1
|
Panda B, Sundaray L, Mishra A, Palai S, Padhi SR, Patro S, Mohanty PK. Preliminary assessment of the water quality of Rushikulya estuary based on the abundance of pathogenic bacteria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1169. [PMID: 37682420 DOI: 10.1007/s10661-023-11784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
Estuaries are among the most dynamic ecosystems in coastal regions and are facing serious threats due to increasing anthropogenic activities. The aim of the present study is to evaluate the water quality of the Rushikulya estuary by analyzing the abundance of pathogenic bacteria in both its water and sediment. Water and sediment samples were collected from five different stations at the mouth of the Rushikulya estuary during the monsoon and post-monsoon seasons. These samples were analyzed to assess the abundance of pathogenic bacteria and environmental parameters. The results revealed that bacterial abundance is significantly higher in the sediment than in the water, possibly due to a longer residence time of pathogenic bacteria in the sediment. Seasonal observations indicated an increase in pathogenic bacterial abundance during the monsoon season, suggesting an impact from monsoonal discharge. Escherichia coli-like organism, faecal coliforms, Shigella-like organisms, and Vibrio cholera-like organisms were the dominant pathogenic bacteria in both the water and sediment of the Rushikulya estuary. The higher abundance of these pathogens and the results of statistical analysis, which showed a strong correlation between Total Streptococci and BOD (r = 0.79), indicate the influence of human settlement and the mixing of untreated sewage in the Rushikulya estuary. The elevated levels of E. coli, faecal coliforms, and Shigella-like organisms in the Rushikulya estuary raise significant concerns that require immediate attention.
Collapse
Affiliation(s)
- Bhubaneswari Panda
- Department of Marine Sciences, Berhampur University, Bhanjabihar, Berhampur, Odisha, 760007, India
| | - Lokeshwara Sundaray
- Department of Marine Sciences, Berhampur University, Bhanjabihar, Berhampur, Odisha, 760007, India
| | - Ankita Mishra
- Department of Marine Sciences, Berhampur University, Bhanjabihar, Berhampur, Odisha, 760007, India
| | - Subhadarshani Palai
- Department of Marine Sciences, Berhampur University, Bhanjabihar, Berhampur, Odisha, 760007, India
| | - Sanjukta Rani Padhi
- Department of Marine Sciences, Berhampur University, Bhanjabihar, Berhampur, Odisha, 760007, India
| | - Shesdev Patro
- Department of Marine Sciences, Berhampur University, Bhanjabihar, Berhampur, Odisha, 760007, India.
| | - Pratap Kumar Mohanty
- Department of Marine Sciences, Berhampur University, Bhanjabihar, Berhampur, Odisha, 760007, India
| |
Collapse
|
2
|
Khandeparker L, Desai DV, Teja Mittireddi R, Panda E, Hede N, Mapari K. Efficacy of amorphous TiO x-coated surfaces against micro- and macrofouling through laboratory microcosms and field studies. BIOFOULING 2023; 39:853-866. [PMID: 37965754 DOI: 10.1080/08927014.2023.2279997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
In this study, Soda Lime Glass (SLG) and Stainless Steel (SS316L) substrata coated with Titanium oxide (TiOx) were tested for their efficacy in the laboratory microcosms and in field against micro- and macrofouling. Laboratory microcosm studies were conducted for five days using natural biofilms, single-species diatom (Navicula sp.), and bacterial biofilms, whereas field observations were conducted for 30 days. The TiOx-coating induced change in the mean contact angle of the substratum and rendered SS316L more hydrophilic and SLG hydrophobic, which influenced the Navicula sp. biofilm, and bacterial community structure of the biofilm. Overall, the TiOx-coated SS316L showed minimal microfouling, whereas non-coated SLG exhibited greater efficacy in deterring/preventing macrofouling organisms. Moreover, the reduction in macrofouling could be attributed to high abundance of Actinobacteria. Unraveling the mechanism of action needs future studies emphasizing biochemical processes and pathways.
