1
|
Kohan AA, Mirshahvalad SA, Hinzpeter R, Kulanthaivelu R, Avery L, Ortega C, Metser U, Hope A, Veit-Haibach P. External Validation of a CT-Based Radiogenomics Model for the Detection of EGFR Mutation in NSCLC and the Impact of Prevalence in Model Building by Using Synthetic Minority Over Sampling (SMOTE): Lessons Learned. Acad Radiol 2025:S1076-6332(25)00416-7. [PMID: 40379588 DOI: 10.1016/j.acra.2025.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/19/2025]
Abstract
RATIONALE AND OBJECTIVES Radiogenomics holds promise in identifying molecular alterations in nonsmall cell lung cancer (NSCLC) using imaging features. Previously, we developed a radiogenomics model to predict epidermal growth factor receptor (EGFR) mutations based on contrast-enhanced computed tomography (CECT) in NSCLC patients. The current study aimed to externally validate this model using a publicly available National Institutes of Health (NIH)-based NSCLC dataset and assess the effect of EGFR mutation prevalence on model performance through synthetic minority oversampling technique (SMOTE). MATERIALS AND METHODS The original radiogenomics model was validated on an independent NIH cohort (n=140). For assessing the influence of disease prevalence, six SMOTE-augmented datasets were created, simulating EGFR mutation prevalence from 25% to 50%. Seven models were developed (one from original data, six SMOTE-augmented), each undergoing rigorous cross-validation, feature selection, and logistic regression modeling. Models were tested against the NIH cohort. Performance was compared using area under the receiver operating characteristic curve (Area Under the Curve [AUC]), and differences between radiomic-only, clinical-only, and combined models were statistically assessed. RESULTS External validation revealed poor diagnostic performance for both our model and a previously published EGFR radiomics model (AUC ∼0.5). The clinical model alone achieved higher diagnostic accuracy (AUC 0.74). SMOTE-augmented models showed increased sensitivity but did not improve overall AUC compared to the clinical-only model. Changing EGFR mutation prevalence had minimal impact on AUC, challenging previous assumptions about the influence of sample imbalance on model performance. CONCLUSION External validation failed to reproduce prior radiogenomics model performance, while clinical variables alone retained strong predictive value. SMOTE-based oversampling did not improve diagnostic accuracy, suggesting that, in EGFR prediction, radiomics may offer limited value beyond clinical data. Emphasis on robust external validation and data-sharing is essential for future clinical implementation of radiogenomic models.
Collapse
Affiliation(s)
- Andres A Kohan
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON, Canada (A.A.K., S.A.M., R.H., R.K., C.O., U.M., P.V.-H.); Joint Department of Medical Imaging, University Health Network, 263 McCaul St 4th Floor, Toronto, ON M5T 1W7, Canada (A.A.K.).
| | - S A Mirshahvalad
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON, Canada (A.A.K., S.A.M., R.H., R.K., C.O., U.M., P.V.-H.)
| | - R Hinzpeter
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON, Canada (A.A.K., S.A.M., R.H., R.K., C.O., U.M., P.V.-H.); Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (R.H.)
| | - R Kulanthaivelu
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON, Canada (A.A.K., S.A.M., R.H., R.K., C.O., U.M., P.V.-H.); Department of Diagnostics Radiology, Queen's University, Kingston, ON, Canada (R.K.)
| | - L Avery
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada (L.A.)
| | - C Ortega
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON, Canada (A.A.K., S.A.M., R.H., R.K., C.O., U.M., P.V.-H.)
| | - U Metser
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON, Canada (A.A.K., S.A.M., R.H., R.K., C.O., U.M., P.V.-H.)
| | - A Hope
- Department of Radiation Oncology, University Health Network, University of Toronto, Toronto, ON, Canada (A.H.)
| | - P Veit-Haibach
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON, Canada (A.A.K., S.A.M., R.H., R.K., C.O., U.M., P.V.-H.)
| |
Collapse
|
2
|
Chen S, Wang X, Lin X, Li Q, Xu S, Sun H, Xiao Y, Fan L, Liu S. CT-based radiomics predictive model for spread through air space of IA stage lung adenocarcinoma. Acta Radiol 2025; 66:477-486. [PMID: 39967035 DOI: 10.1177/02841851241305737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
BackgroundSpread through air spaces (STAS) in lung adenocarcinoma means different treatment and worse prognosis.PurposeTo construct a radiomics model based on CT scans to predict the presence of STAS in stage IA lung adenocarcinoma, compared with the traditional clinical model.Material and MethodsThe study included 317 patients (median age = 57.21 years; age range = 45.84-68.61 years) with pathologically confirmed stage IA lung adenocarcinoma. In total, 122 (38.5%) patients were diagnosed with STAS by pathology after the operation. Two experienced radiologists independently segmented the lesions using MITK software and extracted 1791 radiomics features using Python. Single-factor t-test or Mann-Whitney U-test and LASSO were used to screen for radiomics signatures related to STAS. This study constructed a radiomics model, a clinical model, and a combined model, combining radiomics and clinical features. Model performance was evaluated using the area under the curve (AUC).ResultsBy single-factor analysis, four clinical features and 13 radiomics features were significantly associated with STAS. The three models (the clinical, radiomics, and combine models) achieved predictive efficacy, with an AUC of 0.849, 0.867, and 0.939, respectively, in the training set and 0.808, 0.848, and 0.876, respectively, in the testing set.ConclusionThe combined model based on the radiomics and clinical features of preoperative chest CT could be used to preoperatively diagnose the presence of STAS in stage IA lung adenocarcinoma and has an excellent diagnostic performance.
Collapse
Affiliation(s)
- Song Chen
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
- Department of Radiology, Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch, Fudan University), Shanghai, PR China
| | - Xiang Wang
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Xu Lin
- Department of Pathology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Qingchu Li
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Shaochun Xu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Hongbiao Sun
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Yi Xiao
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Li Fan
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| |
Collapse
|
3
|
Xv Y, Xiao B, Wei Z, Cao Y, Jiang Q, Li F, Lv F, Peng C, Li X, Xiao M. Interpretable CT Radiomics-based Machine Learning Model for Preoperative Prediction of Ki-67 Expression in Clear Cell Renal Cell Carcinoma. Acad Radiol 2025; 32:2739-2750. [PMID: 39788813 DOI: 10.1016/j.acra.2024.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 01/12/2025]
Abstract
RATIONALE AND OBJECTIVES To develop and externally validate interpretable CT radiomics-based machine learning (ML) models for preoperative Ki-67 expression prediction in clear cell renal cell carcinoma (ccRCC). METHODS 506 patients were retrospectively enrolled from three independent institutes and divided into the training (n=357) and external test (n=149) sets. Ki67 expression was determined by immunohistochemistry (IHC) and categorized into low (<15%) and high (≥15%) expression groups. Radiomics features were extracted from segmented tumor regions in the corticomedullary phase (CMP) CT images using the "PyRadiomics" package. The least absolute shrinkage and selection operator (LASSO) regression was applied to select the most relevant radiomics features for Ki-67 expression, which were then used to train five ML models. Models' performances were evaluated via the receiving operator curve analysis and compared using Delong test. Calibration and decision curve analyses assessed the models' clinical utility. Kaplan-Meier analysis and Log-rank tests were conducted to determine the prognostic value of radiomics-predicted Ki-67 expression status. The optimal model was interpreted using SHapley Additive exPlanations (SHAP). RESULTS Eight radiomics feature were selected to build models using Random forest (RF), eXtreme Gradient Boosting (XGBoost), Logistic regression (LR), Support vector machine (SVM), and K-nearest neighbor (KNN). The RF model exhibited the best performance, achieving the highest area under the curve (AUC) in both the training (0.910, 95% confidence interval [CI]: 0.881-0.936) and external test (0.885, 95% CI: 0.826-0.934) sets, as confirmed by Delong test (all P values<0.05). Calibration and decision curves further demonstrated the superior clinical utility of the RF model. Both IHC-based and RF-predicted high Ki-67 expression groups were significantly associated with a higher risk of tumor recurrence in the training and external test sets (all P values<0.05). The prediction process of the RF model was uncovered in the globe and individualized terms using the SHAP. CONCLUSION The interpretable CT radiomics-based RF classifier exhibited robust predictive performance in assessing Ki-67 expression levels preoperatively, offering valuable prognostic insights and aiding clinical decision-making in ccRCC patients.
Collapse
Affiliation(s)
- Yingjie Xv
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Y.X., B.X., Z.W., C.P., M.X.)
| | - Bangxin Xiao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Y.X., B.X., Z.W., C.P., M.X.)
| | - Zongjie Wei
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Y.X., B.X., Z.W., C.P., M.X.)
| | - Youde Cao
- Department of Basic Medical Sciences, University of Chongqing Medical University, Chongqing, China (Y.C.)
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (Q.J.)
| | - Feng Li
- Department of Urology, Chongqing University Three Gorges Hospital, Chongqing, China (F.L.)
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (F.L.)
| | - Canjie Peng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Y.X., B.X., Z.W., C.P., M.X.)
| | - Xingshu Li
- Department of Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (X.L.)
| | - Mingzhao Xiao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Y.X., B.X., Z.W., C.P., M.X.).
| |
Collapse
|
4
|
Jin D, Ni X, Tan Y, Yin H, Fan G. Radiomics based on dual-layer spectral detector CT for predicting EGFR mutation status in non-small cell lung cancer. J Appl Clin Med Phys 2025; 26:e14616. [PMID: 39673508 PMCID: PMC11799912 DOI: 10.1002/acm2.14616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
OBJECTIVE To explore the value of dual-layer spectral computed tomography (DLCT)-based radiomics for predicting epidermal growth factor receptor (EGFR) mutation status in patients with non-small cell lung cancer (NSCLC). METHODS DLCT images and clinical information from 115 patients with NSCLC were collected retrospectively and randomly assigned to a training group (n = 81) and a validation group (n = 34). A radiomics model was constructed based on the DLCT radiomic features by least absolute shrinkage and selection operator (LASSO) dimensionality reduction. A clinical model based on clinical and CT features was established. A nomogram was built combining the radiomic scores (Radscores) and clinical factors. Receiver operating characteristic (ROC) analysis and decision curve analysis (DCA) were used for the efficacy and clinical value of the models assessment. RESULTS A total of six radiomic features and two clinical features were screened for modeling. The AUCs of the radiomic model, clinical model, and nomogram were 0.909, 0.797, and 0.922, respectively, in the training group and 0.874, 0.691, and 0.881, respectively, in the validation group. The AUCs of the nomogram and the radiomics model were significantly higher than that of the clinical model, but no significant difference was found between them. DCA revealed that nomogram had the greatest clinical benefit at most threshold intervals. CONCLUSION Nomogram integrating clinical factors and pretreatment DLCT radiomic features can help evaluate the EGFR mutation status of patients with NSCLC in a noninvasive way.
Collapse
Affiliation(s)
- Dan Jin
- Department of RadiologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Xiaoqiong Ni
- Department of RadiologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yanhuan Tan
- Department of RadiologyChangshu Hospital Affiliated to Nanjing University of Chinese MedicineSuzhouChina
| | - Hongkun Yin
- Department of Advanced ResearchInfervision Medical Technology Co. LtdBeijingChina
| | - Guohua Fan
- Department of RadiologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| |
Collapse
|
5
|
Wu L, Wei D, Chen W, Wu C, Lu Z, Li S, Liu W. Comprehensive Potential of Artificial Intelligence for Predicting PD-L1 Expression and EGFR Mutations in Lung Cancer: A Systematic Review and Meta-Analysis. J Comput Assist Tomogr 2025; 49:101-112. [PMID: 39143665 DOI: 10.1097/rct.0000000000001644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
OBJECTIVE To evaluate the methodological quality and the predictive performance of artificial intelligence (AI) for predicting programmed death ligand 1 (PD-L1) expression and epidermal growth factor receptors (EGFR) mutations in lung cancer (LC) based on systematic review and meta-analysis. METHODS AI studies based on PET/CT, CT, PET, and immunohistochemistry (IHC)-whole-slide image (WSI) were included to predict PD-L1 expression or EGFR mutations in LC. The modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to evaluate the methodological quality. A comprehensive meta-analysis was conducted to analyze the overall area under the curve (AUC). The Cochrane diagnostic test and I2 statistics were used to assess the heterogeneity of the meta-analysis. RESULTS A total of 45 AI studies were included, of which 10 were used to predict PD-L1 expression and 35 were used to predict EGFR mutations. Based on the analysis using the QUADAS-2 tool, 37 studies achieved a high-quality score of 7. In the meta-analysis of PD-L1 expression levels, the overall AUCs for PET/CT, CT, and IHC-WSI were 0.80 (95% confidence interval [CI], 0.77-0.84), 0.74 (95% CI, 0.69-0.77), and 0.95 (95% CI, 0.93-0.97), respectively. For EGFR mutation status, the overall AUCs for PET/CT, CT, and PET were 0.85 (95% CI, 0.81-0.88), 0.83 (95% CI, 0.80-0.86), and 0.75 (95% CI, 0.71-0.79), respectively. The Cochrane Diagnostic Test revealed an I2 value exceeding 50%, indicating substantial heterogeneity in the PD-L1 and EGFR meta-analyses. When AI was combined with clinicopathological features, the enhancement in predicting PD-L1 expression was not substantial, whereas the prediction of EGFR mutations showed improvement compared to the CT and PET models, albeit not significantly so compared to the PET/CT models. CONCLUSIONS The overall performance of AI in predicting PD-L1 expression and EGFR mutations in LC has promising clinical implications.
Collapse
Affiliation(s)
- Linyong Wu
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Dayou Wei
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Wubiao Chen
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, PR China
| | - Chaojun Wu
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Zhendong Lu
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, PR China
| | - Songhua Li
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Wenci Liu
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, PR China
| |
Collapse
|
6
|
Guo Y, Li T, Gong B, Hu Y, Wang S, Yang L, Zheng C. From Images to Genes: Radiogenomics Based on Artificial Intelligence to Achieve Non-Invasive Precision Medicine in Cancer Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408069. [PMID: 39535476 PMCID: PMC11727298 DOI: 10.1002/advs.202408069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/19/2024] [Indexed: 11/16/2024]
Abstract
With the increasing demand for precision medicine in cancer patients, radiogenomics emerges as a promising frontier. Radiogenomics is originally defined as a methodology for associating gene expression information from high-throughput technologies with imaging phenotypes. However, with advancements in medical imaging, high-throughput omics technologies, and artificial intelligence, both the concept and application of radiogenomics have significantly broadened. In this review, the history of radiogenomics is enumerated, related omics technologies, the five basic workflows and their applications across tumors, the role of AI in radiogenomics, the opportunities and challenges from tumor heterogeneity, and the applications of radiogenomics in tumor immune microenvironment. The application of radiogenomics in positron emission tomography and the role of radiogenomics in multi-omics studies is also discussed. Finally, the challenges faced by clinical transformation, along with future trends in this field is discussed.
Collapse
Affiliation(s)
- Yusheng Guo
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Tianxiang Li
- Department of UltrasoundState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical. SciencesPeking Union Medical CollegeBeijing100730China
| | - Bingxin Gong
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Yan Hu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Sichen Wang
- School of Life Science and TechnologyComputational Biology Research CenterHarbin Institute of TechnologyHarbin150001China
| | - Lian Yang
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Chuansheng Zheng
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| |
Collapse
|
7
|
Benfares A, Mourabiti AY, Alami B, Boukansa S, El Bouardi N, Lamrani MYA, El Fatimi H, Amara B, Serraj M, Mohammed S, Abdeljabbar C, Anass EA, Qjidaa M, Maaroufi M, Mohammed OJ, Hassan Q. Non-invasive, fast, and high-performance EGFR gene mutation prediction method based on deep transfer learning and model stacking for patients with Non-Small Cell Lung Cancer. Eur J Radiol Open 2024; 13:100601. [PMID: 39351523 PMCID: PMC11440319 DOI: 10.1016/j.ejro.2024.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Purpose To propose an intelligent, non-invasive, highly precise, and rapid method to predict the mutation status of the Epidermal Growth Factor Receptor (EGFR) to accelerate treatment with Tyrosine Kinase Inhibitor (TKI) for patients with untreated adenocarcinoma Non-Small Cell Lung Cancer. Materials and methods Real-world data from 521 patients with adenocarcinoma NSCLC who performed a CT scan and underwent surgery or pathological biopsy to determine EGFR gene mutation between January 2021 and July 2022, is collected. Solutions to the problems that prevent the model from achieving very high precision, namely: human errors made during the annotation of the database and the low precision of the output decision of the model, are proposed. Thus, among the 521 analyzed cases, only 40 were selected as patients with EGFR gene mutation and 98 cases with wild-type EGFR. Results The proposed model is trained, validated, and tested on 12,040 2D images extracted from the 138 CT scans images where patients were randomly partitioned into training (80 %) and test (20 %) sets. The performance obtained for EGFR gene mutation prediction was 95.22 % for accuracy, 960.2 for F1_score, 95.89 % for precision, 96.92 % for sensitivity, 94.01 % for Cohen kappa, and 98 % for AUC. Conclusion An EGFR gene mutation status prediction method, with high-performance thanks to an intelligent prediction model entrained by highly accurate annotated data is proposed. The outcome of this project will facilitate rapid decision-making when applying a TKI as an initial treatment.
Collapse
Affiliation(s)
- Anass Benfares
- Laboratory of Computer, Signals, Automation and Cognitivism, Dhar El Mehraz Faculty of Sciences, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Abdelali yahya Mourabiti
- Radiology Department of University Hospital Center Hassan II Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Badreddine Alami
- Radiology Department of University Hospital Center Hassan II Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Sara Boukansa
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Center Hassan II, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Nizar El Bouardi
- Radiology Department of University Hospital Center Hassan II Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Moulay Youssef Alaoui Lamrani
- Radiology Department of University Hospital Center Hassan II Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Hind El Fatimi
- Anatomopathological Department, University Hospital Center Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Bouchra Amara
- Pneumology Department, University Hospital Center Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mounia Serraj
- Pneumology Department, University Hospital Center Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Smahi Mohammed
- Thoracic Surgery Department, University Hospital Center Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Cherkaoui Abdeljabbar
- Laboratoire de Technologies Innovantes, Abdelmalek Essaidi University, Tanger, Morocco
| | | | - Mamoun Qjidaa
- Laboratoire de Technologies Innovantes, Abdelmalek Essaidi University, Tanger, Morocco
| | - Mustapha Maaroufi
- Radiology Department of University Hospital Center Hassan II Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Ouazzani Jamil Mohammed
- Laboratory of Intelligent Systems, Energy and Sustainable Development Faculty of Engineering Sciences, Private University of Fez, Fez, Morocco
| | - Qjidaa Hassan
- Laboratory of Intelligent Systems, Energy and Sustainable Development Faculty of Engineering Sciences, Private University of Fez, Fez, Morocco
| |
Collapse
|
8
|
Tian Q, Zhou SY, Qin YH, Wu YY, Qin C, Zhou H, Shi J, Duan SF, Feng F. Analysis of postoperative recurrence-free survival in non-small cell lung cancer patients based on consensus clustering. Clin Radiol 2024; 79:e1214-e1225. [PMID: 39039007 DOI: 10.1016/j.crad.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024]
Abstract
AIMS This study aims to assess whether consensus clustering, based on computed tomography (CT) radiomics from both intratumoral and peritumoral regions, can effectively stratify the risk of non-small cell lung cancer (NSCLC) patients and predict their postoperative recurrence-free survival (RFS). MATERIALS AND METHODS A retrospective analysis was conducted on the data of surgical patients diagnosed with NSCLC between December 2014 and April 2020. After preprocessing CT images, radiomic features were extracted from a 9-mm region encompassing both the tumor and its peritumoral area. Consensus clustering was utilized to analyze the radiomics features and categorize patients into distinct clusters. A comparison of the differences in clinical pathological characteristics was conducted among the clusters. Kaplan-Meier survival analysis was employed to investigate differences in survival among the clusters. RESULTS A total of 266 patients were included in this study, and consensus clustering identified three clusters (Cluster 1: n=111, Cluster 2: n=61, Cluster 3: n=94). Multiple clinical risk factors, including pathological TNM staging, programmed cell death ligand 1 (PD-L1), and epidermal growth factor receptor (EGFR) expression status exhibit significant differences among the three clusters. Kaplan-Meier survival analysis demonstrated significant variations in RFS across the clusters (P<0.001). The 3-year cumulative recurrence-free survival rates were 76.5% (95% CI: 68.6-84.4) for Cluster 1, 45.9% (95% CI: 33.4-58.4) for Cluster 2, and 41.5% (95% CI: 31.6-51.5) for Cluster 3. CONCLUSIONS Consensus clustering of CT radiomics based on intratumoral and peritumoral regions can stratify the risk of postoperative recurrence in patients with NSCLC.
Collapse
Affiliation(s)
- Q Tian
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - S-Y Zhou
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - Y-H Qin
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - Y-Y Wu
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - C Qin
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - H Zhou
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - J Shi
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - S-F Duan
- GE Healthcare China, Shanghai 210000, China.
| | - F Feng
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| |
Collapse
|
9
|
Zhou T, Guan Y, Lin X, Zhou X, Mao L, Ma Y, Fan B, Li J, Liu S, Fan L. CT-based whole lung radiomics nomogram for identification of PRISm from non-COPD subjects. Respir Res 2024; 25:329. [PMID: 39227894 PMCID: PMC11373438 DOI: 10.1186/s12931-024-02964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Preserved Ratio Impaired Spirometry (PRISm) is considered to be a precursor of chronic obstructive pulmonary disease. Radiomics nomogram can effectively identify the PRISm subjects from non-COPD subjects, especially when during large-scale CT lung cancer screening. METHODS Totally 1481 participants (864, 370 and 247 in training, internal validation, and external validation cohorts, respectively) were included. Whole lung on thin-section computed tomography (CT) was segmented with a fully automated segmentation algorithm. PyRadiomics was adopted for extracting radiomics features. Clinical features were also obtained. Moreover, Spearman correlation analysis, minimum redundancy maximum relevance (mRMR) feature ranking and least absolute shrinkage and selection operator (LASSO) classifier were adopted to analyze whether radiomics features could be used to build radiomics signatures. A nomogram that incorporated clinical features and radiomics signature was constructed through multivariable logistic regression. Last, calibration, discrimination and clinical usefulness were analyzed using validation cohorts. RESULTS The radiomics signature, which included 14 stable features, was related to PRISm of training and validation cohorts (p < 0.001). The radiomics nomogram incorporating independent predicting factors (radiomics signature, age, BMI, and gender) well discriminated PRISm from non-COPD subjects compared with clinical model or radiomics signature alone for training cohort (AUC 0.787 vs. 0.675 vs. 0.778), internal (AUC 0.773 vs. 0.682 vs. 0.767) and external validation cohorts (AUC 0.702 vs. 0.610 vs. 0.699). Decision curve analysis suggested that our constructed radiomics nomogram outperformed clinical model. CONCLUSIONS The CT-based whole lung radiomics nomogram could identify PRISm to help decision-making in clinic.
Collapse
Affiliation(s)
- TaoHu Zhou
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
- School of Medical Imaging, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Yu Guan
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - XiaoQing Lin
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
- College of Health Sciences and Engineering, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China
| | - XiuXiu Zhou
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Liang Mao
- Department of Medical Imaging, Affiliated Hospital of Ji Ning Medical University, Ji Ning, 272000, China
| | - YanQing Ma
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, ZJ, China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jie Li
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
- College of Health Sciences and Engineering, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China
| | - ShiYuan Liu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Li Fan
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
10
|
Wang Z, Zhang Q, Wang C, Herth FJF, Guo Z, Zhang X. Multiple primary lung cancer: Updates and perspectives. Int J Cancer 2024; 155:785-799. [PMID: 38783577 DOI: 10.1002/ijc.34994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/14/2024] [Accepted: 03/28/2024] [Indexed: 05/25/2024]
Abstract
Management of multiple primary lung cancer (MPLC) remains challenging, partly due to its increasing incidence, especially with the significant rise in cases of multiple lung nodules caused by low-dose computed tomography screening. Moreover, the indefinite pathogenesis, diagnostic criteria, and treatment selection add to the complexity. In recent years, there have been continuous efforts to dissect the molecular characteristics of MPLC and explore new diagnostic approaches as well as treatment modalities, which will be reviewed here, with a focus on newly emerging evidence and future perspectives, hope to provide new insights into the management of MPLC and serve as inspiration for future research related to MPLC.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, Henan, China
| | - Quncheng Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, Henan, China
| | - Chaoyang Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, Henan, China
| | - Felix J F Herth
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, Henan, China
- Department of Pneumology and Critical Care Medicine Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Zhiping Guo
- Department of Health Management, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan Provincial Key Laboratory of Chronic Diseases and Health Management, Zhengzhou, Henan, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Hu Y, Geng Y, Wang H, Chen H, Wang Z, Fu L, Huang B, Jiang W. Improved Prediction of Epidermal Growth Factor Receptor Status by Combined Radiomics of Primary Nonsmall-Cell Lung Cancer and Distant Metastasis. J Comput Assist Tomogr 2024; 48:780-788. [PMID: 38498926 DOI: 10.1097/rct.0000000000001591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
OBJECTIVES This study aimed to investigate radiomics based on primary nonsmall-cell lung cancer (NSCLC) and distant metastases to predict epidermal growth factor receptor (EGFR) mutation status. METHODS A total of 290 patients (mean age, 58.21 ± 9.28) diagnosed with brain (BM, n = 150) or spinal bone metastasis (SM, n = 140) from primary NSCLC were enrolled as a primary cohort. An external validation cohort, consisting of 69 patients (mean age, 59.87 ± 7.23; BM, n = 36; SM, n = 33), was enrolled from another center. Thoracic computed tomography-based features were extracted from the primary tumor and peritumoral area and selected using the least absolute shrinkage and selection operator regression to build a radiomic signature (RS-primary). Contrast-enhanced magnetic resonance imaging-based features were calculated and selected from the BM and SM to build RS-BM and RS-SM, respectively. The RS-BM-Com and RS-SM-Com were developed by integrating the most important features from the primary tumor, BM, and SM. RESULTS Six computed tomography-based features showed high association with EGFR mutation status: 3 from intratumoral and 3 from peritumoral areas. By combination of features from primary tumor and metastases, the developed RS-BM-Com and RS-SM-Com performed well with areas under curve in the training (RS-BM-Com vs RS-BM, 0.936 vs 0.885, P = 0.177; RS-SM-Com vs RS-SM, 0.929 vs 0.843, P = 0.003), internal validation (RS-BM-Com vs RS-BM, 0.920 vs 0.858, P = 0.492; RS-SM-Com vs RS-SM, 0.896 vs 0.859, P = 0.379), and external validation (RS-BM-Com vs RS-BM, 0.882 vs 0.805, P = 0.263; RS-SM-Com vs RS-SM, 0.865 vs 0.816, P = 0.312) cohorts. CONCLUSIONS This study indicates that the accuracy of detecting EGFR mutations significantly enhanced in the presence of metastases in primary NSCLC. The established radiomic signatures from this approach may be useful as new predictors for patients with distant metastases.
Collapse
Affiliation(s)
- Yue Hu
- From the Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Yikang Geng
- School of Intelligent Medicine, China Medical University, Liaoning
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Liaoning
| | - Huanhuan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang
| | - Zekun Wang
- Department of Medical Iconography, Liaoning Cancer Hospital & Institute, Liaoning
| | - Langyuan Fu
- School of Intelligent Medicine, China Medical University, Liaoning
| | - Bo Huang
- Department of Pathology, Liaoning Cancer Hospital and Institute, Liaoning
| | - Wenyan Jiang
- Department of Scientific Research and Academic, Liaoning Cancer Hospital and Institute, Liaoning, People's Republic of China
| |
Collapse
|
12
|
Yang C, Fan Y, Zhao D, Wang Z, Wang X, Wang H, Hu Y, He L, Zhang J, Wang Y, Liu Y, Sha X, Su J. Habitat-Based Radiomics for Predicting EGFR Mutations in Exon 19 and 21 From Brain Metastasis. Acad Radiol 2024; 31:3764-3773. [PMID: 38599906 DOI: 10.1016/j.acra.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/12/2024]
Abstract
RATIONALE AND OBJECTIVES To explore and externally validate habitat-based radiomics for preoperative prediction of epidermal growth factor receptor (EGFR) mutations in exon 19 and 21 from MRI imaging of non-small cell lung cancer (NSCLC)-originated brain metastasis (BM). METHODS A total of 170, 62 and 61 patients from center 1, center 2 and center 3, respectively were included. All patients underwent contrast-enhanced T1-weighted (T1CE) and T2-weighted (T2W) MRI scans. Radiomics features were extracted from the tumor active (TA) and peritumoral edema (PE) regions in each MRI slice. The most important features were selected by the least absolute shrinkage and selection operator regression to develop radiomics signatures based on TA (RS-TA), PE (RS-PE) and their combination (RS-Com). Receiver operating characteristic (ROC) curve analysis was performed to access performance of radiomics models for both internal and external validation cohorts. RESULTS 10, four and six most predictive features were identified to be strongly associated with the EGFR mutation status, exon 19 and exon 21, respectively. The RSs derived from the PE region outperformed those from the TA region for predicting the EGFR mutation, exon 19 and exon 21. The RS-Coms generated the highest performance in the primary training (AUCs, RS-EGFR-Com vs. RS-exon 19-Com vs. RS-exon 21-Com, 0.955 vs. 0.946 vs. 0.928), internal validation (AUCs, RS-EGFR-Com vs. RS-exon 19-Com vs. RS-exon 21-Com, 0.879 vs. 0.819 vs. 0.882), external validation 1 (AUCs, RS-EGFR-Com vs. RS-exon 19-Com vs. RS-exon 21-Com, 0.830 vs. 0.825 vs. 0.822), and external validation 2 (AUCs, RS-EGFR-Com vs. RS-exon 19-Com vs. RS-exon 21-Com, 0.812 vs. 0.818 vs. 0.800) cohort. CONCLUSION The developed habitat-based radiomics model can be used to accurately predict the EGFR mutation subtypes, which may potentially guide personalized treatments for NSCLC patients with BM.
Collapse
Affiliation(s)
- Chunna Yang
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Ying Fan
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Dan Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Zekun Wang
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Xiaoyu Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Yanjun Hu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Lingzi He
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110122, PR China
| | - Jin Zhang
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Yan Wang
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Yan Liu
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Xianzheng Sha
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Juan Su
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China.
| |
Collapse
|
13
|
Wu J, Meng H, Zhou L, Wang M, Jin S, Ji H, Liu B, Jin P, Du C. Habitat radiomics and deep learning fusion nomogram to predict EGFR mutation status in stage I non-small cell lung cancer: a multicenter study. Sci Rep 2024; 14:15877. [PMID: 38982267 PMCID: PMC11233600 DOI: 10.1038/s41598-024-66751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Develop a radiomics nomogram that integrates deep learning, radiomics, and clinical variables to predict epidermal growth factor receptor (EGFR) mutation status in patients with stage I non-small cell lung cancer (NSCLC). We retrospectively included 438 patients who underwent curative surgery and completed driver-gene mutation tests for stage I NSCLC from four academic medical centers. Predictive models were established by extracting and analyzing radiomic features in intratumoral, peritumoral, and habitat regions of CT images to identify EGFR mutation status in stage I NSCLC. Additionally, three deep learning models based on the intratumoral region were constructed. A nomogram was developed by integrating representative radiomic signatures, deep learning, and clinical features. Model performance was assessed by calculating the area under the receiver operating characteristic (ROC) curve. The established habitat radiomics features demonstrated encouraging performance in discriminating between EGFR mutant and wild-type, with predictive ability superior to other single models (AUC 0.886, 0.812, and 0.790 for the training, validation, and external test sets, respectively). The radiomics-based nomogram exhibited excellent performance, achieving the highest AUC values of 0.917, 0.837, and 0.809 in the training, validation, and external test sets, respectively. Decision curve analysis (DCA) indicated that the nomogram provided a higher net benefit than other radiomics models, offering valuable information for treatment.
Collapse
Affiliation(s)
- Jingran Wu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110840, China
| | - Hao Meng
- Department of Thoracic Surgery, General Hospital of Northern Theater Command, Shenyang, 110840, China
| | - Lin Zhou
- Department of Thoracic Surgery, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, 512025, China
| | - Meiling Wang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110840, China
| | - Shanxiu Jin
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110840, China
| | - Hongjuan Ji
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110840, China
| | - Bona Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110840, China.
| | - Peng Jin
- Department of Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China.
| | - Cheng Du
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110840, China.
| |
Collapse
|
14
|
Zuo Y, Liu L, Chang C, Yan H, Wang L, Sun D, Ruan M, Lei B, Xia X, Xie W, Song S, Huang G. Value of multi-center 18F-FDG PET/CT radiomics in predicting EGFR mutation status in lung adenocarcinoma. Med Phys 2024; 51:4872-4887. [PMID: 38285641 DOI: 10.1002/mp.16947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Accurate, noninvasive, and reliable assessment of epidermal growth factor receptor (EGFR) mutation status and EGFR molecular subtypes is essential for treatment plan selection and individualized therapy in lung adenocarcinoma (LUAD). Radiomics models based on 18F-FDG PET/CT have great potential in identifying EGFR mutation status and EGFR subtypes in patients with LUAD. The validation of multi-center data, model visualization, and interpretation are significantly important for the management, application and trust of machine learning predictive models. However, few EGFR-related research involved model visualization and interpretation, and multi-center trial. PURPOSE To develop explainable optimal predictive models based on handcrafted radiomics features (HRFs) extracted from multi-center 18F-FDG PET/CT to predict EGFR mutation status and molecular subtypes in LUAD. METHODS Baseline 18F-FDG PET/CT images of 383 LUAD patients from three hospitals and one public data set were collected. Further, 1808 HRFs were extracted from the primary tumor regions using Pyradiomics. Predictive models were built based on cross-combination of seven feature selection methods and seven machine learning algorithms. Yellowbrick and explainable artificial intelligence technology were used for model visualization and interpretation. Receiver operating characteristic curve, classification report and confusion matrix were used for model performance evaluation. Clinical applicability of the optimal models was assessed by decision curve analysis. RESULTS STACK feature selection method combined with light gradient boosting machine (LGBM) reached optimal performance in identifying EGFR mutation status ([area under the curve] AUC = 0.81 in the internal test cohort; AUC = 0.62 in the external test cohort). Random forest feature selection method combined with LGBM reached optimal performance in predicting EGFR mutation molecular subtypes (AUC = 0.89 in the internal test cohort; AUC = 0.61 in the external test cohort). CONCLUSIONS Explainable machine learning models combined with radiomics features extracted from multi-center/scanner 18F-FDG PET/CT have certain potential to identify EGFR mutation status and subtypes in LUAD, which might be helpful to the treatment of LUAD.
Collapse
Affiliation(s)
- Yan Zuo
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of nuclear medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Liu Liu
- Department of nuclear medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Chang
- Department of nuclear medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Yan
- Department of nuclear medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- Department of nuclear medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dazhen Sun
- Department of Automation, Shanghai Jiaotong University, Shanghai, China
| | - Maomei Ruan
- Department of nuclear medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei Lei
- Department of nuclear medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xunpeng Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Xie
- Department of nuclear medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoli Song
- Department of nuclear medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
15
|
Kohan A, Hinzpeter R, Kulanthaivelu R, Mirshahvalad SA, Avery L, Tsao M, Li Q, Ortega C, Metser U, Hope A, Veit-Haibach P. Contrast Enhanced CT Radiogenomics in a Retrospective NSCLC Cohort: Models, Attempted Validation of a Published Model and the Relevance of the Clinical Context. Acad Radiol 2024; 31:2953-2961. [PMID: 38383258 DOI: 10.1016/j.acra.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
RATIONALE AND OBJECTIVE To develop a radiogenomic predictive model for non-small cell lung cancer (NSCLC) patients studied through contrast enhanced chest computed tomography (CE-CT) targeting the most frequent gene alterations. M&M: A retrospective study of patients with NSCLC imaged with CE-CT before treatment and had their tumor genomics sequenced at our institution was performed. Data was gathered from their imaging studies, their electronic medical records and a web-based database search (cBioPortal.ca). All of the patient data was tabulated for analysis. Two predictive models (M1 & M2) were created using different approaches and a third model was extracted from the literature to also be tested in our population. RESULTS Out of 157 patients, eighty were male (51%) and 124 (79%) had a history of smoking. The three most prevalent genes were KRAS, TP53 and EGFR. The M1 radiomics-only model median AUC were 0.61 (TP53), 0.53 (KRAS) and 0.64 (EGFR) and for M1 radiomics + clinical were 0.61 (TP53), 0.61 (KRAS) and 0.80 (EGFR). The M2 radiomics-only model median AUC were 0.63 (TP53), 0.60 (KRAS) and 0.65 (EGFR) and for M2 radiomics + clinical were 0.64 (TP53), 0.62 (KRAS) and 0.81 (EGFR). The external EGFR radiomic model showed an AUC of 0.69 and 0.86 for the radiomics-only and combined radiomics + clinical respectively. CONCLUSION Our study was able to provide robust predictive radiomics model evaluation for the detection of TP53, KRAS and EGFR. We also compared our performance with an already published model and observed how impactful clinical variables can be on models' performance. CLINICAL RELEVANCE STATEMENT Identifying tumor mutations in patients that can't undergo biopsy is critical for their outcomes. KEYPOINTS • Tumor genomic profiling is critical for treatment selection • CE-CT radiomics produce robust predictive models comparable to those already published • Clinical variables should be considered/included in predictive models.
Collapse
Affiliation(s)
- A Kohan
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada.
| | - R Hinzpeter
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - R Kulanthaivelu
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - S A Mirshahvalad
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - L Avery
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - M Tsao
- University Health Network, Ontario Cancer Institute/Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Q Li
- University Health Network, Ontario Cancer Institute/Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - C Ortega
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - U Metser
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - A Hope
- Department of Radiation Oncology, University Health Network, University of Toronto, ON, Canada
| | - P Veit-Haibach
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
16
|
Zhang G, Man Q, Shang L, Zhang J, Cao Y, Li S, Qian R, Ren J, Pu H, Zhou J, Zhang Z, Kong W. Using Multi-phase CT Radiomics Features to Predict EGFR Mutation Status in Lung Adenocarcinoma Patients. Acad Radiol 2024; 31:2591-2600. [PMID: 38290884 DOI: 10.1016/j.acra.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
RATIONALE AND OBJECTIVES This study aimed to non-invasively predict epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma using multi-phase computed tomography (CT) radiomics features. MATERIALS AND METHODS A total of 424 patients with lung adenocarcinoma were recruited from two hospitals who underwent preoperative non-enhanced CT (NE-CT) and enhanced CT (including arterial phase CT [AP-CT], and venous phase CT [VP-CT]). Patients were divided into training (n = 297) and external validation (n = 127) cohorts according to hospital. Radiomics features were extracted from the NE-CT, AP-CT, and VP-CT images, respectively. The Wilcoxon test, correlation analysis, and simulated annealing were used for feature screening. A clinical model and eight radiomics models were established. Furthermore, a clinical-radiomics model was constructed by incorporating multi-phase CT features and clinical risk factors. Receiver operating characteristic curves were used to evaluate the predictive performance of the models. RESULTS The predictive performance of multi-phase CT radiomics model (AUC of 0.925 [95% CI, 0.879-0.971] in the validation cohort) was higher than that of NE-CT, AP-CT, VP-CT, and clinical models (AUCs of 0.860 [95% CI,0.794-0.927], 0.792 [95% CI, 0.713-0.871], 0.753 [95% CI, 0.669-0.838], and 0.706 [95% CI, 0.620-0.791] in the validation cohort, respectively) (all P < 0.05). The predictive performance of the clinical-radiomics model (AUC of 0.927 [95% CI, 0.882-0.971] in the validation cohort) was comparable to that of multi-phase CT radiomics model (P > 0.05). CONCLUSION Our multi-phase CT radiomics model showed good performance in identifying the EGFR mutation status in patients with lung adenocarcinoma, which may assist personalized treatment decisions.
Collapse
Affiliation(s)
- Guojin Zhang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China (G.Z., L.S., R.Q., H.P., W.K.)
| | - Qiong Man
- School of Pharmacy, Chengdu Medical College, Chengdu, China (Q.M.)
| | - Lan Shang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China (G.Z., L.S., R.Q., H.P., W.K.)
| | - Jing Zhang
- Department of Radiology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China (J.Z.)
| | - Yuntai Cao
- Department of Radiology, Affiliated Hospital of Qinghai University, Xining, China (Y.C.)
| | - Shenglin Li
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China (S.L., J.Z.)
| | - Rong Qian
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China (G.Z., L.S., R.Q., H.P., W.K.)
| | - Jialiang Ren
- ŌGE Healthcare China, Department of Radiology, China (J.R.)
| | - Hong Pu
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China (G.Z., L.S., R.Q., H.P., W.K.)
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China (S.L., J.Z.)
| | - Zhuoli Zhang
- Department of Radiology and BME, University of California Irvine, Irvine, California, USA (Z.Z.)
| | - Weifang Kong
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China (G.Z., L.S., R.Q., H.P., W.K.).
| |
Collapse
|
17
|
Lv X, Li Y, Wang B, Wang Y, Xu Z, Hou D. Multisequence MRI-based radiomics signature as potential biomarkers for differentiating KRAS mutations in non-small cell lung cancer with brain metastases. Eur J Radiol Open 2024; 12:100548. [PMID: 38298532 PMCID: PMC10827674 DOI: 10.1016/j.ejro.2024.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Background Kirsten rat sarcoma virus (KRAS) has evolved from a genotype with predictive value to a therapeutic target recently. The study aimed to establish non-invasive radiomics models based on MRI to discriminate KRAS from epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) mutations in lung cancer patients with brain metastases (BM), then further explore the optimal sequence for prediction. Methods This retrospective study involved 317 patients (218 patients in training cohort and 99 patients in testing cohort) who had confirmed of KRAS, EGFR or ALK mutations. Radiomics features were separately extracted from T2WI, T2 fluid-attenuated inversion recovery (T2-FLAIR), diffusion weighted imaging (DWI) and contrast-enhanced T1-weighted imaging (T1-CE) sequences. The maximal information coefficient and recursive feature elimination method were used to select informative features. Then we built four radiomics models for differentiating KRAS from EGFR or ALK using random forest classifier. ROC curves were used to validate the capability of the models. Results The four radiomics models for discriminating KRAS from EGFR all worked well, especially DWI and T2WI models (AUCs: 0.942, 0.942 in training cohort, 0.949, 0.954 in testing cohort). When KRAS compared to ALK, DWI and T2-FLAIR models showed excellent performance in two cohorts (AUCs: 0.947, 0.917 in training cohort, 0.850, 0.824 in testing cohort). Conclusions Radiomics classifiers integrating MRI have potential to discriminate KRAS from EGFR or ALK, which are helpful to guide treatment and facilitate the discovery of new approaches capable of achieving this long-sought goal of cure in lung cancer patients with KRAS.
Collapse
Affiliation(s)
- Xinna Lv
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Ye Li
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Bing Wang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Yichuan Wang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Zexuan Xu
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Dailun Hou
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
18
|
Wang Y, Lyu D, Hu S, Ma Y, Duan S, Geng Y, Zhou T, Tu W, Xiao Y, Fan L, Liu S. Nomogram using intratumoral and peritumoral radiomics for the preoperative prediction of visceral pleural invasion in clinical stage IA lung adenocarcinoma. J Cardiothorac Surg 2024; 19:307. [PMID: 38822379 PMCID: PMC11141037 DOI: 10.1186/s13019-024-02807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Accurate prediction of visceral pleural invasion (VPI) in lung adenocarcinoma before operation can provide guidance and help for surgical operation and postoperative treatment. We investigate the value of intratumoral and peritumoral radiomics nomograms for preoperatively predicting the status of VPI in patients diagnosed with clinical stage IA lung adenocarcinoma. METHODS A total of 404 patients from our hospital were randomly assigned to a training set (n = 283) and an internal validation set (n = 121) using a 7:3 ratio, while 81 patients from two other hospitals constituted the external validation set. We extracted 1218 CT-based radiomics features from the gross tumor volume (GTV) as well as the gross peritumoral tumor volume (GPTV5, 10, 15), respectively, and constructed radiomic models. Additionally, we developed a nomogram based on relevant CT features and the radscore derived from the optimal radiomics model. RESULTS The GPTV10 radiomics model exhibited superior predictive performance compared to GTV, GPTV5, and GPTV15, with area under the curve (AUC) values of 0.855, 0.842, and 0.842 in the three respective sets. In the clinical model, the solid component size, pleural indentation, solid attachment, and vascular convergence sign were identified as independent risk factors among the CT features. The predictive performance of the nomogram, which incorporated relevant CT features and the GPTV10-radscore, outperformed both the radiomics model and clinical model alone, with AUC values of 0.894, 0.828, and 0.876 in the three respective sets. CONCLUSIONS The nomogram, integrating radiomics features and CT morphological features, exhibits good performance in predicting VPI status in lung adenocarcinoma.
Collapse
Affiliation(s)
- Yun Wang
- Department of Radiology, Second Affiliated Hospital of Navy Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Deng Lyu
- Department of Radiology, Second Affiliated Hospital of Navy Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanqing Ma
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shaofeng Duan
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - Yayuan Geng
- Shukun(Beijing) Network Technology Co.,Ltd, Beijing, China
| | - Taohu Zhou
- Department of Radiology, Second Affiliated Hospital of Navy Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Wenting Tu
- Department of Radiology, Second Affiliated Hospital of Navy Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Yi Xiao
- Department of Radiology, Second Affiliated Hospital of Navy Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Li Fan
- Department of Radiology, Second Affiliated Hospital of Navy Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China.
| | - Shiyuan Liu
- Department of Radiology, Second Affiliated Hospital of Navy Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China.
| |
Collapse
|
19
|
Li Y, Jin Y, Wang Y, Liu W, Jia W, Wang J. MR-based radiomics predictive modelling of EGFR mutation and HER2 overexpression in metastatic brain adenocarcinoma: a two-centre study. Cancer Imaging 2024; 24:65. [PMID: 38773634 PMCID: PMC11110398 DOI: 10.1186/s40644-024-00709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/11/2024] [Indexed: 05/24/2024] Open
Abstract
OBJECTIVES Magnetic resonance (MR)-based radiomics features of brain metastases are utilised to predict epidermal growth factor receptor (EGFR) mutation and human epidermal growth factor receptor 2 (HER2) overexpression in adenocarcinoma, with the aim to identify the most predictive MR sequence. METHODS A retrospective inclusion of 268 individuals with brain metastases from adenocarcinoma across two institutions was conducted. Utilising T1-weighted imaging (T1 contrast-enhanced [T1-CE]) and T2 fluid-attenuated inversion recovery (T2-FLAIR) sequences, 1,409 radiomics features were extracted. These sequences were randomly divided into training and test sets at a 7:3 ratio. The selection of relevant features was done using the least absolute shrinkage selection operator, and the training cohort's support vector classifier model was employed to generate the predictive model. The performance of the radiomics features was evaluated using a separate test set. RESULTS For contrast-enhanced T1-CE cohorts, the radiomics features based on 19 selected characteristics exhibited excellent discrimination. No significant differences in age, sex, and time to metastasis were observed between the groups with EGFR mutations or HER2 + and those with wild-type EGFR or HER2 (p > 0.05). Radiomics feature analysis for T1-CE revealed an area under the curve (AUC) of 0.98, classification accuracy of 0.93, sensitivity of 0.92, and specificity of 0.93 in the training cohort. In the test set, the AUC was 0.82. The 19 radiomics features for the T2-FLAIR sequence showed AUCs of 0.86 in the training set and 0.70 in the test set. CONCLUSIONS This study developed a T1-CE signature that could serve as a non-invasive adjunctive tool to determine the presence of EGFR mutations and HER2 + status in adenocarcinoma, aiding in the direction of treatment plans. CLINICAL RELEVANCE STATEMENT We propose radiomics features based on T1-CE brain MR sequences that are both evidence-based and non-invasive. These can be employed to guide clinical treatment planning in patients with brain metastases from adenocarcinoma.
Collapse
Affiliation(s)
- Yanran Li
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Yong Jin
- Department of Radiology, Changzhi People's Hospital, Changzhi, 046000, Shanxi Province, China
| | - Yunling Wang
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Wenya Liu
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Wenxiao Jia
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Jian Wang
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
| |
Collapse
|
20
|
Xu J, Yang Y, Gao Z, Song T, Ma Y, Yu X, Shi C. Distinguishing EGFR mutation molecular subtypes based on MRI radiomics features of lung adenocarcinoma brain metastases. Clin Neurol Neurosurg 2024; 240:108258. [PMID: 38552362 DOI: 10.1016/j.clineuro.2024.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVE To explore the feasibility of identifying epidermal growth factor receptor (EGFR) mutation molecular subtypes in primary lesions based on the radiomics features of lung adenocarcinoma brain metastases using magnetic resonance imaging (MRI). METHODS We retrospectively analyzed clinical, imaging, and genetic testing data of patients with lung adenocarcinoma with EGFR gene mutations who had brain metastases. Three-dimensional radiomics features were extracted from contrast-enhanced T1-weighted images. The volume of interest was delineated and normalized using Z-score, dimensionality reduction was performed using principal component analysis, feature selection using Relief, and radiomics model construction using adaptive boosting as a classifier. Data were randomly divided into training and testing datasets at an 8:2 ratio. Five-fold cross-validation was conducted in the training set to select the optimal radiomics features and establish a predictive model for distinguishing between exon 19 deletion (19Del) and exon 21 L858R point mutation (21L858R), the two most common EGFR gene mutations. The testing set was used for external validation of the models. Model performance was evaluated using receiver operating characteristic curve and decision curve analyses. RESULTS Overall, 86 patients with 228 brain metastases were included. Patient age was identified as an independent predictor for distinguishing between 19Del and 21L858R. The area under the curve (AUC) values of the radiomics model in the training and testing datasets were 0.895 (95% confidence interval [CI]: 0.850-0.939) and 0.759 (95% CI: 0.0.614-0.903), respectively. The AUC for diagnosis of all cases using a combined model of age and radiomics was 0.888 (95% CI: 0.846-0.930), slightly higher than that of the radiomics model alone (0.866, 95% CI: 0.820-0.913), but without statistical significance (p=0.1626). In the decision curve analysis, both models demonstrated clinical net benefits. CONCLUSIONS The radiomics model based on MRI of lung adenocarcinoma brain metastases could distinguish between EGFR 19Del and 21L858R mutations in the primary lesion.
Collapse
Affiliation(s)
- Jiali Xu
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China; Department of Medical Imaging Diagnosis, School of Medical Imaging, Bengbu Medical University, Bengbu, Anhui, China.
| | - Yuqiong Yang
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China; School of Graduate, Bengbu Medical University, Bengbu, Anhui 233030,China
| | - Zhizhen Gao
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Tao Song
- Vascular Surgery Department, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Yichuan Ma
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Xiaojun Yu
- Department of Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Changzheng Shi
- Department of Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| |
Collapse
|
21
|
Wang Y, Lyu D, Hu L, Wu J, Duan S, Zhou T, Tu W, Xiao Y, Fan L, Liu S. CT-Based Intratumoral and Peritumoral Radiomics Nomograms for the Preoperative Prediction of Spread Through Air Spaces in Clinical Stage IA Non-small Cell Lung Cancer. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:520-535. [PMID: 38343212 PMCID: PMC11031508 DOI: 10.1007/s10278-023-00939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 04/20/2024]
Abstract
The study aims to investigate the value of intratumoral and peritumoral radiomics and clinical-radiological features for predicting spread through air spaces (STAS) in patients with clinical stage IA non-small cell lung cancer (NSCLC). A total of 336 NSCLC patients from our hospital were randomly divided into the training cohort (n = 236) and the internal validation cohort (n = 100) at a ratio of 7:3, and 69 patients from the other two external hospitals were collected as the external validation cohort. Univariate and multivariate analyses were used to select clinical-radiological features and construct a clinical model. The GTV, PTV5, PTV10, PTV15, PTV20, GPTV5, GPTV10, GPTV15, and GPTV20 models were constructed based on intratumoral and peritumoral (5 mm, 10 mm, 15 mm, 20 mm) radiomics features. Additionally, the radscore of the optimal radiomics model and clinical-radiological predictors were used to construct a combined model and plot a nomogram. Lastly, the ROC curve and AUC value were used to evaluate the diagnostic performance of the model. Tumor density type (OR = 6.738) and distal ribbon sign (OR = 5.141) were independent risk factors for the occurrence of STAS. The GPTV10 model outperformed the other radiomics models, and its AUC values were 0.887, 0.876, and 0.868 in the three cohorts. The AUC values of the combined model constructed based on GPTV10 radscore and clinical-radiological predictors were 0.901, 0.875, and 0.878. DeLong test results revealed that the combined model was superior to the clinical model in the three cohorts. The nomogram based on GPTV10 radscore and clinical-radiological features exhibited high predictive efficiency for STAS status in NSCLC.
Collapse
Affiliation(s)
- Yun Wang
- Department of Radiology, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China
| | - Deng Lyu
- Department of Radiology, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China
| | - Lei Hu
- Department of Radiology Medicine, The People's Hospital of Chizhou, Chizhou, Anhui, 247100, China
| | - Junhong Wu
- Department of Radiology Medicine, The People's Hospital of Guigang, Guigang, Guangxi Zhuang Autonomous Region, 537100, China
| | - Shaofeng Duan
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - Taohu Zhou
- Department of Radiology, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China
| | - Wenting Tu
- Department of Radiology, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China
| | - Yi Xiao
- Department of Radiology, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China
| | - Li Fan
- Department of Radiology, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China.
| | - Shiyuan Liu
- Department of Radiology, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China.
| |
Collapse
|
22
|
Hou S, Wang H, Wang X, Chen H, Zhou B, Meng R, Sha X, Chang S, Wang H, Jiang W. Tumor-liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof-of-concept study. Med Phys 2024; 51:1083-1091. [PMID: 37408393 DOI: 10.1002/mp.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Preoperative prediction of the epidermal growth factor receptor (EGFR) status in non-small-cell lung cancer (NSCLC) patients with liver metastasis (LM) may have potential clinical values for assisting in treatment decision-making. PURPOSE To explore the value of tumor-liver interface (TLI)-based magnetic resonance imaging (MRI) radiomics for detecting the EGFR mutation in NSCLC patients with LM. METHODS This retrospective study included 123 and 44 patients from hospital 1 (between Feb. 2018 and Dec. 2021) and hospital 2 (between Nov. 2015 and Aug. 2022), respectively. The patients received contrast-enhanced T1-weighted (CET1) and T2-weighted (T2W) liver MRI scans before treatment. Radiomics features were extracted from MRI images of TLI and the whole tumor region, separately. The least absolute shrinkage and selection operator (LASSO) regression was used to screen the features and establish radiomics signatures (RSs) based on TLI (RS-TLI) and the whole tumor (RS-W). The RSs were evaluated by the receiver operating characteristic (ROC) curve analysis. RESULTS A total of 5 and 6 features were identified highly correlated with the EGFR mutation status from TLI and the whole tumor, respectively. The RS-TLI showed better prediction performance than RS-W in the training (AUCs, RS-TLI vs. RS-W, 0.842 vs. 0.797), internal validation (AUCs, RS-TLI vs. RS-W, 0.771 vs. 0.676) and external validation (AUCs, RS-TLI vs. RS-W, 0.733 vs. 0.679) cohort. CONCLUSION Our study demonstrated that TLI-based radiomics can improve prediction performance of the EGFR mutation in lung cancer patients with LM. The established multi-parametric MRI radiomics models may be used as new markers that can potentially assist in personalized treatment planning.
Collapse
Affiliation(s)
- Shaoping Hou
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Xiaoyu Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, P.R. China
| | - Huanhuan Chen
- Department of Oncology, Shengjing Hospital, Shenyang, Liaoning, P.R. China
| | - Boyu Zhou
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Ruiqing Meng
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Xianzheng Sha
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Shijie Chang
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P.R. China
| | - Wenyan Jiang
- Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P.R. China
| |
Collapse
|
23
|
Nguyen HS, Ho DKN, Nguyen NN, Tran HM, Tam KW, Le NQK. Predicting EGFR Mutation Status in Non-Small Cell Lung Cancer Using Artificial Intelligence: A Systematic Review and Meta-Analysis. Acad Radiol 2024; 31:660-683. [PMID: 37120403 DOI: 10.1016/j.acra.2023.03.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 05/01/2023]
Abstract
RATIONALE AND OBJECTIVES Recent advancements in artificial intelligence (AI) render a substantial promise for epidermal growth factor receptor (EGFR) mutation status prediction in non-small cell lung cancer (NSCLC). We aimed to evaluate the performance and quality of AI algorithms that use radiomics features in predicting EGFR mutation status in patient with NSCLC. MATERIALS AND METHODS We searched PubMed (Medline), EMBASE, Web of Science, and IEEExplore for studies published up to February 28, 2022. Studies utilizing an AI algorithm (either conventional machine learning [cML] and deep learning [DL]) for predicting EGFR mutations in patients with NSLCL were included. We extracted binary diagnostic accuracy data and constructed a bivariate random-effects model to obtain pooled sensitivity, specificity, and 95% confidence interval. This study is registered with PROSPERO, CRD42021278738. RESULTS Our search identified 460 studies, of which 42 were included. Thirty-five studies were included in the meta-analysis. The AI algorithms exhibited an overall area under the curve (AUC) value of 0.789 and pooled sensitivity and specificity levels of 72.2% and 73.3%, respectively. The DL algorithms outperformed cML in terms of AUC (0.822 vs. 0.775) and sensitivity (80.1% vs. 71.1%), but had lower specificity (70.0% vs. 73.8%, p-value < 0.001) compared to cML. Subgroup analysis revealed that the use of positron-emission tomography/computed tomography, additional clinical information, deep feature extraction, and manual segmentation can improve diagnostic performance. CONCLUSION DL algorithms can serve as a novel method for increasing predictive accuracy and thus have considerable potential for use in predicting EGFR mutation status in patient with NSCLC. We also suggest that guidelines on using AI algorithms in medical image analysis should be developed with a focus on oncologic radiomics.
