
Collapse
Affiliation(s)
- Clare McNerlin
- Georgetown University School of Medicine, 3900 Reservoir Rd NW, Washington D.C. 20007, United States of America
| | - Fada Guan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Lawrence Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Kevin Lei
- Graduate School for Biomedical Sciences, Baylor College of Medicine, Houston, Texas, 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Damian W Young
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Center for Drug Discovery, Department of Pathology and Immunology Baylor College of Medicine, Houston, Texas, 77030, United States of America; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States of America
| | - M Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Mirjana Maletic-Savatic
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| |
Collapse
|
22
|
Weiss M, Nikisher B, Haran H, Tefft K, Adams J, Edwards JG. High throughput screen of small molecules as potential countermeasures to galactic cosmic radiation induced cellular dysfunction. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:76-87. [PMID: 36336373 DOI: 10.1016/j.lssr.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 06/16/2023]
Abstract
Space travel increases galactic cosmic ray exposure to flight crews and this is significantly elevated once travel moves beyond low Earth orbit. This includes combinations of high energy protons and heavy ions such as 56Fe or 16O. There are distinct differences in the biological response to low-energy transfer (x-rays) or high-energy transfer (High-LET). However, given the relatively low fluence rate of exposure during flight operations, it might be possible to manage these deleterious effects using small molecules currently available. Virtually all reports to date examining small molecule management of radiation exposure are based on low-LET challenges. To that end an FDA approved drug library (725 drugs) was used to perform a high throughput screen of cultured cells following exposure to galactic cosmic radiation. The H9c2 myoblasts, ES-D3 pluripotent cells, and Hy926 endothelial cell lines were exposed to a single exposure (75 cGy) using the 5-ion GCRsim protocol developed at the NASA Space Radiation Laboratory (NSRL). Following GCR exposure cells were maintained for up to two weeks. For each drug (@10µM), a hierarchical cumulative score was developed incorporating measures of mitochondrial and cellular function, oxidant stress and cell senescence. The top 160 scores were retested following a similar protocol using 1µM of each drug. Within the 160 drugs, 33 are considered to have an anti-inflammatory capacity, while others also indirectly suppressed pro-inflammatory pathways or had noted antioxidant capacity. Lead candidates came from different drug classes that included angiotensin converting enzyme inhibitors or AT1 antagonists, COX2 inhibitors, as well as drugs mediated by histamine receptors. Surprisingly, different classes of anti-diabetic medications were observed to be useful including sulfonylureas and metformin. Using a hierarchical decision structure, we have identified several lead candidates. That no one drug or even drug class was completely successful across all parameters tested suggests the complexity of managing the consequences of galactic cosmic radiation exposure.
Collapse
Affiliation(s)
- M Weiss
- Department of Physiology, New York Medical College, Valhalla, New York
| | - B Nikisher
- Department of Physiology, New York Medical College, Valhalla, New York
| | - H Haran
- Department of Physiology, New York Medical College, Valhalla, New York
| | - K Tefft
- Department of Physiology, New York Medical College, Valhalla, New York
| | - J Adams
- Department of Physiology, New York Medical College, Valhalla, New York
| | - J G Edwards
- Department of Physiology, New York Medical College, Valhalla, New York.
| |
Collapse
|
23
|
Miller KB, Mi KL, Nelson GA, Norman RB, Patel ZS, Huff JL. Ionizing radiation, cerebrovascular disease, and consequent dementia: A review and proposed framework relevant to space radiation exposure. Front Physiol 2022; 13:1008640. [PMID: 36388106 PMCID: PMC9640983 DOI: 10.3389/fphys.2022.1008640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/29/2022] [Indexed: 09/05/2023] Open
Abstract
Space exploration requires the characterization and management or mitigation of a variety of human health risks. Exposure to space radiation is one of the main health concerns because it has the potential to increase the risk of cancer, cardiovascular disease, and both acute and late neurodegeneration. Space radiation-induced decrements to the vascular system may impact the risk for cerebrovascular disease and consequent dementia. These risks may be independent or synergistic with direct damage to central nervous system tissues. The purpose of this work is to review epidemiological and experimental data regarding the impact of low-to-moderate dose ionizing radiation on the central nervous system and the cerebrovascular system. A proposed framework outlines how space radiation-induced effects on the vasculature may increase risk for both cerebrovascular dysfunction and neural and cognitive adverse outcomes. The results of this work suggest that there are multiple processes by which ionizing radiation exposure may impact cerebrovascular function including increases in oxidative stress, neuroinflammation, endothelial cell dysfunction, arterial stiffening, atherosclerosis, and cerebral amyloid angiopathy. Cerebrovascular adverse outcomes may also promote neural and cognitive adverse outcomes. However, there are many gaps in both the human and preclinical evidence base regarding the long-term impact of ionizing radiation exposure on brain health due to heterogeneity in both exposures and outcomes. The unique composition of the space radiation environment makes the translation of the evidence base from terrestrial exposures to space exposures difficult. Additional investigation and understanding of the impact of low-to-moderate doses of ionizing radiation including high (H) atomic number (Z) and energy (E) (HZE) ions on the cerebrovascular system is needed. Furthermore, investigation of how decrements in vascular systems may contribute to development of neurodegenerative diseases in independent or synergistic pathways is important for protecting the long-term health of astronauts.
Collapse
Affiliation(s)
| | | | - Gregory A. Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, United States
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Ryan B. Norman
- NASA Langley Research Center, Hampton, VA, United States
| | - Zarana S. Patel
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Janice L. Huff
- NASA Langley Research Center, Hampton, VA, United States
| |
Collapse
|
24
|
De Micco V, Arena C, Di Fino L, Narici L. Radiation environment in exploration-class space missions and plants' responses relevant for cultivation in Bioregenerative Life Support Systems. FRONTIERS IN PLANT SCIENCE 2022; 13:1001158. [PMID: 36212311 PMCID: PMC9540851 DOI: 10.3389/fpls.2022.1001158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
For deep space exploration, radiation effects on astronauts, and on items fundamental for life support systems, must be kept under a pre-agreed threshold to avoid detrimental outcomes. Therefore, it is fundamental to achieve a deep knowledge on the radiation spatial and temporal variability in the different mission scenarios as well as on the responses of different organisms to space-relevant radiation. In this paper, we first consider the radiation issue for space exploration from a physics point of view by giving an overview of the topics related to the spatial and temporal variability of space radiation, as well as on measurement and simulation of irradiation, then we focus on biological issues converging the attention on plants as one of the fundamental components of Bioregenerative Life Support Systems (BLSS). In fact, plants in BLSS act as regenerators of resources (i.e. oxygen production, carbon dioxide removal, water and wastes recycling) and producers of fresh food. In particular, we summarize some basic statements on plant radio-resistance deriving from recent literature and concentrate on endpoints critical for the development of Space agriculture. We finally indicate some perspective, suggesting the direction future research should follow to standardize methods and protocols for irradiation experiments moving towards studies to validate with space-relevant radiation the current knowledge. Indeed, the latter derives instead from experiments conducted with different radiation types and doses and often with not space-oriented scopes.
Collapse
Affiliation(s)
- Veronica De Micco
- Laboratory of Plant and Wood Anatomy, Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Carmen Arena
- Laboratory of Ecology, Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luca Di Fino
- Physics Department, University of Rome “Tor Vergata”, Rome, Italy
| | - Livio Narici
- Physics Department, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
25
|
Gheorghiu CC, Ionescu A, Zai MI, Iancu D, Burducea I, Velisa G, Vasile BS, Ianculescu AC, Bobeica M, Popa D, Leca V. Nanoscale Control of Structure and Composition for Nanocrystalline Fe Thin Films Grown by Oblique Angle RF Sputtering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6134. [PMID: 36079515 PMCID: PMC9457537 DOI: 10.3390/ma15176134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The use of Fe films as multi-element targets in space radiation experiments with high-intensity ultrashort laser pulses requires a surface structure that can enhance the laser energy absorption on target, as well as a low concentration and uniform distribution of light element contaminants within the films. In this paper, (110) preferred orientation nanocrystalline Fe thin films with controlled morphology and composition were grown on (100)-oriented Si substrates by oblique angle RF magnetron sputtering, at room temperature. The evolution of films key-parameters, crucial for space-like radiation experiments with organic material, such as nanostructure, morphology, topography, and elemental composition with varying RF source power, deposition pressure, and target to substrate distance is thoroughly discussed. A selection of complementary techniques was used in order to better understand this interdependence, namely X-ray Diffraction, Atomic Force Microscopy, Scanning and Transmission Electron Microscopy, Energy Dispersive X-ray Spectroscopy and Non-Rutherford Backscattering Spectroscopy. The films featured a nanocrystalline, tilted nanocolumn structure, with crystallite size in the (110)-growth direction in the 15-25 nm range, average island size in the 20-50 nm range, and the degree of polycrystallinity determined mainly by the shortest target-to-substrate distance (10 cm) and highest deposition pressure (10-2 mbar Ar). Oxygen concentration (as impurity) into the bulk of the films as low as 1 at. %, with uniform depth distribution, was achieved for the lowest deposition pressures of (1-3) × 10-3 mbar Ar, combined with highest used values for the RF source power of 125-150 W. The results show that the growth process of the Fe thin film is strongly dependent mainly on the deposition pressure, with the film morphology influenced by nucleation and growth kinetics. Due to better control of film topography and uniform distribution of oxygen, such films can be successfully used as free-standing targets for high repetition rate experiments with high power lasers to produce Fe ion beams with a broad energy spectrum.
Collapse
Affiliation(s)
- Cristina C. Gheorghiu
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| | - Aurelia Ionescu
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| | - Maria-Iulia Zai
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| | - Decebal Iancu
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
- Department of Applied Nuclear Physics, “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| | - Ion Burducea
- Department of Applied Nuclear Physics, “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| | - Gihan Velisa
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
- Department of Applied Nuclear Physics, “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| | - Bogdan S. Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adelina C. Ianculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Mariana Bobeica
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| | - Daniel Popa
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| | - Victor Leca
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| |
Collapse
|
26
|
Bishawi M, Lee FH, Abraham DM, Glass C, Blocker SJ, Cox DJ, Brown ZD, Rockman HA, Mao L, Slaba TC, Dewhirst MW, Truskey GA, Bowles DE. Late onset cardiovascular dysfunction in adult mice resulting from galactic cosmic ray exposure. iScience 2022; 25:104086. [PMID: 35378858 PMCID: PMC8976132 DOI: 10.1016/j.isci.2022.104086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/16/2022] [Accepted: 03/11/2022] [Indexed: 12/27/2022] Open
Abstract
The complex and inaccessible space radiation environment poses an unresolved risk to astronaut cardiovascular health during long-term space exploration missions. To model this risk, healthy male c57BL/6 mice aged six months (corresponding to an astronaut of 34 years) were exposed to simplified galactic cosmic ray (GCR5-ion; 5-ion sim) irradiation at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratories (BNL). Multi-modal cardiovascular functional assessments performed longitudinally and terminally revealed significant impairment in cardiac function in mice exposed to GCR5-ion compared to unirradiated controls, gamma irradiation, or single mono-energetic ions (56Fe or 16O). GCR5-ion-treated mice exhibited increased arterial elastance likely mediated by disruption of elastin fibers. This study suggests that a single exposure to GCR5-ion is associated with deterioration in cardiac structure and function that becomes apparent long after exposure, likely associated with increased morbidity and mortality. These findings represent important health considerations when preparing for successful space exploration.
Collapse
Affiliation(s)
- Muath Bishawi
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, MRSB1 Rm. 421b, 203 Research Drive, Durham, NC 27710, USA
- Department of Biomedical Engineering, Pratt School of Engineering, Durham, NC 27708, USA
| | - Franklin H. Lee
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, MRSB1 Rm. 421b, 203 Research Drive, Durham, NC 27710, USA
| | - Dennis M. Abraham
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Carolyn Glass
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Daniel J. Cox
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, MRSB1 Rm. 421b, 203 Research Drive, Durham, NC 27710, USA
| | - Zachary D. Brown
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, MRSB1 Rm. 421b, 203 Research Drive, Durham, NC 27710, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Lan Mao
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Tony C. Slaba
- NASA Langley Research Center, Hampton, VA 23681, USA
| | - Mark W. Dewhirst
- Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - George A. Truskey
- Department of Biomedical Engineering, Pratt School of Engineering, Durham, NC 27708, USA
| | - Dawn E. Bowles
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, MRSB1 Rm. 421b, 203 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
27
|
Rose BI. Female astronauts: Impact of space radiation on menopause. Eur J Obstet Gynecol Reprod Biol 2022; 271:210-213. [PMID: 35228092 DOI: 10.1016/j.ejogrb.2022.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 01/28/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
Space travel has different effects on the reproductive capacity of women compared to men. The radiation exposure intrinsic to deep space travel causes destruction of some of a woman's primordial follicles. Data suggests that a typical Mars mission may reduce a women's ovarian reserve by about 50%. This has consequences to a woman's reproductive capacity and, more significantly, decreases the time interval to her menopause. A reduced time interval to menopause is associated with earlier mortality. Estrogen replacement therapy and cryopreservation of a female astronaut's oocytes may be used to address these issues. However, cortical tissue freezing provides advantages to more directly compensate for these workplace complications. Cortical tissue freezing especially provides advantages if there are plans to reproduce in an extraterrestrial location.