Collapse
Affiliation(s)
- Lidita Khandeparker
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| | - Dattesh V Desai
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| | - Ravi Teja Mittireddi
- Materials Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Emila Panda
- Materials Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Niyati Hede
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| | - Kaushal Mapari
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| |
Collapse
|
3
|
Ni H, Zeng Q, Xu T, Xiao L, Yu X, Hu J, Li Y, Lin H, Guo P, Zhou H. The size of the susceptible pool differentiates climate effects on seasonal epidemics of bacillary dysentery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160553. [PMID: 36455742 DOI: 10.1016/j.scitotenv.2022.160553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES At present, some studies have pointed out several possible climate drivers of bacillary dysentery. However, there is a complex nonlinear interaction between climate drivers and susceptible population in the spread of diseases, which makes it challenging to detect climate drivers at the size of susceptible population. METHODS By using empirical dynamic modeling (EDM), the climate drivers of bacillary dysentery dynamic were explored in China's five temperature zones. RESULTS We verified the availability of climate drivers and susceptible population size on bacillary dysentery, and used this information for bacillary dysentery dynamic prediction. Moreover, we found that their respective effects increased with the increase of temperature and relative humidity, and their states (temperature and relative humidity) were different when they reached their maximum effects, and the negative effect between the effect of temperature and disease incidence increased with the change of temperature zone (from temperate zone to warm temperate zone to subtropical zone) and the climate driving effect of the temperate zone (warm temperate zone) was greater than that of the colder (temperate zone) and warmer (subtropics) zones. When we viewed from single temperature zone, the climatic effect arose only when the size of the susceptible pool was large. CONCLUSIONS These results provide empirical evidence that the climate factors on bacillary dysentery are nonlinear, complex but dependent on the size of susceptible populations and different climate scenarios.
Collapse
Affiliation(s)
- Haobo Ni
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Qinghui Zeng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Ting Xu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Lina Xiao
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Xiaolin Yu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Jinrui Hu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yang Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Pi Guo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou 515041, China.
| | - Haijian Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
4
|
Changes in the bacterial community in port waters during ship’s ballast water discharge. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Ecological Impacts of Aged Freshwater Biofilms on Estuarine Microbial Communities Elucidated Through Microcosm Experiments: A Microbial Invasion Perspective. Curr Microbiol 2022; 79:210. [PMID: 35666311 DOI: 10.1007/s00284-022-02903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 05/12/2022] [Indexed: 11/03/2022]
Abstract
Inadvertent introductions of alien species via biofilms as a vector released through ballast water are of environmental importance, yet their consequences are not much known. In the present study, biofilm communities developed in an inland freshwater port under in situ and dark conditions were subjected to long-term dark incubations. Subsequently, the impact of these aged biofilms as vectors on estuarine water column communities were evaluated using microcosm experiments in the laboratory. Variations in biofilm and planktonic microbial communities were quantified using quantitative PCR.Upon prolonged dark incubation, a shift in bacterial diversity with an increase in tolerant bacterial communities better adapted to stress was observed. Actinobacteria were the dominant taxa in both aged biofilms upon dark incubations. The laboratory studies indicated that on exposure of these biofilms to estuarine water, resuscitation of Vibrio alginolyticus, V. parahaemolyticus, and V. cholerae from a dormant state existing in these biofilms to culturable form was observed. Moreover, the results revealed that both the biofilm types can pose a threat to the environment, but the degree of risk can be attributed to the imbalance caused by significant changes in the surrounding estuarine microbial communities. Consequently, this may result in either proliferation or decline of some genera with different metabolic potential and resuscitation of pathogenic forms not present earlier, thereby influencing the ecology of the environment. Quantifying these effects in the field using biofilm metagenomes with an emphasis on virulent species and understanding traits that enable them to adapt to changing environments is a way forward.
Collapse
|
6
|
Victoria NS, Sree Devi Kumari T, Lazarus B. Assessment on impact of sewage in coastal pollution and distribution of fecal pathogenic bacteria with reference to antibiotic resistance in the coastal area of Cape Comorin, India. MARINE POLLUTION BULLETIN 2022; 175:113123. [PMID: 34872749 DOI: 10.1016/j.marpolbul.2021.113123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Sewage is one of the biggest contributors to coastal pollution. The study was aimed to assess the impact of sewage on coastal water quality of Kanyakumari, the southernmost part of India. A bacteriological survey was made on distribution and abundance of fecal indicators and human pathogenic bacteria and seasonal influence on the bacterial load and antibiotic resistance of the isolates. Samples were collected from sewage discharge point along the eastern shore of Kanyakumari Coast from February 2019 to January 2020. Nine pollution indicator bacteria and pathogenic species such as Escherichia coli, Klebsiella spp., Enterococcus faecalis, Aeromonas spp., Proteus mirabilis, Salmonella typhi, Vibrio cholerae, Shigella spp. and Flavobacterium spp. were isolated from the samples. These isolates were tested against 10 antibiotics, using Kirby Bauer method. All the isolates were resistant to at least two antibiotics. The presence of antibiotic resistant bacteria has been used as bio-indicators of pollution. Hence it is clear that the domestic sewage entering the coast is untreated which might lead a serious impact on human and marine wildlife along coastlines.
