1
|
Ma J, Yang X, Li Y, Zhang X, Liu K, Peng Y, Wang S, Shi R, Huo X, Liu X, Li X, Ye R, Zhang Z, Yang C, Liu L, Gao D, Jia S, Sun L, Zuo X, Meng Q, Chen X. C/EBPβ activation in vascular smooth muscle cells promotes hyperlipidemia-induced phenotypic transition and arterial stiffness. Signal Transduct Target Ther 2025; 10:105. [PMID: 40169541 PMCID: PMC11962150 DOI: 10.1038/s41392-025-02196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Arterial stiffness is a critical factor in cardiovascular and cerebrovascular events, yet clinical practice lacks specific therapeutic targets and biomarkers for its assessment. Hyperlipidemia closely correlates with arterial stiffness, and we observed elevated CCAAT/enhancer-binding protein β (C/EBPβ) expression in atherosclerotic mouse arterial walls. As the arterial medial layer predominantly consists of vascular smooth muscle cells (VSMCs), C/EBPβ's role in VSMCs under hyperlipidemia remains unclear. Our findings demonstrate that cholesterol-induced phenotypic transition of contractile VSMCs to macrophage-like cells coincides with C/EBPβ upregulation and activation. The activation of C/EBPβ is closely related to cellular assembly and organization, regulating the cytoskeleton via Disheveled-associated activator of morphogenesis 1 (Daam1). Conditional knockout of C/EBPβ in VSMCs of ApoE-/- mice alleviated hyperlipidemia-induced vascular remodeling and reduced the elevation of aortic pulse wave velocity. Additionally, C/EBPβ-regulated cytokine platelet-derived growth factor-CC (PDGF-CC) is correlated with brachial-ankle pulse wave velocity in humans. These results indicate that the activation of C/EBPβ promotes the transition of VSMCs from a contractile phenotype to a macrophage-like phenotype by regulating morphological changes, and C/EBPβ activation contributes to hyperlipidemia-induced arterial stiffness. PDGF-CC exhibited a significant association with arterial stiffness and may serve as a promising indicator of arterial stiffness in humans. Our study reveals molecular mechanisms behind hyperlipidemia-induced arterial stiffness and provides potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Yong Peng
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Si Wang
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Xingwei Huo
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Xueting Liu
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Xinran Li
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Zhipeng Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Changqiang Yang
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Lu Liu
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Dan Gao
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Shanshan Jia
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Lirong Sun
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China.
| |
Collapse
|
2
|
Li Q, Yu S, Wang Y, Zhao H, Gao Z, Du H, Yang H, Shen L, Zhou H. Programmable embedded bioprinting for one-step manufacturing of arterial models with customized contractile and metabolic functions. Trends Biotechnol 2025; 43:918-945. [PMID: 39779422 DOI: 10.1016/j.tibtech.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Replicating the contractile function of arterial tissues in vitro requires precise control of cell alignment within 3D structures, a challenge that existing bioprinting techniques struggle to meet. In this study, we introduce the voxel-based embedded construction for tailored orientational replication (VECTOR) method, a voxel-based approach that controls cellular orientation and collective behavior within bioprinted filaments. By fine-tuning voxel vector magnitude and using an omnidirectional printing trajectory, we achieve structural mimicry at both the macroscale and the cellular alignment level. This dual-scale approach enhances vascular smooth muscle cell (VSMC) function by regulating contractile and synthetic pathways. The VECTOR method facilitates the construction of 3D arterial structures that closely replicate natural coronary architectures, significantly improving contractility and metabolic function. Moreover, the resulting multilayered arterial models (AMs) exhibit precise responses to pharmacological stimuli, similar to native arteries. This work highlights the critical role of structural mimicry in tissue functionality and advances the replication of complex tissues in vitro.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Engineering, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shuyuan Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yuxuan Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Hui Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, People's Republic of China
| | - Ziqi Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Huilong Du
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Luqi Shen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, People's Republic of China.
| | - Hongzhao Zhou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
3
|
Wu YY, Yu LSY, Zhou HY, Xue JC. Effect of HepG2-Derived Exosome with PDGF-D Knockdown on Transformation of Normal Fibroblasts into Tumor-Associated Fibroblasts in Liver Cancer. FRONT BIOSCI-LANDMRK 2025; 30:26045. [PMID: 40152369 DOI: 10.31083/fbl26045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND It is known that the transformation of liver cancer-mediated fibroblasts into cancer-related fibroblasts (CAFs) is beneficial to the development of liver cancer. However, the specific mechanism is still unclear. METHODS Human hepatocarcinoma (HepG2) cells were treated with short hairpin RNA (shRNA) of platelet-derived growth factor-D (shPDGF-D) vector, and the exosomes secreted by the cells were separated using ultracentrifugation and identified by using nanoparticle tracking analysis, transmission electron microscope, and western blot analysis. Exosomes were co-cultured with mouse primary fibroblasts, and then the activity, proliferation, cell cycle, migration, epithelial-mesenchymal transition- (EMT-) and CAF marker-related protein expression levels of fibroblasts were determined by cell counting kit-8 (CCK-8), immunofluorescence, flow cytometry, wound healing, real-time reverse transcription-PCR, and western blotting assays, respectively. Co-cultured fibroblasts were mixed with HepG2 cells and injected subcutaneously into mice to construct animal models. The size and weight of xenograft tumor and the expression of epithelial-mesenchymal transition- (EMT-), angiogenesis- and CAFs marker-related proteins were detected. RESULTS The exosomes inhibited the proliferation, migration, EMT, and induced cell cycle arrest, as well as decreased the expression of α-SMA, FAP, MMP-9, and VEGF in fibroblasts. In vivo, sh-PDGF-D inhibited tumor growth, reduced the expressions of CD31, vimentin, α-SMA, FAP, MMP9, and VEGF, and promoted the expression of E-cadherin. CONCLUSIONS Exosomes derived from HepG2 cells transfected with shPDGF-D prevent normal fibroblasts from transforming into CAFs, thus inhibiting angiogenesis and EMT of liver cancer.
Collapse
Affiliation(s)
- Yan-Yan Wu
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, 310012 Hangzhou, Zhejiang, China
| | - Liu-Shen-Yan Yu
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, 310012 Hangzhou, Zhejiang, China
| | - Han-Yu Zhou
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, 310012 Hangzhou, Zhejiang, China
| | - Jun-Chao Xue
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, 310012 Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Hao Z, Guan W, Wei W, Li M, Xiao Z, Sun Q, Pan Y, Xin W. Unlocking the therapeutic potential of tumor-derived EVs in ischemia-reperfusion: a breakthrough perspective from glioma and stroke. J Neuroinflammation 2025; 22:84. [PMID: 40089793 PMCID: PMC11909855 DOI: 10.1186/s12974-025-03405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
Clinical studies have revealed a bidirectional relationship between glioma and ischemic stroke, with evidence of spatial overlap between the two conditions. This connection arises from significant similarities in their pathological processes, including the regulation of cellular metabolism, inflammation, coagulation, hypoxia, angiogenesis, and neural repair, all of which involve common biological factors. A significant shared feature of both diseases is the crucial role of extracellular vesicles (EVs) in mediating intercellular communication. Extracellular vesicles, with their characteristic bilayer structure, encapsulate proteins, lipids, and nucleic acids, shielding them from enzymatic degradation by ribonucleases, deoxyribonucleases, and proteases. This structural protection facilitates long-distance intercellular communication in multicellular organisms. In gliomas, EVs are pivotal in intracranial signaling and shaping the tumor microenvironment. Importantly, the cargos carried by glioma-derived EVs closely align with the biological factors involved in ischemic stroke, underscoring the substantial impact of glioma on stroke pathology, particularly through the crucial roles of EVs as key mediators in this interaction. This review explores the pathological interplay between glioma and ischemic stroke, addressing clinical manifestations and pathophysiological processes across the stages of hypoxia, stroke onset, progression, and recovery, with a particular focus on the crucial role of EVs and their cargos in these interactions.
Collapse
Affiliation(s)
- Zhongnan Hao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Neurology, The Affiliated Hospital of Qingdao University, Medical School of Qingdao University, Qingdao, 266100, Shandong Province, China
| | - Wenxin Guan
- Queen Mary School, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi, China
| | - Wei Wei
- Department of Neurology, the Affiliated Hospital of Southwest Jiaotong University & The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, PR China
| | - Meihua Li
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhipeng Xiao
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qinjian Sun
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Yongli Pan
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China.
| | - Wenqiang Xin
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Lee Y, Fang Y, Kuila S, Imoukhuede PI. Cross-family interactions of vascular endothelial growth factors and platelet-derived growth factors on the endothelial cell surface: A computational model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640640. [PMID: 40093087 PMCID: PMC11908192 DOI: 10.1101/2025.02.27.640640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Angiogenesis, the formation of new vessels from existing vessels, is mediated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). Despite discoveries supporting the cross-family interactions between VEGF and PDGF families, sharing the binding partners between them makes it challenging to identify growth factors that predominantly affect angiogenesis. Systems biology offers promises to untangle this complexity. Thus, in this study, we developed a mass-action kinetics-based computational model for cross-family interactions between VEGFs (VEGF-A, VEGF-B, and PlGF) and PDGFs (PDGF-AA, PDGF-AB, and PDGF-BB) with their receptors (VEGFR1, VEGFR2, NRP1, PDGFRα, and PDGFRβ). The model, parametrized with our literature mining and surface resonance plasmon assays, was validated by comparing the concentration of VEGFR1 complexes with a previously constructed angiogenesis model. The model predictions include five outcomes: 1) the percentage of free or bound ligands and 2) receptors, 3) the concentration of free ligands, 4) the percentage of ligands occupying each receptor, and 5) the concentration of ligands that is bound to each receptor. We found that at equimolar ligand concentrations (1 nM), PlGF and VEGF-A were the main binding partners of VEGFR1 and VEGFR2, respectively. Varying the density of receptors resulted in the following five outcomes: 1) Increasing VEGFR1 density depletes the free PlGF concentration, 2) increasing VEGFR2 density decreases PDGF:PDGFRα complexes, 3) increased NRP1 density generates a biphasic concentration of the free PlGF, 4) increased PDGFRα density increases PDGFs:PDGFRα binding, and 5) increasing PDGFRβ density increases VEGF-A:PDGFRβ. Our model offers a reproducible, fundamental framework for exploring cross-family interactions that can be extended to the tissue level or intracellular molecular level. Also, our model may help develop therapeutic strategies in pathological angiogenesis by identifying the dominant complex in the cell signaling. Author summary New blood vessel formation from existing ones is essential for growth, healing, and reproduction. However, when this process is disrupted-either too much or too little-it can contribute to diseases such as cancer and peripheral arterial disease. Two key families of proteins, vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs), regulate this process. Traditionally, scientists believed that VEGFs only bind to VEGF receptors and PDGFs to PDGF receptors. However, recent findings show that these proteins can interact with each other's receptors, making it more challenging to understand and control blood vessel formation. To clarify these complex interactions, we combined computer modeling with biological data to map out which proteins bind to which receptors and to what extent. Our findings show that when VEGFs and PDGFs are present in equal amounts, VEGFs are the primary binding partners for VEGF receptors. We also explored how changes in receptor levels affect these interactions in disease-like conditions. This work provides a foundational computational model for studying cross-family interactions, which can be expanded to investigate tissue-level effects and processes inside cells. Ultimately, our model may help develop better treatments for diseases linked to abnormal blood vessel growth by identifying key protein-receptor interactions.
Collapse
|
6
|
Rao W, Li D, Zhang Q, Liu T, Gu Z, Huang L, Dai J, Wang J, Hou X. Complex regulation of cardiac fibrosis: insights from immune cells and signaling pathways. J Transl Med 2025; 23:242. [PMID: 40022104 PMCID: PMC11869728 DOI: 10.1186/s12967-025-06260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/16/2025] [Indexed: 03/03/2025] Open
Abstract
Cardiac fibrosis is a physiological process that involves the formation of scar tissue in the heart in response to injury or damage. This process is initially a protective measure characterized by enhanced fibroblasts, which are responsible for producing extracellular matrix proteins that provide structural support to the heart. However, when fibrosis becomes excessive, it can lead to adverse outcomes, including increasing tissue stiffness and impaired cardiac function, which can ultimately result in heart failure with a poor prognosis. While fibroblasts are the primary cells involved in cardiac fibrosis, immune cells have also been found to play a vital role in its progression. Recent research has shown that immune cells exert multifaceted effects besides regulation of inflammatory response. Advanced research techniques such as single-cell sequencing and multiomics have provided insights into the specific subsets of immune cells involved in fibrosis and the complex regulation of the process. Targeted immunotherapy against fibrosis is gaining traction as a potential treatment option, but it is still unclear how immune cells achieve this regulation and whether distinct subsets are involved in different roles. To better understand the role of immune cells in cardiac fibrosis, it is essential to examine the classical signaling pathways that are closely related to fibrosis formation. We have also focused on the unique properties of diverse immune cells in cardiac fibrosis and their specific intercommunications. Therefore, this review will delve into the plasticity and heterogeneity of immune cells and their specific roles in cardiac fibrosis, which propose insights to facilitate the development of anti-fibrosis therapeutic strategies.
Collapse
Affiliation(s)
- Wutian Rao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinghang Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tianbao Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjie Dai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xumin Hou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Hospital's Office, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Subbiahanadar Chelladurai K, Selvan Christyraj JD, Rajagopalan K, Selvan Christyraj JRS. Advancing ex vivo functional whole-organ prostate gland model for regeneration and drug screening. Sci Rep 2025; 15:3758. [PMID: 39885212 PMCID: PMC11782681 DOI: 10.1038/s41598-025-87039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
Model organisms are vital for biomedical research and drug testing but face high costs, complexity, and ethical issues. While newer techniques like organoids and assembloids have shown improvements, they still remain inadequate in addressing all research needs. In this study, we present a new method for maintaining the prostate gland of the earthworm, Eudrilus eugeniae ex vivo and examine its potential for regeneration and drug screening. We successfully maintained the earthworm prostate gland in cell culture media for over 200 days, with observed beating behavior confirming its viability. Apoptotic staining and histological analysis show no significant changes, indicating that the prostate gland remains stable. However, significant overexpression of H3 and H2AX on the 10th and 50th days suggests stem cell proliferation and differentiation. Alkaline phosphatase expression analysis confirmed that the stem cell niche is localized to the anterior region. Remarkably, the posterior region of the prostate gland demonstrated significant regenerative capacity, with complete regeneration occurring within 45 days following amputation. Furthermore, treatment with valproic acid enhanced posterior regeneration, leading to full restoration within 12 days. This study confirms the feasibility of maintaining the prostate gland of earthworms in an ex vivo setting, providing a valuable model for studying regeneration and conducting drug screening.
Collapse
Affiliation(s)
- Karthikeyan Subbiahanadar Chelladurai
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India.
| | - Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| |
Collapse
|
8
|
Jiang P, Huang H, Liu Z, Xiang G, Wu X, Hao S, Li S. STAT6 deficiency mitigates the severity of pulmonary arterial hypertension caused by chronic intermittent hypoxia by suppressing Th2-inducing cytokines. Respir Res 2025; 26:13. [PMID: 39806384 PMCID: PMC11731530 DOI: 10.1186/s12931-024-03062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is frequently associated with increased incidence and mortality of pulmonary hypertension (PH). The immune response contributes to pulmonary artery remodeling and OSA-related diseases. The immunologic factors linked to OSA-induced PH are not well understood. STAT6 is crucial in the signaling pathway that modulates immune response. However, the status of phosphorylated STAT6 (p-STAT6) in an OSA-induced PH mouse model remains largely unexplored. METHODS Chronic intermittent hypoxia (CIH) plays a crucial role in the progression of OSA. This study utilized a in vivo CIH model to examine the role of STAT6 in CIH-induced PH. RESULTS CIH mice exhibited pulmonary artery remodeling and pulmonary hypertension, indicated by increased right ventricular systolic pressure (RVSP), higher right ventricular to left ventricular plus septum (RV/LV + S) ratios, and significant morphological alterations compared to normoxic (Nor) mice. Increased p-STAT6 in the lungs and elevated p-STAT6 + IL-4 + producing T cells in CIH mice. STAT6 deficiency (STAT6-/-) improved PH and PA remodeling in CIH-induced PH mouse models.STAT6 deficiency impaired the T helper 2 (Th2) immune response, affecting IL-4 and IL-13 secretion. IL-4, rather than IL-13, activated STAT6 in human pulmonary artery smooth muscle cells (hPASMCs). STAT6 knockdown decreased the proliferation in IL-4 treated hPASMCs. CONCLUSION These findings exhibit the critical role of STAT6 in the pathogenesis of CIH induced PH by regulating Th2 immune response.STAT6 could be a significant therapeutic target for OSA-related PH.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- The Nutrition Department at Zhongshan Hospital, Fudan University, Shanghai, China
- The Nutrition Department, QingPu District Central Hospital, Shanghai, 200032, China
| | - Huai Huang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zilong Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guiling Xiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- The Critical Care Medicine Department at Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaodan Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Center for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- The Critical Care Medicine Department at Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Center for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Liang W, Zhou C, Liu X, Xie Q, Xia L, Liu L, Bao W, Lin H, Xiong X, Zhang H, Zheng Z, Zhao J. Current status of nano-embedded growth factors and stem cells delivery to bone for targeted repair and regeneration. J Orthop Translat 2025; 50:257-273. [PMID: 39902262 PMCID: PMC11788687 DOI: 10.1016/j.jot.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
Bone-related diseases like osteoarthritis and osteoporosis impact millions globally, affecting quality of life. Osteoporosis considerably enhances the probability of bone fractures of the wrist, hip, and spine. Enhancement and acceleration of functional bone development can be achieved through the sustained delivery of growth factors (GFs) and cells in biomaterial carriers. The delivery of bioactive compounds in a targeted, spatiotemporal way that most closely resembles the natural defect repair process can be achieved by designing the carrier system with established release kinetics. Furthermore, the carrier can serve as a substrate that mimics the extracellular matrix, facilitating osteoprogenitor cell infiltration and growth for integrative tissue healing. In this report, we explore the significance of GFs within the realm of bone and cartilage tissue engineering, encompassing their encapsulation and delivery methodologies, the kinetics of release, and their amalgamation with biomaterials and stem cells (SCs) to facilitate the mending of bone fractures. Moreover, the significance of GFs in evaluating the microenvironment of bone tissue through reciprocal signaling with cells and biomaterial scaffolds is emphasized which will serve as the foundation for prospective advances in bone and cartilage tissue engineering as well as therapeutic equipment. Nanoparticles are being used in regenerative medicine to promote bone regeneration and repair by delivering osteoinductive growth factors like BMP-2, VEGF, TGF-β. These nanocarriers allow controlled release, minimizing adverse effects and ensuring growth factors are concentrated at the injury site. They are also mixed with mesenchymal stem cells (MSCs) to improve their engraftment, differentiation, and survival. This approach is a key step in developing multi-model systems that more efficiently facilitate bone regeneration. Researchers are exploring smart nanoparticles with immunomodulatory qualities to improve bonre regeneration and reduce inflammation in injury site. Despite promising preclinical results, challenges include cost management, regulatory approval, and long term safety. However, incorporating stem cell transport and growth factors in nanoparticles could revolutionize bone regeneration and offer more personalized therapies for complex bone disorders and accidents. The translational potential of this article Stem cell transport and growth factors encapsulated in nanoparticles are becoming revolutionary methods for bone regeneration and repair. By encouraging stem cells to develop into osteoblasts, osteoinductive GFs like BMP-2, VEGF, and TGF-β can be delivered under control due to nanomaterials like nanoparticles, nanofibers, and nanotubes. By ensuring sustained release, these nanocarriers lessen adverse effects and enhance therapeutic results. In order to prove their survival and development, MCSs, which are essential for bone regeneration, are mixed with nanoparticles, frequently using scaffolds that resemble the ECM of bone. Furthermore, by adjusting to the injured environment and lowering inflammation, immunomodulatory nanostructures and stimuli-responsive nanomaterials can further maximize. While there are still shotcomings to overcome, including managing expenses, negotiating regulatory processes, and guaranteeing long-term safety, this method promises to outperform traditional bone grafting by providing quicker, more individualized, and more efficient treatments. Nano-embedded growth factors and stem cell technologies have the potential to revolutionize orthopedic therapy and significantly enhance patient outcomes with further research.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000, China
| | - Xiankun Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Qiong Xie
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Wenwen Bao
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hongming Lin
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Xiaochun Xiong
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hao Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Zeping Zheng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| |
Collapse
|
10
|
Wang W, Liu Z, Zhu J, Zhen H, Qi M, Luo J, Zhen J. Macrophage tracking with USPIO imaging and T2 mapping predicts immune rejection of transplanted stem cells. Sci Rep 2024; 14:29162. [PMID: 39587241 PMCID: PMC11589617 DOI: 10.1038/s41598-024-80750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024] Open
Abstract
To develop a clinical imaging method for monitoring macrophage migration to the defect site after implantation of various stem cells and evaluating immune responses in the context of knee arthritis, T2 mapping was correlated with CD68-positive cell densities in defects and the bone marrow. This study, which was approved by the Institutional Animal Care and Use Committee, used 32 New Zealand white rabbits preloaded with ultrasmall superparamagnetic iron oxide particles (USPIOs). They were divided into groups that received different stem cell implants after osteochondral defect induction. T2 imaging was performed using a 3.0 T MR scanner, and the data were analysed via one-way ANOVA, with CD68 expression assessed via immunohistochemistry. After implantation, the T2 signal intensity increased across groups, with subgroup D1 (implantation of rat bone marrow stem cells (BMSCs)) showing the lowest T2 value early and the steepest increase in T2 values. Notable differences in CD68-positive cell density were found between Subgroup D1 and the other groups and between Subgroups A1 and C1 post-surgery. A moderate negative correlation was observed between T2 signals and CD68-positive cell density in defects (r = -0.468, p = 0.001), whereas a weak correlation was detected in the bone marrow (r = 0.096, p = 0.313). A significant link was identified between CD68-positive cell density in the bone marrow and in defects (r = -0.255, p = 0.001). This study revealed significant differences in immune responses to stem cells from different origin tissues in the context of cartilage repair. Adipose-derived stem cells (ADSCs) were found to be more likely to provoke immune rejection than were BMSCs in the repair of femoral condyle cartilage defects. Compared with allogeneic transplants, xenogeneic mesenchymal stem cell transplants were associated with prolonged immune rejection. T2 mapping technology was effective in predicting the density of CD68-positive cells, providing a valuable tool for immune monitoring in stem cell therapy.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, 116000, Liaoning, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhenyu Liu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiahong Zhu
- Department of Radiology, Taiyuan Hospital of Traditional Chinese Medicine, Taiyuan, 030001, Shanxi, China
| | - Haocheng Zhen
- Clinical and Basic Medical College, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Meiling Qi
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Luo
- Department of Rheumatology and immunology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Junping Zhen
- Department of Rheumatology and immunology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Department of Magnetic Resonance, Faculty of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
11
|
Sun X, Zhou Q, Xiao C, Mao C, Liu Y, Chen G, Song Y. Role of post-translational modifications of Sp1 in cardiovascular diseases. Front Cell Dev Biol 2024; 12:1453901. [PMID: 39252788 PMCID: PMC11381397 DOI: 10.3389/fcell.2024.1453901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Specific protein 1 (Sp1) is pivotal in sustaining baseline transcription as well as modulating cell signaling pathways and transcription factors activity. Through interactions with various proteins, especially transcription factors, Sp1 controls the expression of target genes, influencing numerous biological processes. Numerous studies have confirmed Sp1's significant regulatory role in the pathogenesis of cardiovascular disorders. Post-translational modifications (PTMs) of Sp1, such as phosphorylation, ubiquitination, acetylation, glycosylation, SUMOylation, and S-sulfhydration, can enhance or modify its transcriptional activity and DNA-binding stability. These modifications also regulate Sp1 expression across different cell types. Sp1 is crucial in regulating non-coding gene expression and the activity of proteins in response to pathophysiological stimuli. Understanding Sp1 PTMs advances our knowledge of cell signaling pathways in controlling Sp1 stability during cardiovascular disease onset and progression. It also aids in identifying novel pharmaceutical targets and biomarkers essential for preventing and managing cardiovascular diseases.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Synopsis of the Golden Chamber, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Zhou
- Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengpu Xiao
- Department of Typhoid, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Liu
- The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Guozhen Chen
- Department of Pediatrics, Yantai Yuhuangding Hospital, Shandong, China
| | - Yunjia Song
- Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
12
|
Liang Q, Liu X, Peng X, Luo T, Su Y, Xu X, Xie H, Gao H, Chen Z, Xie C. Salvianolic acid B in fibrosis treatment: a comprehensive review. Front Pharmacol 2024; 15:1442181. [PMID: 39139645 PMCID: PMC11319160 DOI: 10.3389/fphar.2024.1442181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Fibrosis is a public health issue of great concern characterized by the excessive deposition of extracellular matrix, leading to the destruction of parenchymal tissue and organ dysfunction that places a heavy burden on the global healthcare system due to its high incidence, disability, and mortality. Salvianolic acid B (SalB) has positively affected various human diseases, including fibrosis. In this review, we concentrate on the anti-fibrotic effects of SalB from a molecular perspective while providing information on the safety, adverse effects, and drug interactions of SalB. Additionally, we discuss the innovative SalB formulations, which give some references for further investigation and therapeutic use of SalB's anti-fibrotic qualities. Even with the encouraging preclinical data, additional research is required before relevant clinical trials can be conducted. Therefore, we conclude with recommendations for future studies. It is hoped that this review will provide comprehensive new perspectives on future research and product development related to SalB treatment of fibrosis and promote the efficient development of this field.
