1
|
Plazas-Gómez RA, Bejarano S, Magneville C, Fujitani M. Beyond taxonomy: A functional approach reveals patterns of reef fish response to wastewater pollution. MARINE POLLUTION BULLETIN 2025; 216:118024. [PMID: 40286410 DOI: 10.1016/j.marpolbul.2025.118024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Coral reefs face severe threats from climate change and local stressors like wastewater pollution, which significantly impact reef ecosystems but remain underexplored. Reef fish are essential for supporting human livelihoods through fisheries and maintaining ecosystem functions such as nutrient cycling and algae control. While most research focuses on wastewater's effects on benthic communities, its impact on reef fish physiology, behavior, and community structure is poorly understood. Few studies apply trait-based approaches to evaluate wastewater's influence on fish's ecological roles. This study systematically reviews 52 papers and conducts a meta-analysis of eight control-impact studies to assess wastewater effects on reef fish taxonomic and functional structure. Taxonomy-based metrics revealed mixed responses, with studies reporting declines, increases, or no changes in abundance, richness, and biomass in polluted sites. Functional analysis provided clearer patterns: polluted sites were dominated by smaller, high-resilience species at mid-trophic levels, while control sites supported larger, low-resilience species at diverse depths and trophic levels. Functional richness was generally higher in control sites. Pollutant-specific effects varied: sediments impaired feeding efficiency and growth, while nutrient enrichment shifted species composition by favoring lower trophic levels. These findings demonstrate the limitations of taxonomy-based metrics and highlight the value of functional approaches for detecting early ecosystem degradation. Integrating functional ecology with wastewater characterization enhances predictions of ecological responses and supports targeted management strategies. This research emphasizes the urgency of addressing wastewater pollution to safeguard reef biodiversity and ecosystem services critical to human well-being.
Collapse
Affiliation(s)
- Ramón Alejandro Plazas-Gómez
- Leibniz Centre for Tropical Marine Research, Fahrenheitstrasse 6, 28359 Bremen, Germany; University of Bremen, Institute for Geography, Bibliothekstraße 1, 28359 Bremen, Germany.
| | - Sonia Bejarano
- Leibniz Centre for Tropical Marine Research, Fahrenheitstrasse 6, 28359 Bremen, Germany.
| | - Camille Magneville
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Nordre Ringgade 1, 8000, Aarhus, Denmark.
| | - Marie Fujitani
- Leibniz Centre for Tropical Marine Research, Fahrenheitstrasse 6, 28359 Bremen, Germany; University of Bremen, Institute for Geography, Bibliothekstraße 1, 28359 Bremen, Germany.
| |
Collapse
|
2
|
Isa V, Saliu F, Becchi A, Spadaccino G, Quinto M, Veronelli M, Lasagni M, Galli P, Lavorano S. Impacts of microplastics on reef-building corals: Disentangling the contribution of the chain scission products released by weathering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179239. [PMID: 40179749 DOI: 10.1016/j.scitotenv.2025.179239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 02/25/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
Microplastics (MPs) have recently been shown to impact the health of corals negatively. The primary effects are linked to the physical interaction of the particles with coral tissues, such as abrasion that causes wounds. Additionally, MPs can leach contaminants into the seawater, not only the formulation additives but also molecular fragments resulting from the photo-oxidative degradation of the plastic polymer. These contaminants may have further detrimental effects. Currently, the relative contributions of these factors and their potential synergistic actions are not well understood. To address this, we conducted tests on nubbins of the soft coral Pinnigorgia flava and we evaluated the toxicity of reference additive-free MPs (LDPE and PP, sized 125-250 μm) before and after photo-aging, of MPs collected from beaches, and of the corresponding leachates. By FTIR and SEM analysis, we highlighted similarities between photo-aged reference MPs and the beached MPs, both in terms of surface oxidation and structural defects. GC-MS and dissolved organic carbon (DOC) analysis indicated the release of a variety of molecular species from the photo-aged MPs not detected in the pristine counterpart (accounting for 0.6-2.1 % of the original mass), including short-chain poly-oxidized compounds. The exposure of nubbins to the reference MPs highlighted a significant mucus production with PP and LDPE at 1 mg/L. Leachates from the photo-aged PP induced significant polyp retraction at 10 mg/L, while the leachates from photo-aged LDPE induced significant polyp retraction in P.flava at the concentration of 1 mg/L. No significant stress responses were highlighted with the photo-aged MPs and the leachates from pristine MPs. Beached MPs induced significant responses with the lowest observed effect concentration (LOEC) at 0.1 mg/L. This effect was related to the occurrence of plastic additives not detected in the reference MPs. Overall, the results highlighted the importance of considering the contribution of the photo-degradation products released by MPs in ecotoxicological assessments.
Collapse
Affiliation(s)
- Valerio Isa
- Earth and Environmental Science Department, University of Milano Bicocca, MI 20126, Italy; Costa Edutainment SpA - Acquario di Genova, GE 16128, Italy
| | - Francesco Saliu
- Earth and Environmental Science Department, University of Milano Bicocca, MI 20126, Italy.
| | - Alessandro Becchi
- Earth and Environmental Science Department, University of Milano Bicocca, MI 20126, Italy
| | - Giuseppina Spadaccino
- DAFNE - Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Napoli 25, I-71122 Foggia, Italy
| | - Maurizio Quinto
- DAFNE - Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Napoli 25, I-71122 Foggia, Italy
| | | | - Marina Lasagni
- Earth and Environmental Science Department, University of Milano Bicocca, MI 20126, Italy
| | - Paolo Galli
- Earth and Environmental Science Department, University of Milano Bicocca, MI 20126, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; University of Dubai, Dubai, P.O. Box 14143, United Arab Emirates
| | | |
Collapse
|
3
|
Petra de Oliveira Barros V, Macedo Silva JR, Maciel Melo VM, Terceiro PS, Nunes de Oliveira I, Duarte de Freitas J, Francisco da Silva Moura O, Xavier de Araújo-Júnior J, Erlanny da Silva Rodrigues E, Maraschin M, Thompson FL, Landell MF. Biosurfactants production by marine yeasts isolated from zoanthids and characterization of an emulsifier produced by Yarrowia lipolytica LMS 24B. CHEMOSPHERE 2024; 355:141807. [PMID: 38552803 DOI: 10.1016/j.chemosphere.2024.141807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
The present study investigates the potential for biosurfactant production of 19 marine yeast species obtained from zoanthids. Using the emulsification index test to screen the samples produced by the marine yeasts, we verified that five isolates exhibited an emulsification index ≥50%. Additional tests were performed on such isolates, including oil displacement, drop collapse, Parafilm M assay, and surface tension measurement. The tolerance of produced biosurfactants for environmental conditions was also analyzed, especially considering the media's temperature, pH, and salinity. Moreover, the surfactant's ability to emulsify different hydrocarbon sources and to metabolize kerosene as the sole carbon source was evaluated in vitro. Our results demonstrate that yeast biosurfactants can emulsify hydrocarbon sources under different physicochemical conditions and metabolize kerosene as a carbon source. Considering the Yarrowia lipolytica LMS 24B as the yeast model for biosurfactant production from the cell's wall biomass, emulsification indexes of 61.2% were obtained, even at a high temperature of 120 °C. Furthermore, the Fourier-transform middle infrared spectroscopy (FTIR) analysis of the biosurfactant's chemical composition revealed the presence of distinct functional groups assigned to a glycoprotein complex. Considering the status of developing new bioproducts and bioprocesses nowadays, our findings bring a new perspective to biosurfactant production by marine yeasts, especially Y. lipolytica LMS 24B. In particular, the presented results validate the relevance of marine environments as valuable sources of genetic resources, i.e., yeast strains capable of metabolizing and emulsifying petroleum derivatives.
Collapse
Affiliation(s)
- Vitória Petra de Oliveira Barros
- Graduate Program in Genetics. Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Vânia Maria Maciel Melo
- Department of Biology, Microbial Ecology and Biotechnology Laboratory (Lembiotech), Fortaleza, CE, Brazil
| | | | | | | | | | | | | | - Marcelo Maraschin
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Melissa Fontes Landell
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, Brazil.
| |
Collapse
|
4
|
Burdett HL, Albright R, Foster GL, Mass T, Page TM, Rinkevich B, Schoepf V, Silverman J, Kamenos NA. Including environmental and climatic considerations for sustainable coral reef restoration. PLoS Biol 2024; 22:e3002542. [PMID: 38502663 PMCID: PMC10950257 DOI: 10.1371/journal.pbio.3002542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Coral reefs provide ecosystem benefits to millions of people but are threatened by rapid environmental change and ever-increasing human pressures. Restoration is becoming a priority strategy for coral reef conservation, yet implementation remains challenging and it is becoming increasingly apparent that indirect conservation and restoration approaches will not ensure the long-term sustainability of coral reefs. The important role of environmental conditions in restoration practice are currently undervalued, carrying substantial implications for restoration success. Giving paramount importance to environmental conditions, particularly during the pre-restoration planning phase, has the potential to bring about considerable improvements in coral reef restoration and innovation. This Essay argues that restoration risk may be reduced by adopting an environmentally aware perspective that gives historical, contemporary, and future context to restoration decisions. Such an approach will open up new restoration opportunities with improved sustainability that have the capacity to dynamically respond to environmental trajectories.
Collapse
Affiliation(s)
- Heidi L. Burdett
- Umeå Marine Sciences Centre, Umeå University, Norrbyn, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Rebecca Albright
- Institute for Biodiversity and Sustainability Science, California Academy of Sciences, San Francisco, California, United States of America
| | - Gavin L. Foster
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, United Kingdom
| | - Tali Mass
- Department of Marine Biology, The Leon H Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tessa M. Page
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, United Kingdom
| | - Buki Rinkevich
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Verena Schoepf
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
- UWA Oceans Institute, University of Western Australia, Perth, Australia
| | - Jacob Silverman
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Nicholas A. Kamenos
- Umeå Marine Sciences Centre, Umeå University, Norrbyn, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Fernandes GM, Martins DDA, de Oliveira AHB, de Lima MFB, Reddy CM, Nelson RK, Cavalcante RM. Hydrocarbon markers for assessing the influence of human activities in the tropical semi-arid region (Acaraú River, state of Ceará, Brazil). CHEMOSPHERE 2023; 344:140227. [PMID: 37758093 DOI: 10.1016/j.chemosphere.2023.140227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Coastal ecosystems are facing increasing anthropogenic stressors, including rapid urbanization rates and extensive fossil fuel usage. Nevertheless, the distribution of hydrocarbons in the Brazilian semi-arid region remains relatively uncharacterized. In this study, we analyzed ten surface sediment samples (0-2 cm) along the banks of the Acaraú River to assess the chronic contributions of aliphatic and aromatic hydrocarbons. The Acaraú River is a crucial riverine-estuarine area in the semi-arid region of Northeast Brazil. Ultrasound-assisted extraction and gas chromatograph coupled to a mass spectrometer were used to identify target compounds: 45 PAHs, 27 n-alkanes (C10-C38), and two isoprenoids. At most stations, the predominant grain size was sand, and the organic carbon content was less than 1%. The total n-alkanes concentration ranged from 14.1 to 170.0 μg g-1, while individual pristane and phytane concentrations ranged from not detected (nd) to 0.4 μg g-1 and nd to 0.7 μg g-1, respectively. These concentrations resemble those found in unpolluted sediments and are lower compared to samples from urbanized coastal areas. The total USEPA PAHs concentration varied from 157.8 to 1364 ng g-1, leading to the characterization of sediment samples as moderately polluted. Based on diagnostic ratios calculated from both alkane and PAH concentrations, the sediment samples were predominantly deriving from pyrolytic sources, with some contribution from petrogenic sources. The most abundant group was 5-ring PAHs (mean: 47.3 ± 36.7%), followed by 3-ring PAHs (mean: 17.9 ± 13.7%). This predominance indicates a pyrolytic origin of hydrocarbons in the Acaraú River. The concentrations reported here were representative of the level of background hydrocarbons in the region. Regarding the sediment quality assessment, BaP TPE calculated for the Acaraú River ranged from 13.2 to 1258.4 ng g-1 (mean: 409.3 ± 409.4 ng g-1). When considering site-specific sediment quality values for the coast of the state of Ceará, half of the stations are classified as strongly contaminated, and toxic effects are expected to occur (SQGq >0.25) for the ∑16 PAHs measured in the samples, especially due to dibenz [a,h]anthracene concentrations.
Collapse
Affiliation(s)
- Gabrielle M Fernandes
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles,CEP: 60165-081, Fortaleza, CE, Brazil.
| | - Davi de A Martins
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles,CEP: 60165-081, Fortaleza, CE, Brazil
| | - Andre H B de Oliveira
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles,CEP: 60165-081, Fortaleza, CE, Brazil; Laboratory for Environmental Studies (LEA), Federal University of Ceará - Analytical Chemistry and Physical Chemistry Department, Campus do Pici s/n, Bloco 938/939, Brazil
| | - Marcielly F B de Lima
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles,CEP: 60165-081, Fortaleza, CE, Brazil
| | - Christopher M Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Robert K Nelson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Rivelino M Cavalcante
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles,CEP: 60165-081, Fortaleza, CE, Brazil
| |
Collapse
|
6
|
Nordborg FM, Brinkman DL, Fisher R, Parkerton TF, Oelgemöller M, Negri AP. Effects of aromatic hydrocarbons and evaluation of oil toxicity modelling for larvae of a tropical coral. MARINE POLLUTION BULLETIN 2023; 196:115610. [PMID: 37804672 DOI: 10.1016/j.marpolbul.2023.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Application of oil toxicity modelling for assessing the risk of spills to coral reefs remains uncertain due to a lack of data for key tropical species and environmental conditions. In this study, larvae of the coral Acropora millepora were exposed to six aromatic hydrocarbons individually to generate critical target lipid body burdens (CTLBBs). Larval metamorphosis was inhibited by all six aromatic hydrocarbons, while larval survival was only affected at concentrations >2000 μg L-1. The derived metamorphosis CTLBB of 9.7 μmol g-1 octanol indicates larvae are more sensitive than adult corals, and places A. millepora larvae among the most sensitive organisms in the target lipid model (TLM) databases. Larvae were also more sensitive to anthracene and pyrene when co-exposed to ecologically relevant levels of ultraviolet radiation. The results suggest that the application of the phototoxic TLM would be protective of A. millepora larvae, provided adequate chemical and light data are available.
Collapse
Affiliation(s)
- F Mikaela Nordborg
- AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; College of Science & Engineering, Division of Tropical Environments and Societies, James Cook University, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia.
| | - Diane L Brinkman
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Rebecca Fisher
- Australian Institute of Marine Science, Crawley 6009, Western Australia, Australia
| | | | - Michael Oelgemöller
- Faculty of Chemistry and Biology, Hochschule Fresenius gGmbH-University of Applied Sciences, D-65510 Idstein, Germany
| | - Andrew P Negri
- AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| |
Collapse
|
7
|
Dai Y, Zhang G, Peng Y, Li Y, Chi H, Pang H. Recent progress in 1D MOFs and their applications in energy and environmental fields. Adv Colloid Interface Sci 2023; 321:103022. [PMID: 39491441 DOI: 10.1016/j.cis.2023.103022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
Metal organic frameworks (MOFs) are porous coordination polymers with adjustable nanostructure, high porosity and large surface areas. These features make MOFs, their derivates and composites all delivered remarkable potential in energy and environmental fields, such as rechargeable batteries, supercapacitors, catalysts, water purification and desalination, gas treatment, toxic matter degradation, etc. In particular, one-dimensional (1D) MOFs have generated extensive attention due to their unique 1D nanostructures. To prepare 1D MOF nanostructures, it is necessary to explore and enhance synthesis routes. In this review, the preparation of 1D MOF materials and their recent process applied in energy and environmental fields will be discussed. The relationship between MOFs' 1D morphologies and the properties in their applications will also be analyzed. Finally, we will also summary and make perspectives about the future development of 1D MOFs in fabrication and applications in energy and environmental fields.
Collapse
Affiliation(s)
- Yunyi Dai
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Guangxun Zhang
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yi Peng
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yuan Li
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Heng Chi
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
8
|
Villela H, Modolon F, Schultz J, Delgadillo-Ordoñez N, Carvalho S, Soriano AU, Peixoto RS. Genome analysis of a coral-associated bacterial consortium highlights complementary hydrocarbon degradation ability and other beneficial mechanisms for the host. Sci Rep 2023; 13:12273. [PMID: 37507453 PMCID: PMC10382565 DOI: 10.1038/s41598-023-38512-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Here we report the oil degradation genetic potential of six oil-degrading bacteria (ODB), previously used as a bioremediation consortium, isolated from the hydrocoral Millepora alcicornis and seawater. The strains were identified as Halomonas sp. (LC_1), Cobetia sp. (LC_6), Pseudoalteromonas shioyasakiensis (LC_2), Halopseudomonas aestusnigri (LC_3), Shewanella algae (LC_4), and Brucella intermedia (LC_5). The taxonomic identification differed from that of the original paper when we used whole genome gene markers instead of just 16S rRNA gene. Genes responsible for the degradation of aromatic hydrocarbons and n-alkanes were found in all genomes, although different (and complementary) steps of the metabolic pathways were unique to each strain. Genes for naphthalene and toluene degradation were found in various strains. We annotated quinate degradation genes in LC_6, while LC_3 and LC_5 presented genes for biosurfactant and rhamnolipid biosynthesis. We also annotated genes related to beneficial mechanisms for corals, such as genes involved in nitrogen and DMSP metabolism, cobalamin biosynthesis and antimicrobial compounds production. Our findings reinforce the importance of using bacterial consortia for bioremediation approaches instead of single strains, due to their complementary genomic arsenals. We also propose a genome-based framework to select complementary ODB that can provide additional benefits to coral health.
Collapse
Affiliation(s)
- Helena Villela
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Flúvio Modolon
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Júnia Schultz
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Computational Biology Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Nathalia Delgadillo-Ordoñez
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Marine Science and Bioscience Programs, Biological, Environmental and Engineering Sciences Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | | | - Raquel Silva Peixoto
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
- Computational Biology Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
- Marine Science and Bioscience Programs, Biological, Environmental and Engineering Sciences Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
9
|
Caronni S, Quaglini LA, Franzetti A, Gentili R, Montagnani C, Citterio S. Does Caulerpa prolifera with Its Bacterial Coating Represent a Promising Association for Seawater Phytoremediation of Diesel Hydrocarbons? PLANTS (BASEL, SWITZERLAND) 2023; 12:2507. [PMID: 37447068 DOI: 10.3390/plants12132507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Anthropic diesel-derived contamination of Mediterranean coastal waters is of great concern. Nature-based solutions such as phytoremediation are considered promising technologies to remove contaminants from marine environments. The aim of this work was to investigate the tolerance of the Mediterranean autochthonous seaweed Caulerpa prolifera (Forsskal) Lamouroux to diesel fuel and its hydrocarbon degradation potential. Changes in C. prolifera traits, including its associated bacterial community abundance and structure, were determined by fluorescence microscopy and next-generation sequencing techniques. Thalli of C. prolifera artificially exposed to increasing concentration of diesel fuel for 30 days and thalli collected from three natural sites with different levels of seawater diesel-derived hydrocarbons were analysed. Gas chromatography was applied to determine the seaweed hydrocarbon degradation potential. Overall, in controlled conditions the lower concentration of diesel (0.01%) did not affect C. prolifera survival and growth, whereas the higher concentration (1%) resulted in high mortality and blade damages. Similarly, only natural thalli, collected at the most polluted marine site (750 mg L-1), were damaged. A higher abundance of epiphytic bacteria, with a higher relative abundance of Vibrio bacteria, was positively correlated to the health status of the seaweed as well as to its diesel-degradation ability. In conclusion, C. prolifera tolerated and degraded moderate concentrations of seawater diesel-derived compounds, especially changing the abundance and community structure of its bacterial coating. The protection and exploitation of this autochthonous natural seaweed-bacteria symbiosis represents a useful strategy to mitigate the hydrocarbon contamination in moderate polluted Mediterranean costal environments.
Collapse
Affiliation(s)
- Sarah Caronni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Lara A Quaglini
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Rodolfo Gentili
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Chiara Montagnani
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Sandra Citterio
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
10
|
Desplat Y, Warner JF, Blake EJ, Vijayan N, Cuvelier M, Blackwelder P, Lopez JV. Morphological and transcriptional effects of crude oil and dispersant exposure on the marine sponge Cinachyrella alloclada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162832. [PMID: 36924960 DOI: 10.1016/j.scitotenv.2023.162832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 05/13/2023]
Abstract
Marine sponges play important roles in benthic ecosystems. More than providing shelter and food to other species, they help maintain water quality by regulating nitrogen and ammonium levels in the water, and bioaccumulate heavy metals. This system, however, is particularly sensitive to sudden environmental changes including catastrophic pollution event such as oil spills. Hundreds of oil platforms are currently actively extracting oil and gas in the Gulf of Mexico. To test the vulnerability of the benthic ecosystems to oil spills, we utilized the Caribbean reef sponge, Cinachyrella alloclada, as a novel experimental indicator. We have exposed organisms to crude oil and oil dispersant for up to 24 h and measured resultant gene expression changes. Our findings indicate that 1-hour exposure to water accommodated fractions (WAF) was enough to elicit massive shifts in gene expression in sponges and host bacterial communities (8052 differentially expressed transcripts) with the up-regulation of stress related pathways, cancer related pathways, and cell integrity pathways. Genes that were upregulated included heat shock proteins, apoptosis, oncogenes (Rab/Ras, Src, CMYC), and several E3 ubiquitin ligases. 24-hour exposure of chemically enhanced WAF (CE-WAF) had the greatest impact to benthic communities, resulting in mostly downregulation of gene expression (4248 differentially expressed transcripts). Gene deregulation from 1-hour treatments follow this decreasing trend of toxicity: WAF > CE-WAF > Dispersant, while the 24-hour treatment showed a shift to CE-WAF > Dispersant > WAF in our experiments. Thus, this study supports the development of Cinachyrella alloclada as a research model organism and bioindicator species for Florida reefs and underscores the importance of developing more efficient and safer ways to remove oil in the event of a spill catastrophe.
Collapse
Affiliation(s)
- Yvain Desplat
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America.
| | - Jacob F Warner
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28409, United States of America
| | - Emily J Blake
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America
| | - Nidhi Vijayan
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America
| | - Marie Cuvelier
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America
| | - Patricia Blackwelder
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America; UMCAM, Chemistry Department, University of Miami, Coral Gables, FL 33126, United States of America
| | - Jose V Lopez
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America
| |
Collapse
|
11
|
Menezes N, Cruz I, da Rocha GO, de Andrade JB, Leão ZMAN. Polycyclic aromatic hydrocarbons in coral reefs with a focus on Scleractinian corals: A systematic overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162868. [PMID: 36934938 DOI: 10.1016/j.scitotenv.2023.162868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
The impact of petroleum exploitation and oil spills in marine ecosystems has increased over time. Among the concerns regarding these events, the impact on coral reefs stand out because this ecosystem has ecological and economic importance and is globally threatened. We performed a systematic review and bibliometric analysis of studies that determine polycyclic aromatic hydrocarbons (PAHs) in coral reefs, attempting to answer how the studies were distributed around the globe, the main environmental matrices and species of coral studied, the main PAHs found and their mean concentrations, and the methodology used. A bibliographic search resulted in 42 studies with worldwide distribution. The bibliometric results presented more explored terms, such as sediments and toxicology, and newly investigated terms, which should encourage a new area of study, such as those related to zooxanthellae and mucus. The main matrices studied in coral reefs are sediments, corals, and water, whereas air and other invertebrates have rarely been studied. Approximately 45 species of corals with several morphotypes have been reported. PAHs recommended by the United States Environmental Protection Agency (US EPA) were analyzed in all studies, while additional compounds were analyzed in only five. The methods used to determine hydrocarbons are predominantly the most traditional; however, for corals, studies have tended to separate tissue, zooxanthellae, skeleton, and mucus. In the future, we recommend investment in improving the capacity to detect non-conventional PAHs, more studies in regions that are rarely explored in developing countries, and the creation of databases to facilitate management planning on marine coasts.
Collapse
Affiliation(s)
- Natália Menezes
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil.
| | - Igor Cruz
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Laboratory of Biological Oceanography, Federal University of Bahia (UFBA), Department of Oceanography, Institute of Geosciences, Barão de Jeremoabo Street, Ondina, Salvador 40210-340, Bahia, Brazil
| | - Gisele O da Rocha
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto de Química, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil
| | - Jailson B de Andrade
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, 41650-110 Salvador, BA, Brazil
| | - Zelinda M A N Leão
- Laboratory of Coral Reefs and Global Changes-RECOR, Institute of Geosciences, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador 40210-340, Bahia, Brazil
| |
Collapse
|
12
|
Brinkman DL, Flores F, Luter HM, Nordborg FM, Brooks M, Parkerton TF, Negri AP. Sensitivity of the Indo-Pacific coral Acropora millepora to aromatic hydrocarbons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121963. [PMID: 37286027 DOI: 10.1016/j.envpol.2023.121963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/22/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The risks posed by petroleum spills to coral reefs are poorly understood and quantifying acute toxicity thresholds for aromatic hydrocarbons to reef-building corals is required to assess their sensitivity relative to other taxa. In this study, we exposed Acropora millepora to toluene, naphthalene and 1-methylnaphthalene (1-MN) in a flow-through system and assessed survivorship and sublethal responses including growth, colour and the photosynthetic performance of symbionts. Median 50% lethal concentrations (LC50s) decreased over the 7-d exposure period, reaching asymptotic values of 22,921, 5,268, 1167 μg L-1 for toluene, naphthalene and 1-MN, respectively. Corresponding toxicokinetic parameters (εLC50) defining the time progression of toxicity were 0.830, 0.692, and 0.256 d-1, respectively. Latent effects after an additional 7-d recovery in uncontaminated seawater were not observed. Effect concentrations (EC50s) for 50% growth inhibition were 1.9- to 3.6-fold lower than the LC50s for each aromatic hydrocarbon. There were no observed effects of aromatic hydrocarbon exposure on colour score (a proxy for bleaching) or photosynthetic efficiency. Acute and chronic critical target lipid body burdens (CTLBBs) of 70.3 ± 16.3 and 13.6 ± 18.4 μmol g-1 octanol (± standard error) were calculated for survival and growth inhibition based on 7-d LC50 and EC10 values, respectively. These species-specific constants indicate adult A. millepora is more sensitive than other corals reported so far but is of average sensitivity in comparison with other aquatic taxa in the target lipid model database. These results advance our understanding of acute hazards of petroleum contaminants to key habitat-building tropical coral reef species.
Collapse
Affiliation(s)
- Diane L Brinkman
- Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia.
| | - Florita Flores
- Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia
| | - Heidi M Luter
- Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia
| | - F Mikaela Nordborg
- Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia; AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia; James Cook University, College of Science & Engineering, Townsville, Queensland 4810, Australia
| | - Maxime Brooks
- Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia; AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia; James Cook University, College of Science & Engineering, Townsville, Queensland 4810, Australia
| | | | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia; AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia
| |
Collapse
|
13
|
Dos Santos GS, de Souza TL, Teixeira TR, Brandão JPC, Santana KA, Barreto LHS, Cunha SDS, Dos Santos DCMB, Caffrey CR, Pereira NS, de Freitas Santos Júnior A. Seaweeds and Corals from the Brazilian Coast: Review on Biotechnological Potential and Environmental Aspects. Molecules 2023; 28:molecules28114285. [PMID: 37298760 DOI: 10.3390/molecules28114285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Brazil has a megadiversity that includes marine species that are distributed along 800 km of shoreline. This biodiversity status holds promising biotechnological potential. Marine organisms are important sources of novel chemical species, with applications in the pharmaceutical, cosmetic, chemical, and nutraceutical fields. However, ecological pressures derived from anthropogenic actions, including the bioaccumulation of potentially toxic elements and microplastics, impact promising species. This review describes the current status of the biotechnological and environmental aspects of seaweeds and corals from the Brazilian coast, including publications from the last 5 years (from January 2018 to December 2022). The search was conducted in the main public databases (PubChem, PubMed, Science Direct, and Google Scholar) and in the Espacenet database (European Patent Office-EPO) and the Brazilian National Property Institute (INPI). Bioprospecting studies were reported for seventy-one seaweed species and fifteen corals, but few targeted the isolation of compounds. The antioxidant potential was the most investigated biological activity. Despite being potential sources of macro- and microelements, there is a literature gap regarding the presence of potentially toxic elements and other emergent contaminants, such as microplastics, in seaweeds and corals from the Brazilian coast.
Collapse
Affiliation(s)
| | - Thais Luz de Souza
- Department of Analytical Chemistry, Chemistry Institute, Federal University of Bahia, Salvador 40170-115, BA, Brazil
| | - Thaiz Rodrigues Teixeira
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Keila Almeida Santana
- Department of Life Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| | | | - Samantha de Souza Cunha
- Department of Exact and Earths Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| | | | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Natan Silva Pereira
- Department of Exact and Earths Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| | - Aníbal de Freitas Santos Júnior
- Department of Life Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
- Department of Exact and Earths Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| |
Collapse
|
14
|
Binet MT, Reichelt-Brushett A, McKnight K, Golding LA, Humphrey C, Stauber JL. Adult Corals Are Uniquely More Sensitive to Manganese Than Coral Early-Life Stages. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1359-1370. [PMID: 36946339 DOI: 10.1002/etc.5618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/08/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023]
Abstract
Manganese (Mn) is an essential element and is generally considered to be one of the least toxic metals to aquatic organisms, with chronic effects rarely seen at concentrations below 1000 µg/L. Anthropogenic activities lead to elevated concentrations of Mn in tropical marine waters. Limited data suggest that Mn is more acutely toxic to adults than to early life stages of scleractinian corals in static renewal tests. However, to enable the inclusion of sufficient sensitive coral data in species sensitivity distributions to derive water quality guideline values for Mn, we determined the acute toxicity of Mn to the adult scleractinian coral, Acropora muricata, in flow-through exposures. The 48-h median effective concentration was 824 µg Mn/L (based on time-weighted average, measured, dissolved Mn). The endpoint was tissue sloughing, a lethal process by which coral tissue detaches from the coral skeleton. Tissue sloughing was unrelated to superoxidase dismutase activity in coral tissue, and occurred in the absence of bleaching, that is, toxic effects were observed for the coral host, but not for algal symbionts. We confirm that adult scleractinian corals are uniquely sensitive to Mn in acute exposures at concentrations 10-340 times lower than those reported to cause acute or chronic toxicity to coral early life stages, challenging the traditional notion that early life stages are more sensitive than mature organisms. Environ Toxicol Chem 2023;00:1-12. © 2023 Commonwealth Scientific and Industrial Research Organisation. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Monique T Binet
- Centre for Environmental Contaminants Research, Commonwealth Scientific and Industial Research Organisation Land and Water, Lucas Heights, New South Wales, Australia
| | - Amanda Reichelt-Brushett
- School of Environment, Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Kitty McKnight
- The National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Lisa A Golding
- Centre for Environmental Contaminants Research, Commonwealth Scientific and Industial Research Organisation Land and Water, Lucas Heights, New South Wales, Australia
| | - Craig Humphrey
- The National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Jenny L Stauber
- Centre for Environmental Contaminants Research, Commonwealth Scientific and Industial Research Organisation Land and Water, Lucas Heights, New South Wales, Australia
| |
Collapse
|
15
|
Ouédraogo DY, Mell H, Perceval O, Burga K, Domart-Coulon I, Hédouin L, Delaunay M, Guillaume MMM, Castelin M, Calvayrac C, Kerkhof O, Sordello R, Reyjol Y, Ferrier-Pagès C. What are the toxicity thresholds of chemical pollutants for tropical reef-building corals? A systematic review. ENVIRONMENTAL EVIDENCE 2023; 12:4. [PMID: 39294817 PMCID: PMC11378836 DOI: 10.1186/s13750-023-00298-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/22/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND Tropical coral reefs cover only ca. 0.1% of the Earth's surface but harbour exceptional marine biodiversity and provide vital ecosystem services to millions of people living nearby. They are currently threatened by global (e.g. climate change) and local (e.g. chemical pollution) stressors that interact in multiple ways. While global stressors cannot be mitigated by local actions alone, local stressors can be reduced through ecosystem management. Here, we aimed to systematically review experimental studies assessing the toxicity of chemical pollutants to tropical reef-building corals to generate accessible and usable knowledge and data that can be used to calculate measurement endpoints in ecological risk assessment. From the quantitative estimates of effects, we determined toxicity thresholds as the highest exposures tested at which no statistically significant adverse effects were observed, and we compared them to regulatory predicted no effect concentrations for the protection of marine organisms, to assess whether these reference values are indeed protective of corals. METHODS The evidence was taken from a systematic map of the impacts of chemicals arising from human activity on tropical reef-building corals published in 2021. All studies in the map database corresponding to the knowledge cluster "Evidence on the ecotoxicological effects of chemicals on corals" were selected. To identify subsequently published literature, the search was updated using a subset of the search string used for the systematic map. Titles, abstracts and full-texts were screened according to the criteria defining the selected cluster of the map. Because the eligibility criteria for the systematic review are narrower than the criteria used to define the cluster in the systematic map, additional screening was performed. Studies included were critically appraised and each study was rated as low, unclear, medium, or high risk of bias. Data were extracted from the studies and synthesised according to a strategy dependent on the type of exposure and outcome. REVIEW FINDINGS The systematic review reports the known effects of chemical exposures on corals from 847 studies corresponding to 181 articles. A total of 697 studies (161 articles) were included in the quantitative synthesis and 150 studies (50 articles) in the narrative synthesis of the findings. The quantitative synthesis records the effects of 2706 exposure concentrations-durations of 164 chemicals or mixtures of chemicals, and identifies 105 toxicity thresholds corresponding to 56 chemicals or mixtures of chemicals. When toxicity thresholds were compared to reference values set for the protection of marine organisms by environmental agencies, the reference values appear to be protective of corals for all but three chemicals assessed: the metal copper and the pesticides diuron and irgarol 1051. CONCLUSIONS This open-access database of known ecotoxicological effects of chemical exposures on corals can assist managers in the ecological risk assessment of chemicals, by allowing easy determination of various ecotoxicological thresholds. Several limitations of the toxicity tests synthesised here were noted (in particular the lack of measurement of effective concentrations for more than half of the studies). Overall, most of the currently available data on coral toxicity should be replicated independently and extended to corals from less studied geographical regions and functional groups.
Collapse
Affiliation(s)
- Dakis-Yaoba Ouédraogo
- Direction de L'Expertise, Muséum National d'Histoire Naturelle (MNHN), 75005, Paris, France.
| | - Hugo Mell
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | - Olivier Perceval
- Office Français de la Biodiversité (OFB), 94300, Vincennes, France
| | - Karen Burga
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94701, Maisons-Alfort Cedex, France
| | - Isabelle Domart-Coulon
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, CNRS-Muséum National d'Histoire Naturelle (MNHN), 75005, Paris, France
| | - Laetitia Hédouin
- Laboratoire d'Excellence CORAIL, 66860, Perpignan, France
- USR 3278 CRIOBE, PSL Université Paris : EPHE-UPVD-CNRS, 98729, Papetoai, Mo'orea, French Polynesia
| | - Mathilde Delaunay
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | - Mireille M M Guillaume
- Laboratoire d'Excellence CORAIL, 66860, Perpignan, France
- Laboratoire de Biologie Des Organismes et Ecosystèmes Aquatiques (BOrEA), Muséum National d'Histoire Naturelle-CNRS - SorbonneU - IRD - UCN - UA EcoFunc - Aviv, 75005, Paris, France
| | - Magalie Castelin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle - CNRS - Sorbonne Université - EPHE - Université des Antilles, 75005, Paris, France
| | - Christophe Calvayrac
- Biocapteurs Analyses Environnement, University of Perpignan via Domitia, 66000, Perpignan, France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Sorbonne Universités - CNRS, 66650, Banyuls Sur Mer, France
| | - Odile Kerkhof
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94701, Maisons-Alfort Cedex, France
| | - Romain Sordello
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | - Yorick Reyjol
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | | |
Collapse
|
16
|
Osman EO, Vohsen SA, Girard F, Cruz R, Glickman O, Bullock LM, Anderson KE, Weinnig AM, Cordes EE, Fisher CR, Baums IB. Capacity of deep-sea corals to obtain nutrition from cold seeps aligned with microbiome reorganization. GLOBAL CHANGE BIOLOGY 2023; 29:189-205. [PMID: 36271605 PMCID: PMC10092215 DOI: 10.1111/gcb.16447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Cold seeps in the deep sea harbor various animals that have adapted to utilize seepage chemicals with the aid of chemosynthetic microbes that serve as primary producers. Corals are among the animals that live near seep habitats and yet, there is a lack of evidence that corals gain benefits and/or incur costs from cold seeps. Here, we focused on Callogorgia delta and Paramuricea sp. type B3 that live near and far from visual signs of currently active seepage at five sites in the deep Gulf of Mexico. We tested whether these corals rely on chemosynthetically-derived food in seep habitats and how the proximity to cold seeps may influence; (i) coral colony traits (i.e., health status, growth rate, regrowth after sampling, and branch loss) and associated epifauna, (ii) associated microbiome, and (iii) host transcriptomes. Stable isotope data showed that many coral colonies utilized chemosynthetically derived food, but the feeding strategy differed by coral species. The microbiome composition of C. delta, unlike Paramuricea sp., varied significantly between seep and non-seep colonies and both coral species were associated with various sulfur-oxidizing bacteria (SUP05). Interestingly, the relative abundances of SUP05 varied among seep and non-seep colonies and were strongly correlated with carbon and nitrogen stable isotope values. In contrast, the proximity to cold seeps did not have a measurable effect on gene expression, colony traits, or associated epifauna in coral species. Our work provides the first evidence that some corals may gain benefits from living near cold seeps with apparently limited costs to the colonies. Cold seeps provide not only hard substrate but also food to cold-water corals. Furthermore, restructuring of the microbiome communities (particularly SUP05) is likely the key adaptive process to aid corals in utilizing seepage-derived carbon. This highlights that those deep-sea corals may upregulate particular microbial symbiont communities to cope with environmental gradients.
Collapse
Affiliation(s)
- Eslam O. Osman
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
- Marine Biology LabZoology Department, Faculty of ScienceAl‐Azhar UniversityCairoEgypt
- Red Sea Research Center (RSRC)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Samuel A. Vohsen
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Fanny Girard
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
- Monterey Bay Aquarium Research InstituteMoss LandingCAUSA
| | - Rafaelina Cruz
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Orli Glickman
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Lena M. Bullock
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Kaitlin E. Anderson
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | | | | | - Charles R. Fisher
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Iliana B. Baums
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB)AmmerländerHeerstraße 231, 26129 OldenburgGermany
| |
Collapse
|
17
|
Hulver AM, Steckbauer A, Ellis JI, Aylagas E, Roth F, Kharbatia N, Thomson T, Carvalho S, Jones BH, Berumen ML. Interaction effects of crude oil and nutrient exposure on settlement of coral reef benthos. MARINE POLLUTION BULLETIN 2022; 185:114352. [PMID: 36395713 DOI: 10.1016/j.marpolbul.2022.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic stressors increasingly cause ecosystem-level changes to sensitive marine habitats such as coral reefs. Intensification of coastal development and shipping traffic can increase nutrient and oil pollution on coral reefs, yet these two stressors have not been studied in conjunction. Here, we simulate a disturbance scenario exposing carbonate settlement tiles to nutrient and oil pollution in a full-factorial design with four treatments: control, nutrients, oil, and combination to examine community structure and net primary productivity (NPP) of pioneer communities throughout 28 weeks. Compared to the control treatment oil pollution decreased overall settlement and NPP, while nutrients increased turf algae and NPP. However, the combination of these two stressors resulted in similar community composition and NPP as the control. These results indicate that pioneer communities may experience shifts due to nutrient enrichment, and/or oil pollution. However, the timing and duration of an event will influence recovery trajectories requiring further study.
Collapse
Affiliation(s)
- Ann Marie Hulver
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia; The Ohio State University (OSU), School of Earth Sciences, Columbus, OH 43210, USA.
| | - Alexandra Steckbauer
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia; King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Saudi Arabia
| | - Joanne I Ellis
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia; University of Waikato, School of Biological Sciences, Tauranga 3110, New Zealand
| | - Eva Aylagas
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Florian Roth
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden; Faculty of Biological and Environmental Sciences, Tvärminne Zoological Station, University of Helsinki, Helsinki, Finland
| | - Najeh Kharbatia
- King Abdullah University of Science and Technology (KAUST), Analytical Chemistry Core Lab Facilities, Thuwal 23955-6900, Saudi Arabia
| | - Timothy Thomson
- University of Waikato, School of Biological Sciences, Tauranga 3110, New Zealand
| | - Susana Carvalho
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Burton H Jones
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Michael L Berumen
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
18
|
Hu Y, Mu S, Zhang J, Li Q. Regional distribution, properties, treatment technologies, and resource utilization of oil-based drilling cuttings: A review. CHEMOSPHERE 2022; 308:136145. [PMID: 36029858 DOI: 10.1016/j.chemosphere.2022.136145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Oil-based drilling cuttings (OBDC) are hazardous wastes produced during the extensive use of oil-based drilling mud in oil and gas exploration and development. They have strong mutagenic, carcinogenic, and teratogenic effects and need to be properly disposed of to avoid damaging the natural environment. This paper reviews the recent research progress on the regional distribution, properties, treatment technologies, and resource utilization of OBDC. The advantages and disadvantages of different technologies for removing petroleum pollutants from OBDC were comprehensively analyzed, and required future developments in treatment technologies were proposed.
Collapse
Affiliation(s)
- Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Jingjing Zhang
- Sichuan Solid Waste and Chemicals Management Center, Chengdu, 610036, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
19
|
Redman AD, Parkerton TF, Letinski DJ, Sutherland CA, Butler JD, Di Toro DM. Modeling Time-Dependent Aquatic Toxicity of Hydrocarbons: Role of Organism Weight, Temperature, and Substance Hydrophobicity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:3070-3083. [PMID: 36102847 PMCID: PMC9827832 DOI: 10.1002/etc.5476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/20/2022] [Accepted: 09/06/2022] [Indexed: 06/09/2023]
Abstract
Oil spill exposures are highly dynamic and are not comparable to laboratory exposures used in standard toxicity tests. Toxicokinetic-toxicodynamic (TKTD) models allow translation of effects observed in the laboratory to the field. To improve TKTD model calibration, new and previously published data from 148 tests were analyzed to estimate rates characterizing the time course of toxicity for 10 fish and 42 invertebrate species across 37 hydrocarbons. A key parameter in the TKTD model is the first-order rate that incorporates passive elimination, biotransformation, and damage repair processes. The results indicated that temperature (4-26 °C), organism size (0.0001-10 g), and substance log octanol-water partition coefficient (2-6) had limited influence on this parameter, which exhibited a 5th to 95th percentile range of 0.2-2.5 day-1 (median 0.7 day-1 ). A species sensitivity distribution approach is proposed to quantify the variability of this parameter across taxa, with further studies needed for aliphatic hydrocarbons and plant species. Study findings allow existing oil spill models to be refined to improve effect predictions. Environ Toxicol Chem 2022;41:3070-3083. © 2022 ExxonMobil Biomedical Science Inc. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | | | | | | | - Dominic M. Di Toro
- Civil and Environmental EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
20
|
Oladi M, Leontidou K, Stoeck T, Shokri MR. Environmental DNA-based profiling of benthic bacterial and eukaryote communities along a crude oil spill gradient in a coral reef in the Persian Gulf. MARINE POLLUTION BULLETIN 2022; 184:114143. [PMID: 36182786 DOI: 10.1016/j.marpolbul.2022.114143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Coral reef ecosystems in the Persian Gulf are frequently exposed to crude oil spills. We investigated benthic bacterial and eukaryote community structures at such coral reef sites subjected to different degrees of polycyclic aromatic hydrocarbon (PAH) pollution using environmental DNA (eDNA) metabarcoding. Both bacterial and eukaryote communities responded with pronounced shifts to crude oil pollution and distinguished control sites, moderately and heavily impacted sites with significant confidentiality. The observed community patterns were predominantly driven by Alphaproteobacteria and metazoans. Among these, we identified individual genera that were previously linked to oil spill stress, but also taxa, for which a link to hydrocarbon still remains to be established. Considering the lack of an early-warning system for the environmental status of coral reef ecosystems exposed to frequent crude-oil spills, our results encourage further research towards the development of an eDNA-based biomonitoring tool that exploits benthic bacterial and eukaryote communities as bioindicators.
Collapse
Affiliation(s)
- Mahshid Oladi
- Technische Universität Kaiserslautern, Ecology Group, Kaiserslautern, Germany; Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Kleopatra Leontidou
- Technische Universität Kaiserslautern, Ecology Group, Kaiserslautern, Germany
| | - Thorsten Stoeck
- Technische Universität Kaiserslautern, Ecology Group, Kaiserslautern, Germany
| | - Mohammad Reza Shokri
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C., Evin, Tehran, Iran.
| |
Collapse
|
21
|
Nordborg FM, Brinkman DL, Negri AP. Coral recruits are highly sensitive to heavy fuel oil exposure both in the presence and absence of UV light. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119799. [PMID: 35863709 DOI: 10.1016/j.envpol.2022.119799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Oil pollution remains a prominent local hazard to coral reefs, but the sensitivity of some coral life stages to oil exposure remains unstudied. Exposure to ultraviolet radiation (UVR), ubiquitous on coral reefs, may significantly increase oil toxicity towards these critical habitat-forming taxa. Here we present the first data on the sensitivity of two distinct post-settlement life stages of the model coral species Acropora millepora to a heavy fuel oil (HFO) water accommodated fraction (WAF) in the absence and presence of UVR. Assessment of lethal and sublethal endpoints indicates that both 1-week-old and 2-month-old recruits (1-wo and 2-mo) were negatively affected by chronic exposures to HFO (7 and 14 days, respectively). Relative growth (1-wo and 2-mo recruits) and survival (1-wo recruits) at end of exposure were the most sensitive endpoints in the absence of UVR, with no effect concentrations (NEC) of 34.3, 5.7 and 29.3 μg L-1 total aromatic hydrocarbons (TAH; ∑39 monocyclic- and polycyclic aromatic hydrocarbons), respectively. On average, UVR increased the negative effects by 10% for affected endpoints, and latent effects of exposure were evident for relative growth and symbiont uptake of recruits. Other sublethal endpoints, including maximum quantum yield and tissue colour score, were unaffected by chronic HFO exposure. A comparison of putative species-specific sensitivity constants for these ecologically relevant endpoints, indicates A. millepora recruits may be as sensitive as the most sensitive species currently included in oil toxicity databases. While the low intensity UVR only significantly increased the negative effects of the oil for one endpoint, the majority of endpoints showed trends towards increased toxicity in the presence of UVR. Therefore, the data presented here further support the standard incorporation of UVR in oil toxicity testing for tropical corals.
Collapse
Affiliation(s)
- F Mikaela Nordborg
- AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville, 4810, Queensland, Australia; College of Science & Engineering, Division of Tropical Environments and Societies, James Cook University, Townsville, 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville, 4810, Queensland, Australia.
| | - Diane L Brinkman
- Australian Institute of Marine Science, Townsville, 4810, Queensland, Australia
| | - Andrew P Negri
- AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville, 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville, 4810, Queensland, Australia
| |
Collapse
|
22
|
Renegar DA, Schuler PA, Knap AH, Dodge RE. TRopical Oil Pollution Investigations in Coastal Systems [TROPICS]: A synopsis of impacts and recovery. MARINE POLLUTION BULLETIN 2022; 181:113880. [PMID: 35843160 DOI: 10.1016/j.marpolbul.2022.113880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The TRopical Oil Pollution Investigations in Coastal Systems (TROPICS) experiment, conducted on the Caribbean coast of Panama, has become one of the most comprehensive field experiments examining the long-term impacts of oil and dispersed oil exposures in nearshore tropical marine environments. From the initial experiment through more than three decades of study and data collection visits, the intertidal and subtidal communities have exhibited significantly different impact and recovery regimes, depending on whether the sites were exposed to crude oil only or crude oil treated with a chemical dispersant. This review provides a synopsis of the original experiment and a cumulative summary of the results and observations, illustrating the environmental and ecosystem trade-offs of chemical dispersant use in mangrove, seagrass, and coral reef environments.
Collapse
Affiliation(s)
- D Abigail Renegar
- Nova Southeastern University, Halmos College of Arts and Sciences, 8000 North Ocean Drive, Dania, FL, USA.
| | - Paul A Schuler
- Oil Spill Response Limited, 2381 Stirling Road, Fort Lauderdale, FL 33312, USA
| | - Anthony H Knap
- Texas A&M University, Geochemical and Environmental Research Group, College Station, TX 77845, USA
| | - Richard E Dodge
- Nova Southeastern University, Halmos College of Arts and Sciences, 8000 North Ocean Drive, Dania, FL, USA
| |
Collapse
|
23
|
Ashok A, Høj L, Brinkman DL, Negri AP, Agusti S. Food-chain length determines the level of phenanthrene bioaccumulation in corals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118789. [PMID: 34990739 DOI: 10.1016/j.envpol.2022.118789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/12/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Exposure from the dissolved-phase and through food-chains contributes to bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in organisms such as fishes and copepods. However, very few studies have investigated the accumulation of PAHs in corals. Information on dietary uptake contribution to PAHs accumulation in corals is especially limited. Here, we used Cavity-Ring-Down Spectroscopy (CRDS) to investigate the uptake rates and accumulation of a 13C-labeled PAH, phenanthrene, in Acropora millepora corals over 14 days. Our experiment involved three treatments representing exposure levels of increasing food-chain length. In Level W, corals were exposed to 13C-phenanthrene directly dissolved in seawater. In Level 1 representing herbivory, Dunaliella salina microalgal culture pre-exposed to 13C-phenanthrene for 48 h was added to the coral treatment jars. In Level 2 representing predation, corals were provided a diet of copepod (Parvocalanus crassirostris) nauplii fed on D. salina pre-exposed to 13C-phenanthrene. Bioconcentration factors (BCF) and bioaccumulation factors (BAF) were calculated as appropriate for all organisms, and biomagnification factors (BMF) were calculated for A. millepora. We found that while phenanthrene uptake rates were not significantly different for the treatments, the accumulated concentration in corals was significantly higher in Level W (33.5 ± 2.83 mg kg-1) than in Level 1 (27.55 ± 2.77 mg kg-1) and Level 2 (29.36 ± 3.84 mg kg-1). Coral log BAF values increased with food-chain length; Level 2 log BAF (6.45) was higher than Level W log BCF (4.18) and Level 1 log BAF (4.5). Coral BMF was also higher for Level 2 than for Level 1. Exposure to dissolved or diet-bound phenanthrene had no significant effect on the coral symbionts' photosynthetic efficiency (Fv/Fm) as monitored by pulse-amplitude-modulation (PAM) fluorometry, indicating the PAH can be accumulated without toxic effects to their Photosystem II. Our study highlights the critical role of dietary exposure for pollutant accumulation in corals.
Collapse
Affiliation(s)
- Ananya Ashok
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Lone Høj
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Diane L Brinkman
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Susana Agusti
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
24
|
Ferreira V, Pavlaki MD, Martins R, Monteiro MS, Maia F, Tedim J, Soares AMVM, Calado R, Loureiro S. Effects of nanostructure antifouling biocides towards a coral species in the context of global changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149324. [PMID: 34371395 DOI: 10.1016/j.scitotenv.2021.149324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/24/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Biofouling prevention is one of the biggest challenges faced by the maritime industry, but antifouling agents commonly impact marine ecosystems. Advances in antifouling technology include the use of nanomaterials. Herein we test an antifouling nano-additive based on the encapsulation of the biocide 4,5-dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) in engineered silica nanocontainers (SiNC). The work aims to assess the biochemical and physiological effects on the symbiotic coral Sarcophyton cf. glaucum caused by (1) thermal stress and (2) DCOIT exposure (free or nanoencapsulated forms), in a climate change scenario. Accordingly, the following hypotheses were addressed: (H1) ocean warming can cause toxicity on S. cf. glaucum; (H2) the nanoencapsulation process decreases DCOIT toxicity towards this species; (H3) the biocide toxicity, free or encapsulated forms, can be affected by ocean warming. Coral fragments were exposed for seven days to DCOIT in both free and encapsulated forms, SiNC and negative controls, under two water temperature regimes (26 °C and 30.5 °C). Coral polyp behavior and photosynthetic efficiency were determined in the holobiont, while biochemical markers were assessed individually in the endosymbiont and coral host. Results showed transient coral polyp retraction and diminished photosynthetic efficiency in the presence of heat stress or free DCOIT, with effects being magnified in the presence of both stressors. The activity of catalase and glutathione-S-transferase were modulated by temperature in each partner of the symbiosis. The shifts in enzymatic activity were more pronounced in the presence of free DCOIT, but to a lower extent for encapsulated DCOIT. Increased levels of oxidative damage were detected under heat conditions. The findings highlight the physiological constrains elicited by the increase of seawater temperature to symbiotic corals and demonstrate that DCOIT toxicity can be minimized through encapsulation in SiNC. The presence of both stressors magnifies toxicity and confirm that ocean warming enhances the vulnerability of tropical photosynthetic corals to local stressors.
Collapse
Affiliation(s)
- Violeta Ferreira
- ApplEE Research Group, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria D Pavlaki
- ApplEE Research Group, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Roberto Martins
- ApplEE Research Group, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta S Monteiro
- ApplEE Research Group, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Frederico Maia
- Smallmatek - Small Materials and Technologies, Lda., Rua Canhas, 3810-075 Aveiro, Portugal
| | - João Tedim
- CICECO - Aveiro Institute of Materials & Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- ApplEE Research Group, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana Loureiro
- ApplEE Research Group, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
25
|
Burns EE, Davies IA. Coral Ecotoxicological Data Evaluation for the Environmental Safety Assessment of Ultraviolet Filters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3441-3464. [PMID: 34758162 PMCID: PMC9299478 DOI: 10.1002/etc.5229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
There is growing interest in the environmental safety of ultraviolet (UV) filters found in cosmetic and personal care products (CPCPs). The CPCP industry is assessing appropriate environmental risk assessment (ERA) methods to conduct robust environmental safety assessments for these ingredients. Relevant and reliable data are needed for ERA, particularly when the assessment is supporting regulatory decision-making. In the present study, we apply a data evaluation approach to incorporate nonstandard toxicity data into the ERA process through an expanded range of reliability scores over commonly used approaches (e.g., Klimisch scores). The method employs an upfront screening followed by a data quality assessment based largely on the Criteria for Reporting and Evaluating Ecotoxicity Data (CRED) approach. The method was applied in a coral case study in which UV filter toxicity data was evaluated to identify data points potentially suitable for higher tier and/or regulatory ERA. This is an optimal case study because there are no standard coral toxicity test methods, and UV filter bans are being enacted based on findings reported in the current peer-reviewed data set. Eight studies comprising nine assays were identified; four of the assays did not pass the initial screening assessment. None of the remaining five assays received a high enough reliability score (Rn ) to be considered of decision-making quality (i.e., R1 or R2). Four assays were suitable for a preliminary ERA (i.e., R3 or R4), and one assay was not reliable (i.e., R6). These results highlight a need for higher quality coral toxicity studies, potentially through the development of standard test protocols, to generate reliable toxicity endpoints. These data can then be used for ERA to inform environmental protection and sustainability decision-making. Environ Toxicol Chem 2021;40:3441-3464. © 2021 Personal Care Products Council. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
26
|
Nalley EM, Tuttle LJ, Barkman AL, Conklin EE, Wulstein DM, Richmond RH, Donahue MJ. Water quality thresholds for coastal contaminant impacts on corals: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148632. [PMID: 34323749 DOI: 10.1016/j.scitotenv.2021.148632] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Reduced water quality degrades coral reefs, resulting in compromised ecosystem function and services to coastal communities. Increasing management capacity on reefs requires prioritization of the development of data-based water-quality thresholds and tipping points. To meet this urgent need of marine resource managers, we conducted a systematic review and meta-analysis that quantified the effects on scleractinian corals of chemical pollutants from land-based and atmospheric sources. We compiled a global dataset addressing the effects of these pollutants on coral growth, mortality, reproduction, physiology, and behavior. The resulting quantitative review of 55 articles includes information about industrial sources, modes of action, experimentally tested concentrations, and previously identified tolerance thresholds of corals to 13 metals, 18 pesticides, 5 polycyclic aromatic hydrocarbons (PAHs), a polychlorinated biphenyl (PCB), and a pharmaceutical. For data-rich contaminants, we make more robust threshold estimates by adapting models for Bayesian hierarchical meta-analysis that were originally developed for biopharmaceutical application. These models use information from multiple studies to characterize the dose-response relationships (i.e., Emax curves) between a pollutant's concentration and various measures of coral health. Metals used in antifouling paints, especially copper, have received a great deal of attention to-date, thus enabling us to estimate the cumulative impact of copper across coral's early life-history. The effects of other land-based pollutants on corals are comparatively understudied, which precludes more quantitative analysis. We discuss opportunities to improve future research so that it can be better integrated into quantitative assessments of the effects of more pollutant types on sublethal coral stress-responses. We also recommend that managers use this information to establish more conservative water quality thresholds that account for the synergistic effects of multiple pollutants on coral reefs. Ultimately, active remediation of local stressors will improve the resistance, resilience, and recovery of individual reefs and reef ecosystems facing the global threat of climate change.
Collapse
Affiliation(s)
- Eileen M Nalley
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI 96744, USA.
| | - Lillian J Tuttle
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI 96744, USA; NOAA Pacific Islands Regional Office, Honolulu, HI 96860, USA
| | - Alexandria L Barkman
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, 41 Ahui Street, Honolulu, HI 96813, USA
| | - Emily E Conklin
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI 96744, USA
| | - Devynn M Wulstein
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI 96744, USA
| | - Robert H Richmond
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, 41 Ahui Street, Honolulu, HI 96813, USA
| | - Megan J Donahue
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI 96744, USA
| |
Collapse
|
27
|
Negri AP, Brinkman DL, Flores F, van Dam J, Luter HM, Thomas MC, Fisher R, Stapp LS, Kurtenbach P, Severati A, Parkerton TF, Jones R. Derivation of toxicity thresholds for gas condensate oils protective of tropical species using experimental and modelling approaches. MARINE POLLUTION BULLETIN 2021; 172:112899. [PMID: 34523424 DOI: 10.1016/j.marpolbul.2021.112899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Toxicity thresholds for dissolved oil applied in tropical ocean risk assessments are largely based on the sensitivities of temperate and/or freshwater species. To explore the suitability of these thresholds for tropical habitats we experimentally determined toxicity thresholds for eight tropical species for a partially weathered gas condensate, applied the target lipid model (TLM) to predict toxicity of fresh and weathered condensates and compared sensitivities of the tropical species with model predictions. The experimental condensate-specific hazard concentration (HC5) was 167 μg L-1 total aromatic hydrocarbons (TAH), with the TLM-modelled HC5 (78 μg L-1 TAH) being more conservative, supporting TLM-modelled thresholds for tropical application. Putative species-specific critical target lipid body burdens (CTLBBs) indicated that several of the species tested were among the more sensitive species in the TLM database ranging from 5.1 (coral larvae) to 97 (sponge larvae) μmol g-1 octanol and can be applied in modelling risk for tropical marine ecosystems.
Collapse
Affiliation(s)
- Andrew P Negri
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia.
| | - Diane L Brinkman
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Florita Flores
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Joost van Dam
- Australian Institute of Marine Science, Casuarina 0811, Northern Territory, