1
|
Pappert FA, Wüst VA, Fontanes Eguiguren C, Roth O. Surviving on Limited Resources: Effects of Caloric Restriction on Growth, Gene Expression and Gut Microbiota in a Species With Male Pregnancy (Hippocampus erectus). Mol Ecol 2025; 34:e17754. [PMID: 40192444 PMCID: PMC12010458 DOI: 10.1111/mec.17754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025]
Abstract
Caloric restriction (CR) studies have traditionally focused on species with conventional reproductive roles, emphasising female's greater investment in costly gametes and parental care. While the divergent impact of CR on males and females is evident across species, the factors driving this variation, that is, resource allocation to reproductive elements as part of distinct life history strategies, remain unclear. To address this, we investigated the effects of CR on development, gene expression and intestinal microbiota in the lined seahorse Hippocampus erectus, a species with male pregnancy, where fathers invest in offspring through gestation. Juvenile seahorses were subjected to ad libitum (AL) or CR feeding for 5 months. CR stunted male growth and brood pouch development, reflecting the energy demands of this crucial parental care trait. However, condition index declined in CR females but not males, while ovarian weight remained unchanged. Transcriptome analysis demonstrated organ- and sex-specific responses to CR with distinct lipid and energy-related pathways activated in male and female livers, indicative of survival enhancement strategies. CR had minimal impact on genes associated with spermatogenesis, but downregulated lipid metabolic and inflammatory genes in ovaries, emphasising the importance of pre-copulatory resource allocation in female gametes. CR strongly shaped gut microbial composition, creating distinct communities from AL seahorses while also driving sex-specific taxonomic differences. Our research indicates that nutrient limitation's impact on males and females is influenced by their allocation of resources to reproduction and parental investment. We underscore the significance of studying species with diverse reproductive strategies, sex roles and life-history strategies.
Collapse
Affiliation(s)
- Freya Adele Pappert
- Marine Evolutionary Biology, Zoological InstituteChristian‐Albrechts‐Universität KielKielGermany
- Evolutionary Ecology of Marine FishesHelmholtz‐Centre for Ocean Research Kiel (GEOMAR)KielGermany
| | - Vincent Alexander Wüst
- Marine Evolutionary Biology, Zoological InstituteChristian‐Albrechts‐Universität KielKielGermany
| | | | - Olivia Roth
- Marine Evolutionary Biology, Zoological InstituteChristian‐Albrechts‐Universität KielKielGermany
- Evolutionary Ecology of Marine FishesHelmholtz‐Centre for Ocean Research Kiel (GEOMAR)KielGermany
| |
Collapse
|
2
|
Wang A, Speakman JR. Potential downsides of calorie restriction. Nat Rev Endocrinol 2025:10.1038/s41574-025-01111-1. [PMID: 40247012 DOI: 10.1038/s41574-025-01111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/19/2025]
Abstract
Although the potential benefits of calorie restriction on human lifespan remain uncertain, it is currently one of the most extensively researched non-genetic approaches to extending both lifespan and healthspan in animals. Calorie restriction offers numerous health benefits, including a reduced incidence of age-related diseases. However, calorie restriction also produces a range of negative effects, which are not fully documented and require further investigation, particularly in humans. As the viability of calorie restriction in humans will depend on the balance of benefits and detrimental effects, it is crucial to understand the nature of these negative effects and what drives them. In this Review, we summarize the effects of calorie restriction on wound healing, hunger, cold sensitivity, bone health, brain size, cognition, reproductive performance and infection, primarily based on studies of rodents with some data from other species and from humans. Overall, the detrimental effects of calorie restriction seem to stem directly from prioritization of vital functions and downregulation or suppression of energy-demanding processes, which helps preserve survival but can also lead to impaired physiological performance and increased vulnerability to stressors. The exact mechanisms underlying these effects remain unclear. Whether it might be possible to engage in calorie restriction but avoid these negative effects remains uncertain.
Collapse
Affiliation(s)
- Anyongqi Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Beijing Life Science Academy, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - John Roger Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, China.
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.
- Institute of Health Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Altea-Manzano P, Decker-Farrell A, Janowitz T, Erez A. Metabolic interplays between the tumour and the host shape the tumour macroenvironment. Nat Rev Cancer 2025; 25:274-292. [PMID: 39833533 DOI: 10.1038/s41568-024-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Metabolic reprogramming of cancer cells and the tumour microenvironment are pivotal characteristics of cancers, and studying these processes offer insights and avenues for cancer diagnostics and therapeutics. Recent advancements have underscored the impact of host systemic features, termed macroenvironment, on facilitating cancer progression. During tumorigenesis, these inherent features of the host, such as germline genetics, immune profile and the metabolic status, influence how the body responds to cancer. In parallel, as cancer grows, it induces systemic effects beyond the primary tumour site and affects the macroenvironment, for example, through inflammation, the metabolic end-stage syndrome of cachexia, and metabolic dysregulation. Therefore, understanding the intricate metabolic interplay between the tumour and the host is a growing frontier in advancing cancer diagnosis and therapy. In this Review, we explore the specific contribution of the metabolic fitness of the host to cancer initiation, progression and response to therapy. We then delineate the complex metabolic crosstalk between the tumour, the microenvironment and the host, which promotes disease progression to metastasis and cachexia. The metabolic relationships among the host, cancer pathogenesis and the consequent responsive systemic manifestations during cancer progression provide new perspectives for mechanistic cancer therapy and improved management of patients with cancer.
Collapse
Affiliation(s)
| | | | | | - Ayelet Erez
- Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Steele C, Ostrow A, Wang W, Coleman E, George D, Bing K, Ramanathan S, Gregory A, Gitomer BY, Kline TL, Thomas E, Chonchol M, Nowak KL. Time-restricted eating and autosomal dominant polycystic kidney disease: a pilot, randomized clinical trial. Clin Kidney J 2025; 18:sfaf069. [PMID: 40207097 PMCID: PMC11976525 DOI: 10.1093/ckj/sfaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Indexed: 04/11/2025] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most commonly inherited progressive kidney disease. Time-restricted eating (TRE) is a fasting regimen that restricts eating to a particular window (typically 8 hours/day), which could slow cyst growth based on preclinical models. Methods A 12-month, randomized, controlled, behavioral dietary intervention compared TRE with a control group given healthy eating advice without TRE (HE), without caloric restriction. Participants underwent baseline and 12-month measurements, including adherence (percentage of participants adhering to the 8-hour window; primary outcome), and MRI to determine height-adjusted total kidney volume (htTKV) and adiposity. Results Twenty-nine participants (23 females, mean standard ± deviation 48 ± 9 years) with a body mass index of 31.1±5 kg/m2 were randomized to TRE (n = 14) or HE (n = 15). Of the total participants, 71% (n = 10) of TRE and 87% (n = 13) of HE participants completed the intervention. The eating window was 9.6 ± 3.6 hours for TRE (60% achieving the 8-hour window) and 12.0 ± 2.0 for HE groups (P = .07). At month 12, both groups lost modest weight (-2.4 ± 6.4% and -3.6 ± 5.4% in the TRE and HE groups, respectively). Annual change in htTKV was 3.0 ± 8.5% and 4.6 ± 8.8% in the TRE and HE groups, respectively. Both change in weight (r = 0.67, P < .01) and change in visceral adiposity (r = 0.54, P < .01) were positively correlated with change in htTKV. Conclusion Both the TRE and HE group lost modest weight at 12 months. The targeted TRE adherence of ≥75% of participants was not achieved. Weight and adiposity loss may be more important drivers of kidney growth than the timing of eating.
Collapse
Affiliation(s)
- Cortney Steele
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Ostrow
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wei Wang
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erin Coleman
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Diana George
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen Bing
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Berenice Y Gitomer
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Elizabeth Thomas
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michel Chonchol
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen L Nowak
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Perego Junior JE, Tomazi Silva K, Balani Rando AL, Sousa Lima M, Garcia RF, Pedrosa MMD. Glucose metabolism in the perfused liver did not improve with resistance training in male Swiss mice under caloric restriction. Arch Physiol Biochem 2025; 131:306-315. [PMID: 39392336 DOI: 10.1080/13813455.2024.2413626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT Energy homeostasis is a primary factor for the survival of mammals. Many tissues and organs, among which is the liver, keep this homeostasis in varied circumstances, including caloric restriction (CR) and physical activity. OBJECTIVE This study investigated glucose metabolism using the following groups of eight-week-old male Swiss mice: CS, sedentary and fed freely; RS, sedentary and RT, trained, both under 30% CR (n = 20-23 per group). RESULTS Organs and fat depots of groups RS and RT were similar to CS, although body weight was lower. CR did not impair training performance nor affected systemic or hepatic glucose metabolism. Training combined with CR (group RT) improved in vivo glucose tolerance and did not affect liver gluconeogenesis. CONCLUSIONS The mice tolerated the prolonged moderate CR without impairment of their well-being, glucose homeostasis, and resistance training performance. But the higher liver gluconeogenic efficiency previously demonstrated using this training protocol in mice was not evidenced under CR.
Collapse
Affiliation(s)
| | - Kauane Tomazi Silva
- Program of Graduate Studies in Physiological Sciences, State University of Maringá, Maringá, PR, Brazil
| | | | - Mateus Sousa Lima
- Department of Biology, State University of Maringá, Maringá, PR, Brazil
| | | | | |
Collapse
|
6
|
Wang S, Huo T, Lu M, Zhao Y, Zhang J, He W, Chen H. Recent Advances in Aging and Immunosenescence: Mechanisms and Therapeutic Strategies. Cells 2025; 14:499. [PMID: 40214453 PMCID: PMC11987807 DOI: 10.3390/cells14070499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest. Senescent cells (SCs) accumulate in the body with age and secrete harmful substances known as the senescence-associated secretory phenotype (SASP), causing chronic inflammation; at the same time, chronic inflammation leads to a decrease in immune system function, known as immunosenescence, which further accelerates the aging process. Cellular senescence and immunosenescence are closely related to a variety of chronic diseases, including cardiovascular diseases, metabolic disorders, autoimmune diseases, and neurodegenerative diseases. Studying the mechanisms of cellular senescence and immunosenescence and developing targeted interventions are crucial for improving the immune function and quality of life of elderly people. Here, we review a series of recent studies focusing on the molecular mechanisms of cellular senescence and immunosenescence, the regulation of aging by the immune system, and the latest advances in basic and clinical research on senolytics. We summarize the cellular and animal models related to aging research, as well as the mechanisms, strategies, and future directions of aging interventions from an immunological perspective, with the hope of laying the foundation for developing novel and practical anti-aging therapies.
Collapse
Affiliation(s)
- Shuaiqi Wang
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
| | - Tong Huo
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
| | - Mingyang Lu
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
| | - Yueqi Zhao
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
| | - Jianmin Zhang
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
| | - Wei He
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
| | - Hui Chen
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
| |
Collapse
|
7
|
Xie K, Wang C, Scifo E, Pearson B, Ryan D, Henzel K, Markert A, Schaaf K, Mi X, Tian X, Jia J, Wang M, Bonn S, Schölling M, Möhl C, Bano D, Zhou Y, Ehninger D. Intermittent fasting boosts sexual behavior by limiting the central availability of tryptophan and serotonin. Cell Metab 2025:S1550-4131(25)00104-4. [PMID: 40157367 DOI: 10.1016/j.cmet.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 12/02/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
Aging affects reproductive capabilities in males through physiological and behavioral alterations, including endocrine changes and decreased libido. In this study, we investigated the influence of intermittent fasting (IF) on these aging-related declines, using male C57BL/6J mice. Our findings revealed that IF significantly preserved reproductive success in aged mice, not by improving traditional reproductive metrics such as sperm quality or endocrine functions but by enhancing mating behavior. This behavioral improvement was attributed to IF's ability to counter age-dependent increases in serotonergic inhibition, primarily through the decreased supply of the serotonin precursor tryptophan from the periphery to the brain. Our research underscores the potential of dietary interventions like IF in mitigating age-associated declines in male reproductive health and suggests a novel approach to managing conditions related to reduced sexual desire, highlighting the complex interplay between diet, metabolism, and reproductive behavior.