Collapse
Affiliation(s)
- Bruce I Rose
- Department of Obstetrics and Gynecology, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401, USA; Department of Obstetrics and Gynecology, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
28
|
|
29
|
Andreev-Andrievskiy A, Dolgov O, Alberts J, Popova A, Lagereva E, Anokhin K, Vinogradova O. Mice display learning and behavioral deficits after a 30-day spaceflight on Bion-M1 satellite. Behav Brain Res 2022; 419:113682. [PMID: 34843743 DOI: 10.1016/j.bbr.2021.113682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022]
Abstract
Profound effects of spaceflight on the physiology of humans and non-human animals are well-documented but incompletely explored. Current goals to undertake interplanetary missions increase the urgency to learn more about adaptation to prolonged spaceflight and readaptation to Earth-normal conditions, especially with the inclusion of radiation exposures greater than those confronted in traditional, orbital flights. The 30-day-long Bion M-1 biosatellite flight was conducted at a relatively high orbit, exposing the mice to greater doses of radiation in addition to microgravity, a combination of factors relevant to Mars missions. Results of the present studies with mice provide insights into the consequences on brain function of long-duration spaceflight. After landing, mice showed profound deficits in vestibular responses during aerial drop tests. Spaceflown mice displayed reduced grip strength, rotarod performance, and voluntary wheel running, each, which improved gradually but incompletely over the 7-days of post-flight testing. Continuous monitoring in the animals' home cage activity, in combination with open-field and other tests of motor performance, revealed indices of altered affect, expressed as hyperactivity, potentiated thigmotaxis, and avoidance of open areas which, together, presented a syndrome of persistent anxiety-like behavior. A learned, operant response acquired before spaceflight was retained, whereas the acquisition of a new task was impaired after the flight. We integrate these observations with other results from Bion-M1's program, identifying deficits in musculoskeletal and cardiovascular systems, as well as in the brain and spinal cord, including altered gene expression patterns and the accompanying neurochemical changes that could underlie our behavioral findings.
Collapse
Affiliation(s)
- Alexander Andreev-Andrievskiy
- SSC RF Institute of biomedical problems, 76A Khoroshevskoe av, Moscow 123007, Russia; Biology faculty, M.V. Lomonosov Moscow State University, 1-12 Leninskie gory, Moscow 119234, Russia.
| | - Oleg Dolgov
- NBICS center, NRC Kurchatov institute, 1 Academician Kurchatov sq., Moscow 123182, Russia
| | - Jeffrey Alberts
- Indiana University, 107 S. Indiana Avenue Bloomington, IN 47405-7000, USA
| | - Anfisa Popova
- SSC RF Institute of biomedical problems, 76A Khoroshevskoe av, Moscow 123007, Russia
| | - Evgeniia Lagereva
- SSC RF Institute of biomedical problems, 76A Khoroshevskoe av, Moscow 123007, Russia
| | - Konstantin Anokhin
- NBICS center, NRC Kurchatov institute, 1 Academician Kurchatov sq., Moscow 123182, Russia; Anokhin Institute of Normal Physiology, 11/4, Mohovaya str., Moscow 103009, Russia
| | - Olga Vinogradova
- SSC RF Institute of biomedical problems, 76A Khoroshevskoe av, Moscow 123007, Russia
| |
Collapse
|
30
|
Tran KN, Choi JI. Mimic microgravity effect on muscle transcriptome under ionizing radiation. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:96-104. [PMID: 35065767 DOI: 10.1016/j.lssr.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Spaceflight imposes the risk of skeletal muscle atrophy for astronauts. Two main factors of a spaceflight that results in deleterious effects are microgravity and cosmic rays in outer space. To study spaceflight-induced muscle atrophy with ground-based models, we performed two models of microgravity, tail suspension and denervation, in a low dose radiation environment and studied transcriptional changes in rat soleus muscle using microarrays. Soleus muscle from rats in the denervation group had greater expression changes compared to that found in rats from the tail suspension group. However, there was a very similar pattern of expression of differentially expressed genes (DEGs) in both models. In total, we identified 144 differentially expressed genes common in both models. Our study yielded two main findings. First, a large number of genes involved in energy metabolism were transcriptionally suppressed including those involved in fatty acid transport and beta-oxidation, and oxidative phosphorylation. Second, slow-twitch contractile protein encoding genes were down-regulated while there was an up-regulation in the fast-twitch type transcription. These results were consistent with other spaceflight studies on the effects on muscle cells, hence showed the potential of our ground-based models in studying spaceflight effects. The genes that might be involved in spaceflight effects will serve as candidate genes for future studies in understanding the mechanism of spaceflight-induced muscle atrophy and result in the development of effective countermeasures.
Collapse
Affiliation(s)
- Kim Ngan Tran
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
31
|
Watkins P, Hughes J, Gamage TV, Knoerzer K, Ferlazzo ML, Banati RB. Long term food stability for extended space missions: a review. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:79-95. [PMID: 35065765 DOI: 10.1016/j.lssr.2021.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
At present, human spaceflight is confined to low Earth orbit but, in future, will again go to the Moon and, beyond, to Mars. The provision of food during these extended missions will need to meet the special nutritional and psychosocial needs of the crew. Terrestrially grown and processed food products, currently provided for consumption by astronauts/cosmonauts, have not yet been systematically optimised to maintain their nutritional integrity and reach the shelf-life necessary for extended space voyages. Notably, space food provisions for Mars exploration will be subject to extended exposure to galactic cosmic radiation and solar particle events, the impact of which is not fully understood. In this review, we provide a summary of the existing knowledge about current space food products, the impact of radiation and storage on food composition, the identification of radiolytic biomarkers and identify gaps in our knowledge that are specific in relation to the effect of the cosmic radiation on food in space.
Collapse
Affiliation(s)
- Peter Watkins
- CSIRO, Agriculture and Food, 671 Sneydes Road, Werribee, Vic 3030, Australia; CSIRO, Space Technology Future Science Platform, 41 Boggo Road, Dutton Park, Qld 4102, Australia.
| | - Joanne Hughes
- CSIRO, Agriculture and Food, 39 Kessels Road, Coopers Plains, Qld 4108, Australia; CSIRO, Space Technology Future Science Platform, 41 Boggo Road, Dutton Park, Qld 4102, Australia
| | - Thambaramala V Gamage
- CSIRO, Agriculture and Food, 671 Sneydes Road, Werribee, Vic 3030, Australia; CSIRO, Space Technology Future Science Platform, 41 Boggo Road, Dutton Park, Qld 4102, Australia
| | - Kai Knoerzer
- CSIRO, Agriculture and Food, 671 Sneydes Road, Werribee, Vic 3030, Australia; CSIRO, Space Technology Future Science Platform, 41 Boggo Road, Dutton Park, Qld 4102, Australia
| | - Mélanie L Ferlazzo
- ANSTO, Human Health (Space Health Program), New Illawarra Road, Lucas Heights, NSW 2234, Australia; Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France
| | - Richard B Banati
- ANSTO, Human Health (Space Health Program), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| |
Collapse
|
32
|
Response of Arabidopsis thaliana and Mizuna Mustard Seeds to Simulated Space Radiation Exposures. Life (Basel) 2022; 12:life12020144. [PMID: 35207432 PMCID: PMC8879990 DOI: 10.3390/life12020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/30/2023] Open
Abstract
One of the major concerns for long-term exploration missions beyond the Earth’s magnetosphere is consequences from exposures to solar particle event (SPE) protons and galactic cosmic rays (GCR). For long-term crewed Lunar and Mars explorations, the production of fresh food in space will provide both nutritional supplements and psychological benefits to the astronauts. However, the effects of space radiation on plants and plant propagules have not been sufficiently investigated and characterized. In this study, we evaluated the effect of two different compositions of charged particles-simulated GCR, and simulated SPE protons on dry and hydrated seeds of the model plant Arabidopsis thaliana and the crop plant Mizuna mustard [Brassica rapa var. japonica]. Exposures to charged particles, simulated GCRs (up to 80 cGy) or SPEs (up to 200 cGy), were performed either acutely or at a low dose rate using the NASA Space Radiation Laboratory (NSRL) facility at Brookhaven National Lab (BNL). Control and irradiated seeds were planted in a solid phytogel and grown in a controlled environment. Five to seven days after planting, morphological parameters were measured to evaluate radiation-induced damage in the seedlings. After exposure to single types of charged particles, as well as to simulated GCR, the hydrated Arabidopsis seeds showed dose- and quality-dependent responses, with heavier ions causing more severe defects. Seeds exposed to simulated GCR (dry seeds) and SPE (hydrated seeds) had significant, although much less damage than seeds exposed to heavier and higher linear energy transfer (LET) particles. In general, the extent of damage depends on the seed type.
Collapse
|
33
|
Schaeffer EA, Blackwell AA, Oltmanns JRO, Einhaus R, Lake R, Hein CP, Baulch JE, Limoli CL, Ton ST, Kartje GL, Wallace DG. Differential organization of open field behavior in mice following acute or chronic simulated GCR exposure. Behav Brain Res 2022; 416:113577. [PMID: 34506841 DOI: 10.1016/j.bbr.2021.113577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 11/20/2022]
Abstract
Astronauts undertaking deep space travel will receive chronic exposure to the mixed spectrum of particles that comprise Galactic Cosmic Radiation (GCR). Exposure to the different charged particles of varied fluence and energy that characterize GCR may impact neural systems that support performance on mission critical tasks. Indeed, growing evidence derived from years of terrestrial-based simulations of the space radiation environment using rodents has indicated that a variety of exposure scenarios can result in significant and long-lasting decrements to CNS functionality. Many of the behavioral tasks used to quantify radiation effects on the CNS depend on neural systems that support maintaining spatial orientation and organization of rodent open field behavior. The current study examined the effects of acute or chronic exposure to simulated GCR on the organization of open field behavior under conditions with varied access to environmental cues in male and female C57BL/6 J mice. In general, groups exhibited similar organization of open field behavior under dark and light conditions. Two exceptions were noted: the acute exposure group exhibited significantly slower and more circuitous homeward progressions relative to the chronic group under light conditions. These results demonstrate the potential of open field behavior organization to discriminate between the effects of select GCR exposure paradigms.
Collapse
Affiliation(s)
- E A Schaeffer
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - A A Blackwell
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | | | - R Einhaus
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - R Lake
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - C Piwowar Hein
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - J E Baulch
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - C L Limoli
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - S T Ton
- Loyola University Health Sciences Division, Maywood, IL, USA; Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, IL, USA
| | - G L Kartje
- Loyola University Health Sciences Division, Maywood, IL, USA; Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, IL, USA
| | - D G Wallace
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
34
|
Kumar K, Datta K, Fornace AJ, Suman S. Total body proton and heavy-ion irradiation causes cellular senescence and promotes pro-osteoclastogenic activity in mouse bone marrow. Heliyon 2022; 8:e08691. [PMID: 35028468 PMCID: PMC8741516 DOI: 10.1016/j.heliyon.2021.e08691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Low-LET photon radiation-induced persistent alterations in bone marrow (BM) cells are well documented in total-body irradiated (TBI) rodents and also among radiotherapy patients. However, the late effects of protons and high-LET heavy-ion radiation on BM cells and its implications in osteoclastogenesis are not fully understood. Therefore, C57BL6/J female mice (8 weeks; n = 10/group) were irradiated to sham, and 1 Gy of the proton (0.22 keV/μm), or high-LET 56Fe-ions (148 keV/μm) and at 60 d post-exposure, mice were sacrificed and femur sections were obtained for histological, cellular and molecular analysis. Cell proliferation (PCNA), cell death (active caspase-3), senescence (p16), osteoclast (RANK), osteoblast (OPG), osteoblast progenitor (c-Kit), and osteoclastogenesis-associated secretory factors (like RANKL) were assessed using immunostaining. While no change in cell proliferation and apoptosis between control and irradiated groups was noted, the number of BM megakaryocytes was significantly reduced in irradiated mice at 60 d post-exposure. A remarkable increase in p16 positive cells indicated a persistent increase in cell senescence, whereas increased RANKL/OPG ratio, reductions in the number of osteoblast progenitor cells, and osteocalcin provided clear evidence that exposure to both proton and 56Fe-ions promotes pro-osteoclastogenic activity in BM. Among irradiated groups, 56Fe-induced alterations in the BM cellularity and osteoclastogenesis were significantly greater than the protons that demonstrated a radiation quality-dependent effect. This study has implications in understanding the role of IR-induced late changes in the BM cells and its involvement in bone degeneration among deep-space astronauts, and also in patients undergoing proton or heavy-ion radiotherapy.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Corresponding author.
| |
Collapse
|
35
|
Kim H, Shin Y, Kim DH. Mechanobiological Implications of Cancer Progression in Space. Front Cell Dev Biol 2021; 9:740009. [PMID: 34957091 PMCID: PMC8692837 DOI: 10.3389/fcell.2021.740009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
The human body is normally adapted to maintain homeostasis in a terrestrial environment. The novel conditions of a space environment introduce challenges that changes the cellular response to its surroundings. Such an alteration causes physical changes in the extracellular microenvironment, inducing the secretion of cytokines such as interleukin-6 (IL-6) and tumor growth factor-β (TGF-β) from cancer cells to enhance cancer malignancy. Cancer is one of the most prominent cell types to be affected by mechanical cues via active interaction with the tumor microenvironment. However, the mechanism by which cancer cells mechanotransduce in the space environment, as well as the influence of this process on human health, have not been fully elucidated. Due to the growing interest in space biology, this article reviews cancer cell responses to the representative conditions altered in space: microgravity, decompression, and irradiation. Interestingly, cytokine and gene expression that assist in tumor survival, invasive phenotypic transformation, and cancer cell proliferation are upregulated when exposed to both simulated and actual space conditions. The necessity of further research on space mechanobiology such as simulating more complex in vivo experiments or finding other mechanical cues that may be encountered during spaceflight are emphasized.