Collapse
Affiliation(s)
- Nanthini Sahaya Victoria
- PG and Research Department of Zoology, Vivekananda College, Agasteeswaram, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627012, Tamil Nadu, India.
| | - T Sree Devi Kumari
- PG and Research Department of Zoology, Vivekananda College, Agasteeswaram, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627012, Tamil Nadu, India
| | - Bakthasingh Lazarus
- Department of Medical Laboratory Technology, Grace College of Allied Health Sciences, Padanthalumoodu, Affiliated to TN Dr. MGR Medical University, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Toraskar AD, Manohar CS, Fernandes CL, Ray D, Gomes AD, Antony A. Seasonal variations in the water quality and antibiotic resistance of microbial pollution indicators in the Mandovi and Zuari estuaries, Goa, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:71. [PMID: 34994862 DOI: 10.1007/s10661-021-09679-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The two adjacent estuaries of the rivers Mandovi and Zuari, along the Goa coast in the central west coast of India, are a large complex aquatic system hosting diverse natural habitats. The water quality in these habitats is affected by various anthropogenic activities as they are extensively used for transportation, fisheries and various recreational activities. In the present study, changes in the water quality and levels of microbial pollution during the pre-monsoon, monsoon and post-monsoon seasons were determined. The water quality index was estimated based on the parameters: temperature, salinity, pH, dissolved oxygen, biochemical oxygen demand and nutrients. The seasonal changes in the microbial pollution load were also assessed based on the abundance of pollution indicator organisms and their resistivity towards multiple antibiotics. Results show that the water quality index status was 'poor' in the pre-monsoon and post-monsoon seasons and it was 'good' only in the monsoon period. Levels of pollution indicator organisms determined show that the counts were the highest in the pre-monsoon season, which reduced in the monsoon and further declined during the post-monsoon season. However, the estimated multiple antibiotic resistance (MAR) index suggests that bacterial isolates in monsoonal water and sediment samples have maximum resistance towards antibiotics. This shows that, though the basic water quality improved during the monsoon, possibly due to substantial dilution, the increased terrestrial inputs brought harmful pathogens into these estuarine waters, which may be of potential health risk. Understanding the ecological status of the estuarine habitats is important for successful environmental management and sustainable development.
Collapse
|
8
|
Kuchi N, Khandeparker L, Anil AC. Response of the bacterial metagenome in port environments to changing environmental conditions. MARINE POLLUTION BULLETIN 2021; 172:112869. [PMID: 34425364 DOI: 10.1016/j.marpolbul.2021.112869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Port environments are highly dynamic and hotspots for marine bioinvasion. This study investigated the bacterial diversity at two geographically distant ports (Mangalore-marine port; and Haldia-riverine port) using next-generation sequencing during southwest monsoon and non-monsoon (Pre-monsoon) seasons. During southwest monsoon, at both marine and riverine ports, operational taxonomic units (OTUs) affiliated to bacteria reported to have hydrocarbon degrading ability were observed. Whereas during pre-monsoon, a significant increase in benthic bacterial OTUs was evident at the marine port, and the riverine port was characterized by oceanic species OTUs. Results suggest that the dynamics of prevalent environmental conditions, driven by seasons, led to emergence of ecologically relevant bacteria, many of which have been observed for the first time in Indian coastal waters. Their presence could be used as indicators of prevailing environmental conditions and nature of anthropogenic influence in port ecosystems. Unravelling functional roles of such ecologically relevant species is a way forward.
Collapse
Affiliation(s)
- Nishanth Kuchi
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao, Goa, India
| | | | | |
Collapse
|
9
|
Leboulanger C, Kolanou Biluka L, Nzigou AR, Djuidje Kenmogne V, Happi JLM, Ngohang FE, Eleng AS, Ondo Zue Abaga N, Bouvy M. Urban inputs of fecal bacteria to the coastal zone of Libreville, Gabon, Central Western Africa. MARINE POLLUTION BULLETIN 2021; 168:112478. [PMID: 33993043 DOI: 10.1016/j.marpolbul.2021.112478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Libreville, the largest city in Gabon, adversely impacts the Komo Estuary and the Akanda National Park aquatic ecosystems through discharge of domestic and industrial waste. Fecal Indicator Bacteria (FIB: Escherichia coli and fecal streptococci) were enumerated using culture-based methods in water from 40 sites between 2017 and 2019 including coastal outlets, mangrove channels, open bays and littoral rivers. Contamination levels were high in discharge waters from small urban rivers in Libreville agglomeration, frequently exceeding international safety guidelines, whereas FIB concentrations decreased downstream from the city in main mangrove channels. Littoral forest rivers were significantly impacted by fecal contamination despite the absence of settlements in the watersheds. Protected areas are not effective in avoiding FIB contamination, indicating inefficient waste management. Dedicated management policies should be implemented to reduce both the sanitary concern and global pollution, poorly assessed in a context of demographic increase in tropical littoral zones.
Collapse
Affiliation(s)
| | - Lévie Kolanou Biluka
- Université des Sciences et Techniques de Masuku, Franceville, Gabon; Ecole Normale Supérieure, Libreville, Gabon
| | | | - Véronique Djuidje Kenmogne
- Université des Sciences et Techniques de Masuku, Franceville, Gabon; Ecole Normale Supérieure, Libreville, Gabon
| | | | | | | | | | - Marc Bouvy
- MARBEC, Université Montpellier, CNRS, Ifremer, IRD, Sète, France
| |
Collapse
|
10
|
Khandeparker L, Kuchi N, Desai DV, Anil AC. Changes in the ballast water tank bacterial community during a trans-sea voyage: Elucidation through next generation DNA sequencing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111018. [PMID: 32741756 DOI: 10.1016/j.jenvman.2020.111018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Ballast water (BW) mediated bioinvasion is one of the greatest threats to the health of aquatic ecosystems. Bacteria, unlike higher organisms, are transferred in large numbers through BW. Owing to their abundance and potential pathogenicity, they pose a direct threat to the prevailing microbiome in the recipient waters and also to human health. This study investigated the changes in the BW tank bacterial community during a trans-sea voyage from Visakhapatnam port, located along the east coast of India (Bay of Bengal) to Mumbai port, located along the west coast of India (Arabian Sea). Next generation sequencing was used to explore the unculturable segment of bacteria. The BW tank conditions led to a decrease in photoautotrophs and non-spore forming bacteria. On the other hand, biofilm forming and antibiotic producing bacteria, nutrient limiting condition sustaining bacteria, and those capable of synthesizing enzymes prerequisite for active metabolism under stress, increased over time. The shifts in the bacterial community were dependent on mechanisms adopted by the clades to cope with the BW tank conditions. Functional prediction of the bacterial community revealed a significant increase in the core metabolic functions, which enabled the survival of such bacteria. As the voyage progressed, an increase in the total viable bacteria in BW tanks could be attributed to the decrease in the abundance of phytoplankton and zooplankton. At the end of the voyage, the bacterial community in the BW tanks was significantly different, and the species diversity and richness were higher than that of the natural seawater (source water). Pathogenic species were more abundant during mid-voyage than at the end of the voyage, suggesting that voyage duration influences the pathogenic bacterial community. Investigating the fate of the discharged bacterial population at the deballasting point is a way forward in the assessment of marine bioinvasion.