Collapse
Affiliation(s)
- Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Chengfeng Wang
- Department of Intensive Care Unit, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266000, Shandong, China; Institute of Brain Sciences and Related Disorders, Medical College of Qingdao University, Qingdao 266071, Shandong, China; Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, Shandong, China
| | - Enzo Scifo
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Brandon Pearson
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Devon Ryan
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Kristin Henzel
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Astrid Markert
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Kristina Schaaf
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Xue Mi
- Department of Intensive Care Unit, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266000, Shandong, China; Institute of Brain Sciences and Related Disorders, Medical College of Qingdao University, Qingdao 266071, Shandong, China; Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, Shandong, China
| | - Xin Tian
- Department of Intensive Care Unit, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266000, Shandong, China; Institute of Brain Sciences and Related Disorders, Medical College of Qingdao University, Qingdao 266071, Shandong, China; Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, Shandong, China
| | - Jiajia Jia
- Department of Intensive Care Unit, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266000, Shandong, China; Institute of Brain Sciences and Related Disorders, Medical College of Qingdao University, Qingdao 266071, Shandong, China; Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, Shandong, China
| | - Meiqin Wang
- Department of Intensive Care Unit, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266000, Shandong, China; Institute of Brain Sciences and Related Disorders, Medical College of Qingdao University, Qingdao 266071, Shandong, China; Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, Shandong, China
| | - Stefan Bonn
- Institute of Medical Systems Biology, Hamburg Center for Biomedical AI (bAIome), Molecular Neurobiology Hamburg (ZMNH), and Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Manuel Schölling
- Image and Data Analysis Facility, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Christoph Möhl
- Image and Data Analysis Facility, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Yu Zhou
- Department of Intensive Care Unit, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266000, Shandong, China; Institute of Brain Sciences and Related Disorders, Medical College of Qingdao University, Qingdao 266071, Shandong, China; Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, Shandong, China.
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany.
| |
Collapse
|
8
|
Oudmaijer CAJ, Komninos DSJ, Ozinga RA, Smit K, Rozendaal NEM, Hoeijmakers JHJ, Vermeij WP, Aerts JGJV, IJzermans JNM, Willemsen M. Short-term fasting before living kidney donation has an immune-modulatory effect. Front Immunol 2025; 16:1488324. [PMID: 40051619 PMCID: PMC11882433 DOI: 10.3389/fimmu.2025.1488324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/13/2025] [Indexed: 03/09/2025] Open
Abstract
Background Short-Term Fasting (STF) is an intervention reducing the intake of calories, without causing undernutrition or micronutrient-related malnutrition. It aims to systemically improve resilience against acute stress. Several (pre-)clinical studies have suggested protective effects of STF, marking the systemic effects STF can induce in respect to surgery and ischemia-reperfusion injury. In addition, STF also affects the number of circulating immune cells. We aim to determine the effect of STF on the abundance and phenotype of different immune cell populations. Methods Thirty participants were randomly selected from the FAST clinical trial, including living kidney donors, randomized to an STF-diet or control arm. In an observational cohort sub-study we prospectively included 30 patients who donated blood samples repeatedly during study runtime. Using flow cytometry analyses, immune cell phenotyping was performed on peripheral blood mononuclear cells. Three panels were designed to investigate the presence and activation status of peripheral T cells, B cells, dendritic cells (DCs) and myeloid cells. Results Eight participants were excluded due to sample constraints. Baseline characteristics showed no significant differences, except for fasting duration. Weight changes were minimal and non-significant across different time intervals, with slight trends toward long-term weight loss pre-surgery. Glucose, insulin, and β-hydroxybutyrate levels differed significantly between groups, reflecting adherence to the fasting diet. Flow cytometry and RNA sequencing analysis revealed no baseline differences between groups, with high variability within each group. STF changes the levels and phenotype of immune cells, reducing the abundance and activation of T cells, including regulatory T cells, increased presence of (naïve) B cells, and elevation of type 1 conventional DCs (cDC1s). In addition, a decrease in central memory T cells was observed. Discussion In this study, we observed significant changes due to fasting in B cells, T cells, and DCs, specifically toward less specialized lymphocytes, suggesting an arrest in B and T cell development. Further research should focus on the clinical implications of changes in immune cells and significance of these observed immunological changes. Conclusion STF results in reduced numbers and activation status of T cells and Tregs, increased presence of (naïve) B cells, and elevation of cDC1s.
Collapse
Affiliation(s)
- Christiaan A. J. Oudmaijer
- Erasmus MC Transplant Institute, Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Daphne S. J. Komninos
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Rutger A. Ozinga
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Kimberly Smit
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Nina E. M. Rozendaal
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jan H. J. Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
- Erasmus MC Cancer Institute, Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Germany, and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Wilbert P. Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Joachim G. J. V. Aerts
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jan N. M. IJzermans
- Erasmus MC Transplant Institute, Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marcella Willemsen
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
9
|
Rius-Bonet J, Macip S, Closa D, Massip-Salcedo M. Intermittent fasting as a dietary intervention with potential sexually dimorphic health benefits. Nutr Rev 2025; 83:e635-e648. [PMID: 38812084 DOI: 10.1093/nutrit/nuae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Intermittent fasting (IF) has proven to be a feasible dietary intervention for the wider population. The recent increase in IF clinical trials highlights its potential effects on health, including changes in body composition, cardiometabolic status, and aging. Although IF may have clinical applications in different populations, studies suggest there may be sex-specific responses in parameters such as body composition or glucose and lipid metabolism. Here, the existing literature on IF clinical trials is summarized, the application of IF in both disease prevention and management is discussed, and potential disparities in response to this type of diet between men and women are assessed. Moreover, the potential mechanisms that may be contributing to the sexually dimorphic response, such as age, body composition, tissue distribution, or sex hormones are investigated. This review underscores the need to further study these sex-specific responses to IF to define the most effective time frames and length of fasting periods for men and women. Tailoring IF to specific populations with a personalized approach may help achieve its full potential as a lifestyle intervention with clinical benefits.
Collapse
Affiliation(s)
- Julia Rius-Bonet
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona 08018, Spain
- Mechanisms of Cancer and Aging Laboratory - South, Josep Carreras Leukaemia Research Institute, Badalona 08916, Barcelona, Spain
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| | - Salvador Macip
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona 08018, Spain
- Mechanisms of Cancer and Aging Laboratory - South, Josep Carreras Leukaemia Research Institute, Badalona 08916, Barcelona, Spain
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Daniel Closa
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| | - Marta Massip-Salcedo
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona 08018, Spain
- Mechanisms of Cancer and Aging Laboratory - South, Josep Carreras Leukaemia Research Institute, Badalona 08916, Barcelona, Spain
| |
Collapse
|
10
|
Ryan CP, Corcoran DL, Banskota N, Eckstein Indik C, Floratos A, Friedman R, Kobor MS, Kraus VB, Kraus WE, MacIsaac JL, Orenduff MC, Pieper CF, White JP, Ferrucci L, Horvath S, Huffman KM, Belsky DW. The CALERIE Genomic Data Resource. NATURE AGING 2025; 5:320-331. [PMID: 39672986 PMCID: PMC11956694 DOI: 10.1038/s43587-024-00775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/04/2024] [Indexed: 12/15/2024]
Abstract
Caloric restriction (CR) slows biological aging and prolongs healthy lifespan in model organisms. Findings from the CALERIE randomized, controlled trial of long-term CR in healthy, nonobese humans broadly supports a similar pattern of effects in humans. To expand our understanding of the molecular pathways and biological processes underpinning CR effects in humans, we generated a series of genomic datasets from stored biospecimens collected from n = 218 participants during the trial. These data constitute a genomic data resource for a randomized controlled trial of an intervention targeting the biology of aging. Datasets include whole-genome single-nucleotide polymorphism genotypes, and three-timepoint-longitudinal DNA methylation, mRNA and small RNA datasets generated from blood, skeletal muscle and adipose tissue samples (total sample n = 2,327). The CALERIE Genomic Data Resource described in this article is available from the Aging Research Biobank. This multi-tissue, multi-omics, longitudinal data resource has great potential to advance translational geroscience. ClinicalTrials.gov registration: NCT00427193 .
Collapse
Affiliation(s)
- C P Ryan
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - D L Corcoran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - N Banskota
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA
| | - C Eckstein Indik
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - A Floratos
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - R Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - M S Kobor
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Colombia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Colombia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Colombia, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- Edwin S. H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Colombia, Canada
| | - V B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - W E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - J L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Colombia, Canada
| | - M C Orenduff
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - C F Pieper
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - J P White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - L Ferrucci
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA
| | - S Horvath
- Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - K M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - D W Belsky
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
11
|
Traa A, Tamez González AA, Van Raamsdonk JM. Developmental disruption of the mitochondrial fission gene drp-1 extends the longevity of daf-2 insulin/IGF-1 receptor mutant. GeroScience 2025; 47:877-902. [PMID: 39028454 PMCID: PMC11872967 DOI: 10.1007/s11357-024-01276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
The dynamic nature of the mitochondrial network is regulated by mitochondrial fission and fusion, allowing for re-organization of mitochondria to adapt to the cell's ever-changing needs. As organisms age, mitochondrial fission and fusion become dysregulated and mitochondrial networks become increasingly fragmented. Modulation of mitochondrial dynamics has been shown to affect longevity in fungi, yeast, Drosophila and C. elegans. Disruption of the mitochondrial fission gene drp-1 drastically increases the already long lifespan of daf-2 insulin/IGF-1 signaling (IIS) mutants. In this work, we determined the conditions required for drp-1 disruption to extend daf-2 longevity and explored the molecular mechanisms involved. We found that knockdown of drp-1 during development is sufficient to extend daf-2 lifespan, while tissue-specific knockdown of drp-1 in neurons, intestine or muscle failed to increase daf-2 longevity. Disruption of other genes involved in mitochondrial fission also increased daf-2 lifespan as did treatment with RNA interference clones that decrease mitochondrial fragmentation. In exploring potential mechanisms involved, we found that deletion of drp-1 increases resistance to chronic stresses. In addition, we found that disruption of drp-1 increased mitochondrial and peroxisomal connectedness in daf-2 worms, increased oxidative phosphorylation and ATP levels, and increased mitophagy in daf-2 worms, but did not affect their ROS levels, food consumption or mitochondrial membrane potential. Disruption of mitophagy through RNA interference targeting pink-1 decreased the lifespan of daf-2;drp-1 worms suggesting that increased mitophagy contributes to their extended lifespan. Overall, this work defined the conditions under which drp-1 disruption increases daf-2 lifespan and has identified multiple changes in daf-2;drp-1 mutants that may contribute to their lifespan extension.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Aura A Tamez González
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Senior AM, Raubenheimer D, Couteur DGL, Simpson SJ. The Geometric Framework for Nutrition and Its Application to Rodent Models. Annu Rev Anim Biosci 2025; 13:389-410. [PMID: 39546416 DOI: 10.1146/annurev-animal-111523-102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Rodents have been the primary model for mammalian nutritional physiology for decades. Despite an extensive body of literature, controversies remain around the effects of specific nutrients and total energy intake on several aspects of nutritional biology, even in this well-studied model. One approach that is helping to bring clarity to the field is the geometric framework for nutrition (GFN). The GFN is a multidimensional paradigm that can be used to conceptualize nutrition and nutritional effects, design experiments, and interpret results. To date, more than 30 publications have applied the GFN to data from rodent models of nutrition. Here we review the major conclusions from these studies. We pay particular attention to the effects of macronutrients on satiety, glucose metabolism, lifespan and the biology of aging, reproductive function, immune function, and the microbiome. We finish by highlighting several knowledge gaps that became evident upon reviewing this literature.
Collapse
Affiliation(s)
- Alistair M Senior
- Sydney Precision Data Science Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - David Raubenheimer
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - David G Le Couteur
- ANZAC Research Institute, The Concord Hospital, Concord, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - Stephen J Simpson
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| |
Collapse
|
13
|
Lopes Cantuária V, Rodrigues CM, Dias IR, Ottone VDO, Costa BO, Godinho LF, Silva G, Schetino MAA, Rocha-Vieira E, Dias-Peixoto MF, Honorato-Sampaio K. Intense Caloric Restriction from Birth Protects the Heart Against Ischemia/Reperfusion Injury and Reduces Reactive Oxygen Species in Ovariectomized Rats. Antioxidants (Basel) 2025; 14:169. [PMID: 40002357 PMCID: PMC11851507 DOI: 10.3390/antiox14020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigates the cardioprotective effects of intense caloric restriction (ICR) from birth in ovariectomized rats, a model of estrogen deficiency mimicking menopause. Our findings demonstrate that ICR significantly improved both basal and post-ischemic cardiac function, even in the absence of estrogens. The restricted animals exhibited enhanced cardiac contractility and relaxation, particularly after ischemia/reperfusion (I/R) injury, with superior functional recovery compared to control groups. Notably, ICR reduced key cardiometabolic risk factors, including blood pressure, heart rate, and adiposity, while improving glucose tolerance and insulin sensitivity. Additionally, while mitochondrial biogenesis remained unaffected, ICR preserved mitochondrial integrity by reducing the number of damaged mitochondria. This was linked to a reduction in oxidative stress, as evidenced by lower reactive oxygen species (ROS) production in the hearts of restricted animals. These results suggest that ICR offers a protective effect against cardiovascular dysfunction induced by estrogen depletion, potentially through enhanced antioxidant defenses and mitochondrial protection.
