1
|
Wang J, Cao Q, Gao M, Pan Y, Chen Y, Cao Y, Han S, Yan X, Xu X, Fang X, Lian F. Elevated urinary phytoestrogens are associated with delayed biological aging: a cross-sectional analysis of NHANES data. Sci Rep 2025; 15:8587. [PMID: 40075117 PMCID: PMC11904004 DOI: 10.1038/s41598-025-88872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025] Open
Abstract
Dietary phytoestrogens have been suggested to provide protection against numerous age-related diseases. However, their effects on biological aging remain unclear. In this study, we cross-sectionally investigated the relationship between urinary phytoestrogen levels and indicators of biological aging using data from 7,981 adults who participated in the National Health and Nutrition Examination Survey 1999-2010. Urinary concentrations of six phytoestrogens, including four isoflavones and two enterolignans, were measured using high-performance liquid chromatography (HPLC)-tandem mass spectrometry (MS) or HPLC-atmospheric pressure photoionization-tandem MS, and standardized using urinary creatinine. Three indicators of biological age (BA), namely the Klemera-Doubal method biological age (KDM-BA), phenotypic age (PA), and homeostatic dysregulation (HD), were derived from 12 clinical biomarkers, advanced-BAs were calculated to quantify the differences between individuals' BAs and chronological age, and individuals with all positive advanced-BAs were defined as accelerated-aging. Weighted linear regression analysis showed that after adjusting for demographic and lifestyle factors and history of chronic diseases, elevated urinary total phytoestrogen and enterolignans were significantly associated with less advanced-KDM, advanced-PA, and advanced-HD, whereas elevated urinary isoflavones was significantly associated with less advanced-KDM and advanced-PA but not with advanced-HD. Weighted logistic regression showed that higher urinary levels of total phytoestrogen (highest Q4 vs. lowest Q1: OR = 0.60, 95%CI: 0.44, 0.80; P-trend = 0.002) and enterolignans (Q4 vs. Q1: OR = 0.59, 95%CI: 0.45, 0.76; P-trend < 0.001) were significantly associated with lower odds of accelerated-aging, but this was not significant for isoflavones (Q4 vs. Q1: OR = 0.78, 95%CI: 0.60, 1.08; P-trend = 0.05). Subgroup analyses showed that negative associations were attenuated in non-overweight/obese participants and current cigarette smokers. In conclusion, higher levels of urinary phytoestrogens are related to markers of slower biological aging, suggesting an anti-aging effect of higher dietary phytoestrogen consumption, which warrants further investigations in longitudinal or interventional settings.
Collapse
Affiliation(s)
- Jing Wang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Qiancheng Cao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Minjie Gao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yiru Pan
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yanan Chen
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yifei Cao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Shufen Han
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Xiao Yan
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Xianrong Xu
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Xuexian Fang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Fuzhi Lian
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China.
- Engineering Research Center of Mobile Health Management System, Ministry of Education, Hangzhou, China.
| |
Collapse
|
2
|
Li L, Liu S, Wang M, Li M, Liu Y, Chen H, Chen J, Tao W, Huang L, Zhao S. Gen inhibiting the Wnt/Ca 2+ signaling pathway alleviates cerebral ischemia/reperfusion injury. Sci Rep 2025; 15:4661. [PMID: 39920331 PMCID: PMC11805899 DOI: 10.1038/s41598-025-88136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
Cerebral ischemia/reperfusion injury (CIRI) is a major complication of acute ischemic stroke (AIS), characterized by calcium overload, oxidative stress, and cell apoptosis. In this study, we investigated the therapeutic potential of Genistein (Gen) in alleviating CIRI by focusing on its effects on the Wnt/Ca2+ signaling pathway. Using a rat model of cerebral ischemia/reperfusion and in vitro experiments on PC12 cells, we observed that Gen treatment reduced infarct size, improved neurological function, and mitigated calcium overload, oxidative stress, and apoptosis. Further analysis revealed that Gen regulates key proteins in the Wnt/Ca2+ signaling pathway, including Wnt5a and Frizzled-2, effectively preventing intracellular calcium accumulation and subsequent damage. The knockdown of Frizzled-2 confirmed the pathway's role in mediating calcium overload and subsequent damage. Our findings suggest that Gen alleviates CIRI by inhibiting the Wnt/Ca2+ signaling pathway, positioning it as a promising candidate for therapeutic intervention in stroke treatment.
Collapse
Affiliation(s)
- Li Li
- Department of Pathophysiology, Bengbu Medical University, Bengbu, 233030, Anhui, China
- Department of Pathology, Anqing 116 Hospital, Anqing, 246000, Anhui, China
| | - Saisai Liu
- Department of Pathophysiology, Bengbu Medical University, Bengbu, 233030, Anhui, China
- Department of Pathology, The First People's Hospital of Jiande, HangZhou, 310000, Zhejiang, China
| | - Mengzhe Wang
- Department of Pathophysiology, Bengbu Medical University, Bengbu, 233030, Anhui, China
| | - Mengjia Li
- Department of Pathophysiology, Bengbu Medical University, Bengbu, 233030, Anhui, China
| | - Yi Liu
- Clinical Medical School, Bengbu Medical University, Bengbu, 233030, Anhui, China
| | - Haili Chen
- Clinical Medical School, Bengbu Medical University, Bengbu, 233030, Anhui, China
| | - Jie Chen
- Department of Pathophysiology, Bengbu Medical University, Bengbu, 233030, Anhui, China
| | - Weiting Tao
- Nanchang Health Vocational College, Nanchang, 330000, Jiangxi, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical University, Bengbu, 233030, Anhui, China.
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical University, Bengbu, 233030, Anhui, China.
| |
Collapse
|
3
|
Nunkoo VS, Cristian A, Jurcau A, Diaconu RG, Jurcau MC. The Quest for Eternal Youth: Hallmarks of Aging and Rejuvenating Therapeutic Strategies. Biomedicines 2024; 12:2540. [PMID: 39595108 PMCID: PMC11591597 DOI: 10.3390/biomedicines12112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The impressive achievements made in the last century in extending the lifespan have led to a significant growth rate of elderly individuals in populations across the world and an exponential increase in the incidence of age-related conditions such as cardiovascular diseases, diabetes mellitus type 2, and neurodegenerative diseases. To date, geroscientists have identified 12 hallmarks of aging (genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, impaired macroautophagy, mitochondrial dysfunction, impaired nutrient sensing, cellular senescence, stem cell exhaustion, defective intercellular communication, chronic inflammation, and gut dysbiosis), intricately linked among each other, which can be targeted with senolytic or senomorphic drugs, as well as with more aggressive approaches such as cell-based therapies. To date, side effects seriously limit the use of these drugs. However, since rejuvenation is a dream of mankind, future research is expected to improve the tolerability of the available drugs and highlight novel strategies. In the meantime, the medical community, healthcare providers, and society should decide when to start these treatments and how to tailor them individually.
Collapse
Affiliation(s)
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
4
|
Wang X, Liu E, Hou C, Wang Y, Zhao Y, Guo J, Li M. Effects of natural products on angiogenesis in melanoma. Fitoterapia 2024; 177:106100. [PMID: 38972550 DOI: 10.1016/j.fitote.2024.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Melanoma is the most aggressive form of skin cancer and originates from genetic mutations in melanocytes. The disease is multifactorial, but its main cause is overexposure to UV radiation. Currently, available chemotherapy expresses little to no results, which may justify the extensive use of natural products to treat this cancer. In this study, we reviewed the inhibition of melanoma angiogenesis by natural products and its potential mechanisms using literature from PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases. According to summarizes 27 natural products including alkaloids, polyphenols, terpenoids, flavonoids, and steroids that effectively inhibit angiogenesis in melanoma. In addition to these there are 15 crude extracts that can be used as promising agents to inhibit angiogenesis, but their core components still deserve further investigation. There are current studies on melanoma angiogenesis involving oxidative stress, immune-inflammatory response, cell proliferation and migration and capillary formation. The above natural products can be involved in melanoma angiogenesis through core targets such as VE-cadherin, COX-2, iNOS, VEGF, bFGF, FGF2,MMP2,MMP9,IL-1β,IL-6 play a role in inhibiting melanoma angiogenesis. Effective excavation of natural products can not only clarify the mechanism of drug action and key targets, but also help to promote the preclinical research of natural products for melanoma treatment and further promote the development of new clinical drugs, which will bring the gospel to the vast number of patients who are deeply afflicted by melanoma.