Collapse
Affiliation(s)
- Hung Song Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan (H.S.N., N.N.N.); Department of Pediatrics, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Viet Nam (H.S.N.); Intensive Care Unit Department, Children's Hospital 1, Ho Chi Minh City, Viet Nam (H.S.N.)
| | - Dang Khanh Ngan Ho
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan (D.K.N.H.)
| | - Nam Nhat Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan (H.S.N., N.N.N.)
| | - Huy Minh Tran
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam (H.M.T.)
| | - Ka-Wai Tam
- Center for Evidence-based Health Care, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan (K.-W.T.); Cochrane Taiwan, Taipei Medical University, Taipei City, Taiwan (K.-W.T.); Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan (K.-W.T.); Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan (K.-W.T.)
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (N.Q.K.L.); Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 110, Taiwan (N.Q.K.L.); AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan (N.Q.K.L.); Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan (N.Q.K.L.).
| |
Collapse
|
24
|
Li Y, Lv X, Chen C, Yu R, Wang B, Wang D, Hou D. A deep learning model integrating multisequence MRI to predict EGFR mutation subtype in brain metastases from non-small cell lung cancer. Eur Radiol Exp 2024; 8:2. [PMID: 38169047 PMCID: PMC10761638 DOI: 10.1186/s41747-023-00396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND To establish a predictive model based on multisequence magnetic resonance imaging (MRI) using deep learning to identify wild-type (WT) epidermal growth factor receptor (EGFR), EGFR exon 19 deletion (19Del), and EGFR exon 21-point mutation (21L858R) simultaneously. METHODS A total of 399 patients with proven brain metastases of non-small cell lung cancer (NSCLC) were retrospectively enrolled and divided into training (n = 306) and testing (n = 93) cohorts separately based on two timepoints. All patients underwent 3.0-T brain MRI including T2-weighted, T2-weighted fluid-attenuated inversion recovery, diffusion-weighted imaging, and contrast-enhanced T1-weighted sequences. Radiomics features were extracted from each lesion based on four sequences. An algorithm combining radiomics approach with graph convolutional networks architecture (Radio-GCN) was designed for the prediction of EGFR mutation status and subtype. The area under the curve (AUC) at receiver operating characteristic analysis was used to evaluate the predication capabilities of each model. RESULTS We extracted 1,290 radiomics features from each MRI sequence. The AUCs of the Radio-GCN model for identifying EGFR 19Del, 21L858R, and WT for the lesion-wise analysis were 0.996 ± 0.004, 0.971 ± 0.013, and 1.000 ± 0.000 on the independent testing cohort separately. It also yielded AUCs of 1.000 ± 0.000, 0.991 ± 0.009, and 1.000 ± 0.000 for predicting EGFR mutations respectively for the patient-wise analysis. The κ coefficients were 0.735 and 0.812, respectively. CONCLUSIONS The constructed Radio-GCN model is a new potential tool to predict the EGFR mutation status and subtype in NSCLC patients with brain metastases. RELEVANCE STATEMENT The study demonstrated that a deep learning approach based on multisequence MRI can help to predict the EGFR mutation status in NSCLC patients with brain metastases, which is beneficial to guide a personalized treatment. KEY POINTS • This is the first study to predict the EGFR mutation subtype simultaneously. • The Radio-GCN model holds the potential to be used as a diagnostic tool. • This study provides an imaging surrogate for identifying the EGFR mutation subtype.
Collapse
Affiliation(s)
- Ye Li
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Xinna Lv
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Cancan Chen
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd., Beijing, 100025, China
| | - Ruize Yu
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd., Beijing, 100025, China
| | - Bing Wang
- Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Dawei Wang
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd., Beijing, 100025, China.
| | - Dailun Hou
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
25
|
Meng N, Feng P, Yu X, Wu Y, Fu F, Li Z, Luo Y, Tan H, Yuan J, Yang Y, Wang Z, Wang M. An [ 18F]FDG PET/3D-ultrashort echo time MRI-based radiomics model established by machine learning facilitates preoperative assessment of lymph node status in non-small cell lung cancer. Eur Radiol 2024; 34:318-329. [PMID: 37530809 DOI: 10.1007/s00330-023-09978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES To develop an [18F]FDG PET/3D-UTE model based on clinical factors, three-dimensional ultrashort echo time (3D-UTE), and PET radiomics features via machine learning for the assessment of lymph node (LN) status in non-small cell lung cancer (NSCLC). METHODS A total of 145 NSCLC patients (training, 101 cases; test, 44 cases) underwent whole-body [18F]FDG PET/CT and chest [18F]FDG PET/MRI were enrolled. Preoperative clinical factors and 3D-UTE, CT, and PET radiomics features were analyzed. The Mann-Whitney U test, LASSO regression, and SelectKBest were used for feature extraction. Five machine learning algorithms were used to establish prediction models, which were evaluated by the area under receiver-operator characteristic (ROC), DeLong test, calibration curves, and decision curve analysis (DCA). RESULTS A prediction model based on random forest, consisting of four clinical factors, six 3D-UTE, and six PET radiomics features, was used as the final model for PET/3D-UTE. The AUCs of this model were 0.912 and 0.791 in the training and test sets, respectively, which not only showed different degrees of improvement over individual models such as clinical, 3D-UTE, and PET (AUC-training = 0.838, 0.834, and 0.828, AUC-test = 0.756, 0.745, and 0.768, respectively) but also achieved the similar diagnostic efficacy as the optimal PET/CT model (AUC-training = 0.890, AUC-test = 0.793). The calibration curves and DCA indicated good consistency (C-index, 0.912) and clinical utility of this model, respectively. CONCLUSION The [18F]FDG PET/3D-UTE model based on clinical factors, 3D-UTE, and PET radiomics features using machine learning methods could noninvasively assess the LN status of NSCLC. CLINICAL RELEVANCE STATEMENT A machine learning model of 18F-fluorodeoxyglucose positron emission tomography/ three-dimensional ultrashort echo time could noninvasively assess the lymph node status of non-small cell lung cancer, which provides a novel method with less radiation burden for clinical practice. KEY POINTS • The 3D-UTE radiomics model using the PLS-DA classifier was significantly associated with LN status in NSCLC and has similar diagnostic performance as the clinical, CT, and PET models. • The [18F]FDG PET/3D-UTE model based on clinical factors, 3D-UTE, and PET radiomics features using the RF classifier could noninvasively assess the LN status of NSCLC and showed improved diagnostic performance compared to the clinical, 3D-UTE, and PET models. • In the assessment of LN status in NSCLC, the [18F]FDG PET/3D-UTE model has similar diagnostic efficacy as the [18F]FDG PET/CT model that incorporates clinical factors and CT and PET radiomics features.
Collapse
Affiliation(s)
- Nan Meng
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, 7 Weiwu Road, Zhengzhou, 450000, China
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Biomedical Research Institute, Henan Academy of Science, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengyang Feng
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, 7 Weiwu Road, Zhengzhou, 450000, China
- Department of Medical Imaging, Henan University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Xuan Yu
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, 7 Weiwu Road, Zhengzhou, 450000, China
| | - Yaping Wu
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, 7 Weiwu Road, Zhengzhou, 450000, China
| | - Fangfang Fu
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, 7 Weiwu Road, Zhengzhou, 450000, China
| | - Ziqiang Li
- Department of Medical Imaging, Xinxiang Medical University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Yu Luo
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, 7 Weiwu Road, Zhengzhou, 450000, China
| | - Hongna Tan
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, 7 Weiwu Road, Zhengzhou, 450000, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, United Imaging Healthcare Group, Beijing, China
| | - Zhe Wang
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, 7 Weiwu Road, Zhengzhou, 450000, China.
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Biomedical Research Institute, Henan Academy of Science, Zhengzhou, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
26
|
Gong J, Fu F, Ma X, Wang T, Ma X, You C, Zhang Y, Peng W, Chen H, Gu Y. Hybrid deep multi-task learning radiomics approach for predicting EGFR mutation status of non-small cell lung cancer in CT images. Phys Med Biol 2023; 68:245021. [PMID: 37972417 DOI: 10.1088/1361-6560/ad0d43] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Objective.Epidermal growth factor receptor (EGFR) mutation genotyping plays a pivotal role in targeted therapy for non-small cell lung cancer (NSCLC). We aimed to develop a computed tomography (CT) image-based hybrid deep radiomics model to predict EGFR mutation status in NSCLC and investigate the correlations between deep image and quantitative radiomics features.Approach.First, we retrospectively enrolled 818 patients from our centre and 131 patients from The Cancer Imaging Archive database to establish a training cohort (N= 654), an independent internal validation cohort (N= 164) and an external validation cohort (N= 131). Second, to predict EGFR mutation status, we developed three CT image-based models, namely, a multi-task deep neural network (DNN), a radiomics model and a feature fusion model. Third, we proposed a hybrid loss function to train the DNN model. Finally, to evaluate the model performance, we computed the areas under the receiver operating characteristic curves (AUCs) and decision curve analysis curves of the models.Main results.For the two validation cohorts, the feature fusion model achieved AUC values of 0.86 ± 0.03 and 0.80 ± 0.05, which were significantly higher than those of the single-task DNN and radiomics models (allP< 0.05). There was no significant difference between the feature fusion and the multi-task DNN models (P> 0.8). The binary prediction scores showed excellent prognostic value in predicting disease-free survival (P= 0.02) and overall survival (P< 0.005) for validation cohort 2.Significance.The results demonstrate that (1) the feature fusion and multi-task DNN models achieve significantly higher performance than that of the conventional radiomics and single-task DNN models, (2) the feature fusion model can decode the imaging phenotypes representing NSCLC heterogeneity related to both EGFR mutation and patient NSCLC prognosis, and (3) high correlations exist between some deep image and radiomics features.
Collapse
Affiliation(s)
- Jing Gong
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 20003, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Fangqiu Fu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Thoracic Surgery and State key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
| | - Xiaowen Ma
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 20003, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ting Wang
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 20003, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiangyi Ma
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Thoracic Surgery and State key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 20003, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yang Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Thoracic Surgery and State key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
| | - Weijun Peng
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 20003, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Haiquan Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Thoracic Surgery and State key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 20003, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
27
|
Cheng Y, Wang H, Yuan W, Wang H, Zhu Y, Chen H, Jiang W. Combined radiomics of primary tumour and bone metastasis improve the prediction of EGFR mutation status and response to EGFR-TKI therapy for NSCLC. Phys Med 2023; 116:103177. [PMID: 38000098 DOI: 10.1016/j.ejmp.2023.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE To develop radiomics models of primary tumour and spinal metastases to predict epidermal growth factor receptor (EGFR) mutations and therapeutic response to EGFR-tyrosine kinase inhibitor (TKI) in patients with metastatic non-small-cell lung cancer (NSCLC). METHODS We enrolled 203 patients with spinal metastases between December 2017 and September 2021, classified as patients with the EGFR mutation or EGFR wild-type. All patients underwent thoracic CT and spinal MRI scans before any treatment. Radiomics analysis was performed to extract features from primary tumour and metastases images and identify predictive features with the least absolute shrinkage and selection operator. Radiomics signatures (RS) were constructed based on primary tumour (RS-Pri), metastases (RS-Met), and in combination (RS-Com) to predict EGFR mutation status and response to EGFR-TKI. Receiver operating characteristic (ROC) curve analysis with 10-fold cross-validation was applied to assess the performance of the models. RESULTS To predict the EGFR mutation status, the RS based on the combination of primary tumour and metastases improved the prediction AUCs compared to those based on the primary tumour or metastasis alone in the training (RS-Com-EGFR: 0.927) and validation (RS-Com-EGFR: 0.812) cohorts. To predict response to EGFR-TKI, the developed RS based on combined primary tumour and metastasis generated the highest AUCs in the training (RS-Com-TKI: 0.880) and validation (RS-Com-TKI: 0.798) cohort. CONCLUSIONS Primary NSCLC and spinal metastases can provide complementary information to predict the EGFR mutation status and response to EGFR-TKI. The developed models that integrate primary lesions and metastases may be potential imaging markers to guide individual treatment decisions.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Wendi Yuan
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Haotian Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Yuheng Zhu
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Huanhuan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, 110004 Shenyang, PR China.
| | - Wenyan Jiang
- Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China.
| |
Collapse
|
28
|
Tang X, Li Y, Shen LT, Yan WF, Qian WL, Yang ZG. CT Radiomics Predict EGFR-T790M Resistance Mutation in Advanced Non-Small Cell Lung Cancer Patients After Progression on First-line EGFR-TKI. Acad Radiol 2023; 30:2574-2587. [PMID: 36941156 DOI: 10.1016/j.acra.2023.01.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 03/23/2023]
Abstract
RATIONALE AND OBJECTIVES We aim to explore the value of chest CT radiomics in predicting the epidermal growth factor receptor (EGFR)-T790M resistance mutation of advanced non-small cell lung cancer (NSCLC) patients after the failure of first-line EGFR-tyrosine kinase inhibitor (EGFR-TKI). MATERIALS AND METHODS A total of 211 and 135 advanced NSCLC patients with tumor tissue-based (Cohort-1) or circulating tumor DNA (ctDNA)-based (Cohort-2) EGFR-T790M testing were included, respectively. Cohort-1 was used for modeling and Cohort-2 was for models' validation. Radiomic features were extracted from tumor lesions on chest nonenhanced CT (NECT) and/or contrast-enhanced CT (CECT). We used eight feature selectors and eight classifier algorithms to establish radiomic models. Models were evaluated by area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS CT morphological manifestations of peripheral location and pleural indentation sign were associated with EGFR-T790M. For NECT, CECT, and NECT+CECT radiomic features, the feature selector and classifier algorithms of LASSO and Stepwise logistic regression, Boruta and SVM, and LASSO and SVM were chosen to develop the optimal model, respectively (AUC: 0.844, 0.811, and 0.897). All models performed well in calibration curves and DCA. Independent validation of models in Cohort-2 revealed that both NECT and CECT models individually had limited power for predicting EGFR-T790M mutation detected by ctDNA (AUC: 0.649, 0.675), while the NECT+CECT radiomic model had a satisfactory AUC (0.760). CONCLUSION This study proved the feasibility of using CT radiomic features to predict the EGFR-T790M resistance mutation, which could be helpful in guiding personalized therapeutic strategies.