Collapse
Affiliation(s)
- Hyondeog Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Yun Shin
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
36
|
Cromwell RL, Huff JL, Simonsen LC, Patel ZS. Earth-Based Research Analogs to Investigate Space-Based Health Risks. NEW SPACE 2021; 9:204-216. [PMID: 35024249 PMCID: PMC8743922 DOI: 10.1089/space.2020.0048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
During spaceflight, astronauts are exposed to a variety of unique hazards, including altered gravity fields, long periods of isolation and confinement, living in a closed environment at increasing distances from Earth, and exposure to higher levels of hazardous ionizing radiation. Preserving human health and performance in the face of these relentless hazards becomes progressively more difficult as missions increase in length and extend beyond low Earth orbit. Finding solutions is a significant challenge that is further complicated by logistical issues associated with studying these unique hazards. Although research studies using space-based platforms are the gold standard, these are not without limitations. Factors such as the small sample size of the available astronaut crew, high expense, and time constraints all add to the logistical challenge. To overcome these limitations, a wide variety of Earth-based analogs, from polar research outposts to an undersea laboratory, are available to augment space-based studies. Each analog simulates unique physiological and behavioral effects associated with spaceflight and, therefore, for any given study, the choice of an appropriate platform is closely linked to the phenomena under investigation as well as the characteristics of the analog. There are pros and cons to each type of analog and each actual facility, but overall they provide a reasonable means to overcome the barriers associated with conducting experimental research in space. Analogs, by definition, will never be perfect, but they are a useful component of an integrated effort to understand the human risks of living and working in space. They are a necessary resource for pushing the frontier of human spaceflight, both for astronauts and for commercial space activities. In this review, we describe the use of analogs here on Earth to replicate specific aspects of the spaceflight environment and highlight how analog studies support future human endeavors in space.
Collapse
Affiliation(s)
- Ronita L Cromwell
- Baylor College of Medicine, Center for Space Medicine, Houston, Texas, USA
| | - Janice L Huff
- NASA Langley Research Center, Hampton, Virginia, USA
| | | | - Zarana S Patel
- KBR, Houston, Texas, USA
- NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
37
|
De Micco V, De Francesco S, Amitrano C, Arena C. Comparative Analysis of the Effect of Carbon- and Titanium-Ions Irradiation on Morpho-Anatomical and Biochemical Traits of Dolichos melanophthalmus DC. Seedlings Aimed to Space Exploration. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112272. [PMID: 34834635 PMCID: PMC8618800 DOI: 10.3390/plants10112272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 05/11/2023]
Abstract
The realization of manned missions for space exploration requires the development of Bioregenerative Life Support Systems (BLSSs) to make human colonies self-sufficient in terms of resources. Indeed, in these systems, plants contribute to resource regeneration and food production. However, the cultivation of plants in space is influenced by ionizing radiation which can have positive, null, or negative effects on plant growth depending on intrinsic and environmental/cultivation factors. The aim of this study was to analyze the effect of high-LET (Linear Energy Transfer) ionizing radiation on seed germination and seedling development in eye bean. Dry seeds of Dolichos melanophthalmus DC. (eye bean) were irradiated with two doses (1 and 10 Gy) of C- and Ti-ions. Seedlings from irradiated seeds were compared with non-irradiated controls in terms of morpho-anatomical and biochemical traits. Results showed that the responses of eye bean plants to radiation are dose-specific and dependent on the type of ion. The information obtained from this study will be useful for evaluating the radio-resistance of eye bean seedlings, for their possible cultivation and utilization as food supplement in space environments.
Collapse
Affiliation(s)
- Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (S.D.F.); (C.A.)
- Correspondence:
| | - Sara De Francesco
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (S.D.F.); (C.A.)
| | - Chiara Amitrano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (S.D.F.); (C.A.)
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy;
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| |
Collapse
|
38
|
Abstract
Cosmic radiation belongs to the challenges engineers have to deal with when further developing space travel. Besides the severe risks for humans due to high-energy particles or waves, the impact of cosmic radiation on electronics and diverse materials cannot be neglected, even in microsatellites or other unmanned spacecraft. Here, we explain the different particles or waves found in cosmic radiation and their potential impact on biological and inanimate matter. We give an overview of fiber-based shielding materials, mostly applied in the form of composites, and explain why these materials can help shielding spaceships or satellites from cosmic radiation.
Collapse
|
39
|
Krukowski K, Grue K, Becker M, Elizarraras E, Frias ES, Halvorsen A, Koenig-Zanoff M, Frattini V, Nimmagadda H, Feng X, Jones T, Nelson G, Ferguson AR, Rosi S. The impact of deep space radiation on cognitive performance: From biological sex to biomarkers to countermeasures. SCIENCE ADVANCES 2021; 7:eabg6702. [PMID: 34652936 PMCID: PMC8519563 DOI: 10.1126/sciadv.abg6702] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/20/2021] [Indexed: 05/13/2023]
Abstract
In the coming decade, astronauts will travel back to the moon in preparation for future Mars missions. Exposure to galactic cosmic radiation (GCR) is a major obstacle for deep space travel. Using multivariate principal components analysis, we found sex-dimorphic responses in mice exposed to accelerated charged particles to simulate GCR (GCRsim); males displayed impaired spatial learning, whereas females did not. Mechanistically, these GCRsim-induced learning impairments corresponded with chronic microglia activation and synaptic alterations in the hippocampus. Temporary microglia depletion shortly after GCRsim exposure mitigated GCRsim-induced deficits measured months after the radiation exposure. Furthermore, blood monocyte levels measured early after GCRsim exposure were predictive of the late learning deficits and microglia activation measured in the male mice. Our findings (i) advance our understanding of charged particle–induced cognitive challenges, (ii) provide evidence for early peripheral biomarkers for identifying late cognitive deficits, and (iii) offer potential therapeutic strategies for mitigating GCR-induced cognitive loss.