Collapse
Affiliation(s)
| | - Nishanth Kuchi
- CSIR - National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Dattesh V Desai
- CSIR - National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | | |
Collapse
|
11
|
Sangodkar N, Gonsalves MJ, Shanbhag Y, Rayadurga AS, Nazareth D. Prevalence of indicator and potential pathogenic bacterial groups in the Chapora bay-estuarine system, Goa, central west coast of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:397. [PMID: 32462544 DOI: 10.1007/s10661-020-08368-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
This paper describes the prevalence of indicator and pathogenic bacterial groups in water and sediments in OSZ-offshore, ISZ-inshore, IEZ-inner estuary, and UEZ-upper estuary along the river Chapora, central west coast of India, which is influenced by anthropogenic inputs. The abundance of indicator bacterial groups such as total coliforms and Escherichia coli-like organisms in water ranged from non-detectable (ND) to 103 colony-forming units (CFU)/mL. In contrast, their abundance in the sediments was six orders magnitude higher than water (ND to 109 CFU/g). The abundance of potential pathogenic bacteria in water and sediment samples ranged from ND to 103 CFU/mL and from ND to 109 CFU/g respectively, with Shigella-like organisms (SHLO) being the most abundant. In the surface waters, SHLO and Pseudomonas aeruginosa-like organisms (PALO) and in bottom waters, Vibrio parahaemolyticus-like organism and PALO increased progressively from OSZ to UEZ. In contrast, Proteus/Klebsiella-like organisms (PKLO) showed a reverse trend. Amongst all four zones, IEZ was the most contaminated in terms of the higher abundance of indicator and potential pathogenic bacterial populations as corroborated by significantly lower water quality index value. Principal component analysis performed using physico-chemical variables and bacterial groups to reduce data set variability revealed that a different set of parameters contributed differently to the total variation in each zone. Considering the eco-sensitivity of the river Chapora, the results of the present study call for precautionary measures to minimize the degree of anthropogenic inputs.
Collapse
Affiliation(s)
- Nitisha Sangodkar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Maria Judith Gonsalves
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | - Yogini Shanbhag
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Anantha Sreepada Rayadurga
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Delcy Nazareth
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| |
Collapse
|
12
|
Fernandes V, Bogati K. Persistence of fecal indicator bacteria associated with zooplankton in a tropical estuary-west coast of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:420. [PMID: 31177343 DOI: 10.1007/s10661-019-7531-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
In a study carried out during 2014, bacteria associated with zooplankton in the Zuari estuary were three to four orders of magnitude higher in abundance than in seawater. The live zooplankton carried much more bacterial load compared with the carcasses, and the fecal pellets harbored the highest density of bacteria, i.e., 8 × 1013 CFU cm-3. The diversity of bacteria was higher in live zooplankton and also in seawater. But the activity of the zooplankton-associated bacteria was much higher compared with the free-living ones. Most of the associated bacteria belonged to the genus Enterobacter, Pseudomonas, Aeromonas, and Bacillus. In growth experiments, Aeromonas and Bacillus were found to have lower salinity optima than Enterobacter (20 psu) and Vibrio and Pseudomonas (normal seawater salinity). Better growth of bacteria was observed in the medium containing the diatom Chaetoceros sp. than Navicula sp. Bacterial isolates were also able to survive in oligotrophic conditions and produce optimum biomass in 2 days at salinity 5 psu, but in freshwater, the bacteria took a week's time to attain the optima. At salinities 0-35, the bacteria survived even for 3 months without nutrient addition, indicating resilience in these bacteria and mechanisms to persist in the estuaries even in adverse conditions.
Collapse
Affiliation(s)
- Veronica Fernandes
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India.
| | - Kalisa Bogati
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| |
Collapse
|
13
|
He Y, He Y, Sen B, Li H, Li J, Zhang Y, Zhang J, Jiang SC, Wang G. Storm runoff differentially influences the nutrient concentrations and microbial contamination at two distinct beaches in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:400-407. [PMID: 30716630 DOI: 10.1016/j.scitotenv.2019.01.369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
With the escalating coastal development and loss of vegetated landscape, the volume of storm runoff increases significantly in Chinese coastal cities. To protect human health and valuable recreational resources, it is necessary to develop a quantitative understanding of coastal pollution. Here we studied the influence of storm runoff on the nutrients and microbial pathogens at two popular bathing beaches in northern China. Dongshan Beach, located near the mouth of an urban river, is influenced by non-point source pollution while Tiger-Rock Beach, a coastal beach, is primarily influenced by a point source from a storm drain outfall. Storm runoff significantly (P < 0.001) decreased the salinity and Chl a post-storm at both the beaches, but only reduced the concentration of dissolved inorganic N at Tiger-Rock Beach. Escherichia coli decreased by 68.7% at Dongshan Beach, possibly due to the dilution effect of the stormflow, contradicting the notion of elevated fecal contamination in coastal beaches from storm runoff. Vibrio parahaemolyticus increased at both beaches post-storm, by 155.7% at Dongshan Beach and 136.7% at Tiger-Rock Beach. Regardless of storm impact, both E. coli and V. parahaemolyticus were much higher at Dongshan Beach than that at Tiger-Rock, suggesting the influence of different surrounding topographies. Lastly, the statistical models developed based on the environmental and microbial parameters regression showed predictive power (adjusted R2 > 0.5) to estimate the concentration of E. coli at Dongshan Beach and V. parahaemolyticus at Tiger-Rock Beach. Overall, the results suggest the unique role of the individual beaches in attenuating the effect of rainfall on the concentration of microbial pathogens in bathing water quality and provide unique predictive models for recreational water management and public health protection.