Collapse
Affiliation(s)
- Qingzhi Liang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoqin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xi Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ting Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Su
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengtao Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Ai JY, Liu CF, Zhang W, Rao GW. Current status of drugs targeting PDGF/PDGFR. Drug Discov Today 2024; 29:103989. [PMID: 38663580 DOI: 10.1016/j.drudis.2024.103989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/30/2024]
Abstract
As an important proangiogenic factor, platelet-derived growth factor (PDGF) and its receptor PDGFR are highly expressed in a variety of tumors, fibrosis, cardiovascular and neurodegenerative diseases. Targeting the PDGF/PDGFR pathway is therefore a promising therapeutic strategy. At present, a variety of PDGF/PDGFR targeted drugs with potential therapeutic effects have been developed, mainly including PDGF agonists, inhibitors targeting PDGFR and proteolysis targeting chimera (PROTACs). This review clarifies the structure, biological function and disease correlation of PDGF and PDGFR, and it discusses the current status of PDGFR-targeted drugs, so as to provide a reference for subsequent research.
Collapse
Affiliation(s)
- Jing-Yan Ai
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
14
|
Rahnama M, Movahedi T, Eslahi A, Kaseb-Mojaver N, Alerasool M, Adabi N, Mojarrad M. Identification of a novel mutation of Platelet-Derived Growth Factor-C (PDGFC) gene in a girl with Non-Syndromic cleft lip and palate. Gene 2024; 910:148335. [PMID: 38432532 DOI: 10.1016/j.gene.2024.148335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Cleft lip with or without cleft palate (CL/CP) is a prevalent congenital malformation. Approximately 16 candidate loci for CL/CP have been identified in both animal models and humans through association or genetic linkage studies. One of these loci is the platelet-derived growth factor-C (PDGFC) gene. In animal models, a mutation in the PDGFC gene has been shown to lead to CL/CP, with PDGF-C protein serving as a growth factor for mesenchymal cells, playing a crucial role in embryogenesis during the induction of neural crest cells. In this study, we present the identification of a novel frameshift mutation in the PDGFC gene, which we hypothesize to be associated with CL/CP, within a consanguineous Iranian family. CASE PRESENTATION The proband was a 3-year-old girl with non-syndromic CL/CP. A history of craniofacial clefts was present in her family. Following genetic counseling, karyotype analysis and whole-exome sequencing (WES) were performed. Cytogenetic analysis revealed normal results, while WES analysis showed that the proband carried a homozygous c.546dupA (p.L183fs) mutation in the PDGFC gene. Sanger sequencing confirmed that her parents were carriers of the mutation. CONCLUSION The c.546dupA (p.L183fs) mutation of PDGFC has not been previously reported and was not found in human genome databases. We speculate that the c.546dupA mutation of the PDGFC gene, identified in the Iranian patient, may be responsible for the phenotype of non-syndromic CL/CP (ns-CL/CP). Further studies are warranted to explore the specific pathogenesis of the PDGFC mutation in ns-CL/CP.
Collapse
Affiliation(s)
- Maryam Rahnama
- Department of Applied cell sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Genetic Foundation of Khorasan Razavi, Mashhad, Iran
| | | | - Atieh Eslahi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Masoome Alerasool
- Genetic Foundation of Khorasan Razavi, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasim Adabi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Genetic Foundation of Khorasan Razavi, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Bernard M, Menet R, Lecordier S, ElAli A. Endothelial PDGF-D contributes to neurovascular protection after ischemic stroke by rescuing pericyte functions. Cell Mol Life Sci 2024; 81:225. [PMID: 38769116 PMCID: PMC11106055 DOI: 10.1007/s00018-024-05244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Ischemic stroke induces neovascularization of the injured tissue as an attempt to promote structural repair and neurological recovery. Angiogenesis is regulated by pericytes that potently react to ischemic stroke stressors, ranging from death to dysfunction. Platelet-derived growth factor (PDGF) receptor (PDGFR)β controls pericyte survival, migration, and interaction with brain endothelial cells. PDGF-D a specific ligand of PDGFRβ is expressed in the brain, yet its regulation and role in ischemic stroke pathobiology remains unexplored. Using experimental ischemic stroke mouse model, we found that PDGF-D is transiently induced in brain endothelial cells at the injury site in the subacute phase. To investigate the biological significance of PDGF-D post-ischemic stroke regulation, its subacute expression was either downregulated using siRNA or upregulated using an active recombinant form. Attenuation of PDGF-D subacute induction exacerbates neuronal loss, impairs microvascular density, alters vascular permeability, and increases microvascular stalling. Increasing PDGF-D subacute bioavailability rescues neuronal survival and improves neurological recovery. PDGF-D subacute enhanced bioavailability promotes stable neovascularization of the injured tissue and improves brain perfusion. Notably, PDGF-D enhanced bioavailability improves pericyte association with brain endothelial cells. Cell-based assays using human brain pericyte and brain endothelial cells exposed to ischemia-like conditions were applied to investigate the underlying mechanisms. PDGF-D stimulation attenuates pericyte loss and fibrotic transition, while increasing the secretion of pro-angiogenic and vascular protective factors. Moreover, PDGF-D stimulates pericyte migration required for optimal endothelial coverage and promotes angiogenesis. Our study unravels new insights into PDGF-D contribution to neurovascular protection after ischemic stroke by rescuing the functions of pericytes.
Collapse
Affiliation(s)
- Maxime Bernard
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Romain Menet
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Sarah Lecordier
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Ayman ElAli
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
16
|
Summers BS, Thomas Broome S, Pang TWR, Mundell HD, Koh Belic N, Tom NC, Ng ML, Yap M, Sen MK, Sedaghat S, Weible MW, Castorina A, Lim CK, Lovelace MD, Brew BJ. A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease. Int J Tryptophan Res 2024; 17:11786469241248287. [PMID: 38757094 PMCID: PMC11097742 DOI: 10.1177/11786469241248287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.
Collapse
Affiliation(s)
- Benjamin Sebastian Summers
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Sarah Thomas Broome
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | | | - Hamish D Mundell
- Faculty of Medicine and Health, New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Naomi Koh Belic
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Nicole C Tom
- Formerly of the Department of Physiology, University of Sydney, NSW, Australia
| | - Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maylin Yap
- Formerly of the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Monokesh K Sen
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine, Western Sydney University, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sara Sedaghat
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Michael W Weible
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Alessandro Castorina
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
- Departments of Neurology and Immunology, St. Vincent’s Hospital, Sydney, NSW, Australia
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
17
|
Wang L, Li F, Wang L, Wu B, Du M, Xing H, Pan S. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Alleviate Rheumatoid Arthritis Symptoms via Shuttling Proteins. J Proteome Res 2024; 23:1298-1312. [PMID: 38500415 DOI: 10.1021/acs.jproteome.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Our prior investigations have evidenced that bone marrow mesenchymal stem cell (BMSC) therapy can significantly improve the outcomes of rheumatoid arthritis (RA). This study aims to conduct a comprehensive analysis of the proteomics between BMSCs and BMSCs-Exos, and to further elucidate the potential therapeutic effect of BMSCs-Exos on RA, so as to establish a theoretical framework for the prevention and therapy of BMSCs-Exos on RA. The 4D label-free LC-MS/MS technique was used for comparative proteomic analysis of BMSCs and BMSCs-Exos. Collagen-induced arthritis (CIA) rat model was used to investigate the therapeutic effect of BMSCs-Exos on RA. Our results showed that some homology and differences were observed between BMSCs and BMSCs-Exos proteins, among which proteins highly enriched in BMSCs-Exos were related to extracellular matrix and extracellular adhesion. BMSCs-Exos can be taken up by chondrocytes, promoting cell proliferation and migration. In vivo results revealed that BMSCs-Exos significantly improved the clinical symptoms of RA, showing a certain repair effect on the injury of articular cartilage. In short, our study revealed, for the first time, that BMSCs-Exos possess remarkable efficacy in alleviating RA symptoms, probably through shuttling proteins related to cell adhesion and tissue repair ability in CIA rats, suggesting that BMSCs-Exos carrying expressed proteins may become a useful biomaterial for RA treatment.
Collapse
Affiliation(s)
- Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Liting Wang
- Department of Rehabilitation, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, China
| | - Bingxing Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman ,Washington 99163, United States
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
18
|
Trivedi A, Lu TM, Summers B, Kim K, Rhee AJ, Houghton S, Byers DE, Lis R, Reed HO. Lung lymphatic endothelial cells undergo inflammatory and prothrombotic changes in a model of chronic obstructive pulmonary disease. Front Cell Dev Biol 2024; 12:1344070. [PMID: 38440076 PMCID: PMC10910060 DOI: 10.3389/fcell.2024.1344070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
The lymphatic vasculature regulates lung homeostasis through drainage of fluid and trafficking of immune cells and plays a key role in the response to lung injury in several disease states. We have previously shown that lymphatic dysfunction occurs early in the pathogenesis of chronic obstructive pulmonary disease (COPD) caused by cigarette smoke (CS) and that this is associated with increased thrombin and fibrin clots in lung lymph. However, the direct effects of CS and thrombin on lymphatic endothelial cells (LECs) in COPD are not entirely clear. Studies of the blood vasculature have shown that COPD is associated with increased thrombin after CS exposure that causes endothelial dysfunction characterized by changes in the expression of coagulation factors and leukocyte adhesion proteins. Here, we determined whether similar changes occur in LECs. We used an in vitro cell culture system and treated human lung microvascular lymphatic endothelial cells with cigarette smoke extract (CSE) and/or thrombin. We found that CSE treatment led to decreased fibrinolytic activity in LECs, which was associated with increased expression of plasminogen activator inhibitor 1 (PAI-1). LECs treated with both CSE and thrombin together had a decreased expression of tissue factor pathway inhibitor (TFPI) and increased expression of adhesion molecules. RNA sequencing of lung LECs isolated from mice exposed to CS also showed upregulation of prothrombotic and inflammatory pathways at both acute and chronic exposure time points. Analysis of publicly available single-cell RNA sequencing of LECs as well as immunohistochemical staining of lung tissue from COPD patients supported these data and showed increased expression of inflammatory markers in LECs from COPD patients compared to those from controls. These studies suggest that in parallel with blood vessels, the lymphatic endothelium undergoes inflammatory changes associated with CS exposure and increased thrombin in COPD. Further research is needed to unravel the mechanisms by which these changes affect lymphatic function and drive tissue injury in COPD.
Collapse
Affiliation(s)
- Anjali Trivedi
- Department of Medicine, Division of Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
| | - Tyler M. Lu
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, United States
- Molecular and Cellular Biology Program, SUNY Downstate School of Graduate Studies, Brooklyn, NY, United States
| | - Barbara Summers
- Department of Medicine, Division of Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
| | - Kihwan Kim
- Department of Medicine, Division of Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
| | - Alexander J. Rhee
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Sean Houghton
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Derek E. Byers
- Department of Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO, United States
| | - Raphaël Lis
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Hasina Outtz Reed
- Department of Medicine, Division of Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
19
|
Zhang J, Yang P, Liu Y, Chen Z, Wu J, Feng S, Yi Q. Serum levels of PDGF-CC as a potential biomarker for the diagnosis of Kawasaki disease. Ital J Pediatr 2024; 50:16. [PMID: 38273388 PMCID: PMC10809580 DOI: 10.1186/s13052-024-01580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/07/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Kawasaki disease (KD) is an acute systemic vasculitis of unknown etiology that predominantly affects children, and no specific diagnostic biomarkers for KD are available. Platelet-derived growth factor CC (PDGF-CC) is a peptide with angiogenic properties that has been amply demonstrated to play a critical role in the cardiovascular system. This study aimed to investigate the serum expression of PDGF-CC in children with KD and to evaluate the ability of PDGF-CC to diagnose KD. METHODS A total of 96 subjects, including 59 KD patients, 17 febrile controls (FC), and 20 healthy controls (HC), were enrolled. Serum levels of PDGF-CC were measured via enzyme-linked immunosorbent assay. The associations between PDGF-CC and clinical laboratory parameters were investigated by correlation analysis. The diagnostic performance was assessed by receiver operating characteristic (ROC) curve analysis. RESULTS Serum PDGF-CC levels in the KD group were significantly higher than in the FC and HC groups. Serum PDGF-CC levels in the KD group were positively correlated with white blood cell counts, percentage of neutrophils, IL-2, IL-12p70, TNF-α, and IL-1β levels, and negatively correlated with the percentage of lymphocytes. In the analysis of ROC curves, the area under the curve was 0.796 (95% confidence interval 0.688-0.880; P < 0.0001) for PDGF-CC and increased to 0.900 (95% confidence interval 0.808-0.957; P < 0.0001) in combination with white blood cell counts and C-reactive protein. CONCLUSIONS PDGF-CC is a potential biomarker for KD diagnosis, and the combination with white blood cell counts and C-reactive protein can further improve diagnostic performance.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiovascular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, National Clinical Research Center for Child Health and Disorders, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China
| | - Penghui Yang
- Department of Cardiovascular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, National Clinical Research Center for Child Health and Disorders, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China
| | - Yihao Liu
- Department of Cardiovascular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, National Clinical Research Center for Child Health and Disorders, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China
| | - Zhuo Chen
- Department of Cardiovascular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, National Clinical Research Center for Child Health and Disorders, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China
| | - Jinhui Wu
- Department of Cardiovascular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, National Clinical Research Center for Child Health and Disorders, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China
| | - Siqi Feng
- Department of Cardiovascular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, National Clinical Research Center for Child Health and Disorders, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China.
| | - Qijian Yi
- Department of Cardiovascular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, National Clinical Research Center for Child Health and Disorders, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China.
| |
Collapse
|
20
|
Jiang H, Liu M, Qin Y, Zhang H. miR-9 promotes canine endothelial-like cell migration by targeting COL15A1. Vet Med Sci 2024; 10:e1339. [PMID: 38109263 PMCID: PMC10766037 DOI: 10.1002/vms3.1339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/16/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Endothelial cell migration is the initial stage of angiogenesis. In previous studies, miR-9 has been found to regulate angiogenesis and cell migration in human medicine. OBJECTIVES This study aimed to reveal the regulatory effect of miR-9 on canine endothelial cell migration. METHODS Embryonic canine ventricle myocardium tissues were collected and induced to differentiate into endothelial-like cells (ELCs). A transwell and invasion assay were used to evaluate the impact of miR-9 on the migration capacity of ELCs, after which a luciferase reporter assay, western blotting, RNA sequencing and reverse transcription-polymerase chain reaction were conducted to explore the regulatory mechanism. RESULTS Our results showed that we successfully induced the primary cells derived from canine cardiac embryo tissues into ELCs. MiR-9 also promoted the migration and invasion of canine ELCs, and inhibited the expression of collagen XV, an angiogenic inhibitor, at the translational level by targeting the 3' untranslated region of COL15A1 gene. Furthermore, RNA sequencing showed that overexpression of miR-9 impacted several signalling pathways and eight genes involved in angiogenesis and cell migration in canine ELCs. CONCLUSIONS These findings suggest that miR-9 enhances the migration of canine ELCs and may serve as a potential diagnostic and therapeutic target for canine diseases involved in endothelial cells migration and angiogenesis, but more further studies are needed.
Collapse
Affiliation(s)
- Heng Jiang
- Institute of Tropical Agriculture and ForestryHainan UniversityHainanPR China
| | - Mengmeng Liu
- Institute of Tropical Agriculture and ForestryHainan UniversityHainanPR China
- One Health InstituteHainan UniversityHainanPR China
| | - Yao Qin
- Institute of Tropical Agriculture and ForestryHainan UniversityHainanPR China
| | - Hong Zhang
- Institute of Tropical Agriculture and ForestryHainan UniversityHainanPR China
| |
Collapse
|
21
|
Han J, Jia D, Yao H, Xu C, Huan Z, Jin H, Ge X. GRP78 improves the therapeutic effect of mesenchymal stem cells on hemorrhagic shock-induced liver injury: Involvement of the NF-кB and HO-1/Nrf-2 pathways. FASEB J 2024; 38:e23334. [PMID: 38050647 DOI: 10.1096/fj.202301456rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are a popular cell source for repairing the liver. Improving the survival rate and colonization time of MSCs may significantly improve the therapeutic outcomes of MSCs. Studies showed that 78-kDa glucose-regulated protein (GRP78) expression improves cell viability and migration. This study aims to examine whether GRP78 overexpression improves the efficacy of rat bone marrow-derived MSCs (rBMSCs) in HS-induced liver damage. Bone marrow was isolated from the femurs and tibias of rats. rBMSCs were transfected with a GFP-labeled GRP78 expression vector. Flow cytometry, transwell invasion assay, scratch assay immunoblotting, TUNEL assay, MTT assay, and ELISA were carried out. The results showed that GRP78 overexpression enhanced the migration and invasion of rBMSCs. Moreover, GRP78-overexpressing rBMSCs relieved liver damage, repressed liver oxidative stress, and inhibited apoptosis. We found that overexpression of GRP78 in rBMSCs inhibited activation of the NLRP3 inflammasome, significantly decreased the levels of inflammatory factors, and decreased the expression of CD68. Notably, GRP78 overexpression activated the Nrf-2/HO-1 pathway and inhibited the NF-κB pathway. High expression of GRP78 efficiently enhanced the effect of rBMSC therapy. GRP78 may be a potential target to improve the therapeutic efficacy of BMSCs.
Collapse
Affiliation(s)
- Jiahui Han
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Di Jia
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Hao Yao
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Ce Xu
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Zhirong Huan
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Hongdou Jin
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
- Orthopedic Institution of Wuxi City, Wuxi, People's Republic of China
| |
Collapse
|
22
|
Liang Y, Wang JX, Wu XY, Cui Y, Zou ZH, Li WQ, Liu Y, Gao J. The prediction value of platelet-derived growth factor for major adverse cardiovascular events in patients with acute non-ST-segment elevation myocardial infarction. Ann Med 2023; 55:1047-1057. [PMID: 36908232 PMCID: PMC10795595 DOI: 10.1080/07853890.2023.2176542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND The value of plasma Platelet-Derived Growth Factor (PDGF) as a biomarker in predicting major adverse cardiovascular events (MACEs) in patients with acute non-ST-segment elevation myocardial infarction (NSTEMI) remains unclear. METHODS A total of 242 patients with NSTEMI were enrolled in this observational cohort study. The correlation between PDGF and MACEs was evaluated during a five-year follow-up. Kaplan-Meier survival analysis with Cox proportional-hazards regression was used to identify predictive values of PDGF. RESULTS The mean follow-up of NSTEMI patients was 1334 days. It was found that as the PDGF level increased, a significant uptrend in the incidence of MACEs and all-cause death, including the MACEs of 30 days, 180 days, 1 year, 5 years and the death of 1 year and 5 years (All Log-rank p < .05). Subgroup analysis further showed that PDGF had better predictive value for patients with age >65 years, GRACE score ≥140 and platelet count (PLT) >200 × 109/L. CONCLUSION PDGF levels can predict short-term and long-term MACEs in NSTEMI patients after discharge, especially for patients with older age, higher GRACE score and baseline PLT > 200 × 109/L.Key messagesPDGF is a risk factor for short- and long-term MACEs in patients with STEMI.PDGF has a better prognostic value in patients with older age and PLT > 200 × 109/L.Baseline plasma PDGF levels were positively correlated with GRACE score.
Collapse
Affiliation(s)
- Yan Liang
- Thoracic Clinical College, Tianjin Medical University, Tianjin, P.R. China
| | - Jing-xian Wang
- Thoracic Clinical College, Tianjin Medical University, Tianjin, P.R. China
| | - Xiao-Yuan Wu
- Thoracic Clinical College, Tianjin Medical University, Tianjin, P.R. China
| | - Yan Cui
- Thoracic Clinical College, Tianjin Medical University, Tianjin, P.R. China
| | - Zhong-He Zou
- Thoracic Clinical College, Tianjin Medical University, Tianjin, P.R. China
| | - Wen-Qing Li
- Thoracic Clinical College, Tianjin Medical University, Tianjin, P.R. China
| | - Yin Liu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, P.R. China
| | - Jing Gao
- Thoracic Clinical College, Tianjin Medical University, Tianjin, P.R. China
- Cardiovascular Institute, Tianjin Chest Hospital, Tianjin, P.R. China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, P.R. China
| |
Collapse
|
23
|
Li J, Hu W, Zhang R, Chen W, Li X, Tang Z. PDGF-C promotes cell proliferation partially via downregulating BOP1. Cell Biol Int 2023; 47:1942-1949. [PMID: 37615370 DOI: 10.1002/cbin.12082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/23/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
Platelet-derived growth factor C (PDGF-C) is a member of PDGF/VEGF family, which is well-known for important functions in the vascular system. It is widely reported that PDGF-C is able to modulate cell proliferation. However, it is still not very clear about this cell modulating mechanism at the molecular level. In a screening of factors regulated by PDGF-C protein, we fished out a factor called block of proliferation 1 (BOP1), which is a pivotal regulator of ribosome biogenesis and cell proliferation. In this study, we investigated the regulation of BOP1 by PDGF-C and its role in modulating cell proliferation. We found that BOP1 was downregulated at both mRNA and protein levels in cells treated with PDGF-C-containing conditioned medium. On the other hand, BOP1 was upregulated in PDGF-C deficient mice. Furthermore, we confirmed that overexpression of BOP1 inhibited HEK293A cell proliferation, whereas knockdown of BOP1 promoted cell proliferation. The mitogenic effect of PDGF-C could be attenuated by downregulation of BOP1. Our results demonstrate a clear PDGF-C-BOP1 signaling that modulates cell proliferation.
Collapse
Affiliation(s)
- Jiahui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenjie Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ruting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhongshu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
24
|
Kaesler N, Cheng M, Nagai J, O’Sullivan J, Peisker F, Bindels EM, Babler A, Moellmann J, Droste P, Franciosa G, Dugourd A, Saez-Rodriguez J, Neuss S, Lehrke M, Boor P, Goettsch C, Olsen JV, Speer T, Lu TS, Lim K, Floege J, Denby L, Costa I, Kramann R. Mapping cardiac remodeling in chronic kidney disease. SCIENCE ADVANCES 2023; 9:eadj4846. [PMID: 38000021 PMCID: PMC10672229 DOI: 10.1126/sciadv.adj4846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023]
Abstract
Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.
Collapse
Affiliation(s)
- Nadine Kaesler
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, University Hospital of the RWTH Aachen, Aachen, Germany
| | - James Nagai
- Institute for Computational Genomics, University Hospital of the RWTH Aachen, Aachen, Germany
| | - James O’Sullivan
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Fabian Peisker
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Eric M. J. Bindels
- Department of Hematology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Anne Babler
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Julia Moellmann
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Patrick Droste
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Pathology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Aurelien Dugourd
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Sabine Neuss
- Institute of Pathology, University Hospital of the RWTH Aachen, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Peter Boor
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Pathology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Claudia Goettsch
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Jesper V. Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thimoteus Speer
- Department of Medicine (Nephrology), Goethe University Frankfurt, Frankfurt, Germany
| | - Tzong-Shi Lu
- Brigham and Women’s Hospital, Renal Division, Boston, MA, USA
| | - Kenneth Lim
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jürgen Floege
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Laura Denby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ivan Costa
- Institute for Computational Genomics, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Rafael Kramann
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
25
|
Sakkers TR, Mokry M, Civelek M, Erdmann J, Pasterkamp G, Diez Benavente E, den Ruijter HM. Sex differences in the genetic and molecular mechanisms of coronary artery disease. Atherosclerosis 2023; 384:117279. [PMID: 37805337 DOI: 10.1016/j.atherosclerosis.2023.117279] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 09/01/2023] [Indexed: 10/09/2023]
Abstract
Sex differences in coronary artery disease (CAD) presentation, risk factors and prognosis have been widely studied. Similarly, studies on atherosclerosis have shown prominent sex differences in plaque biology. Our understanding of the underlying genetic and molecular mechanisms that drive these differences remains fragmented and largely understudied. Through reviewing genetic and epigenetic studies, we identified more than 40 sex-differential candidate genes (13 within known CAD loci) that may explain, at least in part, sex differences in vascular remodeling, lipid metabolism and endothelial dysfunction. Studies with transcriptomic and single-cell RNA sequencing data from atherosclerotic plaques highlight potential sex differences in smooth muscle cell and endothelial cell biology. Especially, phenotypic switching of smooth muscle cells seems to play a crucial role in female atherosclerosis. This matches the known sex differences in atherosclerotic phenotypes, with men being more prone to lipid-rich plaques, while women are more likely to develop fibrous plaques with endothelial dysfunction. To unravel the complex mechanisms that drive sex differences in CAD, increased statistical power and adjustments to study designs and analysis strategies are required. This entails increasing inclusion rates of women, performing well-defined sex-stratified analyses and the integration of multi-omics data.
