1
|
Wan J, Tian P, Liu X, Zhang H. Analysis of the Changes in Physicochemical Properties and Microbial Communities During Fermentation of Sweet Fermented Rice. Foods 2025; 14:1121. [PMID: 40238242 PMCID: PMC11988636 DOI: 10.3390/foods14071121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
As a traditional rice wine, sweet fermented rice (SFR) is widely loved because of its unique flavor and high nutritional value. However, the physicochemical properties, microbial community composition, and metabolic pathway changes during the fermentation process of sweet wine have not been evaluated, and these changes can lead to unstable SFR quality. In this study, we used high-throughput sequencing technology to analyze and elucidate the dynamic changes in the microbial community, metabolic pathways, and carbohydrate enzyme functions in traditional SFR fermentation broth. The results revealed that Rhizopus abundance = 160,943.659 and Wickerhamomyces abundance = 241,660.954 were the predominant fungal genera in the fermentation process from the beginning (A0) to the end (A43) of SFR fermentation. The results of the diversity analysis revealed that the structure and composition of the microbial communities first increased but then decreased. Metabolic pathway analysis showed that energy production and conversion, carbohydrate transport, and amino acid transport were the most active metabolic pathways in fermentation. Moreover, the three primary functions of glycosyltransferases (GTs), glycoside hydrolases (GHs), and carbohydrate-binding modules (CBMs) in carbohydrate enzyme analysis were involved in the whole fermentation process. This study only provides some insight into the dynamic changes in the microbial population of SFR single samples prepared under fixed conditions. It provides a reference for optimizing the physicochemical properties of SFR fermentation broth, controlling the microbial community structure, optimizing fermentation conditions, and improving product quality.
Collapse
Affiliation(s)
| | | | | | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (J.W.); (P.T.); (X.L.)
| |
Collapse
|
2
|
Tian P, Wan J, Yin T, Liu L, Ren H, Cai H, Liu X, Zhang H. Acidity, sugar, and alcohol contents during the fermentation of Osmanthus-flavored sweet rice wine and microbial community dynamics. PeerJ 2025; 13:e18826. [PMID: 39897497 PMCID: PMC11787802 DOI: 10.7717/peerj.18826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025] Open
Abstract
Sweet rice wine is a popular traditional Chinese rice wine widely loved by Chinese people for its high nutritional value. Osmanthus flower petals contain various nutrients and have good medicinal value. However, the dynamics of the sugar level, acidity, alcohol content, and microbial community during the fermentation of Osmanthus-flavored sweet rice wine have not been evaluated, which can lead to the unstable quality of Osmanthus flower sweet rice wine (OFSRW). In this study, the dynamic changes in sugar level, acidity, alcohol content, microbial community composition, and microbial metabolic pathways during traditional fermentation of OFSRW at four-time points-0 h (AG0), 24 h (AG24), 36 h (AG36), and 43 h (AG43)-were analyzed via direct titration, total acid assays, alcoholometry, and high-throughput macrogenomic techniques. First, we found that bacteria were the dominant microorganisms in the early stage of OFSRW fermentation (AG0), fungi were the dominant microorganisms in the middle and late stages of fermentation (AG24 and AG36), and Rhizopus was the main fungal genus throughout fermentation. Acidity and total sugars increased with fermentation time, and alcohol was not detected until the end of fermentation. Diversity analysis revealed that the dominant species at the beginning of natural fermentation was A. johnsonii, and R. delemar became the dominant species as natural fermentation progressed. Metabolic pathway analysis revealed that energy production and conversion, carbohydrate transport, amino acid transport, and metabolic pathways were the most active metabolic pathways in the fermenter. These results provide a reference basis for changes in the microbial community during the fermentation of cinnamon-flavored sweet rice wine.
Collapse
Affiliation(s)
- Ping Tian
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Jiaqiong Wan
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Li Liu
- R&D Department, Honghe Hongbin Food Co., Ltd., Jianshui, China
| | - Hongbing Ren
- R&D Department, Honghe Hongbin Food Co., Ltd., Jianshui, China
| | - Hanbing Cai
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Xiaozhen Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
3
|
Liu Q, Zhao X, Jiang Z, Han X, Peng S, Wang J. Co-evolutionary dynamics of microbial communities and flavor profiles during natural fermentation of Cabernet Sauvignon and Merlot: A comparative study within a single vineyard. Food Res Int 2025; 200:115517. [PMID: 39779148 DOI: 10.1016/j.foodres.2024.115517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Indigenous microorganisms play a crucial role in determining the quality of naturally fermented wines. However, the impact of grape cultivar specificity on microbial composition is often overshadowed by the geographical location of the vineyard, leading to underestimation of its role in natural wine fermentation. Therefore, this study focuses on different grape cultivars within a single vineyard. The physicochemical results revealed that during fermentation of Merlot and Cabernet Sauvignon wines, ethanol content significantly increased, while residual sugar, pH, malic acid, citric acid, and yeast assimilable nitrogen notably decreased. High-throughput sequencing (HTS) results showed that fungal diversity and richness in Merlot were significantly higher than in Cabernet Sauvignon, whereas bacterial diversity exhibited the opposite trend. The predominant fungal genera in Merlot were Hanseniaspora, followed by Lachancea, whereas the opposite was observed in Cabernet Sauvignon. Erysiphe and Pantoea were exclusively present in Merlot, whereas Erwinia was detected only in Cabernet Sauvignon. A total of 106 flavor compounds were quantified using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS), identifying 22 core volatile compounds in Merlot and 19 in Cabernet Sauvignon. Moreover, at the end of fermentation, the total ester content in Cabernet Sauvignon was significantly higher than in Merlot, imparting a more pronounced fruity and floral aroma, which was further confirmed using sensory analysis. Correlation analysis indicated that Saccharomyces was positively correlated with alcohol content, total acidity, and 16 core volatile compounds, while Hanseniaspora and Lachancea showed opposite correlations. These insights provide a data reference for producing high-quality wines with regional characteristics.
Collapse
Affiliation(s)
- Qinqin Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuefang Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhanzhan Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xingquan Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuai Peng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Wang YW, Huang YF, Guo YQ, Sun L, Jiang ZL, Zhu YT, Zeng RQ, Li Q, Xiao C, Zuo Y. Dissecting Interactions of Saccharomyces cerevisiae and Pichia kudriavzevii to Shape Kiwifruit Wine Flavor. Foods 2024; 13:4077. [PMID: 39767018 PMCID: PMC11675217 DOI: 10.3390/foods13244077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Mixed fermentation with Saccharomyces cerevisiae and Pichia kudriavzevii has been shown to enhance wine aroma, yet the underlying mechanisms remain unclear. Monoculture of S. cerevisiae, monoculture of P. kudriavzevii, and mixed culture of S. cerevisiae and P. kudriavzevii were conducted, and the study analyzed and compared the biomass, flavor profile, and transcriptome responses of the three groups. Both yeast species exhibited growth inhibition in mixed culture, especially P. kudriavzevii. Significant differences were observed in three organic acids and the foremost 20 volatile compounds. Mixed fermentation enhanced esters (e.g., ethyl butyrate, isoamyl acetate) and volatile acids (e.g., hexanoic acid), but decreased isobutanol, phenylethyl alcohol, and quinic acid. Transcriptomic analysis revealed 294 and 332 differentially expressed genes (DEGs) in S. cerevisiae and P. kudriavzevii, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation results indicated that DEGs in mixed fermentation were concentrated in carbohydrate metabolism and amino acid metabolism. Our integrated analysis suggested that genes such as TDH2, TDH3, and ENO2 were pivotal for ester biosynthesis. Moreover, ADH1, ADH2, HPA3, ALD6, and ARO8 were associated with quinic acid synthesis. Furthermore, ILV2, ILV5, ALD6, and others were central to the production of isobutanol and phenylethyl alcohol.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610101, China; (Y.-W.W.); (Z.-L.J.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Yi-Fen Huang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Ya-Qi Guo
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Li Sun
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Zhi-Lin Jiang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610101, China; (Y.-W.W.); (Z.-L.J.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Yuan-Ting Zhu
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Rui-Qi Zeng
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Qi Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Chen Xiao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Yong Zuo
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610101, China; (Y.-W.W.); (Z.-L.J.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| |
Collapse
|
5
|
Peng Q, Zheng H, Li J, Li S, Huang J, Xu Y, Xie G. Impact of Bacillus subtilis on Chinese yellow rice wine (Huangjiu) fermentation: Method variations and flavor analysis. Food Chem 2024; 460:140658. [PMID: 39126949 DOI: 10.1016/j.foodchem.2024.140658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
This investigation explores the impact of various fermentation techniques and the inoculation of Bacillus subtilis spores on the physicochemical properties and principal flavor profiles of Huangjiu. Employing sensory analysis, headspace solid-phase microextraction, gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS), and orthogonal partial least squares discriminant analysis (OPLS-DA), we observed that these variables significantly alter the physicochemical attributes of Huangjiu. Our analysis, integrating volatile organic compounds (VOCs) with odor activity values (OAV), revealed that while B. subtilis inoculation modifies the concentrations of key flavor compounds, it does not affect their types. Notably, the inoculation enhances the concentrations of 13 primary flavor compounds, thereby enriching floral and fruity notes while reducing higher alcohol levels. These findings contribute valuable insights into the flavor formation mechanisms of Huangjiu and guide the optimization of fermentation processes.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Jiachen Li
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Shanshan Li
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Jiaxin Huang
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Yuezheng Xu
- Zhejiang Guyuelongshan Shaoxing Wine Co.,Ltd., Shaoxing 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China..
| |
Collapse
|
6
|
Yu H, Li Z, Zheng D, Chen C, Ge C, Tian H. Exploring microbial dynamics and metabolic pathways shaping flavor profiles in Huangjiu through metagenomic analysis. Food Res Int 2024; 196:115036. [PMID: 39614478 DOI: 10.1016/j.foodres.2024.115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
In the production of Huangjiu (Chinese rice wine), fermentation microbiota plays a crucial role in flavor formation. This study investigates the microbial dynamics and metabolic pathways that shape the flavor profiles of Huangjiu using different starters. Sensory evaluation and metabolite analysis of six starters revealed significant differences in ester, fruity, and sweet aromas. Saccharomyces, Aspergillus, and Rhizopus were identified as the dominant genera significantly impacting fermentation. Metagenomic species and functional gene annotations of Huangjiu starters elucidated the metabolic pathways for key flavor compounds synthesis pathways. Enzyme genes involved in these pathways were classified and annotated to microbial genera using the NR database, identifying 231 classes of relevant catalytic enzymes and 154 microbial genera. A metabolic relationship between flavor compound formation and different microbial genera was established using catalytic enzymes as a bridge. This study highlights the impact of starter composition on the final product and provides new insights for optimizing starters to enhance Huangjiu flavor quality.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Ziqing Li
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Danwei Zheng
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Chang Ge
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
7
|
Lin C, Lu P, Ma J, Li Z, Han X, Ji Z, Liu S, Mao J. Transcriptome Analysis Reveals the Variations in Enzyme Production of Saccharopolyspora rosea A22 under Different Temperatures. Foods 2024; 13:2696. [PMID: 39272461 PMCID: PMC11394526 DOI: 10.3390/foods13172696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Saccharopolyspora is a key microorganism in the fermentation of traditional fermented foods, capable of producing saccharifying and liquefying enzymes at elevated temperatures. However, the specific mechanisms and regulatory pathways governing Saccharopolyspora's response to ambient temperatures are not yet fully understood. In this study, the morphological differences in Saccharopolyspora rosea screened from traditional handmade wheat Qu at different temperatures were initially explored. At 37 °C, the mycelium exhibited abundant growth and radiated in a network-like pattern. As the temperature increased, the mycelium aggregated into clusters. At 50 °C, it formed highly aggregated ellipsoidal structures, with the mycelium distributed on the spherical surface. Subsequently, we assessed the biomass, saccharifying enzyme activity and liquefying enzyme activity of Saccharopolyspora rosea cultured at 37 °C, 42 °C and 50 °C. Furthermore, transcriptome analysis demonstrated that Saccharopolyspora rosea employs mechanisms related to the carbon metabolism, the TCA cycle, glycine, serine and threonine metabolisms, and microbial metabolism in diverse environments to coordinate its responses to changes in environmental temperature, as verified by the expression of typical genes. This study enhances our understanding of the differences in high-temperature enzyme production by Saccharopolyspora, and offers valuable guidance for the traditional fermented food industry to drive innovation.