Collapse
Affiliation(s)
- Karen Krukowski
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Katherine Grue
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - McKenna Becker
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Edward Elizarraras
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Elma S. Frias
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Halvorsen
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - McKensie Koenig-Zanoff
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Valentina Frattini
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Hasitha Nimmagadda
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Xi Feng
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Tamako Jones
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Gregory Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Adam R. Ferguson
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute of Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
40
|
Borg AM, Baker JE. Contemporary biomedical engineering perspective on volitional evolution for human radiotolerance enhancement beyond low-earth orbit. Synth Biol (Oxf) 2021; 6:ysab023. [PMID: 34522784 PMCID: PMC8434797 DOI: 10.1093/synbio/ysab023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 11/14/2022] Open
Abstract
A primary objective of the National Aeronautics and Space Administration (NASA) is expansion of humankind's presence outside low-Earth orbit, culminating in permanent interplanetary travel and habitation. Having no inherent means of physiological detection or protection against ionizing radiation, humans incur capricious risk when journeying beyond low-Earth orbit for long periods. NASA has made large investments to analyze pathologies from space radiation exposure, emphasizing the importance of characterizing radiation's physiological effects. Because natural evolution would require many generations to confer resistance against space radiation, immediately pragmatic approaches should be considered. Volitional evolution, defined as humans steering their own heredity, may inevitably retrofit the genome to mitigate resultant pathologies from space radiation exposure. Recently, uniquely radioprotective genes have been identified, conferring local or systemic radiotolerance when overexpressed in vitro and in vivo. Aiding in this process, the CRISPR/Cas9 technique is an inexpensive and reproducible instrument capable of making limited additions and deletions to the genome. Although cohorts can be identified and engineered to protect against radiation, alternative and supplemental strategies should be seriously considered. Advanced propulsion and mild synthetic torpor are perhaps the most likely to be integrated. Interfacing artificial intelligence with genetic engineering using predefined boundary conditions may enable the computational modeling of otherwise overly complex biological networks. The ethical context and boundaries of introducing genetically pioneered humans are considered.
Collapse
Affiliation(s)
- Alexander M Borg
- Departments of Biomedical Engineering and Radiation Oncology, Wake Forest University, Winston-Salem, NC, USA
| | - John E Baker
- Radiation Biosciences Laboratory, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
41
|
Gordeev IS, Timoshenko GN. A new type of ground-based simulator of radiation field inside a spacecraft in deep space. LIFE SCIENCES IN SPACE RESEARCH 2021; 30:66-71. [PMID: 34281666 DOI: 10.1016/j.lssr.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 06/13/2023]
Abstract
The problem of full-scale ground-based modeling of cosmic radiation on heavy-ion accelerators for space radiobiology is very urgent. A new type of space radiation simulator at the 56Fe ion beam with energy 1 GeV/n is proposed. The simulator uses rotating converters consisting of segmented targets with varying thicknesses. When a flat uniform field of primary 56Fe ions is used, this design ensures the uniformity of the fields of all secondary particles behind the targets. The proposed setup with four replaceable converters makes it possible to simulate not only the distribution of linear energy transfers of cosmic radiation but also reproduce continuous energy spectra of all charged fragments of the projectile ion from protons to Co. The results of simulation of the internal radiation field inside the habitable module of a spacecraft with a shell of 15 g/cm2 Al, generated by particles of galactic cosmic rays in the solar activity range from 0 to 190 Wolf numbers, are presented.
Collapse
Affiliation(s)
- I S Gordeev
- Joint Institute for Nuclear Research, 141980, Dubna, Moscow region, Russia; Dubna State University, 141980, Dubna, Moscow region, Russia
| | - G N Timoshenko
- Joint Institute for Nuclear Research, 141980, Dubna, Moscow region, Russia; Dubna State University, 141980, Dubna, Moscow region, Russia.
| |
Collapse
|
42
|
Stricklin DL, VanHorne-Sealy J, Rios CI, Scott Carnell LA, Taliaferro LP. Neutron Radiobiology and Dosimetry. Radiat Res 2021; 195:480-496. [PMID: 33587743 DOI: 10.1667/rade-20-00213.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
As the U.S. prepares for the possibility of a radiological or nuclear incident, or anticipated lunar and Mars missions, the exposure of individuals to neutron radiation must be considered. More information is needed on how to determine the neutron dose to better estimate the true biological effects of neutrons and mixed-field (i.e., neutron and photon) radiation exposures. While exposure to gamma-ray radiation will cause significant health issues, the addition of neutrons will likely exacerbate the biological effects already anticipated after radiation exposure. To begin to understand the issues and knowledge gaps in these areas, the National Institute of Allergy and Infectious Diseases (NIAID), Radiation Nuclear Countermeasures Program (RNCP), Department of Defense (DoD), Defense Threat Reduction Agency (DTRA), and National Aeronautics and Space Administration (NASA) formed an inter-agency working group to host a Neutron Radiobiology and Dosimetry Workshop on March 7, 2019 in Rockville, MD. Stakeholder interests were clearly positioned, given the differences in the missions of each agency. An overview of neutron dosimetry and neutron radiobiology was included, as well as a historical overview of neutron exposure research. In addition, current research in the fields of biodosimetry and diagnostics, medical countermeasures (MCMs) and treatment, long-term health effects, and computational studies were presented and discussed.
Collapse
Affiliation(s)
- Daniela L Stricklin
- Previously - Arlington Division, Applied Research Associates, Inc., Arlington
| | - Jama VanHorne-Sealy
- Army Reactor Program, United States Army Nuclear and Countering Weapons of Mass Destruction Agency (USANCA), Department of Defense, Fort Belvoir, Virginia
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lisa A Scott Carnell
- Biological and Physical Sciences Division, National Aeronautics and Space Administration (NASA), Langley Research Center, Hampton, Virginia
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
43
|
Abstract
Microbial research in space is being conducted for almost 50 years now. The closed system of the International Space Station (ISS) has acted as a microbial observatory for the past 10 years, conducting research on adaptation and survivability of microorganisms exposed to space conditions. This adaptation can be either beneficial or detrimental to crew members and spacecraft. Therefore, it becomes crucial to identify the impact of two primary stress conditions, namely, radiation and microgravity, on microbial life aboard the ISS. Elucidating the mechanistic basis of microbial adaptation to space conditions aids in the development of countermeasures against their potentially detrimental effects and allows us to harness their biotechnologically important properties. Several microbial processes have been studied, either in spaceflight or using devices that can simulate space conditions. However, at present, research is limited to only a few microorganisms, and extensive research on biotechnologically important microorganisms is required to make long-term space missions self-sustainable.
Collapse
Affiliation(s)
- Swati Bijlani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Elisa Stephens
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Nitin Kumar Singh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| |
Collapse
|
44
|
Rithidech KN, Jangiam W, Tungjai M, Reungpatthanaphong P, Gordon C, Honikel L. Early- and late-occurring damage in bone marrow cells of male CBA/Ca mice exposed whole-body to 1 GeV/n 48Ti ions. Int J Radiat Biol 2021; 97:517-528. [PMID: 33591845 DOI: 10.1080/09553002.2021.1884312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/20/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To determine the early- and late-occurring damage in the bone marrow (BM) and peripheral blood cells of male CBA/Ca mice after exposure to 0, 0.1, 0.25, or 0.5 Gy of 1 GeV/n titanium (48Ti) ions (one type of space radiation). METHOD We used the mouse in vivo blood-erythrocyte micronucleus (MN) assay for evaluating the cytogenetic effects of various doses of 1 GeV/n 48Ti ions. The MN assay was coupled with the characterization of epigenetic alterations (the levels of global 5-methylcytosine and 5-hydroxymethylcytosine) in DNA samples isolated from BM cells. These analyses were performed in samples collected at an early time-point (1 week) and a late time-point (6 months) post-irradiation. RESULTS Our results showed that 48Ti ions induced genomic instability in exposed mice. Significant dose-dependent loss of global 5-hydroxymethylcytosine was found but there were no changes in global 5-methylcytosine levels. CONCLUSION Since persistent genomic instability and loss of global 5-hydroxymethylcytosine are linked to cancer, our findings suggest that exposure to 48Ti ions may pose health risks.