Collapse
Affiliation(s)
- Tim R Sakkers
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands; Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, 1335 Lee St, Charlottesville, VA, 22908, USA; Department of Biomedical Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, USA
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands.
| |
Collapse
|
26
|
Welch CL, Aldred MA, Balachandar S, Dooijes D, Eichstaedt CA, Gräf S, Houweling AC, Machado RD, Pandya D, Prapa M, Shaukat M, Southgate L, Tenorio-Castano J, Chung WK. Defining the clinical validity of genes reported to cause pulmonary arterial hypertension. Genet Med 2023; 25:100925. [PMID: 37422716 PMCID: PMC10766870 DOI: 10.1016/j.gim.2023.100925] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. Genetic testing is currently recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of venous/capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform genetic testing. METHODS An international panel of experts in PAH applied a semi-quantitative scoring system developed by the NIH Clinical Genome Resource to classify the relative strength of evidence supporting PAH gene-disease relationships based on genetic and experimental evidence. RESULTS Twelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 3 genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed because of a paucity of genetic evidence over time. CONCLUSION We recommend that genetic testing includes all genes with definitive evidence and that caution be taken in the interpretation of variants identified in genes with moderate or limited evidence. Genes with no known evidence for PAH or disputed genes should not be included in genetic testing.
Collapse
Affiliation(s)
- Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Srimmitha Balachandar
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Stefan Gräf
- NIHR BioResource for Translational Research - Rare Diseases, Department of Haemotology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rajiv D Machado
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Divya Pandya
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Matina Prapa
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Memoona Shaukat
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Jair Tenorio-Castano
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IDiPAZ, Universidad Autonoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; ITHACA, European Reference Network, Brussels, Belgium
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; Department of Medicine, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
27
|
Zhang K, Zhang J, Kan C, Tian H, Ma Y, Huang N, Han F, Hou N, Sun X. Role of dysfunctional peri-organ adipose tissue in metabolic disease. Biochimie 2023; 212:12-20. [PMID: 37019205 DOI: 10.1016/j.biochi.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Metabolic disease is a complex disorder defined by a group with interrelated factors. There is growing evidence that obesity can lead to a variety of metabolic diseases, including diabetes and cardiovascular disease. Excessive adipose tissue (AT) deposition and ectopic accumulation can lead to increased peri-organ AT thickness. Dysregulation of peri-organ (perivascular, perirenal, and epicardial) AT is strongly associated with metabolic disease and its complications. The mechanisms include secretion of cytokines, activation of immunocytes, infiltration of inflammatory cells, involvement of stromal cells, and abnormal miRNA expression. This review discusses the associations and mechanisms by which various types of peri-organ AT affect metabolic diseases while addressing it as a potential future treatment strategy.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongzhan Tian
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Huang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
28
|
Jin Y, Li S, Yu Q, Chen T, Liu D. Application of stem cells in regeneration medicine. MedComm (Beijing) 2023; 4:e291. [PMID: 37337579 PMCID: PMC10276889 DOI: 10.1002/mco2.291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/21/2023] Open
Abstract
Regeneration is a complex process affected by many elements independent or combined, including inflammation, proliferation, and tissue remodeling. Stem cells is a class of primitive cells with the potentiality of differentiation, regenerate with self-replication, multidirectional differentiation, and immunomodulatory functions. Stem cells and their cytokines not only inextricably linked to the regeneration of ectodermal and skin tissues, but also can be used for the treatment of a variety of chronic wounds. Stem cells can produce exosomes in a paracrine manner. Stem cell exosomes play an important role in tissue regeneration, repair, and accelerated wound healing, the biological properties of which are similar with stem cells, while stem cell exosomes are safer and more effective. Skin and bone tissues are critical organs in the body, which are essential for sustaining life activities. The weak repairing ability leads a pronounced impact on the quality of life of patients, which could be alleviated by stem cell exosomes treatment. However, there are obstacles that stem cells and stem cells exosomes trough skin for improved bioavailability. This paper summarizes the applications and mechanisms of stem cells and stem cells exosomes for skin and bone healing. We also propose new ways of utilizing stem cells and their exosomes through different nanoformulations, liposomes and nanoliposomes, polymer micelles, microspheres, hydrogels, and scaffold microneedles, to improve their use in tissue healing and regeneration.
Collapse
Affiliation(s)
- Ye Jin
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Shuangyang Li
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Qixuan Yu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Tianli Chen
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Da Liu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| |
Collapse
|
29
|
Lin X, Bell RD, Catheline SE, Takano T, McDavid A, Jonason JH, Schwarz EM, Xing L. Targeting Synovial Lymphatic Function as a Novel Therapeutic Intervention for Age-Related Osteoarthritis in Mice. Arthritis Rheumatol 2023; 75:923-936. [PMID: 36625730 PMCID: PMC10238595 DOI: 10.1002/art.42441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The synovial lymphatic system (SLS) removes catabolic factors from the joint. Vascular endothelial growth factor C (VEGF-C) and its receptor, VEGFR-3, are crucial for lymphangiogenesis. However, their involvement in age-related osteoarthritis (OA) is unknown. This study was undertaken to determine whether the SLS and the VEGF-C/VEGFR-3 pathway contribute to the development and progression of age-related OA, using a murine model of naturally occurring joint disease. METHODS SLS function was assessed in the knees of young (3-month-old) and aged (19-24-month-old) male and female C57BL/6J mice via a newly established in vivo IVIS-dextran imaging approach, which, in addition to histology, was used to assess the effects of VEGF-C treatment on SLS function and OA pathology in aged mice. RNA-sequencing of synovial tissue was performed to explore molecular mechanisms of the disease in the mouse knee joints. RESULTS Results showed that aged mice had impaired SLS function, including decreases in joint clearance (mean T1/2 of signal intensity clearance, 2.8 hours in aged mice versus 0.5 hours in young mice; P < 0.0001), synovial influx (mean ± SD 1.7 ± 0.8% in aged mice versus 4.1 ± 1.9% in young mice; P = 0.0004), and lymph node draining capacity (mean ± SD epifluorescence total radiant intensity ([photons/second]/[μW/cm2 ]) 1.4 ± 0.8 in aged mice versus 3.7 ± 1.2 in young mice; P < 0.0001). RNA-sequencing of the synovial tissue showed that Vegf-c and Vegfr3 signaling genes were decreased in the synovium of aged mice. VEGF-C treatment resulted in improvements in SLS function in aged mice, including increased percentage of signal intensity joint clearance (mean ± SD 63 ± 9% in VEGF-C-treated aged mice versus 52 ± 15% in vehicle-treated aged mice; P = 0.012), increased total articular cartilage cross-sectional area (mean ± SD 0.38 ± 0.07 mm2 in VEGF-C-treated aged mice versus 0.26 ± 0.07 mm2 in vehicle-treated aged mice; P < 0.0001), and decreased percentage of matrix metallopeptidase 13-positive staining area within total synovial area in 22-month-old VEGF-C-treated mice versus 22-month-old vehicle-treated mice (mean ± SD decrease 7 ± 2% versus 4 ± 1%; P = 0.0004). CONCLUSION SLS function is reduced in the knee joints of aged mice due to decreased VEGF-C/VEGFR-3 signaling. VEGF-C treatment attenuates OA joint damage and improves synovial lymphatic drainage in aged mice. The SLS and VEGF-C/VEGFR-3 signaling represent novel physiopathologic mechanisms that could potentially be used as therapeutic targets for age-related OA.
Collapse
Affiliation(s)
- Xi Lin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Richard D. Bell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sarah E. Catheline
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Andrew McDavid
- Department of Biostatistics and computational biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jennifer H. Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
30
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
31
|
Zhang X, Wang G, Wang W, Ran C, Piao F, Ma Z, Zhang Z, Zheng G, Cao F, Xie H, Cui D, Samuel Okoye C, Yu X, Wang Z, Zhao D. Bone marrow mesenchymal stem cells paracrine TGF-β1 to mediate the biological activity of osteoblasts in bone repair. Cytokine 2023; 164:156139. [PMID: 36738525 DOI: 10.1016/j.cyto.2023.156139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) are an important source of seed cells for regenerative medicine and tissue engineering therapy. BMSCs have multiple differentiation potentials and can release paracrine factors to facilitate tissue repair. Although the role of the osteogenic differentiation of BMSCs has been fully confirmed, the function and mechanism of BMSC paracrine factors in bone repair are still largely unclear. This study aimed to determine the roles of transforming growth factor beta-1 (TGF-β1) produced by BMSCs in bone tissue repair. METHODS To confirm our hypothesis, we used a Transwell system to coculture hBMSCs and human osteoblast-like cells without contact, which could not only avoid the interference of the osteogenic differentiation of hBMSCs but also establish the cell-cell relationship between hBMSCs and human osteoblast-like cells and provide stable paracrine substances. In the transwell coculture system, alkaline phosphatase activity, mineralized nodule formation, cell migration and chemotaxis analysis assays were conducted. RESULTS Osteogenesis, migration and chemotaxis of osteoblast-like cells were regulated by BMSCs in a paracrine manner via the upregulation of osteogenic and migration-associated genes. A TGF-β receptor I inhibitor (LY3200882) significantly antagonized BMSC-induced biological activity and related gene expression in osteoblast-like cells. Interestingly, coculture with osteoblast-like cells significantly increased the production of TGF-β1 by BMSCs, and there was potential intercellular communication between BMSCs and osteoblast-like cells. CONCLUSIONS Our findings provide evidence that the biological mechanism of BMSC-produced TGF-β1 promotes bone regeneration and repair, providing a theoretical basis and new directions for the application of BMSC transplantation in the treatment of osteonecrosis and bone injury.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Guangkuo Wang
- Department of Orthopaedics, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China
| | - Weidan Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China.
| | - Chunxiao Ran
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Fengyuan Piao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Zhijie Ma
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Zhaodong Zhang
- Department of Orthopaedics, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China
| | - Guoshuang Zheng
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Fang Cao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Hui Xie
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Daping Cui
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Chukwuemeka Samuel Okoye
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Xiaoming Yu
- School of Material Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Ziming Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China.
| |
Collapse
|
32
|
Yang Q, Al-Hendy A. Update on the Role and Regulatory Mechanism of Extracellular Matrix in the Pathogenesis of Uterine Fibroids. Int J Mol Sci 2023; 24:5778. [PMID: 36982852 PMCID: PMC10051203 DOI: 10.3390/ijms24065778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/22/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Uterine fibroids (UFs), also known as leiomyomas, are benign tumors of the myometrium affecting over 70% of women worldwide, particularly women of color. Although benign, UFs are associated with significant morbidity; they are the primary indication for hysterectomy and a major source of gynecologic and reproductive dysfunction, ranging from menorrhagia and pelvic pain to infertility, recurrent miscarriage, and preterm labor. So far, the molecular mechanisms underlying the pathogenesis of UFs are still quite limited. A knowledge gap needs to be filled to help develop novel strategies that will ultimately facilitate the development of therapies and improve UF patient outcomes. Excessive ECM accumulation and aberrant remodeling are crucial for fibrotic diseases and excessive ECM deposition is the central characteristics of UFs. This review summarizes the recent progress of ascertaining the biological functions and regulatory mechanisms in UFs, from the perspective of factors regulating ECM production, ECM-mediated signaling, and pharmacological drugs targeting ECM accumulation. In addition, we provide the current state of knowledge by discussing the molecular mechanisms underlying the regulation and emerging role of the extracellular matrix in the pathogenesis of UFs and in applications. Comprehensive and deeper insights into ECM-mediated alterations and interactions in cellular events will help develop novel strategies to treat patients with this common tumor.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA;
| | | |
Collapse
|
33
|
Age-associated microenvironmental changes highlight the role of PDGF-C in ER + breast cancer metastatic relapse. NATURE CANCER 2023; 4:468-484. [PMID: 36914817 PMCID: PMC10132974 DOI: 10.1038/s43018-023-00525-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023]
Abstract
Patients with estrogen receptor (ER)-positive breast cancer are at risk of metastatic relapse for decades after primary tumor resection and treatment, a consequence of dormant disseminated tumor cells (DTCs) reawakening at secondary sites. Here we use syngeneic ER+ mouse models in which DTCs display a dormant phenotype in young mice but accelerated metastatic outgrowth in an aged or fibrotic microenvironment. In young mice, low-level Pdgfc expression by ER+ DTCs is required for their maintenance in secondary sites but is insufficient to support development of macrometastases. By contrast, the platelet-derived growth factor (PDGF)-Chi environment of aging or fibrotic lungs promotes DTC proliferation and upregulates tumor cell Pdgfc expression stimulating further stromal activation, events that can be blocked by pharmacological inhibition of PDGFRα or with a PDGF-C-blocking antibody. These results highlight the role of the changing microenvironment in regulating DTC outgrowth and the opportunity to target PDGF-C signaling to limit metastatic relapse in ER+ breast cancer.