Collapse
Affiliation(s)
- Vinícius Lopes Cantuária
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (V.L.C.); (V.d.O.O.); (M.A.A.S.); (E.R.-V.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (B.O.C.); (L.F.G.); (G.S.); (M.F.D.-P.)
| | - Cíntia Maria Rodrigues
- Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (C.M.R.); (I.R.D.)
| | - Isabella Rocha Dias
- Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (C.M.R.); (I.R.D.)
| | - Vinícius de Oliveira Ottone
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (V.L.C.); (V.d.O.O.); (M.A.A.S.); (E.R.-V.)
| | - Bruna Oliveira Costa
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (B.O.C.); (L.F.G.); (G.S.); (M.F.D.-P.)
| | - Lourdes Fernanda Godinho
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (B.O.C.); (L.F.G.); (G.S.); (M.F.D.-P.)
| | - Gabriela Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (B.O.C.); (L.F.G.); (G.S.); (M.F.D.-P.)
| | - Marco Antônio Alves Schetino
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (V.L.C.); (V.d.O.O.); (M.A.A.S.); (E.R.-V.)
| | - Etel Rocha-Vieira
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (V.L.C.); (V.d.O.O.); (M.A.A.S.); (E.R.-V.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (B.O.C.); (L.F.G.); (G.S.); (M.F.D.-P.)
| | - Marco Fabrício Dias-Peixoto
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (B.O.C.); (L.F.G.); (G.S.); (M.F.D.-P.)
- Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (C.M.R.); (I.R.D.)
| | - Kinulpe Honorato-Sampaio
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (V.L.C.); (V.d.O.O.); (M.A.A.S.); (E.R.-V.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (B.O.C.); (L.F.G.); (G.S.); (M.F.D.-P.)
| |
Collapse
|
14
|
Chmielewski PP, Strzelec B, Data K, Chmielowiec K, Mozdziak P, Kempisty B. Resting Body Temperature and Long-Term Survival in Older Adults at a Mental Health Center: Cross-Sectional and Longitudinal Data. J Clin Med 2025; 14:713. [PMID: 39941385 PMCID: PMC11818676 DOI: 10.3390/jcm14030713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/04/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Elevated body temperature is a well-established biomarker of infection, increased disease risk, and adverse health outcomes. However, the relationship between resting body temperature and long-term survival in older individuals is complex. Emerging evidence suggests that higher basal body temperature is associated with reduced survival and accelerated aging in non-obese older adults. This study aimed to compare body temperatures across different age groups in hospitalized older adults. Methods: Data were retrospectively collected from 367 physically healthy residents of a mental health center. Longitudinal data from 142 individuals (68 men and 74 women), aged 45 to 70 years and monitored continuously over 25 years, were compared with cross-sectional data from 225 individuals (113 men and 112 women) who underwent periodic clinical examinations with temperature measurements. The cross-sectional sample was stratified into four survival categories. Resting oral temperatures were measured under clinical conditions to ensure protocol consistency. Age-related changes in both sexes were evaluated using standard regression analysis, Student's t-tests, ANOVA, and Generalized Linear Models. Results: Longitudinal analysis revealed an increase in body temperature with age among women, while cross-sectional analysis showed that long-lived residents generally had lower body temperatures compared to their shorter-lived counterparts. Conclusions: These findings support the hypothesis that lower lifetime steady-state body temperature is associated with greater longevity in physically healthy older adults. However, further research is needed to determine whether the lower body temperature observed in long-lived individuals is linked to specific health advantages, such as enhanced immune function, absence of detrimental factors or diseases, or a reduced metabolic rate potentially influenced by caloric restriction.
Collapse
Affiliation(s)
- Piotr Paweł Chmielewski
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 6a Chalubinskiego Street, 50-368 Wrocław, Poland
| | - Bartłomiej Strzelec
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, 50-556 Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 6a Chalubinskiego Street, 50-368 Wrocław, Poland
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Paul Mozdziak
- Prestige Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7608, USA
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 6a Chalubinskiego Street, 50-368 Wrocław, Poland
- Prestige Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7608, USA
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
15
|
Iskandar M, Xiao Barbero M, Jaber M, Chen R, Gomez-Guevara R, Cruz E, Westerheide S. A Review of Telomere Attrition in Cancer and Aging: Current Molecular Insights and Future Therapeutic Approaches. Cancers (Basel) 2025; 17:257. [PMID: 39858038 PMCID: PMC11764024 DOI: 10.3390/cancers17020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer. The purpose of this review is to provide an updated overview of telomere biology and therapeutic tactics to address aging and cancer. METHODS We used the Rayyan platform to review the PubMed database and examined the ClinicalTrial.gov registry to gain insight into clinical trials and their results. RESULTS Cancer cells activate telomerase or utilize alternative lengthening of telomeres to escape telomere shortening, leading to near immortality. Contrarily, normal cells experience telomeric erosion, contributing to premature aging disorders, such as Werner syndrome and Hutchinson-Gilford Progeria, and (2) aging-related diseases, such as neurodegenerative and cardiovascular diseases. CONCLUSIONS The literature presents several promising therapeutic approaches to potentially balance telomere maintenance in aging and shortening in cancer. This review highlights gaps in knowledge and points to the potential of these optimal interventions in preclinical and clinical studies to inform future research in cancer and aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandy Westerheide
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (M.X.B.); (M.J.); (R.C.); (R.G.-G.); (E.C.)
| |
Collapse
|
16
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
17
|
Qu Q, Chen Y, Wang Y, Wang W, Long S, Yang HY, Wu J, Li M, Tian X, Wei X, Liu YH, Xu S, Xiong J, Yang C, Wu Z, Huang X, Xie C, Wu Y, Xu Z, Zhang C, Zhang B, Feng JW, Chen J, Feng Y, Fang H, Lin L, Xie ZK, Sun B, Tian H, Yu Y, Piao HL, Xie XS, Deng X, Zhang CS, Lin SC. Lithocholic acid binds TULP3 to activate sirtuins and AMPK to slow down ageing. Nature 2024:10.1038/s41586-024-08348-2. [PMID: 39695235 DOI: 10.1038/s41586-024-08348-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Lithocholic acid (LCA) is accumulated in mammals during calorie restriction and it can activate AMP-activated protein kinase (AMPK) to slow down ageing1. However, the molecular details of how LCA activates AMPK and induces these biological effects are unclear. Here we show that LCA enhances the activity of sirtuins to deacetylate and subsequently inhibit vacuolar H+-ATPase (v-ATPase), which leads to AMPK activation through the lysosomal glucose-sensing pathway. Proteomics analyses of proteins that co-immunoprecipitated with sirtuin 1 (SIRT1) identified TUB-like protein 3 (TULP3), a sirtuin-interacting protein2, as a LCA receptor. In detail, LCA-bound TULP3 allosterically activates sirtuins, which then deacetylate the V1E1 subunit of v-ATPase on residues K52, K99 and K191. Muscle-specific expression of a V1E1 mutant (3KR), which mimics the deacetylated state, strongly activates AMPK and rejuvenates muscles in aged mice. In nematodes and flies, LCA depends on the TULP3 homologues tub-1 and ktub, respectively, to activate AMPK and extend lifespan and healthspan. Our study demonstrates that activation of the TULP3-sirtuin-v-ATPase-AMPK pathway by LCA reproduces the benefits of calorie restriction.
Collapse
Affiliation(s)
- Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Weiche Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shating Long
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Heng-Ye Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shengrong Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chunyan Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhenhua Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xi Huang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zheni Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jin-Wei Feng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yuanji Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Liyun Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Z K Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Beibei Sun
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yong Yu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiao-Song Xie
- McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
18
|
Qu Q, Chen Y, Wang Y, Long S, Wang W, Yang HY, Li M, Tian X, Wei X, Liu YH, Xu S, Zhang C, Zhu M, Lam SM, Wu J, Yun C, Chen J, Xue S, Zhang B, Zheng ZZ, Piao HL, Jiang C, Guo H, Shui G, Deng X, Zhang CS, Lin SC. Lithocholic acid phenocopies anti-ageing effects of calorie restriction. Nature 2024:10.1038/s41586-024-08329-5. [PMID: 39695227 DOI: 10.1038/s41586-024-08329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
Calorie restriction (CR) is a dietary intervention used to promote health and longevity1,2. CR causes various metabolic changes in both the production and the circulation of metabolites1; however, it remains unclear which altered metabolites account for the physiological benefits of CR. Here we use metabolomics to analyse metabolites that exhibit changes in abundance during CR and perform subsequent functional validation. We show that lithocholic acid (LCA) is one of the metabolites that alone can recapitulate the effects of CR in mice. These effects include activation of AMP-activated protein kinase (AMPK), enhancement of muscle regeneration and rejuvenation of grip strength and running capacity. LCA also activates AMPK and induces life-extending and health-extending effects in Caenorhabditis elegans and Drosophila melanogaster. As C. elegans and D. melanogaster are not able to synthesize LCA, these results indicate that these animals are able to transmit the signalling effects of LCA once administered. Knockout of AMPK abrogates LCA-induced phenotypes in all the three animal models. Together, we identify that administration of the CR-mediated upregulated metabolite LCA alone can confer anti-ageing benefits to metazoans in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shating Long
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Weiche Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Heng-Ye Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shengrong Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | | | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Fujian, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Fujian, China
| | - Shengye Xue
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhong-Zheng Zheng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, Department of Immunology, School of Basic Medical Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodelling, Peking University, Beijing, China
| | - Hao Guo
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
- Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Guanghou Shui
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
19
|
Song M, Zeng F, Huang L, Xiao H, Yi F, Sun X, Zheng L, Du H, Gu W. Energy restriction inhibits β-catenin ubiquitination to improve ischemic stroke injury via USP18/SKP2 axis. Metab Brain Dis 2024; 40:68. [PMID: 39692824 DOI: 10.1007/s11011-024-01494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Ischemic stroke (IS) remains a global health issue because of its great disability and mortality. Energy restriction (ER) has been justified to perform an inhibitory role in cerebral injury caused by IS. This research was purposed to inquire the potential molecular mechanism of ER in IS. To verify the function of ER in the animal and cell models of IS, rats were subjected to intermittent fasting (IF) and middle cerebral artery occlusion/reperfusion (MCAO/R) surgery and HAPI cells were treated with oxygen-glucose deprivation and reoxygenation (OGD/R) and 2-deoxyglucose (2-DG). It was disclosed that IF mitigated brain damage and inflammation in MCAO/R rats. Likewise, ER inhibited OGD/R-evoked microglial activation and inflammatory response. Of note, ubiquitin specific protease 18 (USP18) was uncovered to be the most significantly upregulated in MCAO/R rats receiving IF compared to free-feeding MCAO/R rats. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blot verified that ER led to the promotion of USP18 expression. Moreover, downregulation of USP18 neutralized the meliorative effects of ER on OGD/R-treated HAPI cells. Functionally, USP18 restrained β-catenin ubiquitination to enhance its expression. In addition, our results manifested that S-phase kinase associated protein 2 (SKP2) contributed to degradation of β-catenin and USP18 abolished the role of SKP2 in β-catenin ubiquitination. Knockout of USP18 eliminated the protective effects of IF on MCAO/R rats, while SKP2 exacerbated brain damage and inflammation by decreasing β-catenin expression after IF. In summary, we validated that ER-induced USP18 exerts a suppressive function in IS damage through SKP2-mediated β-catenin ubiquitination.