Collapse
Affiliation(s)
- Xurui Wang
- Department of Chinese Medicine Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China,Chengdu, China; Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - E Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changcheng Hou
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yueyue Wang
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yijia Zhao
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Mingyue Li
- Special Needs Outpatient Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
5
|
Rivero-Segura NA, Zepeda-Arzate EA, Castillo-Vazquez SK, Fleischmann-delaParra P, Hernández-Pineda J, Flores-Soto E, García-delaTorre P, Estrella-Parra EA, Gomez-Verjan JC. Exploring the Geroprotective Potential of Nutraceuticals. Nutrients 2024; 16:2835. [PMID: 39275153 PMCID: PMC11396943 DOI: 10.3390/nu16172835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Aging is the result of the accumulation of a wide variety of molecular and cellular damages over time, meaning that "the more damage we accumulate, the higher the possibility to develop age-related diseases". Therefore, to reduce the incidence of such diseases and improve human health, it becomes important to find ways to combat such damage. In this sense, geroprotectors have been suggested as molecules that could slow down or prevent age-related diseases. On the other hand, nutraceuticals are another set of compounds that align with the need to prevent diseases and promote health since they are biologically active molecules (occurring naturally in food) that, apart from having a nutritional role, have preventive properties, such as antioxidant, anti-inflammatory and antitumoral, just to mention a few. Therefore, in the present review using the specialized databases Scopus and PubMed we collected information from articles published from 2010 to 2023 in order to describe the role of nutraceuticals during the aging process and, given their role in targeting the hallmarks of aging, we suggest that they are potential geroprotectors that could be consumed as part of our regular diet or administered additionally as nutritional supplements.
Collapse
Affiliation(s)
| | | | - Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Jessica Hernández-Pineda
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, SSA, Mexico City 11000, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000, Alcaldía de Coyoacán, Mexico City 04510, Mexico
| | - Paola García-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Edgar Antonio Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | | |
Collapse
|
6
|
Félix J, Martínez de Toda I, Díaz-Del Cerro E, González-Sánchez M, De la Fuente M. Frailty and biological age. Which best describes our aging and longevity? Mol Aspects Med 2024; 98:101291. [PMID: 38954948 DOI: 10.1016/j.mam.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Frailty and Biological Age are two closely related concepts; however, frailty is a multisystem geriatric syndrome that applies to elderly subjects, whereas biological age is a gerontologic way to describe the rate of aging of each individual, which can be used from the beginning of the aging process, in adulthood. If frailty reaches less consensus on the definition, it is a term much more widely used than this of biological age, which shows a clearer definition but is scarcely employed in social and medical fields. In this review, we suggest that this Biological Age is the best to describe how we are aging and determine our longevity, and several examples support our proposal.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Irene Martínez de Toda
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Mónica González-Sánchez
- Department of Genetics, Physiology, and Microbiology (Unit of Genetics), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Mónica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| |
Collapse
|
7
|
Hou Q, Li G, Pan X, Zhong X, Geng X, Yang X, Yang X, Zhang B. Long-term supplementation of genistein improves immune homeostasis in the aged gut and extends the laying cycle of aged laying hens. Poult Sci 2024; 103:103670. [PMID: 38598909 PMCID: PMC11017059 DOI: 10.1016/j.psj.2024.103670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Aging is associated with alterations in gut function, including intestinal inflammation, leaky gut, and impaired epithelial regeneration. Rejuvenating the aged gut is imperative to extend the laying cycle of aged laying hens. Genistein is known to have beneficial effects on age-related diseases, but its precise role in homeostasis of the aged gut of laying hens remains to be elucidated. In this study, 160 45-wk-old Hyline Brown laying hens were continuously fed a basal diet or a diet supplemented with 40 mg/kg genistein until they reached 100 wk of age. The results revealed that long-term genistein supplementation led to an improvement in the egg production rate and feed conversion ratio, as well as an increase in egg quality. Moreover, the expression levels of senescence markers, such as β-galactosidase, P16, and P21, were decreased in the gut of genistein-treated aged laying hens. Furthermore, genistein ameliorated gut dysfunctions, such as intestinal inflammation, leaky gut, and impaired epithelial regeneration. Treg cell-derived IL-10 plays a crucial role in the genistein-induced regulation of age-related intestinal inflammation. This study demonstrates that long-term consumption of genistein improves homeostasis in the aged gut and extends the laying cycle of aged laying hens. Moreover, the link between genistein and Treg cells provides a rationale for dietary intervention against age-associated gut dysfunction.