Collapse
Affiliation(s)
| | - Witawat Jangiam
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, Thailand
| | - Montree Tungjai
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Paiboon Reungpatthanaphong
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Applied Radiation and Isotopes, Faculty of Sciences, Kasetsart University, Bangkok, Thailand
| | - Chris Gordon
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
| | - Louise Honikel
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
45
|
Garikipati VNS, Arakelyan A, Blakely EA, Chang PY, Truongcao MM, Cimini M, Malaredy V, Bajpai A, Addya S, Bisserier M, Brojakowska A, Eskandari A, Khlgatian MK, Hadri L, Fish KM, Kishore R, Goukassian DA. Long-Term Effects of Very Low Dose Particle Radiation on Gene Expression in the Heart: Degenerative Disease Risks. Cells 2021; 10:387. [PMID: 33668521 PMCID: PMC7917872 DOI: 10.3390/cells10020387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Compared to low doses of gamma irradiation (γ-IR), high-charge-and-energy (HZE) particle IR may have different biological response thresholds in cardiac tissue at lower doses, and these effects may be IR type and dose dependent. Three- to four-month-old female CB6F1/Hsd mice were exposed once to one of four different doses of the following types of radiation: γ-IR 137Cs (40-160 cGy, 0.662 MeV), 14Si-IR (4-32 cGy, 260 MeV/n), or 22Ti-IR (3-26 cGy, 1 GeV/n). At 16 months post-exposure, animals were sacrificed and hearts were harvested and archived as part of the NASA Space Radiation Tissue Sharing Forum. These heart tissue samples were used in our study for RNA isolation and microarray hybridization. Functional annotation of twofold up/down differentially expressed genes (DEGs) and bioinformatics analyses revealed the following: (i) there were no clear lower IR thresholds for HZE- or γ-IR; (ii) there were 12 common DEGs across all 3 IR types; (iii) these 12 overlapping genes predicted various degrees of cardiovascular, pulmonary, and metabolic diseases, cancer, and aging; and (iv) these 12 genes revealed an exclusive non-linear DEG pattern in 14Si- and 22Ti-IR-exposed hearts, whereas two-thirds of γ-IR-exposed hearts revealed a linear pattern of DEGs. Thus, our study may provide experimental evidence of excess relative risk (ERR) quantification of low/very low doses of full-body space-type IR-associated degenerative disease development.
Collapse
Affiliation(s)
- Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, Dorothy M Davis Heart and Lung Research Institute, Wexner Medical School, The Ohio State University, Columbus, OH 43210, USA;
| | - Arsen Arakelyan
- Bioinformatics Group, The Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia;
- PathVerse, Yerevan 0014, Armenia
| | | | | | - May M. Truongcao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Vandana Malaredy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Anamika Bajpai
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Sankar Addya
- Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Agnieszka Brojakowska
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Abrisham Eskandari
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Mary K. Khlgatian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Kenneth M. Fish
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - David. A. Goukassian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| |
Collapse
|
46
|
Keiser AA, Kramár EA, Dong T, Shanur S, Pirodan M, Ru N, Acharya MM, Baulch JE, Limoli CL, Wood MA. Systemic HDAC3 inhibition ameliorates impairments in synaptic plasticity caused by simulated galactic cosmic radiation exposure in male mice. Neurobiol Learn Mem 2021; 178:107367. [PMID: 33359392 PMCID: PMC8456980 DOI: 10.1016/j.nlm.2020.107367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
Deep space travel presents a number of measurable risks including exposure to a spectrum of radiations of varying qualities, termed galactic cosmic radiation (GCR) that are capable of penetrating the spacecraft, traversing through the body and impacting brain function. Using rodents, studies have reported that exposure to simulated GCR leads to cognitive impairments associated with changes in hippocampus function that can persist as long as one-year post exposure with no sign of recovery. Whether memory can be updated to incorporate new information in mice exposed to GCR is unknown. Further, mechanisms underlying long lasting impairments in cognitive function as a result of GCR exposure have yet to be defined. Here, we examined whether whole body exposure to simulated GCR using 6 ions and doses of 5 or 30 cGy interfered with the ability to update an existing memory or impact hippocampal synaptic plasticity, a cellular mechanism believed to underlie memory processes, by examining long term potentiation (LTP) in acute hippocampal slices from middle aged male mice 3.5-5 months after radiation exposure. Using a modified version of the hippocampus-dependent object location memory task developed by our lab termed "Objects in Updated Locations" (OUL) task we find that GCR exposure impaired hippocampus-dependent memory updating and hippocampal LTP 3.5-5 months after exposure. Further, we find that impairments in LTP are reversed through one-time systemic subcutaneous injection of the histone deacetylase 3 inhibitor RGFP 966 (10 mg/kg), suggesting that long lasting impairments in cognitive function may be mediated at least in part, through epigenetic mechanisms.
Collapse
Affiliation(s)
- A A Keiser
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - E A Kramár
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - T Dong
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - S Shanur
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - M Pirodan
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - N Ru
- Department of Radiation Oncology, University of California, Irvine 92697-2695, United States
| | - M M Acharya
- Department of Radiation Oncology, University of California, Irvine 92697-2695, United States
| | - J E Baulch
- Department of Radiation Oncology, University of California, Irvine 92697-2695, United States
| | - C L Limoli
- Department of Radiation Oncology, University of California, Irvine 92697-2695, United States.
| | - M A Wood
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States.