Collapse
Affiliation(s)
- Mingyu Song
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China
| | - Feiyue Zeng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Huang
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Hui Xiao
- Department of Neurology, Changsha Central Hospital, Changsha, Hunan, China
| | - Fang Yi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatric neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyu Sun
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Lan Zheng
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Hao Du
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Wenping Gu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
Nakajima S. Running-based food aversion learning in freely-fed and hydrated rats: Daily monitoring of running-induced nausea by measuring kaolin clay ingestion. Physiol Behav 2024; 287:114715. [PMID: 39396668 DOI: 10.1016/j.physbeh.2024.114715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/22/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The main objective of this research was to demonstrate food aversion learning in rats with unrestricted access to food and water, using wheel running as the unconditioned stimulus. Experiment 1 showed that the target-running paired training group consumed a statistically smaller amount of the target food (tteok rice cakes) compared to the target/running unpaired control group, but the decrease in consumption over days in the paired group was not fully supported by a statistical test. Experiment 2a improved the methodology by familiarizing rats with tteok before training, which resulted in both a statistically significant group effect and a statistically significant daily decrease in tteok consumption. Experiment 2b demonstrated that tteok aversion could be reacquired after an extinction phase. These experiments indicate that running-based tteok aversion in non-deprived rats is a valid example of Pavlovian conditioning and suggest that wheel running can cause similar effects in unrestricted rats as observed in food- or water-restricted rats. Additionally, daily measurements of kaolin clay ingestion suggested that wheel running induced nausea in the rats of these experiments.
Collapse
Affiliation(s)
- Sadahiko Nakajima
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan.
| |
Collapse
|
21
|
Mishra A, Sobha D, Patel D, Suresh PS. Intermittent fasting in health and disease. Arch Physiol Biochem 2024; 130:755-767. [PMID: 37828854 DOI: 10.1080/13813455.2023.2268301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
CONTEXT Intermittent fasting, a new-age dietary concept derived from an age-old tradition, involves repetitive cycles of fasting/calorie restriction and eating. OBJECTIVE We aim to take a deep dive into the biological responses to intermittent fasting, delineate the disease-modifying and cognitive effects of intermittent fasting, and also shed light on the possible side effects. METHODS Numerous in vitro and in vivo studies were reviewed, followed by an in-depth analysis, and compilation of their implications in health and disease. RESULTS Intermittent fasting improves the body's stress tolerance, which is further amplified with exercise. It impacts various pathological conditions like cancer, obesity, diabetes, cardiovascular disease, and neurodegenerative diseases. CONCLUSION During dietary restriction, the human body experiences a metabolic switch due to the depletion of liver glycogen, which promotes a shift towards utilising fatty acids and ketones in the system, thereby significantly impacting adiposity, ageing and the immune response to various diseases.
Collapse
Affiliation(s)
- Anubhav Mishra
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| | - Devika Sobha
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| | - Dimple Patel
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| |
Collapse
|
22
|
Vermeij WP, Alyodawi K, van Galen I, von der Heide JL, Birkisdóttir MB, van't Sant LJ, Ozinga RA, Komninos DS, Smit K, Rijksen YM, Brandt RM, Barnhoorn S, Jaarsma D, Vaiyapuri S, Ritvos O, Huber TB, Kretz O, Patel K. Improved health by combining dietary restriction and promoting muscle growth in DNA repair-deficient progeroid mice. J Cachexia Sarcopenia Muscle 2024; 15:2361-2374. [PMID: 39245994 PMCID: PMC11634475 DOI: 10.1002/jcsm.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/19/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Ageing is a complex multifactorial process, impacting all organs and tissues, with DNA damage accumulation serving as a common underlying cause. To decelerate ageing, various strategies have been applied to model organisms and evaluated for health and lifespan benefits. Dietary restriction (DR, also known as caloric restriction) is a well-established long-term intervention recognized for its universal anti-ageing effects. DR temporarily suppresses growth, and when applied to progeroid DNA repair-deficient mice doubles lifespan with systemic health benefits. Counterintuitively, attenuation of myostatin/activin signalling by soluble activin receptor (sActRIIB), boosts the growth of muscle and, in these animals, prevents muscle wasting, improves kidney functioning, and compresses morbidity. METHODS Here, we investigated a combined approach, applying an anabolic regime (sActRIIB) at the same time as DR to Ercc1Δ/- progeroid mice. Following both single treatments and combined, we monitored global effects on body weight, lifespan and behaviour, and local effects on muscle and tissue weight, muscle morphology and function, and ultrastructural and transcriptomic changes in muscle and kidney. RESULTS Lifespan was mostly influenced by DR (extended from approximately 20 to 40 weeks; P < 0.001), with sActRIIB clearly increasing muscle mass (35-65%) and tetanic force (P < 0.001). The combined regime yielded a stable uniform body weight, but increased compared with DR alone, synergistically improved motor coordination and further delayed the onset and development of balance problems. sActRIIB significantly increased muscle fibre size (P < 0.05) in mice subjected to DR and lowered all signs of muscle damage. Ercc1Δ/- mice showed abnormal neuromuscular junctions. Single interventions by sActRIIB treatment or DR only partially rescued this phenotype, while in the double intervention group, the regularly shaped junctional foldings were maintained. In kidney of Ercc1Δ/- mice, we observed a mild but significant foot process effacement, which was restored by either intervention. Transcriptome analysis also pointed towards reduced levels of DNA damage in muscle and kidney by DR, but not sActRIIB, while these levels retained lower in the double intervention. CONCLUSIONS In muscle, we found synergistic effects of combining sActRIIB with DR, but not in kidney, with an overall better health in the double intervention group. Crucially, the benefits of each single intervention are not lost when administered in combination, but rather strengthened, even when sActRIIB was applied late in life, opening opportunities for translation to human.
Collapse
Affiliation(s)
- Wilbert P. Vermeij
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Khalid Alyodawi
- School of Biological SciencesUniversity of ReadingReadingUK
- College of MedicineWasit UniversityKutIraq
| | - Ivar van Galen
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Jennie L. von der Heide
- III. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Hamburg Center for Kidney Health (HCKH)HamburgGermany
| | - María B. Birkisdóttir
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Lisanne J. van't Sant
- Department of NeuroscienceErasmus University Medical Center RotterdamRotterdamNetherlands
| | - Rutger A. Ozinga
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Daphne S.J. Komninos
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Kimberly Smit
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Yvonne M.A. Rijksen
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Renata M.C. Brandt
- Department of Molecular Genetics, Erasmus MC Cancer InstituteErasmus University Medical Center RotterdamRotterdamNetherlands
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus MC Cancer InstituteErasmus University Medical Center RotterdamRotterdamNetherlands
| | - Dick Jaarsma
- Department of NeuroscienceErasmus University Medical Center RotterdamRotterdamNetherlands
| | | | - Olli Ritvos
- Department of PhysiologyUniversity of HelsinkiHelsinkiFinland
| | - Tobias B. Huber
- III. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Hamburg Center for Kidney Health (HCKH)HamburgGermany
| | - Oliver Kretz
- III. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Hamburg Center for Kidney Health (HCKH)HamburgGermany
| | - Ketan Patel
- School of Biological SciencesUniversity of ReadingReadingUK
| |
Collapse
|
23
|
Selman C. The dietary exposome: a brief history of diet, longevity, and age-related health in rodents. Clin Sci (Lond) 2024; 138:1343-1356. [PMID: 39444221 DOI: 10.1042/cs20241248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
It has been recognized for over a century that feeding animals less food than they would normally eat increases lifespan and leads to broad-spectrum improvements in age-related health. A significant number of studies have subsequently shown that restricting total protein, branched chain amino acids or individual amino acids in the diet, as well as ketogenic diets, can elicit similar effects. In addition, it is becoming clear that fasting protocols, such as time-restricted-feeding or every-other-day feeding, without changes in overall energy intake can also profoundly affect rodent longevity and late-life health. In this review, I will provide a historical perspective on various dietary interventions that modulate ageing in rodents and discuss how this understanding of the dietary exposome may help identify future strategies to maintain late-life health and wellbeing in humans.
Collapse
Affiliation(s)
- Colin Selman
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom, G12 8QQ
| |
Collapse
|
24
|
Li M, Wang Y, Wei X, Cai WF, Liu YH, Wu J, Chen Y, Xiong J, Cui LF, Zhu M, Zhang C, Lin L, Yu Y, Piao HL, Lin SC, Zhang CS. AMPK-PDZD8-GLS1 axis mediates calorie restriction-induced lifespan extension. Cell Res 2024; 34:806-809. [PMID: 39300254 PMCID: PMC11528062 DOI: 10.1038/s41422-024-01021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei-Feng Cai
- Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li-Feng Cui
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Liyun Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yong Yu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
- The Zhongzhou Laboratory for Integrative Biology, Henan University, Zhengzhou, Henan, China.
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
25
|
Gustafsson T, Ulfhake B. Aging Skeletal Muscles: What Are the Mechanisms of Age-Related Loss of Strength and Muscle Mass, and Can We Impede Its Development and Progression? Int J Mol Sci 2024; 25:10932. [PMID: 39456714 PMCID: PMC11507513 DOI: 10.3390/ijms252010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
As we age, we lose muscle strength and power, a condition commonly referred to as sarcopenia (ICD-10-CM code (M62.84)). The prevalence of sarcopenia is about 5-10% of the elderly population, resulting in varying degrees of disability. In this review we emphasise that sarcopenia does not occur suddenly. It is an aging-induced deterioration that occurs over time and is only recognised as a disease when it manifests clinically in the 6th-7th decade of life. Evidence from animal studies, elite athletes and longitudinal population studies all confirms that the underlying process has been ongoing for decades once sarcopenia has manifested. We present hypotheses about the mechanism(s) underlying this process and their supporting evidence. We briefly review various proposals to impede sarcopenia, including cell therapy, reducing senescent cells and their secretome, utilising targets revealed by the skeletal muscle secretome, and muscle innervation. We conclude that although there are potential candidates and ongoing preclinical and clinical trials with drug treatments, the only evidence-based intervention today for humans is exercise. We present different exercise programmes and discuss to what extent the interindividual susceptibility to developing sarcopenia is due to our genetic predisposition or lifestyle factors.
Collapse
Affiliation(s)
| | - Brun Ulfhake
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| |
Collapse
|
26
|
Long J, Ren Z, Duan Y, Tao W, Li X, Li S, Li K, Huang Q, Chen J, Yang M, Li Y, Luo X, Liu D. Empagliflozin rescues lifespan and liver senescence in naturally aged mice. GeroScience 2024; 46:4969-4986. [PMID: 38922380 PMCID: PMC11336130 DOI: 10.1007/s11357-024-01250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Empagliflozin is currently known to decrease blood glucose levels, delay renal failure, and reduce the risk of cardiovascular death and all-cause mortality in patients with type 2 diabetes with cardiovascular disease. However, the effects of empagliflozin on the lifespan and health of naturally aged organisms are unclear. This study was designed to investigate the impacts and potential mechanisms of empagliflozin on lifespan and liver senescence in naturally aged mice. Our study revealed that empagliflozin improved survival and health in naturally aged mice. Empagliflozin extended the median survival of male mice by 5.9%. Meanwhile, empagliflozin improved learning memory and motor balance, decreased body weight, and downregulated the hepatic protein expression of P21, P16, α-SMA, and COL1A1. Empagliflozin modulates the structure of the intestinal flora, increasing the relative abundance of Lachnospiraceae, Ruminococcaceae, Lactobacillus, Blautia, and Muribaculaceae and decreasing the relative abundance of Erysipelotrichaceae, Turicibacter, and Dubosiella in naturally aged mice. Further exploration discovered that empagliflozin increased the concentration of SCFAs, decreased the levels of the inflammatory factors TNF-α, IL-6, and CXCL9, and regulated the PI3K/AKT/P21 and AMPK/SIRT1/NF-κB pathways, which may represent the underlying mechanisms involved in these beneficial hepatic effects. Taken together, the above results indicated that empagliflozin intervention could be considered a potential strategy for extending lifespan and slowing liver senescence in naturally aged mice.