Collapse
Affiliation(s)
- Qihang Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Guang Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Xianjie Pan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangfei Geng
- Beijing Lab Anim Sci Tech Develp Co., LTD, Beijing 100193, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China.
| |
Collapse
|
8
|
Viña J, Borrás C, Mas-Bargues C. Genistein, A Phytoestrogen, Delays the Transition to Dementia in Prodromal Alzheimer's Disease Patients. J Alzheimers Dis 2024; 101:S275-S283. [PMID: 39422955 DOI: 10.3233/jad-240308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease is recognized as a complex condition influenced by multiple factors, necessitating a similarly multifaceted approach to treatment. Ideally, interventions should prioritize averting the progression to dementia. Given the chronic nature of the disease, long-term management strategies are required. Within this framework, lifestyle modifications and dietary supplements emerge as appealing options due to their minimal toxicity, limited side effects, and cost-effectiveness. This study presents findings from a double-blind, placebo-controlled bicentric pilot clinical trial, demonstrating the significant cognitive preservation associated with genistein, a phytoestrogen found in soy and various other dietary sources, among individuals with prodromal Alzheimer's disease. Our prior investigation utilizing APP/PS1 mice elucidated the specific mechanisms through which genistein operates, including anti-amyloid-β, antioxidant, anti-inflammatory, and antiapoptotic effects. These findings underscore the potential of identifying bioactive compounds from dietary sources for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- José Viña
- Department of Physiology, Freshage Research Group, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, Spain
| | - Consuelo Borrás
- Department of Physiology, Freshage Research Group, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, Spain
| | - Cristina Mas-Bargues
- Department of Physiology, Freshage Research Group, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, Spain
| |
Collapse
|
9
|
Chang J, Huang C, Li S, Jiang X, Chang H, Li M. Research Progress Regarding the Effect and Mechanism of Dietary Polyphenols in Liver Fibrosis. Molecules 2023; 29:127. [PMID: 38202710 PMCID: PMC10779665 DOI: 10.3390/molecules29010127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The development of liver fibrosis is a result of chronic liver injuries may progress to liver cirrhosis and liver cancer. In recent years, liver fibrosis has become a major global problem, and the incidence rate and mortality are increasing year by year. However, there are currently no approved treatments. Research on anti-liver-fibrosis drugs is a top priority. Dietary polyphenols, such as plant secondary metabolites, have remarkable abilities to reduce lipid metabolism, insulin resistance and inflammation, and are attracting more and more attention as potential drugs for the treatment of liver diseases. Gradually, dietary polyphenols are becoming the focus for providing an improvement in the treatment of liver fibrosis. The impact of dietary polyphenols on the composition of intestinal microbiota and the subsequent production of intestinal microbial metabolites has been observed to indirectly modulate signaling pathways in the liver, thereby exerting regulatory effects on liver disease. In conclusion, there is evidence that dietary polyphenols can be therapeutically useful in preventing and treating liver fibrosis, and we highlight new perspectives and key questions for future drug development.