Collapse
|
34
|
Falch CM, Arlien-Søborg MC, Dal J, Sundaram AYM, Michelsen AE, Ueland T, Olsen LG, Heck A, Bollerslev J, Jørgensen JOL, Olarescu NC. Gene expression profiling of subcutaneous adipose tissue reveals new biomarkers in acromegaly. Eur J Endocrinol 2023; 188:7075007. [PMID: 36895180 DOI: 10.1093/ejendo/lvad031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023]
Abstract
CONTEXT Active acromegaly is characterized by lipolysis-induced insulin resistance, which suggests adipose tissue (AT) as a primary driver of metabolic aberrations. OBJECTIVE To study the gene expression landscape in AT in patients with acromegaly before and after disease control in order to understand the changes and to identify disease-specific biomarkers. METHODS RNA sequencing was performed on paired subcutaneous adipose tissue (SAT) biopsies from six patients with acromegaly at time of diagnosis and after curative surgery. Clustering and pathway analyses were performed in order to identify disease activity-dependent genes. In a larger patient cohort (n = 23), the corresponding proteins were measured in serum by immunoassay. Correlations between growth hormone (GH), insulin-like growth factor I (IGF-I), visceral AT (VAT), SAT, total AT, and serum proteins were analyzed. RESULTS 743 genes were significantly differentially expressed (P-adjusted < .05) in SAT before and after disease control. The patients clustered according to disease activity. Pathways related to inflammation, cell adhesion and extracellular matrix, GH and insulin signaling, and fatty acid oxidation were differentially expressed.Serum levels of HTRA1, METRNL, S100A8/A9, and PDGFD significantly increased after disease control (P < .05). VAT correlated with HTRA1 (R = 0.73) and S100A8/A9 (R = 0.55) (P < .05 for both). CONCLUSION AT in active acromegaly is associated with a gene expression profile of fibrosis and inflammation, which may corroborate the hyper-metabolic state and provide a means for identifying novel biomarkers.
Collapse
Affiliation(s)
- Camilla M Falch
- Section of Specialized Endocrinology, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
| | - Mai Christiansen Arlien-Søborg
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital (AUH), Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital (AUH), Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jakob Dal
- Department of Endocrinology and Internal Medicine, Aalborg University Hospital (AAUH), Hobrovej 18-22, 9000 Aalborg, Denmark
- Steno Diabetes Center North Jutland, Aalborg University Hospital, Søndre Skovvej 3E, 9000 Aalborg, Denmark
| | - Arvind Y M Sundaram
- Department of Medical Genetics, University of Oslo, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
| | - Annika E Michelsen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
| | - Linn Guro Olsen
- Section of Specialized Endocrinology, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
| | - Ansgar Heck
- Section of Specialized Endocrinology, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
| | - Jens Bollerslev
- Section of Specialized Endocrinology, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
| | - Jens Otto L Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital (AUH), Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Nicoleta C Olarescu
- Section of Specialized Endocrinology, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
35
|
Zhang J, Li W, Xiong Z, Zhu J, Ren X, Wang S, Kuang H, Lin X, Mora A, Li X. PDGF-D-induced immunoproteasome activation and cell-cell interactions. Comput Struct Biotechnol J 2023; 21:2405-2418. [PMID: 37066124 PMCID: PMC10090480 DOI: 10.1016/j.csbj.2023.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Platelet-derived growth factor-D (PDGF-D) is abundantly expressed in ocular diseases. Yet, it remains unknown whether and how PDGF-D affects ocular cells or cell-cell interactions in the eye. In this study, using single-cell RNA sequencing (scRNA-seq) and a mouse model of PDGF-D overexpression in retinal pigment epithelial (RPE) cells, we found that PDGF-D overexpression markedly upregulated the key immunoproteasome genes, leading to increased antigen processing/presentation capacity of RPE cells. Also, more than 6.5-fold ligand-receptor pairs were found in the PDGF-D overexpressing RPE-choroid tissues, suggesting markedly increased cell-cell interactions. Moreover, in the PDGF-D-overexpressing tissues, a unique cell population with a transcriptomic profile of both stromal cells and antigen-presenting RPE cells was detected, suggesting PDGF-D-induced epithelial-mesenchymal transition of RPE cells. Importantly, administration of ONX-0914, an immunoproteasome inhibitor, suppressed choroidal neovascularization (CNV) in a mouse CNV model in vivo. Together, we show that overexpression of PDGF-D increased pro-angiogenic immunoproteasome activities, and inhibiting immunoproteasome pathway may have therapeutic value for the treatment of neovascular diseases.
Collapse
|
36
|
Kawai H, Oo MW, Takabatake K, Tosa I, Soe Y, Eain HS, Sanou S, Fushimi S, Sukegawa S, Nakano K, Takeshi T, Nagatsuka H. Enzyme-Cleaved Bone Marrow Transplantation Improves the Engraftment of Bone Marrow Mesenchymal Stem Cells. JBMR Plus 2023; 7:e10722. [PMID: 36936364 PMCID: PMC10020919 DOI: 10.1002/jbm4.10722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is a promising approach to curing bone diseases and disorders. In treating genetic bone disorders, MSC therapy is local or systemic transplantation of isolated and in vitro proliferated MSC rather than bone marrow transplantation. Recent evidence showed that bone marrow MSC engraftment to bone regeneration has been controversial in animal and human studies. Here, our modified bone marrow transplantation (BMT) method solved this problem. Like routine BMT, our modified method involves three steps: (i) isolation of bone marrow cells from the donor, (ii) whole-body lethal irradiation to the recipient, and (iii) injection of isolated bone marrow cells into irradiated recipient mice via the tail vein. The significant modification is imported at the bone marrow isolation step. While the bone marrow cells are flushed out from the bone marrow with the medium in routine BMT, we applied the enzymes' (collagenase type 4 and dispase) integrated medium to wash out the bone marrow cells. Then, cells were incubated in enzyme integrated solution at 37°C for 10 minutes. This modification designated BMT as collagenase-integrated BMT (c-BMT). Notably, successful engraftment of bone marrow MSC to the new bone formation, such as osteoblasts and chondrocytes, occurs in c-BMT mice, whereas routine BMT mice do not recruit bone marrow MSC. Indeed, flow cytometry data showed that c-BMT includes a higher proportion of LepR+, CD51+, or RUNX2+ non-hematopoietic cells than BMT. These findings suggested that c-BMT is a time-efficient and more reliable technique that ensures the disaggregation and collection of bone marrow stem cells and engraftment of bone marrow MSC to the recipient. Hence, we proposed that c-BMT might be a promising approach to curing genetic bone disorders. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Ikue Tosa
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental MedicineColumbia University Irving Medical CenterNew YorkNYUSA
| | - Yamin Soe
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Htoo Shwe Eain
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Sho Sanou
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Oral and Maxillofacial SurgeryKagawa Prefectural Central HospitalTakamatsuJapan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Takarada Takeshi
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| |
Collapse
|
37
|
Song B, Zheng Y, Chi H, Zhu Y, Cui Z, Chen L, Chen G, Gao B, Du Y, Yu Z, Song B. Revealing the roles of glycosphingolipid metabolism pathway in the development of keloid: a conjoint analysis of single-cell and machine learning. Front Immunol 2023; 14:1139775. [PMID: 37168863 PMCID: PMC10164993 DOI: 10.3389/fimmu.2023.1139775] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Keloid is a pathological scar formed by abnormal wound healing, characterized by the persistence of local inflammation and excessive collagen deposition, where the intensity of inflammation is positively correlated with the size of the scar formation. The pathophysiological mechanisms underlying keloid formation are unclear, and keloid remains a therapeutic challenge in clinical practice. This study is the first to investigate the role of glycosphingolipid (GSL) metabolism pathway in the development of keloid. Single cell sequencing and microarray data were applied to systematically analyze and screen the glycosphingolipid metabolism related genes using differential gene analysis and machine learning algorithms (random forest and support vector machine), and a set of genes, including ARSA,GBA2,SUMF2,GLTP,GALC and HEXB, were finally identified, for which keloid diagnostic model was constructed and immune infiltration profiles were analyzed, demonstrating that this set of genes could serve as a new therapeutic target for keloid. Further unsupervised clustering was performed by using expression profiles of glycosphingolipid metabolism genes to discover keloid subgroups, immune cells, inflammatory factor differences and the main pathways of enrichment between different subgroups were calculated. The single-cell resolution transcriptome landscape concentrated on fibroblasts. By calculating the activity of the GSL metabolism pathway for each fibroblast, we investigated the activity changes of GSL metabolism pathway in fibroblasts using pseudotime trajectory analysis and found that the increased activity of the GSL metabolism pathway was associated with fibroblast differentiation. Subsequent analysis of the cellular communication network revealed the existence of a fibroblast-centered communication regulatory network in keloids and that the activity of the GSL metabolism pathway in fibroblasts has an impact on cellular communication. This contributes to the further understanding of the pathogenesis of keloids. Overall, we provide new insights into the pathophysiological mechanisms of keloids, and our results may provide new ideas for the diagnosis and treatment of keloids.
Collapse
Affiliation(s)
- Binyu Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu Zheng
- Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yuhan Zhu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhiwei Cui
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin Chen
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Guo Chen
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Botao Gao
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yichen Du
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Zhou Yu, ; Baoqiang Song,
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Zhou Yu, ; Baoqiang Song,
| |
Collapse
|
38
|
Yao L, Zhao R, He S, Feng Q, Qiao Y, Wang P, Li J. Effects of salvianolic acid A and salvianolic acid B in renal interstitial fibrosis via PDGF-C/PDGFR-α signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154414. [PMID: 36057144 DOI: 10.1016/j.phymed.2022.154414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Renal interstitial fibrosis (RIF) is the main pathological feature of end-stage renal disease (ESRD) caused by various chronic kidney diseases (CKD), and is closely related to renal dysfunction and patient prognosis. Salvianolic acid A (Sal A) and salvianolic acid B (Sal B), isolated from traditional Chinese medicine Salviae miltiorrhizae, have been confirmed to have anti-fibrotic effects on liver, cardiac and kidney. However, the precise molecular mechanism underlying the nephroprotective effects of Sal A and Sal B, and whether there is a difference between the two in RIF are still unclear. PURPOSE This study investigated the pharmacological effects of Sal A and Sal B in RIF and explore the underlying mechanisms by in vivo and in vitro experiments. METHODS The nephroprotective effects of Sal A, Sal B and Sal A+B were evaluated by assessing the parameters related to kidney function such as renal histology, renal function, urinary protein NAG, urinary β2 microglobulin. In addition, RIF-related markers such as CTCF and Par3 were also detected. Thereafter, the related protein or gene levels of PDGF-C/PDGFR-α signaling pathways, apoptosis and endoplasmic reticulum stress (ERS) were determined by western blot, real-time PCR, flow cytometry or immunofluorescence staining. RESULTS In vivo, the results showed that Sal A, Sal B and Sal A+B partially improved kidney dysfunction, increased the expression of Par-3 and reduced the expression of CTGF, PDGF-C and PDGFR-α. In vitro, the results also showed that Sal A, Sal B and Sal A+B reversed apoptosis and ERS in HSA-induced HK-2 cells via regulating PDGF-C/PDGFR-α signaling pathway. CONCLUSION This article revealed a novel mechanism linking PDGF-C/PDGFR-α signaling pathway to RIF and suggested that Sal A, Sal B and Sal A+B were considered as potential therapeutic agents for the amelioration of RIF.