Collapse
Affiliation(s)
- Xin Tang
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li-Ting Shen
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen-Lei Qian
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
29
|
Pan F, Feng L, Liu B, Hu Y, Wang Q. Application of radiomics in diagnosis and treatment of lung cancer. Front Pharmacol 2023; 14:1295511. [PMID: 38027000 PMCID: PMC10646419 DOI: 10.3389/fphar.2023.1295511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Radiomics has become a research field that involves the process of converting standard nursing images into quantitative image data, which can be combined with other data sources and subsequently analyzed using traditional biostatistics or artificial intelligence (Al) methods. Due to the capture of biological and pathophysiological information by radiomics features, these quantitative radiomics features have been proven to provide fast and accurate non-invasive biomarkers for lung cancer risk prediction, diagnosis, prognosis, treatment response monitoring, and tumor biology. In this review, radiomics has been emphasized and discussed in lung cancer research, including advantages, challenges, and drawbacks.
Collapse
Affiliation(s)
- Feng Pan
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of CT, Jilin Province FAW General Hospital, Changchun, China
| | - Li Feng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baocai Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qian Wang
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Rinaldi L, Guerini Rocco E, Spitaleri G, Raimondi S, Attili I, Ranghiero A, Cammarata G, Minotti M, Lo Presti G, De Piano F, Bellerba F, Funicelli G, Volpe S, Mora S, Fodor C, Rampinelli C, Barberis M, De Marinis F, Jereczek-Fossa BA, Orecchia R, Rizzo S, Botta F. Association between Contrast-Enhanced Computed Tomography Radiomic Features, Genomic Alterations and Prognosis in Advanced Lung Adenocarcinoma Patients. Cancers (Basel) 2023; 15:4553. [PMID: 37760521 PMCID: PMC10527057 DOI: 10.3390/cancers15184553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Non-invasive methods to assess mutational status, as well as novel prognostic biomarkers, are warranted to foster therapy personalization of patients with advanced non-small cell lung cancer (NSCLC). This study investigated the association of contrast-enhanced Computed Tomography (CT) radiomic features of lung adenocarcinoma lesions, alone or integrated with clinical parameters, with tumor mutational status (EGFR, KRAS, ALK alterations) and Overall Survival (OS). In total, 261 retrospective and 48 prospective patients were enrolled. A Radiomic Score (RS) was created with LASSO-Logistic regression models to predict mutational status. Radiomic, clinical and clinical-radiomic models were trained on retrospective data and tested (Area Under the Curve, AUC) on prospective data. OS prediction models were trained and tested on retrospective data with internal cross-validation (C-index). RS significantly predicted each alteration at training (radiomic and clinical-radiomic AUC 0.95-0.98); validation performance was good for EGFR (AUC 0.86), moderate for KRAS and ALK (AUC 0.61-0.65). RS was also associated with OS at univariate and multivariable analysis, in the latter with stage and type of treatment. The validation C-index was 0.63, 0.79, and 0.80 for clinical, radiomic, and clinical-radiomic models. The study supports the potential role of CT radiomics for non-invasive identification of gene alterations and prognosis prediction in patients with advanced lung adenocarcinoma, to be confirmed with independent studies.
Collapse
Affiliation(s)
- Lisa Rinaldi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| | - Elena Guerini Rocco
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (E.G.R.); (A.R.); (M.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy; (S.V.)
| | - Gianluca Spitaleri
- Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.S.); (I.A.); (F.D.M.)
| | - Sara Raimondi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Ilaria Attili
- Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.S.); (I.A.); (F.D.M.)
| | - Alberto Ranghiero
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (E.G.R.); (A.R.); (M.B.)
| | - Giulio Cammarata
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Marta Minotti
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Giuliana Lo Presti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Francesca De Piano
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Federica Bellerba
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Gianluigi Funicelli
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Stefania Volpe
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy; (S.V.)
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Serena Mora
- Data Management Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (S.M.); (C.F.)
| | - Cristiana Fodor
- Data Management Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (S.M.); (C.F.)
| | - Cristiano Rampinelli
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Massimo Barberis
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (E.G.R.); (A.R.); (M.B.)
| | - Filippo De Marinis
- Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.S.); (I.A.); (F.D.M.)
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy; (S.V.)
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Roberto Orecchia
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
- Scientific Direction, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Stefania Rizzo
- Clinica di Radiologia EOC, Istituto Imaging della Svizzera Italiana (IIMSI), Via Tesserete 46, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Via G. Buffi 13, 6900 Lugano, Switzerland
| | - Francesca Botta
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| |
Collapse
|
31
|
Zhang T, Liu Z, Lin L, Han T, Long F, Guo H, Han L. Detection of the gene mutation of epidermal growth factor receptor in lung adenocarcinoma by radiomic features from a small amount of PET data. Nucl Med Commun 2023; 44:795-802. [PMID: 37334529 DOI: 10.1097/mnm.0000000000001718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
OBJECTIVE The purpose of this work was to identify the potential mutation of epidermal growth factor receptor in nonsmall cell adenocarcinoma by noninvasive method, and to explore whether the same or better effect can be achieved using a small amount of single-mode PET image data. METHOD A total of 115 patients were recruited and the results of their 18F-FDG PET images and gene detection after resection were obtained; 117 original radiation features and 744 wavelet transform features were extracted from PET images. Several methods were used to reduce the dimension of the data, and four classifier models were established to classify it. The above process was repeated to reduce the total amount of data and the area under the receiver operating characteristic curve (AUC) value that changed with the reduction of the data and the stability of the results was recorded. RESULTS The classifier with the best comprehensive performance under this dataset was logistic regression, whose AUC value is 0.843. And similar results can be obtained from only 30 cases of data. CONCLUSION A similar or better result could be achieved using a small number of single-mode PET images. In addition, significant results could be obtained using only the PET images of 30 patients.
Collapse
Affiliation(s)
- Tianyou Zhang
- Department of Radiology, Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital
| | - Zefeng Liu
- Department of Radiology, Tianjin Medical University General Hospital
| | - Liying Lin
- First Central Clinical College, Tianjin Medical University, Tianjin
| | | | - Fenghua Long
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Hongyu Guo
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Li Han
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
- Department of Radiology, University of Michigan, Ann Arbor Michigan, USA
| |
Collapse
|
32
|
Lin P, Lin YQ, Gao RZ, Wan WJ, He Y, Yang H. Integrative radiomics and transcriptomics analyses reveal subtype characterization of non-small cell lung cancer. Eur Radiol 2023; 33:6414-6425. [PMID: 36826501 DOI: 10.1007/s00330-023-09503-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVES To assess whether integrative radiomics and transcriptomics analyses could provide novel insights for radiomic features' molecular annotation and effective risk stratification in non-small cell lung cancer (NSCLC). METHODS A total of 627 NSCLC patients from three datasets were included. Radiomics features were extracted from segmented 3-dimensional tumour volumes and were z-score normalized for further analysis. In transcriptomics level, 186 pathways and 28 types of immune cells were assessed by using the Gene Set Variation Analysis (GSVA) algorithm. NSCLC patients were categorized into subgroups based on their radiomic features and pathways enrichment scores using consensus clustering. Subgroup-specific radiomics features were used to validate clustering performance and prognostic value. Kaplan-Meier survival analysis with the log-rank test and univariable and multivariable Cox analyses were conducted to explore survival differences among the subgroups. RESULTS Three radiotranscriptomics subtypes (RTSs) were identified based on the radiomics and pathways enrichment profiles. The three RTSs were characterized as having specific molecular hallmarks: RTS1 (proliferation subtype), RTS2 (metabolism subtype), and RTS3 (immune activation subtype). RTS3 showed increased infiltration of most immune cells. The RTS stratification strategy was validated in a validation cohort and showed significant prognostic value. Survival analysis demonstrated that the RTS strategy could stratify NSCLC patients according to prognosis (p = 0.009), and the RTS strategy remained an independent prognostic indicator after adjusting for other clinical parameters. CONCLUSIONS This radiotranscriptomics study provides a stratification strategy for NSCLC that could provide information for radiomics feature molecular annotation and prognostic prediction. KEY POINTS • Radiotranscriptomics subtypes (RTSs) could be used to stratify molecularly heterogeneous patients. • RTSs showed relationships between molecular phenotypes and radiomics features. • The RTS algorithm could be used to identify patients with poor prognosis.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yi-Qun Lin
- Department of Radiology, The 909th Hospital. School of Medicine, Xiamen University, Fujian, Zhangzhou, People's Republic of China
| | - Rui-Zhi Gao
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wei-Jun Wan
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yun He
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
33
|
Chen M, Copley SJ, Viola P, Lu H, Aboagye EO. Radiomics and artificial intelligence for precision medicine in lung cancer treatment. Semin Cancer Biol 2023; 93:97-113. [PMID: 37211292 DOI: 10.1016/j.semcancer.2023.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. It exhibits, at the mesoscopic scale, phenotypic characteristics that are generally indiscernible to the human eye but can be captured non-invasively on medical imaging as radiomic features, which can form a high dimensional data space amenable to machine learning. Radiomic features can be harnessed and used in an artificial intelligence paradigm to risk stratify patients, and predict for histological and molecular findings, and clinical outcome measures, thereby facilitating precision medicine for improving patient care. Compared to tissue sampling-driven approaches, radiomics-based methods are superior for being non-invasive, reproducible, cheaper, and less susceptible to intra-tumoral heterogeneity. This review focuses on the application of radiomics, combined with artificial intelligence, for delivering precision medicine in lung cancer treatment, with discussion centered on pioneering and groundbreaking works, and future research directions in the area.
Collapse
Affiliation(s)
- Mitchell Chen
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK; Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Susan J Copley
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK; Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Patrizia Viola
- North West London Pathology, Charing Cross Hospital, Fulham Palace Rd, London W6 8RF, UK
| | - Haonan Lu
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK.
| |
Collapse
|
34
|
Wang J, Zheng Z, Zhang Y, Tan W, Li J, Xing L, Sun X. 18F-FDG PET/CT radiomics for prediction of lymphovascular invasion in patients with early stage non-small cell lung cancer. Front Oncol 2023; 13:1185808. [PMID: 37546415 PMCID: PMC10401837 DOI: 10.3389/fonc.2023.1185808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Objective To explore a prediction model for lymphovascular invasion (LVI) on cT1-2N0M0 radiologic solid non-small cell lung cancer (NSCLC) based on a 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) positron emission tomography-computed tomography (PET-CT) radiomics analysis. Methods The present work retrospectively included 148 patients receiving surgical resection and verified pathologically with cT1-2N0M0 radiologic solid NSCLC. The cases were randomized into training or validation sets in the ratio of 7:3. PET and CT images were used to select optimal radiomics features. Three radiomics predictive models incorporating CT, PET, as well as PET/CT images radiomics features (CT-RS, PET-RS, PET/CT-RS) were developed using logistic analyses. Furthermore, model performance was evaluated by ROC analysis for predicting LVI status. Model performance was evaluated in terms of discrimination, calibration along with clinical utility. Kaplan-Meier curves were employed to analyze the outcome of LVI. Results The ROC analysis demonstrated that PET/CT-RS (AUCs were 0.773 and 0.774 for training and validation sets) outperformed both CT-RS(AUCs, 0.727 and 0.752) and PET-RS(AUCs, 0.715 and 0.733). A PET/CT radiology nomogram (PET/CT-model) was developed to estimate LVI; the model demonstrated conspicuous prediction performance for training (C-index, 0.766; 95%CI, 0.728-0.805) and validation sets (C-index, 0.774; 95%CI, 0.702-0.846). Besides, decision curve analysis and calibration curve showed that PET/CT-model provided clinically beneficial effects. Disease-free survival and overall survival varied significantly between LVI and non-LVI cases (P<0.001). Conclusions The PET/CT radiomics models could effectively predict LVI on early stage radiologic solid lung cancer and provide support for clinical treatment decisions.
Collapse
Affiliation(s)
- Jie Wang
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhonghang Zheng
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yi Zhang
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Weiyue Tan
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jing Li
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
35
|
Felfli M, Liu Y, Zerka F, Voyton C, Thinnes A, Jacques S, Iannessi A, Bodard S. Systematic Review, Meta-Analysis and Radiomics Quality Score Assessment of CT Radiomics-Based Models Predicting Tumor EGFR Mutation Status in Patients with Non-Small-Cell Lung Cancer. Int J Mol Sci 2023; 24:11433. [PMID: 37511192 PMCID: PMC10380456 DOI: 10.3390/ijms241411433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Assessment of the quality and current performance of computed tomography (CT) radiomics-based models in predicting epidermal growth factor receptor (EGFR) mutation status in patients with non-small-cell lung carcinoma (NSCLC). Two medical literature databases were systematically searched, and articles presenting original studies on CT radiomics-based models for predicting EGFR mutation status were retrieved. Forest plots and related statistical tests were performed to summarize the model performance and inter-study heterogeneity. The methodological quality of the selected studies was assessed via the Radiomics Quality Score (RQS). The performance of the models was evaluated using the area under the curve (ROC AUC). The range of the Risk RQS across the selected articles varied from 11 to 24, indicating a notable heterogeneity in the quality and methodology of the included studies. The average score was 15.25, which accounted for 42.34% of the maximum possible score. The pooled Area Under the Curve (AUC) value was 0.801, indicating the accuracy of CT radiomics-based models in predicting the EGFR mutation status. CT radiomics-based models show promising results as non-invasive alternatives for predicting EGFR mutation status in NSCLC patients. However, the quality of the studies using CT radiomics-based models varies widely, and further harmonization and prospective validation are needed before the generalization of these models.
Collapse
Affiliation(s)
- Mehdi Felfli
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Yan Liu
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Fadila Zerka
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Charles Voyton
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Alexandre Thinnes
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Sebastien Jacques
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Antoine Iannessi
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
- Centre Antoine Lacassagne, F-06100 Nice, France
| | - Sylvain Bodard
- AP-HP, Service d’Imagerie Adulte, Hôpital Necker Enfants Malades, Université de Paris Cité, F-75015 Paris, France
- CNRS UMR 7371, INSERM U 1146, Laboratoire d’Imagerie Biomédicale, Sorbonne Université, F-75006 Paris, France
| |
Collapse
|
36
|
Tu W, Zhou T, Zhou X, Ma Y, Duan S, Wang Y, Wang X, Liu T, Zhang H, Feng Y, Huang W, Jiang X, Xiao Y, Liu S, Fan L. Nomograms Using CT Morphological Features and Clinical Characteristics to Identify COPD in Patients with Lung Cancer: A Multicenter Study. Int J Chron Obstruct Pulmon Dis 2023; 18:1169-1185. [PMID: 37332841 PMCID: PMC10275328 DOI: 10.2147/copd.s405429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
Purpose This study aimed to screen out computed tomography (CT) morphological features and clinical characteristics of patients with lung cancer to identify chronic obstructive pulmonary disease (COPD). Further, we aimed to develop and validate different diagnostic nomograms for predicting whether lung cancer is comorbid with COPD. Patients and Methods This retrospective study examined data from 498 patients with lung cancer (280 with COPD, 218 without COPD; 349 in training cohort, 149 in validation cohort) from two centers. Five clinical characteristics and 20 CT morphological features were evaluated. Differences in all variables were assessed between COPD and non-COPD groups. Models were developed using multivariable logistic regression to identify COPD, including clinical, imaging, and combined nomograms. Receiver operating characteristic curves were used to evaluate and compare the performance of nomograms. Results Age, sex, interface, bronchus cutoff sign, spine-like process, and spiculation sign were independent predictors of COPD in patients with lung cancer. In the training and validation cohorts, the clinical nomogram showed good performance to predict COPD in lung cancer patients (areas under the curves [AUCs] of 0.807 [95% CI, 0.761-0.854] and 0.753 [95% CI, 0.674-0.832]); while the imaging nomogram showed slightly better performance (AUCs of 0.814 [95% CI, 0.770-0.858] and 0.780 [95% CI, 0.705-0.856]). For the combined nomogram generated with clinical and imaging features, the performance was further improved (AUC=0.863 [95% CI, 0.824-0.903], 0.811 [95% CI, 0.742-0.880] in the training and validation cohort). At 60% risk threshold, there were more true negative predictions (48 vs 44) and higher accuracy (73.15% vs 71.14%) for the combined nomogram compared with the clinical nomogram in the validation cohort. Conclusion The combined nomogram developed with clinical and imaging features outperformed clinical and imaging nomograms; this provides a convenient method to detect COPD in patients with lung cancer using one-stop CT scanning.
Collapse
Affiliation(s)
- Wenting Tu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Taohu Zhou
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Xiuxiu Zhou
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Yanqing Ma
- Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Shaofeng Duan
- GE Healthcare, Precision Health Institution, Shanghai, 210000, People’s Republic of China
| | - Yun Wang
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Xiang Wang
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Tian Liu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - HanXiao Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, 221018, People’s Republic of China
| | - Yan Feng
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Wenjun Huang
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Xinang Jiang
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Yi Xiao
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Shiyuan Liu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Li Fan
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| |
Collapse
|
37
|
Zhou C, Hou L, Tang X, Liu C, Meng Y, Jia H, Yang H, Zhou S. CT-based radiomics nomogram may predict who can benefit from adaptive radiotherapy in patients with local advanced-NSCLC patients. Radiother Oncol 2023; 183:109637. [PMID: 36963440 DOI: 10.1016/j.radonc.2023.109637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/14/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Although adaptive radiotherapy (ART) has many advantages, ART is not universal in the clinical appliance due to the consumption of a lot of labor, and economic burden. It is necessary to explore a CT stimulation-based radiomics model for screening who can get more benefits from ART in locally advanced non-small cell lung cancer (NSCLC) patients. METHOD 183 cases of NSCLC patients receiving concurrent chemoradiotherapy with an adaptive approach were enrolled as a primary cohort, while 28 cases from another hospital served as an independent external validation cohort. Tumor regression assessment was conducted based on GTV reduction (Criteria A) or according to RECIST Version 1.1(Criteria B). The radiomics features were extracted by the "PyRadiomics" package and further screened by the LASSO method. Then, logistic regression was used to establish the model. Bootstrap and external validation were applied to verify the stability of the model. The receiver operating characteristic (ROC) curve was delineated to assess the predictive efficacy of the radiomics model. Dose-volume histograms were quantitatively compared between the initial and composite ART plans. Clinical endpoints included overall survival (OS) and progression-free survival (PFS). RESULT There were no significant differences in clinical features between tumor regression-resistant (RR) and tumor regression-sensitivity (RS) groups. The AUC values of the Criteria A model and Criteria B model were 0.767 and 0.771, respectively. Bootstrapping validation and external validation confirmed the stability of models. In all patients, there was a significant benefit of ART in the lung, heart, cord, and esophagus compared to non-ART, particularly in RS patients. Furthermore, PFS and OS from ART were significantly longer in RS as defined by Criterion B than in RR patients with the same ART application. CONCLUSION CT-based radiomics can screen out the patients who can gain more benefits from ART, which contribute to guiding and popularizing the application of ART strategy in the clinic within economic benefits and feasibility.
Collapse
Affiliation(s)
- Chao Zhou
- From Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province 317000, China
| | - Liqiao Hou
- From Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province 317000, China
| | - Xingni Tang
- From Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province 317000, China
| | - Changxing Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yinnan Meng
- From Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province 317000, China
| | - Haijian Jia
- Department of Radiation Oncology, Enze Hospital Affiliated Hospital of Hangzhou Medical College, Zhejiang Province 317000, China
| | - Haihua Yang
- Department of Radiation Oncology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China.
| | - Suna Zhou
- From Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province 317000, China; Department of Radiation Oncology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China.
| |
Collapse
|
38
|
Lyu J, Xu Z, Sun H, Zhai F, Qu X. Machine learning-based CT radiomics model to discriminate the primary and secondary intracranial hemorrhage. Sci Rep 2023; 13:3709. [PMID: 36879050 PMCID: PMC9988881 DOI: 10.1038/s41598-023-30678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
It is challenging to distinguish between primary and secondary intracranial hemorrhage (ICH) purely by imaging data, and the two forms of ICHs are treated differently. This study aims to evaluate the potential of CT-based machine learning to identify the etiology of ICHs and compare the effectiveness of two regions of interest (ROI) sketching methods. A total of 1702 radiomic features were extracted from the CT brain images of 238 patients with acute ICH. We used the Select K Best method, least absolute shrinkage, and selection operator logistic regression to select the most discriminable features with a support vector machine to build a classifier model. Then, a ten-fold cross-validation strategy was employed to evaluate the performance of the classifier. From all quantitative CT-based imaging features obtained by two sketch methods, eighteen features were selected respectively. The radiomics model outperformed radiologists in distinguishing between primary and secondary ICH in both the volume of interest and the three-layer ROI sketches. As a result, a machine learning-based CT radiomics model can improve the accuracy of identifying primary and secondary ICH. A three-layer ROI sketch can identify primary versus secondary ICH based on the CT radiomics method.
Collapse
Affiliation(s)
- Jianbo Lyu
- Department of Radiology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, China
| | - Zhaohui Xu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, China
| | - HaiYan Sun
- Department of Radiology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, China
| | - Fangbing Zhai
- Department of Radiology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, China.
| | - Xiaofeng Qu
- Department of Radiology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, China.
| |
Collapse
|
39
|
He Z, Chen J, Yang F, Pan X, Liu C. Computed tomography-based texture assessment for the differentiation of benign, borderline, and early-stage malignant ovarian neoplasms. J Int Med Res 2023; 51:3000605221150139. [PMID: 36688472 PMCID: PMC9893092 DOI: 10.1177/03000605221150139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE This study was performed to examine the value of computed tomography-based texture assessment for characterizing different types of ovarian neoplasms. METHODS This retrospective study involved 225 patients with histopathologically confirmed ovarian tumors after surgical resection. Two different data sets of thick (5-mm) slices (during regular and portal venous phases) were analyzed. Raw data analysis, principal component analysis, linear discriminant analysis, and nonlinear discriminant analysis were performed to classify ovarian tumors. The radiologist's misclassification rate was compared with the MaZda (texture analysis software) findings. The results were validated with the neural network classifier. Receiver operating characteristic curves were analyzed to determine the performances of different parameters. RESULTS Nonlinear discriminant analysis had a lower misclassification rate than the other analyses. Thirty texture parameters significantly differed between the two groups. In the training set, WavEnLH_s-3 and WavEnHL_s-3 were the optimal texture features during the regular phase, while WavEnHH_s-4 and Kurtosis seemed to be the most discriminative features during the portal venous phase. In the validation test, benign versus malignant tumors and benign versus borderline lesions were well-distinguished. CONCLUSIONS Computed tomography-based texture features provide a useful imaging signature that may assist in differentiating benign, borderline, and early-stage ovarian cancer.
Collapse
Affiliation(s)
- Ziying He
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jia Chen
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fei Yang
- Department of Clinical Medical, Guangxi Medical University, Nanning, China
| | - Xinwei Pan
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chanzhen Liu
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, China,Chanzhen Liu, Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Qingxiu District, Nanning 530021, China.
| |
Collapse
|
40
|
Cheng M, Lin R, Bai N, Zhang Y, Wang H, Guo M, Duan X, Zheng J, Qiu Z, Zhao Y. Deep learning for predicting the risk of immune checkpoint inhibitor-related pneumonitis in lung cancer. Clin Radiol 2023; 78:e377-e385. [PMID: 36914457 DOI: 10.1016/j.crad.2022.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/14/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
AIM To develop and validate a nomogram model that combines computed tomography (CT)-based radiological factors extracted from deep-learning and clinical factors for the early predictions of immune checkpoint inhibitor-related pneumonitis (ICI-P). MATERIALS AND METHODS Forty ICI-P patients and 101 patients without ICI-P were divided randomly into the training (n=113) and test (n=28) sets. The convolution neural network (CNN) algorithm was used to extract the CT-based radiological features of predictable ICI-P and calculated the CT score of each patient. A nomogram model to predict the risk of ICI-P was developed by logistic regression. RESULTS CT score was calculated from five radiological features extracted by the residual neural network-50-V2 with feature pyramid networks. Four predictors of ICI-P in the nomogram model included a clinical feature (pre-existing lung diseases), two serum markers (absolute lymphocyte count and lactate dehydrogenase), and a CT score. The area under curve of the nomogram model in the training (0.910 versus 0.871 versus 0.778) and test (0.900 versus 0.856 versus 0.869) sets was better than the radiological and clinical models. The nomogram model showed good consistency and better clinical practicability. CONCLUSION The nomogram model that combined CT-based radiological factors and clinical factors can be used as a new non-invasive tool for the early prediction of ICI-P in lung cancer patients after immunotherapy with low cost and low manual input.
Collapse
Affiliation(s)
- M Cheng
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - R Lin
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - N Bai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Y Zhang
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - H Wang
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - M Guo
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - X Duan
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - J Zheng
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Z Qiu
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Y Zhao
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
41
|
Deep learning for preoperative prediction of the EGFR mutation and subtypes based on the MRI image of spinal metastasis from primary NSCLC. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Ma ZP, Li XL, Gao K, Zhang TL, Wang HD, Zhao YX. Application of radiomics based on chest CT-enhanced dual-phase imaging in the immunotherapy of non-small cell lung cancer. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:1333-1340. [PMID: 37840466 DOI: 10.3233/xst-230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
OBJECTIVE To explore the value of applying computed tomography (CT) radiomics based on different CT-enhanced phases to determine the immunotherapeutic efficacy of non-small cell lung cancer (NSCLC). METHODS 106 patients with NSCLC who underwent immunotherapy are randomly divided into training (74) and validation (32) groups. CT-enhanced arterial and venous phase images of patients before treatment are collected. Region-of-interest (ROI) is segmented on the CT-enhanced images, and the radiomic features are extracted. One-way analysis of variance and least absolute shrinkage and selection operator (LASSO) are used to screen the optimal radiomics features and analyze the association between radiomics features and immunotherapy efficacy. The area under receiver-operated characteristic curves (AUC) along with the sensitivity and specificity are computed to evaluate diagnostic effectiveness. RESULTS LASSO regression analysis screens and selects 6 and 8 optimal features in the arterial and venous phases images, respectively. Applying to the training group, AUCs based on CT-enhanced arterial and venous phase images are 0.867 (95% CI:0.82-0.94) and 0.880 (95% CI:0.86-0.91) with the sensitivities of 73.91% and 76.19%, and specificities of 66.67% and 72.19%, respectively, while in validation group, AUCs of the arterial and venous phase images are 0.732 (95% CI:0.71-0.78) and 0.832 (95% CI:0.78-0.91) with sensitivities of 75.00% and 76.00%, and specificities of 73.07% and 75.00%, respectively. There are no significant differences between AUC values computed from arterial phases and venous phases images in both training and validation groups (P < 0.05). CONCLUSION The optimally selected radiomics features computed from CT-enhanced different-phase images can provide new imaging marks to evaluate efficacy of the targeted therapy in NSCLC with a high diagnostic value.
Collapse
Affiliation(s)
- Ze-Peng Ma
- Department of Radiology, Affiliated Hospital of Hebei University; Clinical Medical college, Hebei University, Baoding, Hebei Province, China
| | - Xiao-Lei Li
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, China
| | - Kai Gao
- Department of Radiology, Affiliated Hospital of Hebei University; Clinical Medical college, Hebei University, Baoding, Hebei Province, China
| | - Tian-Le Zhang
- Department of Radiology, Affiliated Hospital of Hebei University; Clinical Medical college, Hebei University, Baoding, Hebei Province, China
| | - Heng-Di Wang
- Department of Radiology, Affiliated Hospital of Hebei University; Clinical Medical college, Hebei University, Baoding, Hebei Province, China
| | - Yong-Xia Zhao
- Department of Radiology, Affiliated Hospital of Hebei University; Clinical Medical college, Hebei University, Baoding, Hebei Province, China
| |
Collapse
|
43
|
Predicting Tumor Mutation Burden and EGFR Mutation Using Clinical and Radiomic Features in Patients with Malignant Pulmonary Nodules. J Pers Med 2022; 13:jpm13010016. [PMID: 36675677 PMCID: PMC9865229 DOI: 10.3390/jpm13010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Pulmonary nodules (PNs) shown as persistent or growing ground-glass opacities (GGOs) are usually lung adenocarcinomas or their preinvasive lesions. Tumor mutation burden (TMB) and somatic mutations are important determinants for the choice of strategy in patients with lung cancer during therapy. A total of 93 post-operative patients with 108 malignant PNs were enrolled for analysis (75 cases in the training cohort and 33 cases in the validation cohort). Radiomics features were extracted from preoperative non-contrast computed tomography (CT) images of the entire tumor. Using commercial next generation sequencing, we detected TMB status and somatic mutations of all FFPE samples. Here, 870 quantitative radiomics features were extracted from the segmentations of PNs, and pathological and clinical characteristics were collected from medical records. The LASSO (least absolute shrinkage and selection operator) regression and stepwise logistic regressions were performed to establish the predictive model. For the epidermal growth factor receptor (EGFR) mutation, the AUCs of the clinical model and the integrative model validated by the validation set were 0.6726 (0.4755-0.8697) and 0.7421 (0.5698-0.9144). For the TMB status, the ROCs showed that AUCs of the clinical model and the integrative model validated by the validation set were 0.7808 (0.6231-0.9384) and 0.8462 (0.7132-0.9791). The quantitative radiomics signatures showed potential value in predicting the EGFR mutant and TMB status in GGOs. Moreover, the integrative model provided sufficient information for the selection of therapy and deserves further analysis.
Collapse
|
44
|
Fan Y, Zhao Z, Wang X, Ai H, Yang C, Luo Y, Jiang X. Radiomics for prediction of response to EGFR-TKI based on metastasis/brain parenchyma (M/BP)-interface. LA RADIOLOGIA MEDICA 2022; 127:1342-1354. [PMID: 36284030 DOI: 10.1007/s11547-022-01569-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE To evaluate the potential of subregional radiomics as a novel tumor marker in predicting epidermal growth factor receptor (EGFR) mutation status and response to EGFR-tyrosine kinase inhibitor (TKI) therapy in NSCLC patients with brain metastasis (BM). MATERIALS AND METHODS We included 230 patients from center 1, and 80 patients were included from center 2 to form a primary and external validation cohort, respectively. Patients underwent contrast-enhanced T1-weighted and T2-weighted MRI scans before treatment. The individual- and population-level clustering was used to partition the peritumoral edema area (POA) into phenotypically consistent subregions. Radiomics features were calculated and selected from the tumor active area (TAA), POA and subregions, and used to develop models. Prediction values of each region were investigated and compared with receiver operating characteristic curves and Delong test. RESULTS For predicting EGFR mutations, a multi-region combined model (EGFR-Fusion) was developed based on joint of the partitioned metastasis/brain parenchyma (M/BP)-interface and TAA, and generated the highest prediction performance in the training (AUC = 0.945, SEN = 0.878, SPE = 0.937), internal validation (AUC = 0.880, SEN = 0.733, SPE = 0.969), and external validation (AUC = 0.895, SEN = 0.875, SPE = 0.800) cohorts. For predicting response to EGFR-TKI, the developed multi-region combined model (TKI-Fusion) yielded predictive AUCs of 0.869 (SEN = 0.717, SPE = 0.884), 0.786 (SEN = 0.708, SPE = 0.818), and 0.802 (SEN = 0.750, SPE = 0.800) in the training, internal validation and external validation cohort, respectively. CONCLUSION Our study revealed that complementary information regarding the EGFR status and response to EGFR-TKI can be provided by subregional radiomics. The proposed radiomics models may be new markers to guide treatment plans for NSCLC patients with BM.
Collapse
Affiliation(s)
- Ying Fan
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| | - Zilong Zhao
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xingling Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Hua Ai
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| | - Chunna Yang
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yahong Luo
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China.
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
45
|
Saman H, Raza A, Patil K, Uddin S, Crnogorac-Jurcevic T. Non-Invasive Biomarkers for Early Lung Cancer Detection. Cancers (Basel) 2022; 14:5782. [PMID: 36497263 PMCID: PMC9739091 DOI: 10.3390/cancers14235782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022] Open
Abstract
Worldwide, lung cancer (LC) is the most common cause of cancer death, and any delay in the detection of new and relapsed disease serves as a major factor for a significant proportion of LC morbidity and mortality. Though invasive methods such as tissue biopsy are considered the gold standard for diagnosis and disease monitoring, they have several limitations. Therefore, there is an urgent need to identify and validate non-invasive biomarkers for the early diagnosis, prognosis, and treatment of lung cancer for improved patient management. Despite recent progress in the identification of non-invasive biomarkers, currently, there is a shortage of reliable and accessible biomarkers demonstrating high sensitivity and specificity for LC detection. In this review, we aim to cover the latest developments in the field, including the utility of biomarkers that are currently used in LC screening and diagnosis. We comment on their limitations and summarise the findings and developmental stages of potential molecular contenders such as microRNAs, circulating tumour DNA, and methylation markers. Furthermore, we summarise research challenges in the development of biomarkers used for screening purposes and the potential clinical applications of newly discovered biomarkers.
Collapse
Affiliation(s)
- Harman Saman
- Hamad Medical Corporation, Doha 3050, Qatar
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar
| | - Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Research Centre, Qatar University, Doha 2731, Qatar
| | | |
Collapse
|
46
|
Hao P, Deng BY, Huang CT, Xu J, Zhou F, Liu ZX, Zhou W, Xu YK. Predicting anaplastic lymphoma kinase rearrangement status in patients with non-small cell lung cancer using a machine learning algorithm that combines clinical features and CT images. Front Oncol 2022; 12:994285. [PMID: 36338735 PMCID: PMC9630325 DOI: 10.3389/fonc.2022.994285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 12/01/2023] Open
Abstract
PURPOSE To develop an appropriate machine learning model for predicting anaplastic lymphoma kinase (ALK) rearrangement status in non-small cell lung cancer (NSCLC) patients using computed tomography (CT) images and clinical features. METHOD AND MATERIALS This study included 193 patients with NSCLC (154 in the training cohort, 39 in the validation cohort), 68 of whom tested positive for ALK rearrangements and 125 of whom tested negative. From the nonenhanced CT scans, 157 radiomic characteristics were extracted, and 8 clinical features were collected. Five machine learning (ML) models were assessed to find the best classification model for predicting ALK rearrangement status. A radiomic signature was developed using the least absolute shrinkage and selection operator (LASSO) algorithm. The predictive performance of the models based on radiomic features, clinical features, and their combination was assessed by receiver operating characteristic (ROC) curves. RESULTS The support vector machine (SVM) model had the highest AUC of 0.914 for classification. The clinical features model had an AUC=0.805 (95% CI 0.731-0.877) and an AUC=0.735 (95% CI 0.566-0.863) in the training and validation cohorts, respectively. The CT image-based ML model had an AUC=0.953 (95% CI 0.913-1.0) in the training cohort and an AUC=0.890 (95% CI 0.778-0.971) in the validation cohort. For predicting ALK rearrangement status, the ML model based on CT images and clinical features performed better than the model based on only clinical information or CT images, with an AUC of 0.965 (95% CI 0.826-0.882) in the primary cohort and an AUC of 0.914 (95% CI 0.804-0.893) in the validation cohort. CONCLUSION Our findings revealed that ALK rearrangement status could be accurately predicted using an ML-based classification model based on CT images and clinical data.
Collapse
Affiliation(s)
- Peng Hao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo-Yu Deng
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chan-Tao Huang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Xu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Zhou
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe-Xing Liu
- School of Biomedical Engineering, Southern Medical Uinversity, Guangzhou, China
| | - Wu Zhou
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Kai Xu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Yoon HJ, Choi J, Kim E, Um SW, Kang N, Kim W, Kim G, Park H, Lee HY. Deep learning analysis to predict EGFR mutation status in lung adenocarcinoma manifesting as pure ground-glass opacity nodules on CT. Front Oncol 2022; 12:951575. [PMID: 36119545 PMCID: PMC9478848 DOI: 10.3389/fonc.2022.951575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) showed potency as a non-invasive therapeutic approach in pure ground-glass opacity nodule (pGGN) lung adenocarcinoma. However, optimal methods of extracting information about EGFR mutation from pGGN lung adenocarcinoma images remain uncertain. We aimed to develop, validate, and evaluate the clinical utility of a deep learning model for predicting EGFR mutation status in lung adenocarcinoma manifesting as pGGN on computed tomography (CT). METHODS We included 185 resected pGGN lung adenocarcinomas in the primary cohort. The patients were divided into training (n = 125), validation (n = 23), and test sets (n = 37). A preoperative CT-based deep learning model with clinical factors as well as clinical and radiomics models was constructed and applied to the test set. We evaluated the clinical utility of the deep learning model by applying it to 83 GGNs that received EGFR-TKI from an independent cohort (clinical validation set), and treatment response was regarded as the reference standard. RESULTS The prediction efficiencies of each model were compared in terms of area under the curve (AUC). Among the 185 pGGN lung adenocarcinomas, 122 (65.9%) were EGFR-mutant and 63 (34.1%) were EGFR-wild type. The AUC of the clinical, radiomics, and deep learning with clinical models to predict EGFR mutations were 0.50, 0.64, and 0.85, respectively, for the test set. The AUC of deep learning with the clinical model in the validation set was 0.72. CONCLUSIONS Deep learning approach of CT images combined with clinical factors can predict EGFR mutations in patients with lung adenocarcinomas manifesting as pGGN, and its clinical utility was demonstrated in a real-world sample.
Collapse
Affiliation(s)
- Hyun Jung Yoon
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Radiology, Veterans Health Service Medical Center, Seoul, South Korea
| | - Jieun Choi
- Department of Artificial Intelligence, Sungkyunkwan University, Suwon, South Korea
| | - Eunjin Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| | - Noeul Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Division of Allergy, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wook Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Geena Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
48
|
Li S, Li Y, Zhao M, Wang P, Xin J. Combination of 18F-Fluorodeoxyglucose PET/CT Radiomics and Clinical Features for Predicting Epidermal Growth Factor Receptor Mutations in Lung Adenocarcinoma. Korean J Radiol 2022; 23:921-930. [PMID: 36047542 PMCID: PMC9434738 DOI: 10.3348/kjr.2022.0295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To identify epidermal growth factor receptor (EGFR) mutations in lung adenocarcinoma based on 18F-fluorodeoxyglucose (FDG) PET/CT radiomics and clinical features and to distinguish EGFR exon 19 deletion (19 del) and exon 21 L858R missense (21 L858R) mutations using FDG PET/CT radiomics. MATERIALS AND METHODS We retrospectively analyzed 179 patients with lung adenocarcinoma. They were randomly assigned to training (n = 125) and testing (n = 54) cohorts in a 7:3 ratio. A total of 2632 radiomics features were extracted from the tumor region of interest from the PET (1316) and CT (1316) images. Six PET/CT radiomics features that remained after the feature selection step were used to calculate the radiomics model score (rad-score). Subsequently, a combined clinical and radiomics model was constructed based on sex, smoking history, tumor diameter, and rad-score. The performance of the combined model in identifying EGFR mutations was assessed using a receiver operating characteristic (ROC) curve. Furthermore, in a subsample of 99 patients, a PET/CT radiomics model for distinguishing 19 del and 21 L858R EGFR mutational subtypes was established, and its performance was evaluated. RESULTS The area under the ROC curve (AUROC) and accuracy of the combined clinical and PET/CT radiomics models were 0.882 and 81.6%, respectively, in the training cohort and 0.837 and 74.1%, respectively, in the testing cohort. The AUROC and accuracy of the radiomics model for distinguishing between 19 del and 21 L858R EGFR mutational subtypes were 0.708 and 66.7%, respectively, in the training cohort and 0.652 and 56.7%, respectively, in the testing cohort. CONCLUSION The combined clinical and PET/CT radiomics model could identify the EGFR mutational status in lung adenocarcinoma with moderate accuracy. However, distinguishing between EGFR 19 del and 21 L858R mutational subtypes was more challenging using PET/CT radiomics.
Collapse
Affiliation(s)
- Shen Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yadi Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Zhao
- Pharmaceutical Diagnostics, GE Healthcare, Beijing, China
| | - Pengyuan Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Xin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
49
|
Li Y, Lv X, Wang B, Xu Z, Wang Y, Gao S, Hou D. Differentiating EGFR from ALK mutation status using radiomics signature based on MR sequences of brain metastasis. Eur J Radiol 2022; 155:110499. [PMID: 36049410 DOI: 10.1016/j.ejrad.2022.110499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/29/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE More and more small brain metastases (BMs) in asymptomatic patients can be detected even prior to their primary lung cancer with the development of MRI. The aim of this study was to develop a predictive radiomics model to identify epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) mutation status in BM and explore the optimal MR sequence for predication. METHODS This retrospective study included 186 patients with proven BM of lung cancer (training cohort: 70 patients with EGFR mutations and 65 patients with ALK rearrangements; testing cohort: 26 patients with EGFR mutations and 25 patients with ALK rearrangements). Radiomics features were separately extracted from contrast-enhanced T1-weighted imaging (T1-CE), T2 fluid-attenuated inversion recovery (T2-FLAIR) and T2WI sequences. The model for three MR sequences were constructed using a random forest classifier. ROC curves were used to validate the capability of the models in the training and testing cohorts. RESULTS The AUCs of the T2-FLAIR model were significantly higher than those of the T1-CE model in training cohort (0.991 versus 0.954) and testing cohort (0.950 versus 0.867) and much higher than those of the T2WI model in training cohort (0.991 versus 0.880) and testing cohort (0.950 versus 0.731). Besides, the F1 scores of the T1-CE model were slightly higher than the T2-FLAIR model and much higher than the T2WI model in two cohorts. CONCLUSION T2-FLAIR and T1-CE radiomics models that can be used as noninvasive tools for identifying EGFR and ALK mutation status are helpful to guide therapeutic strategies.
Collapse
Affiliation(s)
- Ye Li
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Xinna Lv
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Bing Wang
- Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Zexuan Xu
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yichuan Wang
- Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Shan Gao
- Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Dailun Hou
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| |
Collapse
|
50
|
Fan Y, Dong Y, Sun X, Wang H, Zhao P, Wang H, Jiang X. Development and validation of MRI-based radiomics signatures as new markers for preoperative assessment of EGFR mutation and subtypes from bone metastases. BMC Cancer 2022; 22:889. [PMID: 35964032 PMCID: PMC9375915 DOI: 10.1186/s12885-022-09985-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed to develop and externally validate contrast-enhanced (CE) T1-weighted MRI-based radiomics for the identification of epidermal growth factor receptor (EGFR) mutation, exon-19 deletion and exon-21 L858R mutation from MR imaging of spinal bone metastasis from primary lung adenocarcinoma. Methods A total of 159 patients from our hospital between January 2017 and September 2021 formed a primary set, and 24 patients from another center between January 2017 and October 2021 formed an independent validation set. Radiomics features were extracted from the CET1 MRI using the Pyradiomics method. The least absolute shrinkage and selection operator (LASSO) regression was applied for selecting the most predictive features. Radiomics signatures (RSs) were developed based on the primary training set to predict EGFR mutations and differentiate between exon-19 deletion and exon-21 L858R. The RSs were validated on the internal and external validation sets using the Receiver Operating Characteristic (ROC) curve analysis. Results Eight, three, and five most predictive features were selected to build RS-EGFR, RS-19, and RS-21 for predicting EGFR mutation, exon-19 deletion and exon-21 L858R, respectively. The RSs generated favorable prediction efficacies for the primary (AUCs, RS-EGFR vs. RS-19 vs. RS-21, 0.851 vs. 0.816 vs. 0.814) and external validation (AUCs, RS-EGFR vs. RS-19 vs. RS-21, 0.807 vs. 0.742 vs. 0.792) sets. Conclusions Radiomics features from the CE MRI could be used to detect the EGFR mutation, increasing the certainty of identifying exon-19 deletion and exon-21 L858R mutations based on spinal metastasis MR imaging. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09985-4.
Collapse
Affiliation(s)
- Ying Fan
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yue Dong
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Xinyan Sun
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Peng Zhao
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|