Collapse
Affiliation(s)
- Jiayin Chang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Congying Huang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Siqi Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Xiaolei Jiang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou 014040, China
| |
Collapse
|
10
|
Wu C, Suzuki K. The Effects of Flavonoids on Skeletal Muscle Mass, Muscle Function, and Physical Performance in Individuals with Sarcopenia: A Systematic Review of Randomized Controlled Trials. Nutrients 2023; 15:3897. [PMID: 37764681 PMCID: PMC10537400 DOI: 10.3390/nu15183897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Sarcopenia has become a significant obstacle to healthy aging in older adults. Flavonoids may contribute to treating sarcopenia, and attenuate the age-related loss of skeletal muscle mass, muscle strength, and physical function, however, their benefits in sarcopenic individuals remain unclear. This systematic review aimed to evaluate the effect of flavonoids on muscle mass, muscle strength, and physical performance in adults with sarcopenia based on randomized controlled trials (RCTs). This review was conducted in conformity with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the risk of bias was assessed using the Cochrane risk of bias tool. The article search was conducted using PubMed, Scopus, Embase, Cochrane, Web of Science databases, and Google Scholar for the period until June 2023. RCTs that assessed the effects of flavonoids/flavonoids combined with other supplementation/flavonoid-rich supplementations on skeletal muscle mass, muscle strength, and physical performance in adults diagnosed with sarcopenia before intervention were included. From the 309 articles found, a total of 6 RCTs met the inclusion criteria. RCTs evaluated the main outcomes of tea catechins, epicatechin, and isoflavones intervention. Skeletal muscle mass significantly increased in three studies, muscle strength significantly elevated in two studies, and physical performance significantly improved in two studies. The majority of studies (five in six) found at least one of the main outcomes is elevated by flavonoids intervention. Flavonoids may have a great potential to treat sarcopenia.
Collapse
Affiliation(s)
- Cong Wu
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
11
|
Pu Z, Liu S, Guo Z, Zhang X, Yan J, Tang Y, Xiao H, Gao J, Li Y, Bai Q. Casein Reactivates Dopaminergic Nerve Injury and Intestinal Inflammation with Disturbing Intestinal Microflora and Fecal Metabolites in a Convalescent Parkinson's Disease Mouse Model. Neuroscience 2023; 524:120-136. [PMID: 37321369 DOI: 10.1016/j.neuroscience.2023.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD) is the fastest-growing neurodegenerative disease, with pathogenic causes elusive and short of effective treatment options. Investigations have found that dairy products positively correlate with the onset of PD, but the mechanisms remain unexplored. As casein is an antigenic component in dairy products, this study assessed if casein could exacerbate PD-related symptoms by stimulating intestinal inflammation and unbalanced intestinal flora and be a risk factor for PD. Using a convalescent PD mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the results showed casein reduced motor coordination, caused gastrointestinal dysfunction, reduced dopamine content, and induced intestinal inflammation. Meanwhile, casein disturbed gut microbiota homeostasis by increasing the Firmicutes/Bacteroidetes ratio, decreasing α-diversity, and caused abnormal alterations in fecal metabolites. However, these adverse effects of casein attenuated much when it had hydrolyzed by acid or when antibiotics inhibited the intestinal microbiota of the mice. Therefore, our results suggested that casein could reactivate dopaminergic nerve injury and intestinal inflammation and exacerbate intestinal flora disorder and its metabolites in convalescent PD mice. These damaging effects might be related to disordered protein digestion and gut microbiota in these mice. These findings will provide new insights into the impact of milk/dairy products on PD progression and supply information on dietary options for PD patients.