Collapse
Affiliation(s)
- Congyu Lin
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
| | - Peiqi Lu
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jingqiu Ma
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
| | - Zhihui Li
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 646000, China
| | - Xiao Han
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
| | - Zhongwei Ji
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 646000, China
| | - Shuangping Liu
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 646000, China
| | - Jian Mao
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 646000, China
| |
Collapse
|
8
|
Yuan H, Wu Z, Liu H, He X, Liao Z, Luo W, Li L, Yin L, Wu F, Zhang L, Shen C, Wang S, Li J, Li T, Lou K. Screening, identification, and characterization of molds for brewing rice wine: Scale-up production in a bioreactor. PLoS One 2024; 19:e0300213. [PMID: 38954729 PMCID: PMC11218956 DOI: 10.1371/journal.pone.0300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/23/2024] [Indexed: 07/04/2024] Open
Abstract
Rice wine, well known for its unique flavor, rich nutritional value, and health benefits, has potential for extensive market development. Rhizopus and Aspergillus are among several microorganisms used in rice wine brewing and are crucial for determining rice wine quality. The strains were isolated via Rose Bengal and starch as a combined separation medium, followed by oenological property and sensory evaluation screening. The strain exhibiting the best performance can be screened using the traditional rice wine Qu. The strains YM-8, YM-10, and YM-16, which exhibited strong saccharification and fermentation performance along with good flavor and taste, were obtained from traditional rice wine Qu. Based on ITS genetic sequence analysis, the YM-8, YM-10, and YM-16 strains were identified as Rhizopus microsporus, Rhizopus arrhizus, and Aspergillus oryzae. The optimum growth temperature of each of the three strains was 30°C, 32°C, and 30°C, and the optimum initial pH was 6.0, 6.5, and 6.5, respectively. The activities of α-amylase, glucoamylase, and protease of YM-16 were highest at 220.23±1.88, 1,269.04±30.32, and 175.16±1.81 U/g, respectively. The amino acid content of rice wine fermented in a 20-L bioreactor with the three mold strains was higher than that of the control group, except for arginine, which was significantly lower than that of the control group. The total amino acid content and the total content of each type of amino acid were ranked as YM-16 > YM-8 > YM-10 > control group, and the amino acid content varied greatly among the strains. The control group had a higher content, whereas YM-8 and YM-16 had lower contents of volatile aroma components than the control group and had the basic flavor substances needed for rice wine, which is conducive to the formation of rice wine aroma. This selected strain, YM-16, has strong saccharification and fermentation ability, is a rich enzyme system, and improves the flavor of rice wine, thereby demonstrating its suitability as a production strain for brewing.