Collapse
Affiliation(s)
- Jiangchuan Long
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ziyu Ren
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yaqian Duan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Wei Tao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Shengbing Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ke Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Qixuan Huang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Jie Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Mengliu Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yang Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xie Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Dongfang Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Geriatrics and Gerontology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
27
|
Oudmaijer CAJ, Komninos DSJ, Hoeijmakers JHJ, IJzermans JNM, Vermeij WP. Clinical implications of nutritional interventions reducing calories, a systematic scoping review. Clin Nutr ESPEN 2024; 63:427-439. [PMID: 38986906 DOI: 10.1016/j.clnesp.2024.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND & AIMS Caloric restriction (CR) constitutes a dietary approach of (temporarily) reducing calorie intake thereby inducing resilience and resistance mechanisms and promoting health. While CR's feasibility and safety have been proven in human trials, its full benefits and translation to different study populations warrants further exploration. METHODS We here conducted a systematic scoping review adhering to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Our search resulted in 3745 individual records, of which 40 were included. We showed that all studies consistently demonstrated the feasibility and safety of CR-like interventions. The specific effects of nutritional preconditioning vary, further underscoring the need for carefully crafted strategies, according to the intended effect, patient population, and logistical limitations. CONCLUSIONS CR-like interventions (long-term CR or short-term fasting) are feasible in a broad range of patient populations. Whether it has clinical benefit, f.i. reducing treatment-induced side effects and enhancing therapy efficacy, has to be investigated further.
Collapse
Affiliation(s)
- C A J Oudmaijer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Erasmus MC Transplant Institute, Division of Hepatobiliary and Transplantation Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| | - D S J Komninos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| | - J H J Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands; Erasmus MC Cancer Institute, Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, The Netherlands; Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - J N M IJzermans
- Erasmus MC Transplant Institute, Division of Hepatobiliary and Transplantation Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - W P Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Di Francesco A, Deighan AG, Litichevskiy L, Chen Z, Luciano A, Robinson L, Garland G, Donato H, Vincent M, Schott W, Wright KM, Raj A, Prateek GV, Mullis M, Hill WG, Zeidel ML, Peters LL, Harding F, Botstein D, Korstanje R, Thaiss CA, Freund A, Churchill GA. Dietary restriction impacts health and lifespan of genetically diverse mice. Nature 2024; 634:684-692. [PMID: 39385029 PMCID: PMC11485257 DOI: 10.1038/s41586-024-08026-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Caloric restriction extends healthy lifespan in multiple species1. Intermittent fasting, an alternative form of dietary restriction, is potentially more sustainable in humans, but its effectiveness remains largely unexplored2-8. Identifying the most efficacious forms of dietary restriction is key for developing interventions to improve human health and longevity9. Here we performed an extensive assessment of graded levels of caloric restriction (20% and 40%) and intermittent fasting (1 and 2 days fasting per week) on the health and survival of 960 genetically diverse female mice. We show that caloric restriction and intermittent fasting both resulted in lifespan extension in proportion to the degree of restriction. Lifespan was heritable and genetics had a larger influence on lifespan than dietary restriction. The strongest trait associations with lifespan included retention of body weight through periods of handling-an indicator of stress resilience, high lymphocyte proportion, low red blood cell distribution width and high adiposity in late life. Health effects differed between interventions and exhibited inconsistent relationships with lifespan extension. 40% caloric restriction had the strongest lifespan extension effect but led to a loss of lean mass and changes in the immune repertoire that could confer susceptibility to infections. Intermittent fasting did not extend the lifespan of mice with high pre-intervention body weight, and two-day intermittent fasting was associated with disruption of erythroid cell populations. Metabolic responses to dietary restriction, including reduced adiposity and lower fasting glucose, were not associated with increased lifespan, suggesting that dietary restriction does more than just counteract the negative effects of obesity. Our findings indicate that improving health and extending lifespan are not synonymous and raise questions about which end points are the most relevant for evaluating aging interventions in preclinical models and clinical trials.
Collapse
Affiliation(s)
| | | | - Lev Litichevskiy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenghao Chen
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | | | | | | | - Kevin M Wright
- Calico Life Sciences LLC, South San Francisco, CA, USA
- Actio Biosciences, San Diego, CA, USA
| | - Anil Raj
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - G V Prateek
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Martin Mullis
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Warren G Hill
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark L Zeidel
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Fiona Harding
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Freund
- Calico Life Sciences LLC, South San Francisco, CA, USA
- Arda Therapeutics, San Carlos, CA, USA
| | | |
Collapse
|
29
|
Smith DL, Mitchell SE, Johnson MS, Gibbs VK, Dickinson S, Henschel B, Li R, Kaiser KA, Chusyd DE, Brown AW, Allison DB, Speakman JR, Nagy TR. Benefits of calorie restriction in mice are mediated via energy imbalance, not absolute energy or protein intake. GeroScience 2024; 46:4809-4826. [PMID: 38850387 PMCID: PMC11336014 DOI: 10.1007/s11357-024-01166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/10/2024] [Indexed: 06/10/2024] Open
Abstract
Caloric restriction (CR) results in reduced energy and protein intake, raising questions about protein restriction's contribution to CR longevity benefits. We kept ad libitum (AL)-fed male C57BL/6J mice at 27°C (AL27) and pair-fed (PF) mice at 22°C (22(PF27)). The 22(PF27) group was fed to match AL27 while restricted for calories due to cold-induced metabolism. The 22(PF27) mice had significantly lower body weight, lean mass, fat mass, leptin, IGF-1, and TNF-α levels than AL27 mice (p<0.001 for all). Manipulations over ~11 weeks resulted in significant differences in body temperature, physical activity, and expression of key genes linked to hunger in the hypothalamus. Survival was significantly greater in 22(PF27) compared to AL27 overall (p<0.001). CR in the context of equivalent energy and protein intake resulted in hormonal, metabolic, and physiological benefits and extended longevity. Hence, energy imbalance, rather than low energy or protein intake per se, mediates the benefits of CR.
Collapse
Affiliation(s)
- Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, USA
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL, USA
- Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sharon E Mitchell
- School of Biological Sciences, University of Aberdeen, Aberdeen Scotland, Scotland, UK
| | - Maria S Johnson
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL, USA
- Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victoria K Gibbs
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephanie Dickinson
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
| | - Beate Henschel
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
| | - Rui Li
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
| | - Kathryn A Kaiser
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniella E Chusyd
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Environmental and Occupational Health, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
| | - Andrew W Brown
- Department of Applied Health Science, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Arkansas Children's Research Institute, Little Rock, AR, USA
| | - David B Allison
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA.
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen Scotland, Scotland, UK.
- Shenzhen Key Laboratory for Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Tim R Nagy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
30
|
Keles NA, Dogan S, Dogan A, Sudagidan M, Balci TN, Cetiner O, Kavruk M, Ozalp VC, Tuna BG. Long-term intermittent caloric restriction remodels the gut microbiota in mice genetically prone to breast cancer. Nutrition 2024; 126:112525. [PMID: 39168040 DOI: 10.1016/j.nut.2024.112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVES Gut microbiota dysbiosis is among the risk factors for breast cancer development, together with genetic background and dietary habits. However, caloric restriction has been shown to remodel the gut microbiota and slow tumor growth. Here, we investigated whether the gut microbiota mediates the preventive effects of long-term chronic or intermittent caloric restriction on breast cancer predisposition. METHODS 10-week-old transgenic breast cancer-prone mice were randomly assigned to dietary groups (ad libitum, chronic caloric restriction, and intermittent caloric restriction groups) and fed up to week 81. Stool samples were collected at weeks 10 (baseline), 17 (young), 49 (adult), and 81 (old). 16S rRNA gene sequencing was performed to identify the gut microbiota profile of the different groups. In order to investigate the breast cancer gut microbiota profile within genetically predisposed individuals regardless of diet, mammary tumor-bearing mice and mammary tumor-free but genetically prone mice were selected from the ad libitum group (n = 6). RESULTS Intermittent caloric restriction increased the microbial diversity of adult mice and modified age-related compositional changes. A total of 13 genera were differentially abundant over time. Pathogenic Mycoplasma was enriched in the re-feeding period of the old intermittent caloric restriction group compared with baseline. Furthermore, mammary tumor-free mice showed shared gut microbiota characteristics with mammary tumor-bearing mice, suggesting an early link between genetic predisposition, gut microbiota, and breast cancer development. CONCLUSIONS Our study revealed the role of gut microbes in the preventive effects of caloric restriction against breast cancer development, implying the significance of diet and microbiome interplay.
Collapse
Affiliation(s)
- Nazim Arda Keles
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Aysenur Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Mert Sudagidan
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, Turkey
| | - Tugce Nur Balci
- Department of Nutrition and Dietetics, School of Health Sciences, Atilim University, Ankara, Turkey
| | - Ozlem Cetiner
- Department of Nutrition and Dietetics, School of Health Sciences, Atilim University, Ankara, Turkey
| | - Murat Kavruk
- Department of Medical Biology, School of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Veli Cengiz Ozalp
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, Turkey
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
31
|
Mesri Alamdari N, Irandoost P, Roshanravan N, Najafipour F, Vafa M, Farsi F, Mobasseri M, Mir Mazhari AA, AmirAzad H, Shidfar F. Assessment of the anti-inflammatory and anti-glycemic properties of Royal Jelly and Tocotrienol-rich fraction in an experimental study: Does irisin mediate these effects? Food Sci Nutr 2024; 12:7533-7543. [PMID: 39479712 PMCID: PMC11521737 DOI: 10.1002/fsn3.4321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 11/02/2024] Open
Abstract
Irisin, a novel adipomyokine, has been proposed to be a therapeutic agent against obesity-related metabolic disease. Royal Jelly (RJ) and tocotrienol-rich fraction (TRF) are suggested to promote obesity and its related problems through potential mutual mechanistic pathways. This investigation intended to evaluate the glycemic and inflammation-promoting effects of RJ, TRF, and their combinations to evaluate their synergic effects through irisin action in obese rats induced by a high-fat diet (HFD) that underwent a calorie restriction diet (CRD). Fifty HFD-fed obese rats received the following interventions: RJ, TRF, or RJ + TRF in combination with a CRD for eight consecutive weeks. After the investigation, body weight, fasting blood sugar (FBS), irisin, insulin, C-reactive protein (CRP), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), leptin, adiponectin, and insulin resistance (IR) were assessed. After 8 weeks of treatment, significant weight reduction was noticed in rats that received RJ and RJ + TRF related to the CRD rats (p < .001), although this reduction was not considerable in TRF-treated rats. RJ and RJ + TRF supplementation markedly elevated irisin concentrations in CRD rats (p < .05), but TRF did not. Glycemic indices, inflammatory indices including IL-1β and CRP levels, and leptin concentrations were significantly decreased after RJ, TRF, and their combinations were added to CRD (p < .05). According to the mediational analysis results, irisin mediated the promoting effects of RJ on glycemic hemostasis. Based on the results of this investigation, RJ and TRF are novel nutrients that have the potential to improve obesity-related disorders. This research suggests that RJ exerts its beneficial glycemic regulatory effects through irisin.
Collapse
Affiliation(s)
| | - Pardis Irandoost
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Neda Roshanravan
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| | - Farzad Najafipour
- Endocrine Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Farnaz Farsi
- Minimally Invasive Surgery Research CenterIran University of Medical SciencesTehranIran
| | - Majid Mobasseri
- Endocrine Research CenterTabriz University of Medical SciencesTabrizIran
| | - Amir Ali Mir Mazhari
- Department of Laboratory Sciences, Faculty of Para MedicineTabriz University of Medical SciencesTabrizIran
| | - Halimeh AmirAzad
- Endocrine Research CenterTabriz University of Medical SciencesTabrizIran
| | - Farzad Shidfar
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| |
Collapse
|
32
|
Zhao Y, Yuan K, Ning J, Liu G, Xu X, Wang C, Lu X. Potential roles of lipases and antioxidases on longevity under nutrient restriction in two Argopecten scallops with distinct lifespans. Int J Biol Macromol 2024; 280:136045. [PMID: 39332575 DOI: 10.1016/j.ijbiomac.2024.136045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Nutrient restriction (NR) extends lifespan in many species. High latitudes are characterized by cold-water temperature and food limitations, where bivalves may mimic NR like vertebrates, which could result in a prolonged life expectancy. The long-lived Peruvian scallop (7-10 years) distributes naturally at relatively higher latitudes than the annual bay scallop. However, the relationship and the mechanism underlying the food availability and lifespan are unclear in bivalves. In this study, the genetic response to NR was first investigated in bivalves with distinct lifespans. Peruvian scallops persistently responded to NR mainly via metabolic pathways, but that began to play roles in bay scallops after 56 days. Significant down-regulated expression of long-chain saturated fatty acid synthetase in both two scallops and increased expression of SCD5 and LIPN2 in Peruvian scallops might contribute to MUFA accumulation under NR. SOD1 was more highly expressed in Peruvian scallops than in bay scallops under NR, and strong autophagy was detected only in Peruvian scallops. Peruvian scallops presented much lower MDA levels and higher SOD1 activities than bay scallops. These findings help us understanding the role of lipases and antioxidases in longevity of bivalves, and provide potential biomarkers for breeding long-lived larger scallops.