Collapse
Affiliation(s)
- Yike He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hao Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqian Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yongfeng Zhang
- Qinhuangdao Marine Environmental Monitoring Central Station, SOA, Qinhuangdao, Hebei 066002, China
| | - Jianle Zhang
- Qinhuangdao Marine Environmental Monitoring Central Station, SOA, Qinhuangdao, Hebei 066002, China
| | - Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California at Irvine, CA 92697, USA
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
14
|
Gajbhiye DS, Khandeparker L. Involvement of inducible nitric oxide synthase (iNOS) in immune-functioning of Paphia malabarica (Chemnitz, 1782). FISH & SHELLFISH IMMUNOLOGY 2019; 84:384-389. [PMID: 30308295 DOI: 10.1016/j.fsi.2018.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
In recent years, the role of inducible nitric oxide synthase (iNOS) isoform has been widely studied because of its immunological relevance in higher organisms as well as invertebrates including bivalves. However, little is known about the immunological role of iNOS in Paphia malabarica defense mechanism. In this study, we immunodetected the presence of iNOS in P. malabarica hemocytes using antibody N9657 monoclonal anti-nitric oxide synthase. In addition, increased iNOS activity was evident in response to a higher bacterial dosage (Vibrio parahaemolyticus and V. cholerae), highlighting the dose-dependent iNOS activity induction. Also, higher bacterial survivability was observed in the presence of iNOS inhibitor, i.e., S-methylisothiourea hemisulphate (SMIS) thus, validating the bactericidal role of iNOS. These findings implicate the involvement of iNOS in immune-functioning of P. malabarica. Future work should focus on elucidating the expression and regulation of pathogenesis in P. malabarica, involving iNOS.
Collapse
Affiliation(s)
- Deodatta S Gajbhiye
- Academy of Scientific and Innovative Research (AcSIR), CSIR- National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Lidita Khandeparker
- Academy of Scientific and Innovative Research (AcSIR), CSIR- National Institute of Oceanography, Dona Paula, Goa, 403 004, India.
| |
Collapse
|
15
|
Gajbhiye DS, Khandeparker L. Immunoecology of the short neck clam Paphia malabarica (Chemnitz, 1782) in a tropical monsoon-influenced estuary. MARINE ENVIRONMENTAL RESEARCH 2019; 143:60-70. [PMID: 30466887 DOI: 10.1016/j.marenvres.2018.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Understanding the variability in organism's immunological response is crucial for predicting changes at population or community level. The present study investigated the immunoecology of a commercially valuable clam Paphia malabarica in a tropical monsoon-influenced estuary. Clams were collected monthly during a year cycle, which coincided with pre-monsoon (February-May), monsoon (June-September) and post-monsoon seasons (October-January). For assessment of immune functioning, selected hemocyte parameters (total hemocyte concentration, hemocyte mortality, lysosomal content, esterase activity, reactive oxygen species production, and phagocytic activity) were analyzed using flow cytometry. Simultaneously, clam's condition index, nutrients, chlorophyll a, dissolved oxygen, pH, temperature and bacterial density were also measured at the sampling site. Our results exhibited seasonal patterns in hemocyte functioning with the highest activity during the pre-monsoon season (suggestive of a suitable harvesting period) and lowest during monsoon (suggestive of a critical biological period). The critical biological period for P. malabarica was marked with compromised immune parameters inflicted by low salinity, food availability, and possibly high bacterial abundance. Also, the involvement of reproductive stress altering the hematological functioning in P. malabarica cannot be ruled out. Nutrients, dissolved oxygen, pH and temperature could not explain much of the hemocyte variability. The present study has further validated the usefulness of hemocyte as a suitable marker for understanding immunoecology of P. malabarica which is of prime importance, especially in a monsoon-influenced tropical estuarine environment. The findings of our research will be constructive in monitoring natural as well as cultivated bivalve populations of economic and ecological relevance.