Collapse
Affiliation(s)
- HuaWei Yuan
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - Zhongyu Wu
- School of Radiology, Shandong First Medical University, Jinan, Shandong, China
| | - HaoYu Liu
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - Xue He
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - ZhengWei Liao
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - WenJie Luo
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - Li Li
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - LiGuo Yin
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - Fang Wu
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - LiQiang Zhang
- Luzhou Laojiao Co., Ltd./Luzhou Pinchuang Technology Co., Ltd./National Engineering Technology Research Center of Solid-state Brewing, Luzhou, Sichuan, China
| | - CaiHong Shen
- Luzhou Laojiao Co., Ltd./Luzhou Pinchuang Technology Co., Ltd./National Engineering Technology Research Center of Solid-state Brewing, Luzhou, Sichuan, China
| | - SongTao Wang
- Luzhou Laojiao Co., Ltd./Luzhou Pinchuang Technology Co., Ltd./National Engineering Technology Research Center of Solid-state Brewing, Luzhou, Sichuan, China
| | - JianLong Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Tan Li
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - Kai Lou
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
9
|
Zou J, Chen X, Wang C, Liu Y, Li M, Pan X, Chang X. Microbial Communities and Correlation between Microbiota and Volatile Compounds in Fermentation Starters of Chinese Sweet Rice Wine from Different Regions. Foods 2023; 12:2932. [PMID: 37569201 PMCID: PMC10419015 DOI: 10.3390/foods12152932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Chinese sweet rice wines (CSRW) are traditional, regionally distinct alcoholic beverages that are generally brewed with glutinous rice and fermentation starters. This study aimed to characterize microbial communities and volatile compounds of CSRW starters and explore correlations between them. The major volatiles in starters include 1-heptanol, 1-octanol, 2-nonanol, phenylethyl alcohol, 2-nonanone, acetophenone, and benzaldehyde. Microbiological analysis based on high-throughput sequencing (HTS) technology demonstrated that starter bacterial communities are dominated by Weissella, Pediococcus, and Lactobacillus, while Saccharomycopsis and Rhizopus predominate in fungal communities. Carbohydrate and amino acid metabolism are the most active metabolic pathways in starters. Spearman correlation analysis revealed that 15 important volatile compounds including alcohols, acids, aldehydes and esters were significantly positively correlated with nine microbial genera (|r| > 0.7, p < 0.05), including five bacterial genera (i.e., Weissella, Pediococcus, Lactobacillus, Bacillus, and Nocardiopsis) and four fungal genera (i.e., Saccharomycopsis, Rhizopus, Wickerhamomyces, and Cyberlindnera), spanning 19 distinct relationships and these microorganisms were considered the core functional microorganisms in CSRW starters. The most important positive correlations detected between phenylethyl alcohol and Weissella or Saccharomycopsis and between 2-nonanol and Pediococcus. This study can serve as a reference to guide the development of defined starter cultures for improving the aromatic quality of CSRW.
Collapse
Affiliation(s)
- Jing Zou
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
- Engineering Research Center of the Ministry of Education of Chestnut Industry Technology, Qinhuangdao 066000, China
| | - Xiaohui Chen
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
| | - Chenyu Wang
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
| | - Yang Liu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
| | - Miao Li
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
| | - Xinyuan Pan
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
| | - Xuedong Chang
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
- Engineering Research Center of the Ministry of Education of Chestnut Industry Technology, Qinhuangdao 066000, China
| |
Collapse
|
10
|
Zhang L, Zhao G, Yao Y, Zhu W, Xu S, Li H. Research on the aroma properties and microbial succession patterns in the processing of Chinese yellow sticky rice jiuqu steamed bread. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Effect of Koji on Flavor Compounds and Sensory Characteristics of Rice Shochu. Molecules 2023; 28:molecules28062708. [PMID: 36985679 PMCID: PMC10053614 DOI: 10.3390/molecules28062708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Koji is an important starter for rice shochu brewing and influences the rice shochu quality. Consequently, we studied the impacts of koji on the flavor compounds and sensory characteristics of rice shochu using molds Aspergillus kawachii SICC 3.917 (A-K), Aspergillus oryzae SICC 3.79(A-O), Aspergillus Niger CICC 2372 (A-N), Rhizopus oryzae CICC 40260 (R-O), and the traditional starter Qu (control). The effects of koji on the aroma components, free amino acids (FAAs), and overall sensory aspects of rice shochu were studied. These findings indicated that koji significantly affected the rice shochu’s quality. The content of total FAAs in rice shochu A-K (30.586 ± 0.944 mg/L) and A-O (29.919 ± 0.278 mg/L) was higher than others. The content of flavor compounds revealed that the aroma of rice shochu with various koji varied greatly from the smells of alcohols and esters. Shochu A-O had a higher concentration of aroma compounds and it exhibited a strong aroma and harmonious taste compared with the others. This research using taste compounds, FAAs, flavor intensity, and partial least squares regression (PLSR) showed that shochu A-O appeared to possess the best sensory qualities, with elevated concentrations of alcohols and sweet FAAs and lesser concentrations of sour FAAs. Therefore, the A-O mold is promising for the manufacture of rice shochu with excellent flavor and sensory characteristics.
Collapse
|
12
|
Chen L, Xiang W, Liang X, Liu J, Zhu H, Cai T, Zhang Q, Tang J. Fungal Biomarkers in Traditional Starter Determine the Chemical Characteristics of Turbid Rice Wine from the Rim of the Sichuan Basin, China. Foods 2023; 12:foods12030585. [PMID: 36766114 PMCID: PMC9914865 DOI: 10.3390/foods12030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The fungal community in Qu plays a key role in the formation of turbid rice wine (TRW) style. The Sichuan Basin and its surrounding areas have become one of the main TRW production regions in China; however, the fungal community in Qu and how they affect the characteristics of TRW remain unknown. Therefore, this study provided insight into the fungal biomarkers in Qu from Guang'an (GQ), Dazhou (DQ), Aba (AQ), and Liangshan (LQ), as well as their relationships with compounds in TRW. The main biomarkers in GQ were Rhizopus arrhizus, Candida glabrata, Rhizomucor pusillus, Thermomyces lanuginosus and Wallemia sebi. However, they changed to Saccharomycopsis fibuligera and Mucor indicus in DQ, Lichtheimia ramose in AQ, and Rhizopus microsporus and Saccharomyces cerevisiae in LQ. As a response to fungal biomarkers, the reducing sugar, ethanol, organic acids, and volatile compounds were also changed markedly in TRWs. Among important volatile compounds (VIP > 1.00), phenethyl alcohol (14.1-29.4%) was dominant in TRWs. Meanwhile, 3-methyl-1-butanol (20.6-56.5%) was dominant in all TRWs except that fermented by GQ (GW). Acetic acid (29.4%) and ethyl palmitate (10.1%) were dominant in GW and LW, respectively. Moreover, GQ biomarkers were positively correlated with acetic acid and all unique important volatile compounds in GW. DQ biomarkers had positive correlations with unique compounds of acetoin and ethyl 5-chloro-1,3,4-thiadiazole-2-carboxylate in DW. Meanwhile, the AQ biomarkers were positively correlated with all AW unique, important, and volatile compounds. Although there were not any unique volatile compounds in LW, 16 important volatile compounds in LW were positively related to LQ biomarkers. Obviously, biomarkers in different geographic Qu played vital roles in the formation of important volatile compounds, which could contribute specific flavor to TRWs. This study provided a scientific understanding for future efforts to promote the excellent characteristics of TRW by regulating beneficial fungal communities.
Collapse
Affiliation(s)
- Lanchai Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
| | - Wenliang Xiang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
- Correspondence: ; Tel.: +86-28-8772-0552
| | - Xuemei Liang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Sichuan Vocational School of Commerce, Chengdu 611731, China
| | - Junyu Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Haoyu Zhu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ting Cai
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
| | - Qing Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
| | - Jie Tang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
| |
Collapse
|
13
|
Gouka L, Raaijmakers JM, Cordovez V. Ecology and functional potential of phyllosphere yeasts. TRENDS IN PLANT SCIENCE 2022; 27:1109-1123. [PMID: 35842340 DOI: 10.1016/j.tplants.2022.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 05/20/2023]
Abstract
The phyllosphere (i.e., the aerial parts of plants) harbors a rich microbial life, including bacteria, fungi, viruses, and yeasts. Current knowledge of yeasts stems primarily from industrial and medical research on Saccharomyces cerevisiae and Candida albicans, both of which can be found on plant tissues. For most other yeasts found in the phyllosphere, little is known about their ecology and functions. Here, we explore the diversity, dynamics, interactions, and genomics of yeasts associated with plant leaves and how tools and approaches developed for model yeasts can be adopted to disentangle the ecology and natural functions of phyllosphere yeasts. A first genomic survey exemplifies that we have only scratched the surface of the largely unexplored functional potential of phyllosphere yeasts.
Collapse
Affiliation(s)
- Linda Gouka
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands; Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
| |
Collapse
|
14
|
Yuan HW, Zhang C, Chen SY, Zhao Y, Tie Y, Yin LG, Jing C, Wu QD, Wang YT, Xu Z, Zhang LQ, Zuo Y. Effect of different moulds on oenological properties and flavor characteristics in rice wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|