Collapse
Affiliation(s)
- Lan Yao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Basic and Applied Laboratory of Traditional Chinese Medicine, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519000, China; Key Laboratory of Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Renjie Zhao
- Basic and Applied Laboratory of Traditional Chinese Medicine, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519000, China; Key Laboratory of Pharmacology, Zunyi Medical University, Zunyi 563000, China; Department of Nephrology, the Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Shiyang He
- Basic and Applied Laboratory of Traditional Chinese Medicine, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519000, China; Key Laboratory of Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Pei Wang
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China.
| | - Jun Li
- Basic and Applied Laboratory of Traditional Chinese Medicine, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519000, China; Key Laboratory of Pharmacology, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
39
|
Liu M, Zhao L, Liu L, Guo W, Yang H, Yu J, Chen S, Li M, Fang Q, Lai X, Yang L, Zhu R, Zhang X. Associations of urinary polycyclic aromatic hydrocarbon metabolites and blood pressure with the mediating role of cytokines: A panel study among children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74921-74932. [PMID: 35648342 DOI: 10.1007/s11356-022-21062-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Little was known regarding the relations of polycyclic aromatic hydrocarbon (PAH) mixture with children's blood pressure (BP) and its potential mechanism. We conducted a panel study with up to 3 visits across 3 seasons in 2017-2018 among 103 children aged 4-13 years. Urinary PAH metabolites (OH-PAHs) were measured by gas chromatograph-tandem triple quadrupole mass spectrometer, and serum cytokines were detected by Bio-Rad 48-Plex Screening Panel. We employed linear mixed-effects models to assess the relations of each urinary OH-PAH with BP, least absolute shrinkage and selection operator (LASSO), and weighted quantile sum (WQS) regression to evaluate associations of OH-PAHs mixture with BP, and mediation analyses for the role of serum cytokines. We found the consistently positive associations of 1-hydroxynaphthalene and 9-hydroxyphenanthrene (9-OHPh) with systolic BP (SBP), 4-OHPh, and 9-OHPh with diastolic BP (DBP) and mean arterial pressure (MAP) in a dose-responsive manner. For instance, each 1-fold increment of 9-OHPh was related with increase of 0.92% (95% confidence interval (CI): 0.25%, 1.60%) in SBP, 1.32% (95%CI: 0.25%, 2.39%) in DBP, and 1.15% (95%CI: 0.40%, 1.88%) in MAP. Meanwhile, based on LASSO and WQS regression, OH-PAHs mixture was linked with increased DBP and MAP, to which 9-OHPh and 4-OHPh were the major contributors. Such relationships were modified by passive smoking status and 3-4 times stronger in passive smokers than non-passive smokers. A 1-fold increase in 9-OHPh was associated with an elevation of 3.51% in SBP among passive smokers while that of 0.55% in SBP among non-passive smokers. Furthermore, 4-OHPh and 9-OHPh were related to multiple cytokines elevation, of which platelet-derived growth factor (PDGF) mediated 9.99% and 12.57% in 4-OHPh-related DBP and MAP elevation, respectively. Accordingly, urinary OH-PAHs dominated by 9-OHPh and 4-OHPh were dose-responsively associated with elevated BP whereby a mechanism partly involving PDGF among children.
Collapse
Affiliation(s)
- Miao Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
- Department of Public Health, Medical College of Qinghai University, Xining, Qinghai, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Jie Yu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Shuang Chen
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Meng Li
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Qin Fang
- Department of Medical Affairs, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Rui Zhu
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China.
| |
Collapse
|
40
|
Lei L, Zhou Y, Wang T, Zheng Z, Chen L, Pan Y. Activation of AMP-activated protein kinase ablated the formation of aortic dissection by suppressing vascular inflammation and phenotypic switching of vascular smooth muscle cells. Int Immunopharmacol 2022; 112:109177. [PMID: 36049351 DOI: 10.1016/j.intimp.2022.109177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Aortic dissection (AD) is a fatal vascular disease in absence of effective pharmaceutical therapy. Adenosine monophosphate-activated protein kinase α (AMPKα) plays a critical role in various cardiovascular diseases. Whether AMPKα is involved in the pathogenesis of aortic dissection remains unknown. We aimed to determine whether activation of AMPKα prevents the formation of AD. METHODS AND RESULTS Reduced expression of phosphorylated AMPKα (Thr172) and exacerbated phenotypic switching were observed in human aortic tissues from aortic dissection patients compared with those in tissues from controls. In vivo, the formation of aortic dissection in ApoE-/- mice was successfully induced by continuous infusion of angiotensin II (AngII) for two weeks, characterized by the activation of vascular inflammation, infiltration of macrophages and phenotypic switching of vascular smooth muscle cells (VSMCs). rAAV2-mediated overexpression of constitutively active AMPKα (CA-AMPKα) enhanced the expression of phosphorylated AMPKα (Thr172) and attenuated AngII-induced occurrence of aortic dissection by suppressing the infiltration of macrophages, activation of vascular inflammation and phenotypic switching of VSMCs. The pathogenesis above was conversely exacerbated by rAAV2-mediated overexpression of dominant negative AMPKα2 (DN-AMPKα). In vitro, we demonstrated that the administration of an AMPK agonist (AICAR) or transfection of CA-AMPKα induced the activation of AMPKα and then ameliorated AngII-induced phenotypic switching in the VSMCs and inflammation in the bone marrow-derived macrophages (BMDMs). This could be reversed by the addition of AMPK inhibitor compound C or transfection of DN-AMPKα. CONCLUSION Impaired activation of AMPKα may increase the susceptibility to aortic dissection. Our findings verified the protective effects of AMPKα on the formation of aortic dissection and may provide evidence for clinical prevention or treatment.
Collapse
Affiliation(s)
- Lei Lei
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanrong Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiemao Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi Zheng
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Chen
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Youmin Pan
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
41
|
High-Fat Diet Alters the Retinal Pigment Epithelium and Choroidal Transcriptome in the Absence of Gut Microbiota. Cells 2022; 11:cells11132076. [PMID: 35805160 PMCID: PMC9266037 DOI: 10.3390/cells11132076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Relationships between retinal disease, diet, and the gut microbiome have started to emerge. In particular, high-fat diets (HFDs) are associated with the prevalence and progression of several retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy (DR). These effects are thought to be partly mediated by the gut microbiome, which modulates interactions between diet and host homeostasis. Nevertheless, the effects of HFDs on the retina and adjacent retinal pigment epithelium (RPE) and choroid at the transcriptional level, independent of gut microbiota, are not well-understood. In this study, we performed the high-throughput RNA-sequencing of germ-free (GF) mice to explore the transcriptional changes induced by HFD in the RPE/choroid. After filtering and cleaning the data, 649 differentially expressed genes (DEGs) were identified, with 616 genes transcriptionally upregulated and 33 genes downregulated by HFD compared to a normal diet (ND). Enrichment analysis for gene ontology (GO) using the DEGs was performed to analyze over-represented biological processes in the RPE/choroid of GF-HFD mice relative to GF-ND mice. GO analysis revealed the upregulation of processes related to angiogenesis, immune response, and the inflammatory response. Additionally, molecular functions that were altered involved extracellular matrix (ECM) binding, ECM structural constituents, and heparin binding. This study demonstrates novel data showing that HFDs can alter RPE/choroid tissue transcription in the absence of the gut microbiome.
Collapse
|
42
|
Single-cell RNA sequencing of subcutaneous adipose tissues identifies therapeutic targets for cancer-associated lymphedema. Cell Discov 2022; 8:58. [PMID: 35725971 PMCID: PMC9209506 DOI: 10.1038/s41421-022-00402-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer-associated lymphedema frequently occurs following lymph node resection for cancer treatment. However, we still lack effective targeted medical therapies for the treatment or prevention of this complication. An in-depth elucidation of the cellular alterations in subcutaneous adipose tissues of lymphedema is essential for medical development. We performed single-cell RNA sequencing of 70,209 cells of the stromal vascular fraction of adipose tissues from lymphedema patients and healthy donors. Four subpopulations of adipose-derived stromal cells (ASCs) were identified. Among them, the PRG4+/CLEC3B+ ASC subpopulation c3 was significantly expanded in lymphedema and related to adipose tissue fibrosis. Knockdown of CLEC3B in vitro could significantly attenuate the fibrogenesis of ASCs from patients. Adipose tissues of lymphedema displayed a striking depletion of LYVE+ anti-inflammatory macrophages and exhibited a pro-inflammatory microenvironment. Pharmacological blockage of Trem1, an immune receptor predominantly expressed by the pro-inflammatory macrophages, using murine LR12, a dodecapeptide, could significantly alleviate lymphedema in a mouse tail model. Cell–cell communication analysis uncovered a perivascular ligand-receptor interaction module among ASCs, macrophages, and vascular endothelial cells. We provided a comprehensive analysis of the lineage–specific changes in the adipose tissues from lymphedema patients at a single-cell resolution. CLEC3B was found to be a potential target for alleviating adipose tissue fibrosis. Pharmacological blockage of TREM1 using LR12 could serve as a promising medical therapy for treating lymphedema.
Collapse
|
43
|
Grismaldo A, Sobrevia L, Morales L. Role of platelet-derived growth factor c on endothelial dysfunction in cardiovascular diseases. Biochim Biophys Acta Gen Subj 2022; 1866:130188. [PMID: 35691459 DOI: 10.1016/j.bbagen.2022.130188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 01/01/2023]
Abstract
Loss of endothelial function is a common feature to all cardiovascular diseases (CVDs). One of the risk factors associated with the development of CVDs is the hyperglycaemia that occurs in patients with metabolic disorders such as Type 1 and Type 2 diabetes mellitus. Hyperglycaemia causes endothelial dysfunction through increased production of reactive oxygen species (ROS) from different cellular sources leading to oxidative stress. Vascular endothelial growth factor (VEGF) is essential in the stimulation and maintenance of endothelial functional aspects and, although it can mitigate the impact of ROS, VEGF-mediated signalling is partially inhibited in diabetes mellitus. The search for therapeutic strategies that preserve, protect and improve the functions of the endothelium is of great relevance in the investigation of CVDs associated with hyperglycaemia. Platelet-derived growth factor C (PDGF-C) is a peptide with angiogenic properties, independent of VEGF, that stimulates angiogenesis and revascularization of ischemic tissue. In a diabetic mouse model, PDGF-C stimulates mature endothelial cell migration, angiogenesis, endothelial progenitor cell mobilization, and increased neovascularization, and protects blood vessels in a retinal degeneration model activating anti-apoptosis and proliferation signalling pathways in endothelial cells. This review summarizes the information on the damage that high d-glucose causes on endothelial function and the beneficial effects that PDGF-CC could exert in this condition.
Collapse
Affiliation(s)
- Adriana Grismaldo
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá, DC, Colombia; Cellular and Molecular Physiology Laboratory, Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory, Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, the Netherlands; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León. Mexico..
| | - Ludis Morales
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| |
Collapse
|
44
|
Yang J, Liu Z. Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Front Endocrinol (Lausanne) 2022; 13:816400. [PMID: 35692405 PMCID: PMC9174994 DOI: 10.3389/fendo.2022.816400] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are microvascular complications of diabetes. Microvascular endothelial cells are thought to be the major targets of hyperglycemic injury. In diabetic microvasculature, the intracellular hyperglycemia causes damages to the vascular endothelium, via multiple pathophysiological process consist of inflammation, endothelial cell crosstalk with podocytes/pericytes and exosomes. In addition, DN and DR diseases development are involved in several critical regulators including the cell adhesion molecules (CAMs), the vascular endothelial growth factor (VEGF) family and the Notch signal. The present review attempts to gain a deeper understanding of the pathogenesis complexities underlying the endothelial dysfunction in diabetes diabetic and retinopathy, contributing to the development of new mechanistic therapeutic strategies against diabetes-induced microvascular endothelial dysfunction.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Grismaldo Rodríguez A, Zamudio Rodríguez JA, Mendieta CV, Quijano Gómez S, Sanabria Barrera S, Morales Álvarez L. Effect of Platelet-Derived Growth Factor C on Mitochondrial Oxidative Stress Induced by High d-Glucose in Human Aortic Endothelial Cells. Pharmaceuticals (Basel) 2022; 15:ph15050639. [PMID: 35631465 PMCID: PMC9143891 DOI: 10.3390/ph15050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022] Open
Abstract
Endothelial dysfunction is an early marker for cardiovascular diseases. Hyperglycemia induces endothelial dysfunction, increasing the production of reactive oxygen species. Platelet-derived growth factor C stimulates angiogenesis and revascularization in ischemic tissues of diabetic mice and promotes the migration of progenitors and mature ECs to injury sites; however, the molecular mechanisms of its actions are not described yet. Here, we evaluated the effect of PDGF-C on oxidative stress induced by HG. Human aortic endothelial cells were grown in glucose concentrations ranging from 5 mmol/L to 35 mmol/L for 1 to 24 h. Treatment with 50 ng/mL PDGF-C was done for 1 to 3 h. Cytosolic and mitochondrial ROS were measured by fluorometry, and the expression of antioxidant enzymes was evaluated by Western blot. Nrf2 and Keap1 expression was assessed by real-time PCR. High glucose induced mitochondrial ROS production. PDGF-C diminished the oxidative stress induced by high glucose, increasing SOD2 expression and SOD activity, and modulating the Keap1 expression gene. These results give new evidence about the mitochondrial antioxidant effect that PDGF-C could exert on endothelial cells exposed to high glucose and its considerable role as a therapeutic target in diabetes.