| |
Collapse
|
47
|
Sadhukhan R, Majumdar D, Garg S, Landes RD, McHargue V, Pawar SA, Chowdhury P, Griffin RJ, Narayanasamy G, Boerma M, Dobretsov M, Hauer-Jensen M, Pathak R. Simultaneous exposure to chronic irradiation and simulated microgravity differentially alters immune cell phenotype in mouse thymus and spleen. LIFE SCIENCES IN SPACE RESEARCH 2021; 28:66-73. [PMID: 33612181 PMCID: PMC7900614 DOI: 10.1016/j.lssr.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/23/2020] [Indexed: 05/25/2023]
Abstract
Deep-space missions may alter immune cell phenotype in the primary (e.g., thymus) and secondary (e.g., spleen) lymphoid organs contributing to the progression of a variety of diseases. In deep space missions, astronauts will be exposed to chronic low doses of HZE radiation while being in microgravity. Ground-based models of long-term uninterrupted exposures to HZE radiation are not yet available. To obtain insight in the effects of concurrent exposure to microgravity and chronic irradiation (CIR), mice received a cumulative dose of chronic 0.5 Gy gamma rays over one month ± simulated microgravity (SMG). To obtain insight in a dose rate effect, additional mice were exposed to single acute irradiation (AIR) at 0.5 Gy gamma rays. We measured proportions of immune cells relative to total number of live cells in the thymus and spleen, stress level markers in plasma, and change in body weight, food consumption, and water intake. CIR affected thymic CD3+/CD335+ natural killer T (NK-T) cells, CD25+ regulatory T (Treg) cells, CD27+/CD335- natural killer (NK1) cells and CD11c+/CD11b- dendritic cells (DCs) differently in mice subjected to SMG than in mice with normal loading. No such effects of CIR on SMG as compared to normal loading were observed in cell types from the spleen. Differences between CIR and AIR groups (both under normal loading) were found in thymic Treg and DCs. Food consumption, water intake, and body weight were less after coexposure than singular or no exposure. Compared to sham, all treatment groups exhibited elevated plasma levels of the stress marker catecholamines. These data suggest that microgravity and chronic irradiation may interact with each other to alter immune cell phenotypes in an organ-specific manner and appropriate strategies are required to reduce the health risk of crewmembers.
Collapse
Affiliation(s)
- Ratan Sadhukhan
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Debajyoti Majumdar
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Reid D Landes
- Department of Biostatistics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Victoria McHargue
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Snehalata A Pawar
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Parimal Chowdhury
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Robert J Griffin
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Ganesh Narayanasamy
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Maxim Dobretsov
- Department of Anesthesiology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Sankt-Petersburg, Russian Federation
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
48
|
Chancellor J, Nowadly C, Williams J, Aunon-Chancellor S, Chesal M, Looper J, Newhauser W. Everything you wanted to know about space radiation but were afraid to ask. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:113-128. [PMID: 33902392 DOI: 10.1080/26896583.2021.1897273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The space radiation environment is a complex combination of fast-moving ions derived from all atomic species found in the periodic table. The energy spectrum of each ion species varies widely but is prominently in the range of 400-600 MeV/n. The large dynamic range in ion energy is difficult to simulate in ground-based radiobiology experiments. Most ground-based irradiations with mono-energetic beams of a single one ion species are delivered at comparatively high dose rates. In some cases, sequences of such beams are delivered with various ion species and energies to crudely approximate the complex space radiation environment. This approximation may cause profound experimental bias in processes such as biologic repair of radiation damage, which are known to have strong temporal dependencies. It is possible that this experimental bias leads to an over-prediction of risks of radiation effects that have not been observed in the astronaut cohort. None of the primary health risks presumably attributed to space radiation exposure, such as radiation carcinogenesis, cardiovascular disease, cognitive deficits, etc., have been observed in astronaut or cosmonaut crews. This fundamentally and profoundly limits our understanding of the effects of GCR on humans and limits the development of effective radiation countermeasures.
Collapse
Affiliation(s)
- Jeffery Chancellor
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Preventive Medicine & Population Health, University of Texas Medical Branch, Galveston, Texas, USA
- Outer Space Insititute, Universit of British Columbia, CA
| | - Craig Nowadly
- Department of Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, Texas, USA
| | - Jacqueline Williams
- Departments of Environmental Medicine & Radiation Oncology, University of Rochester Medical Center, Rochester, New York, USA
| | - Serena Aunon-Chancellor
- Department of Preventive Medicine & Population Health, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, LSU Health Science Center, Baton Rouge, Louisiana, USA
- Astronaut Office, NASA Johnson Space Center, Houston, Texas, USA
| | - Megan Chesal
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jayme Looper
- Department of Veterinary Clinical Sciences, LSU School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Wayne Newhauser
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Physics, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
49
|
Davis CM, Allen AR, Bowles DE. Consequences of space radiation on the brain and cardiovascular system. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:180-218. [PMID: 33902387 DOI: 10.1080/26896583.2021.1891825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Staying longer in outer space will inevitably increase the health risks of astronauts due to the exposures to galactic cosmic rays and solar particle events. Exposure may pose a significant hazard to space flight crews not only during the mission but also later, when slow-developing adverse effects could finally become apparent. The body of literature examining ground-based outcomes in response to high-energy charged-particle radiation suggests differential effects in response to different particles and energies. Numerous animal and cellular models have repeatedly demonstrated the negative effects of high-energy charged-particle on the brain and cognitive function. However, research on the role of space radiation in potentiating cardiovascular dysfunction is still in its early stages. This review summarizes the available data from studies using ground-based animal models to evaluate the response of the brain and heart to the high-energy charged particles of GCR and SPE, addresses potential sex differences in these effects, and aims to highlight gaps in the current literature for future study.
Collapse
Affiliation(s)
- Catherine M Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Dawn E Bowles
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham, NC, USA
| |
Collapse
|
50
|
Patel ZS, Brunstetter TJ, Tarver WJ, Whitmire AM, Zwart SR, Smith SM, Huff JL. Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. NPJ Microgravity 2020; 6:33. [PMID: 33298950 PMCID: PMC7645687 DOI: 10.1038/s41526-020-00124-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
NASA's plans for space exploration include a return to the Moon to stay-boots back on the lunar surface with an orbital outpost. This station will be a launch point for voyages to destinations further away in our solar system, including journeys to the red planet Mars. To ensure success of these missions, health and performance risks associated with the unique hazards of spaceflight must be adequately controlled. These hazards-space radiation, altered gravity fields, isolation and confinement, closed environments, and distance from Earth-are linked with over 30 human health risks as documented by NASA's Human Research Program. The programmatic goal is to develop the tools and technologies to adequately mitigate, control, or accept these risks. The risks ranked as "red" have the highest priority based on both the likelihood of occurrence and the severity of their impact on human health, performance in mission, and long-term quality of life. These include: (1) space radiation health effects of cancer, cardiovascular disease, and cognitive decrements (2) Spaceflight-Associated Neuro-ocular Syndrome (3) behavioral health and performance decrements, and (4) inadequate food and nutrition. Evaluation of the hazards and risks in terms of the space exposome-the total sum of spaceflight and lifetime exposures and how they relate to genetics and determine the whole-body outcome-will provide a comprehensive picture of risk profiles for individual astronauts. In this review, we provide a primer on these "red" risks for the research community. The aim is to inform the development of studies and projects with high potential for generating both new knowledge and technologies to assist with mitigating multisystem risks to crew health during exploratory missions.
Collapse
Affiliation(s)
- Zarana S Patel
- KBR, Houston, TX, USA.
- NASA Lyndon B. Johnson Space Center, Houston, TX, USA.
| | | | | | | | - Sara R Zwart
- NASA Lyndon B. Johnson Space Center, Houston, TX, USA
- University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Scott M Smith
- NASA Lyndon B. Johnson Space Center, Houston, TX, USA
| | | |
Collapse
|