Collapse
Affiliation(s)
- Deodatta S Gajbhiye
- Academy of Scientific and Innovative Research (AcSIR), CSIR- National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Lidita Khandeparker
- Academy of Scientific and Innovative Research (AcSIR), CSIR- National Institute of Oceanography, Dona Paula, Goa, 403 004, India.
| |
Collapse
|
16
|
Hede N, Khandeparker L. Influence of Darkness and Aging on Marine and Freshwater Biofilm Microbial Communities Using Microcosm Experiments. MICROBIAL ECOLOGY 2018; 76:314-327. [PMID: 29380028 DOI: 10.1007/s00248-018-1149-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Ballast tank biofilms pose an additional risk of microbial invasion if sloughed off during ballasting operations, yet their significance and invasion biology is poorly understood. In this study, biofilms developed in marine and freshwater locations were exposed to prolonged darkness and aging by mimicking ballast water conditions in the laboratory. Upon prolonged darkness, the decay of phytoplankton, as indicated by the decrease in chlorophyll a in marine biofilms, led to remineralization and enhanced bacterial and protist populations. However, the same trend was not observed in the case of freshwater biofilms wherein the microbial parameters (i.e., bacteria, protists) and chlorophyll a decreased drastically. The bacterial community structure in such conditions was evaluated by real-time quantitative PCR (qPCR), and results showed that the biofilm bacterial communities changed significantly over a period of time. α-Proteobacteria was the most stable taxonomic group in the marine biofilms under dark conditions. However, β-proteobacteria dominated the freshwater biofilms and seemed to play an important role in organic matter remineralization. γ-Proteobacteria, which includes most of the pathogenic genera, were affected significantly and decreased in both the types of biofilms. This study revealed that marine biofilm communities were able to adapt better to the dark conditions while freshwater biofilm communities collapsed. Adaptation of tolerant bacterial communities, regeneration of nutrients via cell lysis, and presence of grazers appeared to be key factors for survival upon prolonged darkness. However, the fate of biofilm communities upon discharge in the new environment and their invasion potential is an important topic for future investigation.
Collapse
Affiliation(s)
- Niyati Hede
- CSIR - National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | | |
Collapse
|
17
|
Nordin N, Yusof NA, Radu S, Hushiarian R. Development of an Electrochemical DNA Biosensor to Detect a Foodborne Pathogen. J Vis Exp 2018. [PMID: 29912194 DOI: 10.3791/56585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a common foodborne pathogen that contributes to a large proportion of public health problems globally, significantly affecting the rate of human mortality and morbidity. Conventional methods for the detection of V. parahaemolyticus such as culture-based methods, immunological assays, and molecular-based methods require complicated sample handling and are time-consuming, tedious, and costly. Recently, biosensors have proven to be a promising and comprehensive detection method with the advantages of fast detection, cost-effectiveness, and practicality. This research focuses on developing a rapid method of detecting V. parahaemolyticus with high selectivity and sensitivity using the principles of DNA hybridization. In the work, characterization of synthesized polylactic acid-stabilized gold nanoparticles (PLA-AuNPs) was achieved using X-ray Diffraction (XRD), Ultraviolet-visible Spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM), Field-emission Scanning Electron Microscopy (FESEM), and Cyclic Voltammetry (CV). We also carried out further testing of stability, sensitivity, and reproducibility of the PLA-AuNPs. We found that the PLA-AuNPs formed a sound structure of stabilized nanoparticles in aqueous solution. We also observed that the sensitivity improved as a result of the smaller charge transfer resistance (Rct) value and an increase of active surface area (0.41 cm2). The development of our DNA biosensor was based on modification of a screen-printed carbon electrode (SPCE) with PLA-AuNPs and using methylene blue (MB) as the redox indicator. We assessed the immobilization and hybridization events by differential pulse voltammetry (DPV). We found that complementary, non-complementary, and mismatched oligonucleotides were specifically distinguished by the fabricated biosensor. It also showed reliably sensitive detection in cross-reactivity studies against various food-borne pathogens and in the identification of V. parahaemolyticus in fresh cockles.