Collapse
Affiliation(s)
- Zhengjia Pu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Shuya Liu
- Chongqing Institute of TB Prevention and Treatment, Jiulongpo District, Chongqing 400050, China
| | - Zeming Guo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Xuemei Zhang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Jie Yan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Yong Tang
- Chongqing Orthopedics Hospital of Traditional Chinese Medicine, Yuzhong District, Chongqing 400012, China
| | - Hong Xiao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Jieying Gao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Yingli Li
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Qunhua Bai
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|
12
|
Hou Q, Huang J, Zhao L, Pan X, Liao C, Jiang Q, Lei J, Guo F, Cui J, Guo Y, Zhang B. Dietary genistein increases microbiota-derived short chain fatty acid levels, modulates homeostasis of the aging gut, and extends healthspan and lifespan. Pharmacol Res 2023; 188:106676. [PMID: 36693599 DOI: 10.1016/j.phrs.2023.106676] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Age-related gastrointestinal decline contributes to whole-organism frailty and mortality. Genistein is known to have beneficial effects on age-related diseases, but its precise role in homeostasis of the aging gut remains to be elucidated. Here, wild-type aging mice and Zmpste24-/- progeroid mice were used to investigate the role of genistein in lifespan and homeostasis of the aging gut in mammals. A series of longitudinal, clinically relevant measurements were performed to evaluate the effect of genistein on healthspan. It was found that dietary genistein promoted a healthier and longer life and was associated with a decrease in the levels of systemic inflammatory cytokines in aging mice. Furthermore, dietary genistein ameliorated gut dysfunctions, such as intestinal inflammation, leaky gut, and impaired epithelial regeneration. A distinct genistein-mediated alteration in gut microbiota was observed by increasing Lachnospira abundance and short-chain fatty acid (SCFA) production. Further fecal microbiota transplantation and dirty cage sharing experiments indicated that the gut microbiota from genistein-fed mice rejuvenated the aging gut and extended the lifespan of progeroid mice. It was demonstrated that genistein-associated SCFAs alleviated tumor necrosis factor alpha-induced intestinal organoid damage. Moreover, genistein-associated propionate promoted regulatory T cell-derived interleukin 10 production, which alleviated macrophage-derived inflammation. This study provided the first data, to the authors' knowledge, indicating that dietary genistein modulates homeostasis in the aging gut and extends the healthspan and lifespan of aging mammals. Moreover, the existence of a link between genistein and the gut microbiota provides a rationale for dietary interventions against age-associated frailty.
Collapse
Affiliation(s)
- Qihang Hou
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Jingxi Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Lihua Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Xianjie Pan
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Chaoyong Liao
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Qiuyu Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Jian Cui
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China.
| |
Collapse
|
13
|
Viña J, Escudero J, Baquero M, Cebrián M, Carbonell-Asíns JA, Muñoz JE, Satorres E, Meléndez JC, Ferrer-Rebolleda J, Cózar-Santiago MDP, Santabárbara-Gómez JM, Jové M, Pamplona R, Tarazona-Santabalbina FJ, Borrás C. Genistein effect on cognition in prodromal Alzheimer's disease patients. The GENIAL clinical trial. Alzheimers Res Ther 2022; 14:164. [PMID: 36329553 PMCID: PMC9635167 DOI: 10.1186/s13195-022-01097-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Delaying the transition from minimal cognitive impairment to Alzheimer's dementia is a major concern in Alzheimer's disease (AD) therapeutics. Pathological signs of AD occur years before the onset of clinical dementia. Thus, long-term therapeutic approaches, with safe, minimally invasive, and yet effective substances are recommended. There is a need to develop new drugs to delay Alzheimer's dementia. We have taken a nutritional supplement approach with genistein, a chemically defined polyphenol that acts by multimodal specific mechanisms. Our group previously showed that genistein supplementation is effective to treat the double transgenic (APP/PS1) AD animal model. METHODS In this double-blind, placebo-controlled, bicentric clinical trial, we evaluated the effect of daily oral supplementation with 120 mg of genistein for 12 months on 24 prodromal Alzheimer's disease patients. The amyloid-beta deposition was analyzed using 18F-flutemetamol uptake. We used a battery of validated neurocognitive tests: Mini-Mental State Exam (MMSE), Memory Alteration Test (M@T), Clock Drawing Test, Complutense Verbal Learning Test (TAVEC), Barcelona Test-Revised (TBR), and Rey Complex Figure Test. RESULTS We report that genistein treatment results in a significant improvement in two of the tests used (dichotomized direct TAVEC, p = 0.031; dichotomized delayed Centil REY copy p = 0.002 and a tendency to improve in all the rest of them. The amyloid-beta deposition analysis showed that genistein-treated patients did not increase their uptake in the anterior cingulate gyrus after treatment (p = 0.878), while placebo-treated did increase it (p = 0.036). We did not observe significant changes in other brain areas studied. CONCLUSIONS This study shows that genistein may have a role in therapeutics to delay the onset of Alzheimer's dementia in patients with prodromal Alzheimer's disease. These encouraging results indicate that this should be followed up by a new study with more patients to further validate the conclusion that arises from this study. TRIAL REGISTRATION NCT01982578, registered on November 13, 2013.