Collapse
Affiliation(s)
- Adriana Grismaldo Rodríguez
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.A.Z.R.); (C.V.M.)
- Correspondence: (A.G.R.); (L.M.Á.); Tel.: +57-3114566976 (A.G.R.); +57-3132107272 (L.M.Á.)
| | - Jairo A. Zamudio Rodríguez
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.A.Z.R.); (C.V.M.)
| | - Cindy V. Mendieta
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.A.Z.R.); (C.V.M.)
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Sandra Quijano Gómez
- Immunology and Cell Biology Group, Faculty of Sciences, Microbiology Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Sandra Sanabria Barrera
- Traslational Biomedical Research Group, Fundación Cardiovascular de Colombia, Floridablanca 680004, Colombia;
| | - Ludis Morales Álvarez
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.A.Z.R.); (C.V.M.)
- Correspondence: (A.G.R.); (L.M.Á.); Tel.: +57-3114566976 (A.G.R.); +57-3132107272 (L.M.Á.)
| |
Collapse
|
46
|
Chubinskiy-Nadezhdin V, Semenova S, Vasileva V, Shatrova A, Pugovkina N, Negulyaev Y. Store-Operated Ca 2+ Entry Contributes to Piezo1-Induced Ca 2+ Increase in Human Endometrial Stem Cells. Int J Mol Sci 2022; 23:3763. [PMID: 35409116 PMCID: PMC8998223 DOI: 10.3390/ijms23073763] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Endometrial mesenchymal stem cells (eMSCs) are a specific class of stromal cells which have the capability to migrate, develop and differentiate into different types of cells such as adipocytes, osteocytes or chondrocytes. It is this unique plasticity that makes the eMSCs significant for cellular therapy and regenerative medicine. Stem cells choose their way of development by analyzing the extracellular and intracellular signals generated by a mechanical force from the microenvironment. Mechanosensitive channels are part of the cellular toolkit that feels the mechanical environment and can transduce mechanical stimuli to intracellular signaling pathways. Here, we identify previously recorded, mechanosensitive (MS), stretch-activated channels as Piezo1 proteins in the plasma membrane of eMSCs. Piezo1 activity triggered by the channel agonist Yoda1 elicits influx of Ca2+, a known modulator of cytoskeleton reorganization and cell motility. We found that store-operated Ca2+ entry (SOCE) formed by Ca2+-selective channel ORAI1 and Ca2+ sensors STIM1/STIM2 contributes to Piezo1-induced Ca2+ influx in eMSCs. Particularly, the Yoda1-induced increase in intracellular Ca2+ ([Ca2+]i) is partially abolished by 2-APB, a well-known inhibitor of SOCE. Flow cytometry analysis and wound healing assay showed that long-term activation of Piezo1 or SOCE does not have a cytotoxic effect on eMSCs but suppresses their migratory capacity and the rate of cell proliferation. We propose that the Piezo1 and SOCE are both important determinants in [Ca2+]i regulation, which critically affects the migratory activity of eMSCs and, therefore, could influence the regenerative potential of these cells.
Collapse
|
47
|
Gloudemans MJ, Balliu B, Nachun D, Schnurr TM, Durrant MG, Ingelsson E, Wabitsch M, Quertermous T, Montgomery SB, Knowles JW, Carcamo-Orive I. Integration of genetic colocalizations with physiological and pharmacological perturbations identifies cardiometabolic disease genes. Genome Med 2022; 14:31. [PMID: 35292083 PMCID: PMC8925074 DOI: 10.1186/s13073-022-01036-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/04/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Identification of causal genes for polygenic human diseases has been extremely challenging, and our understanding of how physiological and pharmacological stimuli modulate genetic risk at disease-associated loci is limited. Specifically, insulin resistance (IR), a common feature of cardiometabolic disease, including type 2 diabetes, obesity, and dyslipidemia, lacks well-powered genome-wide association studies (GWAS), and therefore, few associated loci and causal genes have been identified. METHODS Here, we perform and integrate linkage disequilibrium (LD)-adjusted colocalization analyses across nine cardiometabolic traits (fasting insulin, fasting glucose, insulin sensitivity, insulin sensitivity index, type 2 diabetes, triglycerides, high-density lipoprotein, body mass index, and waist-hip ratio) combined with expression and splicing quantitative trait loci (eQTLs and sQTLs) from five metabolically relevant human tissues (subcutaneous and visceral adipose, skeletal muscle, liver, and pancreas). To elucidate the upstream regulators and functional mechanisms for these genes, we integrate their transcriptional responses to 21 relevant physiological and pharmacological perturbations in human adipocytes, hepatocytes, and skeletal muscle cells and map their protein-protein interactions. RESULTS We identify 470 colocalized loci and prioritize 207 loci with a single colocalized gene. Patterns of shared colocalizations across traits and tissues highlight different potential roles for colocalized genes in cardiometabolic disease and distinguish several genes involved in pancreatic β-cell function from others with a more direct role in skeletal muscle, liver, and adipose tissues. At the loci with a single colocalized gene, 42 of these genes were regulated by insulin and 35 by glucose in perturbation experiments, including 17 regulated by both. Other metabolic perturbations regulated the expression of 30 more genes not regulated by glucose or insulin, pointing to other potential upstream regulators of candidate causal genes. CONCLUSIONS Our use of transcriptional responses under metabolic perturbations to contextualize genetic associations from our custom colocalization approach provides a list of likely causal genes and their upstream regulators in the context of IR-associated cardiometabolic risk.
Collapse
Affiliation(s)
- Michael J Gloudemans
- Biomedical Informatics Training Program, Stanford, CA, USA.
- Department of Pathology, Stanford, CA, USA.
| | - Brunilda Balliu
- Department of Computational Medicine, UCLA, Los Angeles, CA, USA
| | - Daniel Nachun
- Department of Genetics, Stanford, CA, USA
- Department of Immunology, Stanford, CA, USA
| | - Theresia M Schnurr
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford, CA, USA
| | | | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford, CA, USA
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology, Ulm University, Ulm, Germany
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford, CA, USA
- Diabetes Research Center, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford, CA, USA.
- Department of Genetics, Stanford, CA, USA.
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford, CA, USA.
- Diabetes Research Center, Stanford, CA, USA.
- Prevention Research Center, Stanford, CA, USA.
| | - Ivan Carcamo-Orive
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford, CA, USA.
- Diabetes Research Center, Stanford, CA, USA.
| |
Collapse
|
48
|
Chignon A, Mathieu S, Rufiange A, Argaud D, Voisine P, Bossé Y, Arsenault BJ, Thériault S, Mathieu P. Enhancer promoter interactome and Mendelian randomization identify network of druggable vascular genes in coronary artery disease. Hum Genomics 2022; 16:8. [PMID: 35246263 PMCID: PMC8895522 DOI: 10.1186/s40246-022-00381-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/17/2022] [Indexed: 11/14/2022] Open
Abstract
Coronary artery disease (CAD) is a multifactorial disorder, which is partly heritable. Herein, we implemented a mapping of CAD-associated candidate genes by using genome-wide enhancer-promoter conformation (H3K27ac-HiChIP) and expression quantitative trait loci (eQTL). Enhancer-promoter anchor loops from human coronary artery smooth muscle cells (HCASMC) explained 22% of the heritability for CAD. 3D enhancer-promoter genome mapping of CAD-genes in HCASMC was enriched in vascular eQTL genes. By using colocalization and Mendelian randomization analyses, we identified 58 causal candidate vascular genes including some druggable targets (MAP3K11, CAMK1D, PDGFD, IPO9 and CETP). A network analysis of causal candidate genes was enriched in TGF beta and MAPK pathways. The pharmacologic inhibition of causal candidate gene MAP3K11 in vascular SMC reduced the expression of athero-relevant genes and lowered cell migration, a cardinal process in CAD. Genes connected to enhancers are enriched in vascular eQTL and druggable genes causally associated with CAD.
Collapse
Affiliation(s)
- Arnaud Chignon
- Laboratory of Cardiovascular Pathobiology, Department of Surgery, Institut de Cardiologie Et de Pneumologie de Québec, Quebec Heart and Lung Institute/Research Center, Laval University, 2725 Chemin Ste-Foy, Québec, QC, G1V-4G5, Canada
| | - Samuel Mathieu
- Laboratory of Cardiovascular Pathobiology, Department of Surgery, Institut de Cardiologie Et de Pneumologie de Québec, Quebec Heart and Lung Institute/Research Center, Laval University, 2725 Chemin Ste-Foy, Québec, QC, G1V-4G5, Canada
| | - Anne Rufiange
- Laboratory of Cardiovascular Pathobiology, Department of Surgery, Institut de Cardiologie Et de Pneumologie de Québec, Quebec Heart and Lung Institute/Research Center, Laval University, 2725 Chemin Ste-Foy, Québec, QC, G1V-4G5, Canada
| | - Déborah Argaud
- Laboratory of Cardiovascular Pathobiology, Department of Surgery, Institut de Cardiologie Et de Pneumologie de Québec, Quebec Heart and Lung Institute/Research Center, Laval University, 2725 Chemin Ste-Foy, Québec, QC, G1V-4G5, Canada
| | | | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | | | - Sébastien Thériault
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec, Canada
| | - Patrick Mathieu
- Laboratory of Cardiovascular Pathobiology, Department of Surgery, Institut de Cardiologie Et de Pneumologie de Québec, Quebec Heart and Lung Institute/Research Center, Laval University, 2725 Chemin Ste-Foy, Québec, QC, G1V-4G5, Canada. .,Department of Surgery, Laval University, Quebec, Canada.
| |
Collapse
|
49
|
Tian Y, Zhan Y, Jiang Q, Lu W, Li X. Expression and function of PDGF-C in development and stem cells. Open Biol 2021; 11:210268. [PMID: 34847773 PMCID: PMC8633783 DOI: 10.1098/rsob.210268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Platelet-derived growth factor C (PDGF-C) is a relatively new member of the PDGF family, discovered nearly 20 years after the finding of platelet-derived growth factor A (PDGF-A) and platelet-derived growth factor B (PDGF-B). PDGF-C is generally expressed in most organs and cell types. Studies from the past 20 years have demonstrated critical roles of PDGF-C in numerous biological, physiological and pathological processes, such as development, angiogenesis, tumour growth, tissue remodelling, wound healing, atherosclerosis, fibrosis, stem/progenitor cell regulation and metabolism. Understanding PDGF-C expression and activities thus will be of great importance to various research disciplines. In this review, however, we mainly discuss the expression and functions of PDGF-C and its receptors in development and stem cells.
Collapse
Affiliation(s)
- Yi Tian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Ying Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Qin Jiang
- Ophthalmic Department, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| |
Collapse
|
50
|
Cheng YW, Zhang ZB, Lan BD, Lin JR, Chen XH, Kong LR, Xu L, Ruan CC, Gao PJ. PDGF-D activation by macrophage-derived uPA promotes AngII-induced cardiac remodeling in obese mice. J Exp Med 2021; 218:e20210252. [PMID: 34236404 PMCID: PMC8273546 DOI: 10.1084/jem.20210252] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/03/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity-induced secretory disorder of adipose tissue-derived factors is important for cardiac damage. However, whether platelet-derived growth factor-D (PDGF-D), a newly identified adipokine, regulates cardiac remodeling in angiotensin II (AngII)-infused obese mice is unclear. Here, we found obesity induced PDGF-D expression in adipose tissue as well as more severe cardiac remodeling compared with control lean mice after AngII infusion. Adipocyte-specific PDGF-D knockout attenuated hypertensive cardiac remodeling in obese mice. Consistently, adipocyte-specific PDGF-D overexpression transgenic mice (PA-Tg) showed exacerbated cardiac remodeling after AngII infusion without high-fat diet treatment. Mechanistic studies indicated that AngII-stimulated macrophages produce urokinase plasminogen activator (uPA) that activates PDGF-D by splicing full-length PDGF-D into the active PDGF-DD. Moreover, bone marrow-specific uPA knockdown decreased active PDGF-DD levels in the heart and improved cardiac remodeling in HFD hypertensive mice. Together, our data provide for the first time a new interaction pattern between macrophage and adipocyte: that macrophage-derived uPA activates adipocyte-secreted PDGF-D, which finally accelerates AngII-induced cardiac remodeling in obese mice.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Bei Zhang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei-Di Lan
- Department of Cardiology, First Affiliated Hospital, Xi’an Jiao Tong University, Xi’an, Shanxi, China
| | - Jing-Rong Lin
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Hui Chen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling-Ran Kong
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian Xu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Chao Ruan
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|