Collapse
Affiliation(s)
- Yang Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Yuan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Guilong Liu
- Yantai Spring-Sea AquaSeed, Ltd., Yantai 264006, China
| | - Xin Xu
- Yantai Spring-Sea AquaSeed, Ltd., Yantai 264006, China
| | - Chunde Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.
| | - Xia Lu
- School of Ocean, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
33
|
van Rosmalen L, Zhu J, Maier G, Gacasan EG, Lin T, Zhemchuzhnikova E, Rothenberg V, Razu S, Deota S, Ramasamy RK, Sah RL, McCulloch AD, Hut RA, Panda S. Multi-organ transcriptome atlas of a mouse model of relative energy deficiency in sport. Cell Metab 2024; 36:2015-2037.e6. [PMID: 39232281 PMCID: PMC11378950 DOI: 10.1016/j.cmet.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/23/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Insufficient energy intake to meet energy expenditure demands of physical activity can result in systemic neuroendocrine and metabolic abnormalities in activity-dependent anorexia and relative energy deficiency in sport (REDs). REDs affects >40% of athletes, yet the lack of underlying molecular changes has been a hurdle to have a better understanding of REDs and its treatment. To assess the molecular changes in response to energy deficiency, we implemented the "exercise-for-food" paradigm, in which food reward size is determined by wheel-running activity. By using this paradigm, we replicated several aspects of REDs in female and male mice with high physical activity and gradually reduced food intake, which results in weight loss, compromised bone health, organ-specific mass changes, and altered rest-activity patterns. By integrating transcriptomics of 19 different organs, we provide a comprehensive dataset that will guide future understanding of REDs and may provide important implications for metabolic health and (athletic) performance.
Collapse
Affiliation(s)
- Laura van Rosmalen
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jiaoyue Zhu
- Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, the Netherlands
| | - Geraldine Maier
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Erica G Gacasan
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Terry Lin
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elena Zhemchuzhnikova
- Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, the Netherlands
| | - Vince Rothenberg
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Swithin Razu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaunak Deota
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ramesh K Ramasamy
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert L Sah
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew D McCulloch
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Roelof A Hut
- Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, the Netherlands
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
34
|
Marko DM, Conn MO, Schertzer JD. Intermittent fasting influences immunity and metabolism. Trends Endocrinol Metab 2024; 35:821-833. [PMID: 38719726 DOI: 10.1016/j.tem.2024.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 09/12/2024]
Abstract
Intermittent fasting (IF) modifies cell- and tissue-specific immunometabolic responses that dictate metabolic flexibility and inflammation during obesity and type 2 diabetes (T2D). Fasting forces periods of metabolic flexibility and necessitates increased use of different substrates. IF can lower metabolic inflammation and improve glucose metabolism without lowering obesity and can influence time-dependent, compartmentalized changes in immunity. Liver, adipose tissue, skeletal muscle, and immune cells communicate to relay metabolic and immune signals during fasting. Here we review the connections between metabolic and immune cells to explain the divergent effects of IF compared with classic caloric restriction (CR) strategies. We also explore how the immunometabolism of metabolic diseases dictates certain IF outcomes, where the gut microbiota triggers changes in immunity and metabolism during fasting.
Collapse
Affiliation(s)
- Daniel M Marko
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada; Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Meghan O Conn
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada; Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada; Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
35
|
Ferreira NB, Dias CT, Chaaban AFA, Beserra-Filho JIA, Ribeiro AM, Lambertucci RH, Mendes-da-Silva C. Improving dietary patterns in obese mice: Effects on body weight, adiposity, anhedonia-like behavior, pro-BDNF expression and 5-HT system. Brain Res 2024; 1838:148996. [PMID: 38744387 DOI: 10.1016/j.brainres.2024.148996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION The excessive fat accumulation in obesity, resulting from an unbalanced diet, can lead to metabolic and neurological disorders and increase the risk of developing anxiety and depression. AIM Assess the impact of dietary intervention (DI) on the serotonergic system, brain-derived neurotrophic factor (BDNF) expression and behaviors of obese mice. METHODS Male C57BL/6 mice, 5 weeks old, received a high-fat diet (HFD) for 10 weeks for the induction of obesity. After this period, for 8 weeks, half of these animals received a control diet (CD), group obese (OB) + control diet (OB + CD, n = 10), and another half continued being fed HFD, group obese + HFD (OB + HFD, n = 10). At the end of the eighth week of intervention, behavioral tests were performed (sucrose preference test, open field, novel object recognition, elevated plus maze and tail suspension). Body weight and food intake were assessed weekly. Visceral adiposity, the hippocampal and hypothalamic protein expression of BDNF, 5-HT1A (5-HT1A serotonin receptor) and TPH2 (key enzyme in serotonin synthesis), were evaluated after euthanasia. RESULTS The dietary intervention involved changing from a HFD to a CD over an 8-week period, effectively reduced body weight gain, adiposity, and anhedonia-like behavior. In the OB + HFD group, we saw a lower sucrose preference and shorter traveled distance in the open field, along with increased pro-BDNF expression in the hypothalamus compared to the OB + CD mice. However, the levels of TPH2 and 5-HT1A remained unchanged. CONCLUSION The HFD model induced both obesity and anhedonia, but the dietary intervention successfully improved these conditions.
Collapse
Affiliation(s)
- Nicoly Bédia Ferreira
- Laboratory of Neuroscience and Nutrition, Department of Biosciences, Federal University of Sao Paulo/UNIFESP, Santos, SP, Brazil
| | - Clarissa Tavares Dias
- Laboratory of Neuroscience and Nutrition, Department of Biosciences, Federal University of Sao Paulo/UNIFESP, Santos, SP, Brazil
| | - Ana Flávia Alves Chaaban
- Laboratory of Neuroscience and Nutrition, Department of Biosciences, Federal University of Sao Paulo/UNIFESP, Santos, SP, Brazil
| | - José Ivo Araújo Beserra-Filho
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Federal University of Sao Paulo/UNIFESP, Santos, SP, Brazil
| | - Alessandra Mussi Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Federal University of Sao Paulo/UNIFESP, Santos, SP, Brazil
| | - Rafael Herling Lambertucci
- Laboratory of Neuroscience and Nutrition, Department of Biosciences, Federal University of Sao Paulo/UNIFESP, Santos, SP, Brazil
| | - Cristiano Mendes-da-Silva
- Laboratory of Neuroscience and Nutrition, Department of Biosciences, Federal University of Sao Paulo/UNIFESP, Santos, SP, Brazil.
| |
Collapse
|
36
|
Ryan CP, Corcoran DL, Banskota N, Eckstein IC, Floratos A, Friedman R, Kobor MS, Kraus VB, Kraus WE, MacIsaac JL, Orenduff MC, Pieper CF, White JP, Ferrucci L, Horvath S, Huffman KM, Belsky DW. The CALERIE ™ Genomic Data Resource. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594714. [PMID: 39229162 PMCID: PMC11370476 DOI: 10.1101/2024.05.17.594714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Caloric restriction (CR) slows biological aging and prolongs healthy lifespan in model organisms. Findings from CALERIE-2™ - the first ever randomized, controlled trial of long-term CR in healthy, non-obese humans - broadly supports a similar pattern of effects in humans. To expand our understanding of the molecular pathways and biological processes underpinning CR effects in humans, we generated a series of genomic datasets from stored biospecimens collected from n=218 participants during the trial. These data constitute the first publicly-accessible genomic data resource for a randomized controlled trial of an intervention targeting the biology of aging. Datasets include whole-genome SNP genotypes, and three-timepoint-longitudinal DNA methylation, mRNA, and small RNA datasets generated from blood, skeletal muscle, and adipose tissue samples (total sample n=2327). The CALERIE Genomic Data Resource described in this article is available from the Aging Research Biobank. This mult-itissue, multi-omic, longitudinal data resource has great potential to advance translational geroscience.
Collapse
Affiliation(s)
- C P Ryan
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - D L Corcoran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - N Banskota
- Intramural Research Program of the National Institute on Aging, NIH - Baltimore, MD-USA
| | - Indik C Eckstein
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - A Floratos
- Department of Systems Biology, Columbia University Irving Medical Center
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
- Department of Biomedical Informatics, Columbia University Irving Medical Center
| | - R Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
- Department of Biomedical Informatics, Columbia University Irving Medical Center
| | - M S Kobor
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 2A1, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto ON M5G 1M1, Canada
- Edwin S. H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC
| | - V B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - W E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - J L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - M C Orenduff
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA
| | - C F Pieper
- Dept of Biostatistics and BioInformatics, Duke University School of Medicine, Durham, NC, USA
| | - J P White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - L Ferrucci
- Intramural Research Program of the National Institute on Aging, NIH - Baltimore, MD-USA
| | - S Horvath
- Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - K M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - D W Belsky
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
37
|
Xu Y, Huang C, Xu T, Xiang X, Amakye WK, Zhao Z, Yao M, Zhu Y, Ren J. A Water Polysaccharide-Protein Complex from Grifola frondosa Inhibit the Growth of Subcutaneous but Not Peritoneal Colon Tumor under Fasting Condition. Mol Nutr Food Res 2024; 68:e2400023. [PMID: 38924315 DOI: 10.1002/mnfr.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/05/2024] [Indexed: 06/28/2024]
Abstract
SCOPE Grifola frondosa has been shown to induce immune modulatory, modulate autophagy, and apoptosis in cancer cells. However, little is known about its potential for managing tumor progression as an adjunct to nutrient restriction. METHODS AND RESULTS Water extract produces a G. frondosa polysaccharide-protein complex (G. frondosa PPC) of average molecular weight of 46.48 kDa, with glucose (54.8%) as the main constituent. Under serum-restricted conditions, G. frondosa PPC can significantly inhibit MC38 colorectal tumor cell migration in vitro. Under alternate-day fasting condition, G. frondosa PPC can only significantly inhibit the growth of subcutaneous (s.c.) tumor, but is feeble in halting its spread in the intraperitoneal (i.p.) cavity in tumor-bearing mice. Histopathological examination and Raman imaging show a significant increase in lipid content in the tumor microenvironment (TME) tissue of the s.c. tumor-bearing mice. G. frondosa PPC significantly increases C17:0 and C24:0 saturated fatty acids and significantly decreases C16:1 and C18:1 monounsaturated fatty acids in the TME of s.c. tumor-bearing mice compared with the i.p. cavity model. CONCLUSION G. frondosa PPC significantly inhibits tumor growth in s.c. tumor-bearing mice under intermittent fasting conditions by altering the fatty acid composition of the TME.