Collapse
Affiliation(s)
- Noordiana Nordin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia;
| | - Nor Azah Yusof
- Laboratory of Functional Device, Institute of Advanced Technology, Universiti Putra Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia
| | - Son Radu
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia
| | | |
Collapse
|
18
|
Kopprio GA, Streitenberger ME, Okuno K, Baldini M, Biancalana F, Fricke A, Martínez A, Neogi SB, Koch BP, Yamasaki S, Lara RJ. Biogeochemical and hydrological drivers of the dynamics of Vibrio species in two Patagonian estuaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:646-656. [PMID: 27871750 DOI: 10.1016/j.scitotenv.2016.11.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
The ecology of the most relevant Vibrio species for human health and their relation to water quality and biogeochemistry were studied in two estuaries in Argentinian Patagonia. Vibrio cholerae and Vibrio parahaemolyticus were reported in >29% of cases at the Río Colorado and Río Negro estuaries. Neither the pandemic serogroups of Vibrio cholerae O1, Vibrio cholerae O139 nor the cholera toxin gene were detected in this study. However, several strains of V. cholerae (not O1 or O139) are able to cause human disease or acquire pathogenic genes by horizontal transfer. Vibrio vulnificus was detected only in three instances in the microplankton fraction of the Río Negro estuary. The higher salinity in the Río Colorado estuary and in marine stations at both estuaries favours an abundance of culturable Vibrio. The extreme peaks for ammonium, heterotrophic bacteria and faecal coliforms in the Río Negro estuary supported a marked impact on sewage discharge. Generally, the more pathogenic strains of Vibrio have a faecal origin. Salinity, pH, ammonium, chlorophyll a, silicate and carbon/nitrogen ratio of suspended organic particulates were the primary factors explaining the distribution of culturable bacteria after distance-based linear models. Several effects of dissolved organic carbon on bacterial distribution are inferred. Global change is expected to increase the trophic state and the salinisation of Patagonian estuaries. Consequently, the distribution and abundance of Vibrio species is projected to increase under future changing baselines. Adaptation strategies should contribute to sustaining good water quality to buffer climate- and anthropogenic- driven impacts.
Collapse
Affiliation(s)
- Germán A Kopprio
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina; Leibniz Center for Tropical Marine Ecology, Fahrenheitstr. 6, 28359 Bremen, Germany.
| | - M Eugenia Streitenberger
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Kentaro Okuno
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku orai-kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Mónica Baldini
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Florencia Biancalana
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina
| | - Anna Fricke
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina; Leibniz Center for Tropical Marine Ecology, Fahrenheitstr. 6, 28359 Bremen, Germany
| | - Ana Martínez
- Department of Chemistry, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca, Argentina
| | - Sucharit B Neogi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku orai-kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Boris P Koch
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Marine Chemistry, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Shinji Yamasaki
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku orai-kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Rubén J Lara
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina
| |
Collapse
|
19
|
Khandeparker L, Eswaran R, Gardade L, Kuchi N, Mapari K, Naik SD, Anil AC. Elucidation of the tidal influence on bacterial populations in a monsoon influenced estuary through simultaneous observations. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:41. [PMID: 28035613 DOI: 10.1007/s10661-016-5687-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
The influence of tides on bacterial populations in a monsoon influenced tropical estuary was assessed through fine resolution sampling (1 to 3 h) during spring and neap tides from mouth to the freshwater end at four stations during pre-monsoon, monsoon and post-monsoon seasons. Higher abundance of total bacterial count (TBC) in surface water near the river mouth, compared to the upstream, during pre-monsoon was followed by an opposite scenario during the monsoon When seasonally compared, it was during the post-monsoon season when TBC in surface water was highest, with simultaneous decrease in their count in the river sediment. The total viable bacterial count (TVC) was influenced by the depth-wise stratification of salinity, which varied with tidal fluctuation, usually high and low during the neap and spring tides respectively. The abundance of both the autochthonous Vibrio spp. and allochthonous coliform bacteria was influenced by the concentrations of dissolved nutrients and suspended particulate matter (SPM). It is concluded that depending on the interplay of riverine discharge and tidal amplitude, sediment re-suspension mediated increase in SPM significantly regulates bacteria populations in the estuarine water, urging the need of systematic regular monitoring for better prediction of related hazards, including those associated with the rise in pathogenic Vibrio spp. in the changing climatic scenarios.
Collapse
Affiliation(s)
| | - Ranjith Eswaran
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Laxman Gardade
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Nishanth Kuchi
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Kaushal Mapari
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Sneha D Naik
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | | |
Collapse
|