Collapse
Affiliation(s)
- José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Avenida Blasco Ibáñez 15, 46010, Valencia, Spain
| | - Joaquín Escudero
- Hospital General of Valencia, Av. Tres Cruces 2, ES, 46014, Valencia, Spain
| | - Miquel Baquero
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Mónica Cebrián
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Avenida Blasco Ibáñez 15, 46010, Valencia, Spain
| | | | - José Enrique Muñoz
- Pharmacy Department, Hospital Clínico Universitario de Valencia/INCLIVA Health Research Institute, Valencia, Spain
| | - Encarnación Satorres
- Department of Developmental Psychology, Faculty of Psychology, University of Valencia, ES 46002, Valencia, Spain
| | - Juan Carlos Meléndez
- Department of Developmental Psychology, Faculty of Psychology, University of Valencia, ES 46002, Valencia, Spain
| | | | | | | | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), E-25198, Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), E-25198, Lleida, Spain
| | | | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Avenida Blasco Ibáñez 15, 46010, Valencia, Spain.
| |
Collapse
|
14
|
Yang K, Chen J, Zhang T, Yuan X, Ge A, Wang S, Xu H, Zeng L, Ge J. Efficacy and safety of dietary polyphenol supplementation in the treatment of non-alcoholic fatty liver disease: A systematic review and meta-analysis. Front Immunol 2022; 13:949746. [PMID: 36159792 PMCID: PMC9500378 DOI: 10.3389/fimmu.2022.949746] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Dietary polyphenol treatment of non-alcoholic fatty liver disease (NAFLD) is a novel direction, and the existing clinical studies have little effective evidence for its therapeutic effect, and some studies have inconsistent results. The effectiveness of dietary polyphenols in the treatment of NAFLD is still controversial. The aim of this study was to evaluate the therapeutic efficacy of oral dietary polyphenols in patients with NAFLD. Methods The literature (both Chinese and English) published before 30 April 2022 in PubMed, Cochrane, Medline, CNKI, and other databases on the treatment of NAFLD with dietary polyphenols was searched. Manual screening, quality assessment, and data extraction of search results were conducted strictly according to the inclusion and exclusion criteria. RevMan 5.3 software was used to perform the meta-analysis. Results The RCTs included in this study involved dietary supplementation with eight polyphenols (curcumin, resveratrol, naringenin, anthocyanin, hesperidin, catechin, silymarin, and genistein) and 2,173 participants. This systematic review and meta-analysis found that 1) curcumin may decrease body mass index (BMI), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Triglycerides (TG) total cholesterol (TC), and Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) compared to placebo; and curcumin does not increase the occurrence of adverse events. 2) Although the meta-analysis results of all randomized controlled trials (RCTs) did not reveal significant positive changes, individual RCTs showed meaningful results. 3) Naringenin significantly decreased the percentage of NAFLD grade, TG, TC, and low-density lipoprotein cholesterol (LDL-C) and increased high-density lipoprotein cholesterol (HDL-C) but had no significant effect on AST and ALT, and it is a safe supplementation. 4) Only one team presents a protocol about anthocyanin (from Cornus mas L. fruit extract) in the treatment of NAFLD. 5) Hesperidin may decrease BMI, AST, ALT, TG, TC, HOMA-IR, and so on. 6) Catechin may decrease BMI, HOMA-IR, and TG level, and it was well tolerated by the patients. 7) Silymarin was effective in improving ALT and AST and reducing hepatic fat accumulation and liver stiffness in NAFLD patients. Conclusion Based on current evidence, curcumin can reduce BMI, TG, TC, liver enzymes, and insulin resistance; catechin can reduce BMI, insulin resistance, and TG effectively; silymarin can reduce liver enzymes. For resveratrol, naringenin, anthocyanin, hesperidin, and catechin, more RCTs are needed to further evaluate their efficacy and safety.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Junpeng Chen
- School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Tianqing Zhang
- The First Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiao Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Jinwen Ge,
| |
Collapse
|
15
|
Capri M, Morsiani C. Current approaches of anti-age related diseases: From molecules up to whole organism. Mech Ageing Dev 2022; 208:111731. [PMID: 36087743 DOI: 10.1016/j.mad.2022.111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miriam Capri
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy.