Collapse
Affiliation(s)
- Yongzhao Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chujun Huang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Tianxiong Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiong Xiang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - William Kwame Amakye
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zikuan Zhao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
| | - Ying Zhu
- Infinitus (China) Ltd., Guangzhou, Guangdong, 510665, China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
38
|
Thompson Z, Fonseca IAT, Acosta W, Idarraga L, Garland T. Effects of food restriction on voluntary wheel-running behavior and body mass in selectively bred High Runner lines of mice. Physiol Behav 2024; 282:114582. [PMID: 38750805 DOI: 10.1016/j.physbeh.2024.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Food restriction can have profound effects on various aspects of behavior, physiology, and morphology. Such effects might be amplified in animals that are highly active, given that physical activity can represent a substantial fraction of the total daily energy budget. More specifically, some effects of food restriction could be associated with intrinsic, genetically based differences in the propensity or ability to perform physical activity. To address this possibility, we studied the effects of food restriction in four replicate lines of High Runner (HR) mice that have been selectively bred for high levels of voluntary wheel running. We hypothesized that HR mice would respond differently than mice from four non-selected Control (C) lines. Healthy adult females from generation 65 were housed individually with wheels and provided access to food and water ad libitum for experimental days 1-19 (Phase 1), which allowed mice to attain a plateau in daily running distances. Ad libitum food intake of each mouse was measured on days 20-22 (Phase 2). After this, each mouse experienced a 20 % food restriction for 7 days (days 24-30; Phase 3), and then a 40 % food restriction for 7 additional days (days 31-37; Phase 4). Mice were weighed on experimental days 1, 8, 9, 15, 20, and 23-37 and wheel-running activity was recorded continuously, in 1-minute bins, during the entire experiment. Repeated-measures ANOVA of daily wheel-running distance during Phases 2-4 indicated that HR mice always ran much more than C, with values being 3.29-fold higher during the ad libitum feeding trial, 3.58-fold higher with -20 % food, and 3.06-fold higher with -40 % food. Seven days of food restriction at -20 % did not significantly reduce wheel-running distance of either HR (-5.8 %, P = 0.0773) or C mice (-13.3 %, P = 0.2122). With 40 % restriction, HR mice showed a further decrease in daily wheel-running distance (P = 0.0797 vs. values at 20 % restriction), whereas C mice did not (P = 0.4068 vs. values at 20 % restriction) and recovered to levels similar to those on ad libitum food (P = 0.3634). For HR mice, daily running distances averaged 11.4 % lower at -40 % food versus baseline values (P = 0.0086), whereas for C mice no statistical difference existed (-4.8 %, P = 0.7004). Repeated-measures ANOVA of body mass during Phases 2-4 indicated a highly significant effect of food restriction (P = 0.0001), but no significant effect of linetype (P = 0.1764) and no interaction (P = 0.8524). Both HR and C mice had a significant reduction in body mass only when food rations were reduced by 40 % relative to ad libitum feeding, and even then the reductions averaged only -0.60 g for HR mice (-2.6 %) and -0.49 g (-2.0 %) for C mice. Overall, our results indicate a surprising insensitivity of body mass to food restriction in both high-activity (HR) and ordinary (C) mice, and also insensitivity of wheel running in the C lines of mice, thus calling for studies of compensatory mechanisms that allow this insensitivity.
Collapse
Affiliation(s)
- Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA; Present Address: Department of Biology, Utah Valley University, Orem, UT, USA
| | - Ivana A T Fonseca
- Department of Physical Education, University of State of Rio Grande do Norte, Mossoró, Brazil
| | - Wendy Acosta
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Laidy Idarraga
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
39
|
Ozcan M, Abdellatif M, Javaheri A, Sedej S. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System. Can J Cardiol 2024; 40:1445-1457. [PMID: 38354947 DOI: 10.1016/j.cjca.2024.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Population aging and the associated increase in cardiovascular disease rates pose serious threats to global public health. Different forms of fasting have become an increasingly attractive strategy to directly address aging and potentially limit or delay the onset of cardiovascular diseases. A growing number of experimental studies and clinical trials indicate that the amount and timing of food intake as well as the daily time window during which food is consumed, are crucial determinants of cardiovascular health. Indeed, intermittent fasting counteracts the molecular hallmarks of cardiovascular aging and promotes different aspects of cardiometabolic health, including blood pressure and glycemic control, as well as body weight reduction. In this report, we summarize current evidence from randomized clinical trials of intermittent fasting on body weight and composition as well as cardiovascular and metabolic risk factors. Moreover, we critically discuss the preventive and therapeutic potential of intermittent fasting, but also possible detrimental effects in the context of cardiovascular aging and related disease. We delve into the physiological mechanisms through which intermittent fasting might improve cardiovascular health, and raise important factors to consider in the design of clinical trials on the efficacy of intermittent fasting to reduce major adverse cardiovascular events among aged individuals at high risk of cardiovascular disease. We conclude that despite growing evidence and interest among the lay and scientific communities in the cardiovascular health-improving effects of intermittent fasting, further research efforts and appropriate caution are warranted before broadly implementing intermittent fasting regimens, especially in elderly persons.
Collapse
Affiliation(s)
- Mualla Ozcan
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ali Javaheri
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA; John J. Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
40
|
Vilas-Boas EA, Kowaltowski AJ. Mitochondrial redox state, bioenergetics, and calcium transport in caloric restriction: A metabolic nexus. Free Radic Biol Med 2024; 219:195-214. [PMID: 38677486 DOI: 10.1016/j.freeradbiomed.2024.04.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Mitochondria congregate central reactions in energy metabolism, many of which involve electron transfer. As such, they are expected to both respond to changes in nutrient supply and demand and also provide signals that integrate energy metabolism intracellularly. In this review, we discuss how mitochondrial bioenergetics and reactive oxygen species production is impacted by dietary interventions that change nutrient availability and impact on aging, such as calorie restriction. We also discuss how dietary interventions alter mitochondrial Ca2+ transport, regulating both mitochondrial and cytosolic processes modulated by this ion. Overall, a plethora of literature data support the idea that mitochondrial oxidants and calcium transport act as integrating signals coordinating the response to changes in nutritional supply and demand in cells, tissues, and animals.
Collapse
Affiliation(s)
- Eloisa A Vilas-Boas
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil.
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| |
Collapse
|
41
|
Chen J, Zou C, Guan H, Zhou X, Hou L, Cui Y, Xu J, Luan P, Zheng D. Caloric restriction leading to attenuation of experimental Alzheimer's disease results from alterations in gut microbiome. CNS Neurosci Ther 2024; 30:e14823. [PMID: 38992870 PMCID: PMC11239325 DOI: 10.1111/cns.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Caloric restriction (CR) might be effective for alleviating/preventing Alzheimer's disease (AD), but the biological mechanisms remain unclear. In the current study, we explored whether CR caused an alteration of gut microbiome and resulted in the attenuation of cognitive impairment of AD animal model. METHODS Thirty-week-old male APP/PS1 transgenic mice were used as AD models (AD mouse). CR was achieved by 30% reduction of daily free feeding (ad libitum, AL) amount. The mice were fed with CR protocol or AL protocol for six consecutive weeks. RESULTS We found that with CR treatment, AD mice showed improved ability of learning and spatial memory, and lower levels of Aβ40, Aβ42, IL-1β, TNF-α, and ROS in the brain. By sequencing 16S rDNA, we found that CR treatment resulted in significant diversity in composition and abundance of gut flora. At the phylum level, Deferribacteres (0.04%), Patescibacteria (0.14%), Tenericutes (0.03%), and Verrucomicrobia (0.5%) were significantly decreased in CR-treated AD mice; at the genus level, Dubosiella (10.04%), Faecalibaculum (0.04%), and Coriobacteriaceae UCG-002 (0.01%) were significantly increased in CR-treated AD mice by comparing with AL diet. CONCLUSIONS Our results demonstrate that the attenuation of AD following CR treatment in APP/PS1 mice may result from alterations in the gut microbiome. Thus, gut flora could be a new target for AD prevention and therapy.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Cong Zou
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Hongbing Guan
- Guangdong Yunzhao Medical Technology Co., Ltd.GuangzhouChina
| | - Xiaoming Zhou
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Le Hou
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Yayong Cui
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Junhua Xu
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Ping Luan
- School of Basic Medical SciencesShenzhen UniversityShenzhenChina
| | - Dong Zheng
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
42
|
Bejarano E, Domenech-Bendaña A, Avila-Portillo N, Rowan S, Edirisinghe S, Taylor A. Glycative stress as a cause of macular degeneration. Prog Retin Eye Res 2024; 101:101260. [PMID: 38521386 PMCID: PMC11699537 DOI: 10.1016/j.preteyeres.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
People are living longer and rates of age-related diseases such as age-related macular degeneration (AMD) are accelerating, placing enormous burdens on patients and health care systems. The quality of carbohydrate foods consumed by an individual impacts health. The glycemic index (GI) is a kinetic measure of the rate at which glucose arrives in the blood stream after consuming various carbohydrates. Consuming diets that favor slowly digested carbohydrates releases sugar into the bloodstream gradually after consuming a meal (low glycemic index). This is associated with reduced risk for major age-related diseases including AMD, cardiovascular disease, and diabetes. In comparison, consuming the same amounts of different carbohydrates in higher GI diets, releases glucose into the blood rapidly, causing glycative stress as well as accumulation of advanced glycation end products (AGEs). Such AGEs are cytotoxic by virtue of their forming abnormal proteins and protein aggregates, as well as inhibiting proteolytic and other protective pathways that might otherwise selectively recognize and remove toxic species. Using in vitro and animal models of glycative stress, we observed that consuming higher GI diets perturbs metabolism and the microbiome, resulting in a shift to more lipid-rich metabolomic profiles. Interactions between aging, diet, eye phenotypes and physiology were observed. A large body of laboratory animal and human clinical epidemiologic data indicates that consuming lower GI diets, or lower glycemia diets, is protective against features of early AMD (AMDf) in mice and AMD prevalence or AMD progression in humans. Drugs may be optimized to diminish the ravages of higher glycemic diets. Human trials are indicated to determine if AMD progression can be retarded using lower GI diets. Here we summarized the current knowledge regarding the pathological role of glycative stress in retinal dysfunction and how dietary strategies might diminish retinal disease.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alicia Domenech-Bendaña
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | | - Sheldon Rowan
- JM USDA Human Nutrition Research Center on Aging at Tufts University, United States
| | - Sachini Edirisinghe
- Tufts University Friedman School of Nutrition Science and Policy, United States
| | - Allen Taylor
- Tufts University Friedman School of Nutrition Science and Policy, United States.
| |
Collapse
|
43
|
Gutierrez E, Mitchell S, Hambly C, Sayle KL, von Kriegsheim A, Speakman JR, Britton K. Carbon, nitrogen, and sulfur elemental and isotopic variations in mouse hair and bone collagen during short-term graded calorie restriction. iScience 2024; 27:110059. [PMID: 38947513 PMCID: PMC11214416 DOI: 10.1016/j.isci.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/19/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
This study characterized the effect of calorie restriction (CR) on elemental content and stable isotope ratio measurements of bone "collagen" and hair keratin. Adult mice on graded CR (10-40%; 84 days) showed decreased hair δ 15N, δ 13C, and δ 34S values (significantly for δ 15N) with increasing CR, alongside a significant increase in bone "collagen" δ 15N values and a decrease in "collagen" δ 13C values. We propose this was likely due to the intensified mobilization of endogenous proteins, as well as lipids in newly synthesized "collagen". Elemental analysis of bone "collagen" revealed decreased carbon, nitrogen, and sulfur % content with increasing CR which is attributed to a change in the in vivo bone "collagen" structure with extent of CR. This complexity challenges the use of elemental indicators in the assessment of collagen quality in archaeological studies where nutritional stress may be a factor.
Collapse
Affiliation(s)
- Eléa Gutierrez
- Department of Archaeology, University of Aberdeen, Aberdeen, Scotland AB39 2PN, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland AB24 2TZ, UK
- AASPE “Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements”, Muséum national d’Histoire naturelle, 75005 Paris, France
| | - Sharon Mitchell
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland AB24 2TZ, UK
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland AB24 2TZ, UK
| | - Kerry L. Sayle
- Scottish Universities Environmental Research Centre, University of Glasgow, Scotland G75 0QF, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh Scotland EH4 2XR, UK
| | - John R. Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland AB24 2TZ, UK
- Shenzhen Key Laboratory of Metabolic Health, Centre for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PRC
- Centre of Excellence in Animal Evolution and Genetics, Kunming, PRC
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC
| | - Kate Britton
- Department of Archaeology, University of Aberdeen, Aberdeen, Scotland AB39 2PN, UK
| |
Collapse
|
44
|
Rinne C, Soultoukis GA, Oveisi M, Leer M, Schmidt-Bleek O, Burkhardt LM, Bucher CH, Moussa EA, Makhlouf M, Duda GN, Saraiva LR, Schmidt-Bleek K, Schulz TJ. Caloric restriction reduces trabecular bone loss during aging and improves bone marrow adipocyte endocrine function in male mice. Front Endocrinol (Lausanne) 2024; 15:1394263. [PMID: 38904042 PMCID: PMC11188307 DOI: 10.3389/fendo.2024.1394263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Caloric restriction (CR) is a nutritional intervention that increases life expectancy while lowering the risk for cardio-metabolic disease. Its effects on bone health, however, remain controversial. For instance, CR has been linked to increased accumulation of bone marrow adipose tissue (BMAT) in long bones, a process thought to elicit detrimental effects on bone. Qualitative differences have been reported in BMAT in relation to its specific anatomical localization, subdividing it into physiological and potentially pathological BMAT. We here examine the local impact of CR on bone composition, microstructure and its endocrine profile in the context of aging. Methods Young and aged male C57Bl6J mice were subjected to CR for 8 weeks and were compared to age-matched littermates with free food access. We assessed bone microstructure and BMAT by micro-CT, bone fatty acid and transcriptomic profiles, and bone healing. Results CR increased tibial BMAT accumulation and adipogenic gene expression. CR also resulted in elevated fatty acid desaturation in the proximal and mid-shaft regions of the tibia, thus more closely resembling the biochemical lipid profile of the distally located, physiological BMAT. In aged mice, CR attenuated trabecular bone loss, suggesting that CR may revert some aspects of age-related bone dysfunction. Cortical bone, however, was decreased in young mice on CR and remained reduced in aged mice, irrespective of dietary intervention. No negative effects of CR on bone regeneration were evident in either young or aged mice. Discussion Our findings indicate that the timing of CR is critical and may exert detrimental effects on bone biology if administered during a phase of active skeletal growth. Conversely, CR exerts positive effects on trabecular bone structure in the context of aging, which occurs despite substantial accumulation of BMAT. These data suggest that the endocrine profile of BMAT, rather than its fatty acid composition, contributes to healthy bone maintenance in aged mice.
Collapse
Affiliation(s)
- Charlotte Rinne
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - George A. Soultoukis
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München, Germany
| | - Masoome Oveisi
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München, Germany
| | - Marina Leer
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München, Germany
| | - Oskar Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa-Marie Burkhardt
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, Berlin, Germany
| | - Christian H. Bucher
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Georg N. Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luis R. Saraiva
- Translation Medicine Division, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tim J. Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
45
|
Elsaid FH, Hussein AM, Eid EA, Ammar OA, Khalil AA. Effect of intermittent fasting on adriamycin-induced nephropathy: Possible underlying mechanisms. Tissue Cell 2024; 88:102360. [PMID: 38489913 DOI: 10.1016/j.tice.2024.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/16/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE Intermittent fasting (IF) has been shown to induce a well-organized adaptive defense against stress inside the cells, which increases the production of anti-oxidant defenses, repair of DNA, biogenesis of mitochondria, and genes that combat inflammation. So, the goal of the current investigation was to identify the effects of IF on rats with adriamycin (ADR)-induced nephropathy and any potential underlying mechanisms. METHODS Four groups of 40 mature Sprague-Dawley male rats were allocated as follow; control, fasting, ADR, and ADR plus fasting. After 8 weeks of ADR administration urine, blood samples and kidneys were taken for assessment of serum creatinine (Cr), BUN, urinary proteins, indicators of oxidative damage (malondialdehyde (MDA), reduced glutathione (GSH) and Catalase (CAT) levels), histopathological examinations, immunohistochemical examinations for caspase-3, Sirt1, aquaporin2 (AQP2) and real time PCR for antioxidant genes; Nrf2, HO-1 in kidney tissues. RESULTS IF significantly improved serum creatinine, BUN and urinary protein excretion, oxidative stress (low MDA with high CAT and GSH), in addition to morphological damage to the renal tubules and glomeruli as well as caspase-3 production during apoptosis. Moreover, IF stimulates significantly the expression of Sirt1 and Nrf2/HO-1 and AQP2. CONCLUSION AQP2, Sirt1, Nrf2/HO-1 signaling may be upregulated and activated by IF, which alleviates ADR nephropathy. Enhancing endogenous antioxidants, reducing apoptosis and tubulointerstitial damage, and maintaining the glomerular membrane's integrity are other goals.
Collapse
Affiliation(s)
- Fathy H Elsaid
- Department of Medical Physiology, Faculty of Medicine, Al-Azhar University, Assuit, Egypt
| | - Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Elsayed A Eid
- Department of Internal Medicine and Endocrinology, Faculty of Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Omar A Ammar
- Department of Basic Science, Faculty of Applied Health Science and Technology, Delta University for Science and Technology, Gamasa, Egypt
| | - Ali Ali Khalil
- Department of Medical Physiology, Faculty of Medicine, Al-Azhar University, Assuit, Egypt
| |
Collapse
|
46
|
Daka Q, Neziri B, Lindner E, Azuara Blanco A. Metformin in Glaucoma Treatment. J Glaucoma 2024; 33:387-393. [PMID: 38536124 DOI: 10.1097/ijg.0000000000002387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/07/2024] [Indexed: 06/01/2024]
Abstract
PRCIS Rigorous trials are essential to develop comprehensive treatment strategies that fully exploit the therapeutic potential of metformin in the treatment of glaucoma. OBJECTIVE The objective of this study was to evaluate the potentially beneficial effect of metformin on glaucoma risk factors and to investigate the underlying mechanisms. The aim is to contribute to the development of new treatment strategies for glaucoma. METHODS We searched for studies that assessed the effects of metformin on glaucoma risk factors and the associated underlying mechanisms. Our search included electronic databases such as PUBMED, EMBASE, and clinicaltrials.gov. RESULTS Unfortunately, we did not find any clinical trials that specifically investigated the impact of metformin on glaucoma. However, data from experimental studies demonstrated the capability of metformin to modulate various pathways that could contribute to neuroprotection in glaucoma. CONCLUSION In order to develop comprehensive treatment strategies that fully exploit the therapeutic potential of metformin in the treatment of glaucoma, rigorous trials are essential. These studies are necessary to demonstrate both the safety and efficacy of metformin in the context of glaucoma treatment.
Collapse
Affiliation(s)
- Qëndresë Daka
- Department of Pathophysiology, Medical Faculty, University of Prishtina, Prishtinë, Kosovo
- Department of Ophthalmology, University Clinical Centre of Kosova, Prishtinë, Kosovo
| | - Burim Neziri
- Department of Pathophysiology, Medical Faculty, University of Prishtina, Prishtinë, Kosovo
| | - Ewald Lindner
- Department of Ophthalmology, Medical University of Granz, Auenbruggerplatz, Granz, Austria
| | - Augusto Azuara Blanco
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| |
Collapse
|
47
|
Zafar MI, Chen X. Effects of Calorie Restriction on Preserving Male Fertility Particularly in a State of Obesity. Curr Obes Rep 2024; 13:256-274. [PMID: 38489002 DOI: 10.1007/s13679-024-00557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE OF REVIEW Highlight the importance of exploring nutritional interventions that could be applied as alternative or supplementary therapeutic strategies to enhance men's fertility. RECENT FINDINGS Lifestyle choices have prompted extensive discussions regarding its implications and applications as a complementary therapy. The growing concern over the decline in sperm quality underscores the urgency of investigating these alternative interventions. Calorie restriction (CR) has emerged as a promising strategy to improve male fertility. The efficacy of CR depends on factors like age, ethnicity and genetics. Clinical studies, such as CALERIE, have shown an improvement in serum testosterone level and sexual drive in men with or without obesity. Additionally, CR has been shown to positively impact sperm count and motility; however, its effects on sperm morphology and DNA fragmentation remain less clear, and the literature has shown discrepancies, mainly due to the nature of technically dependent assessment tools. The review advocates a personalized approach to CR, considering individual health profiles to maximize its benefits. It underscores the need for routine, accessible diagnostic techniques in male reproductive health. It suggests that future research should focus on personalized dietary interventions to improve male fertility and overall well-being in individuals with or without obesity and unravel CR's immediate and lasting effects on semen parameters in men without obesity.
Collapse
Affiliation(s)
- Mohammad Ishraq Zafar
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Avenue, Yiwu, Zhejiang, China.
| | - Xiao Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Avenue, Yiwu, Zhejiang, China.
| |
Collapse
|
48
|
Chmilar SL, Luzardo AC, Dutt P, Pawluk A, Thwaites VC, Laird RA. Caloric restriction extends lifespan in a clonal plant. Ecol Lett 2024; 27:e14444. [PMID: 38814322 DOI: 10.1111/ele.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
When subjected to dietary caloric restriction (CR), individual animals often outlive well-fed conspecifics. Here, we address whether CR also extends lifespan in plants. Whereas caloric intake in animals comes from ingestion, in plants it derives from photosynthesis. Thus, factors that reduce photosynthesis, such as reduced light intensity, can induce CR. In two lab experiments investigating the aquatic macrophyte Lemna minor, we tracked hundreds of individuals longitudinally, with light intensity-and hence, CR-manipulated using neutral-density filters. In both experiments, CR dramatically increased lifespan through a process of temporal scaling. Moreover, the magnitude of lifespan extension accorded with the assumptions that (a) light intensity positively relates to photosynthesis following Michaelis-Menten kinetics, and (b) photosynthesis negatively relates to lifespan via a power law. Our results emphasize that CR-mediated lifespan extension applies to autotrophs as well as heterotrophs, and suggest that variation in light intensity has quantitatively predictable effects on plant aging trajectories.
Collapse
Affiliation(s)
- Suzanne L Chmilar
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Amanda C Luzardo
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Priyanka Dutt
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Abbe Pawluk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Victoria C Thwaites
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Robert A Laird
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
49
|
Reda GK, Ndunguru SF, Csernus B, Gulyás G, Knop R, Szabó C, Czeglédi L, Lendvai ÁZ. Dietary restriction and life-history trade-offs: insights into mTOR pathway regulation and reproductive investment in Japanese quail. J Exp Biol 2024; 227:jeb247064. [PMID: 38563310 DOI: 10.1242/jeb.247064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Resources are needed for growth, reproduction and survival, and organisms must trade off limited resources among competing processes. Nutritional availability in organisms is sensed and monitored by nutrient-sensing pathways that can trigger physiological changes or alter gene expression. Previous studies have proposed that one such signalling pathway, the mechanistic target of rapamycin (mTOR), underpins a form of adaptive plasticity when individuals encounter constraints in their energy budget. Despite the fundamental importance of this process in evolutionary biology, how nutritional limitation is regulated through the expression of genes governing this pathway and its consequential effects on fitness remain understudied, particularly in birds. We used dietary restriction to simulate resource depletion and examined its effects on body mass, reproduction and gene expression in Japanese quails (Coturnix japonica). Quails were subjected to feeding at 20%, 30% and 40% restriction levels or ad libitum for 2 weeks. All restricted groups exhibited reduced body mass, whereas reductions in the number and mass of eggs were observed only under more severe restrictions. Additionally, dietary restriction led to decreased expression of mTOR and insulin-like growth factor 1 (IGF1), whereas the ribosomal protein S6 kinase 1 (RPS6K1) and autophagy-related genes (ATG9A and ATG5) were upregulated. The pattern in which mTOR responded to restriction was similar to that for body mass. Regardless of the treatment, proportionally higher reproductive investment was associated with individual variation in mTOR expression. These findings reveal the connection between dietary intake and the expression of mTOR and related genes in this pathway.
Collapse
Affiliation(s)
- Gebrehaweria K Reda
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Life Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Sawadi F Ndunguru
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Life Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Brigitta Csernus
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Life Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Gulyás
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Renáta Knop
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, Faculty of Life Science, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
50
|
Le Couteur DG, Raubenheimer D, Solon-Biet S, de Cabo R, Simpson SJ. Does diet influence aging? Evidence from animal studies. J Intern Med 2024; 295:400-415. [PMID: 35701180 DOI: 10.1111/joim.13530] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nutrition profoundly influences the risk for many age-related diseases. Whether nutrition influences human aging biology directly is less clear. Studies in different animal species indicate that reducing food intake ("caloric restriction" [CR]) can increase lifespan and delay the onset of diseases and the biological hallmarks of aging. Obesity has been described as "accelerated aging" and therefore the lifespan and health benefits generated by CR in both aging and obesity may occur via similar mechanisms. Beyond calorie intake, studies based on nutritional geometry have shown that protein intake and the interaction between dietary protein and carbohydrates influence age-related health and lifespan. Studies where animals are calorically restricted by providing free access to diluted diets have had less impact on lifespan than those studies where animals are given a reduced aliquot of food each day and are fasting between meals. This has drawn attention to the role of fasting in health and aging, and exploration of the health effects of various fasting regimes. Although definitive human clinical trials of nutrition and aging would need to be unfeasibly long and unrealistically controlled, there is good evidence from animal experiments that some nutritional interventions based on CR, manipulating dietary macronutrients, and fasting can influence aging biology and lifespan.
Collapse
Affiliation(s)
- David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- ANZAC Research Institute, The Concord Hospital, Concord, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Samantha Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland, USA
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|