| | - Cristina Morsiani
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Karpitskiy DA, Bessonova EA, Kartsova LA, Tikhomirova LI. Development of approach for flavonoid profiling of biotechnological raw materials Iris sibirica L. by HPLC with high-resolution tandem mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:869-878. [PMID: 35680077 DOI: 10.1002/pca.3135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Iris L. are promising in medicine due to the biological activity of extracts. Iris sibirica L. is spread in Russia but its phytochemical composition has not been studied in detail though it is included in the Red Book. For this reason, I. sibirica L. biotechnology is in high demand. One of the key points in biotechnology is the regulation of plant metabolism using phytohormones. Obtaining of chromatographic metabolite profiles allows to control this process. OBJECTIVE The aim of this study was to develop an approach for effective control of biotechnological raw materials of I. sibirica L. by flavonoid profiles using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and to investigate the influence of phytohormones in nutrient media on content of flavonoids. METHODOLOGY Iris sibirica L. regenerated plants were grown on Murashige-Skoog media with 6-benzylaminopurine (6-BAP) and α-naphtylacetic acid (NAA) additives. To optimise extraction conditions, the design of the experiment was used. Profiles of polyphenols were obtained by HPLC-MS/MS in the positive and negative ionisation modes. RESULTS The process for efficient extraction from leaves of I. sibirica L. were developed. The factors influencing the extraction efficiency of flavonoids have been determined. A total of 36 compounds were identified by HPLC-MS/MS. Among them isoflavones and their glycosides are the main classes. Addition of an auxin-like hormone increased the non-polar flavonoid levels, but decreased the polar ones. The variation in concentration of cytokinin (6-BAP) affected almost all of the analytes. CONCLUSION The methodology for effective control of I. sibirica L. raw plant material biotechnology was developed by analysing obtained chromatographic polyphenol profiles.
Collapse
Affiliation(s)
- Dmitriy A Karpitskiy
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Elena A Bessonova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Liudmila A Kartsova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Liudmila I Tikhomirova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums and the Enterprise for the Production of Bacterial Preparations, Saint Petersburg, Russia
| |
Collapse
|
17
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
18
|
Dietary Phytoestrogen Intake and Cognitive Status in Southern Italian Older Adults. Biomolecules 2022; 12:biom12060760. [PMID: 35740885 PMCID: PMC9221352 DOI: 10.3390/biom12060760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Aging society faces significant health challenges, among which cognitive-related disorders are emerging. Diet quality has been recognized among the major contributors to the rising prevalence of cognitive disorders, with increasing evidence of the putative role of plant-based foods and their bioactive components, including polyphenols. Dietary polyphenols, including phytoestrogens, have been hypothesized to exert beneficial effects toward brain health through various molecular mechanisms. However, the evidence on the association between dietary phytoestrogen intake and cognitive function is limited. The aim of this study was to investigate the association between phytoestrogen intake and cognitive status in a cohort of older adults living in Sicily, Southern Italy. Methods: Dietary information from 883 individuals aged 50 years or older was collected through a validated food frequency questionnaire. Cognitive status was assessed through the Short Portable Mental Status Questionnaire. Results: The highest total isoflavone (including daidzein and genistein) intake was inversely associated with cognitive impairment compared to the lowest (odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.20–0.92). Higher intake of total lignans and, consistently, all individual compounds (with the exception of secoisolariciresinol) were inversely associated with cognitive impairment only in the unadjusted model. Conclusions: A higher intake of phytoestrogens, especially isoflavones, was associated with a better cognitive status in a cohort of older Italian individuals living in Sicily. Taking into account the very low intake of isoflavones in Italian diets, it is noteworthy to further investigate selected populations with habitual consumption of such compounds to test whether these results may be generalized to the Italian population.
Collapse
|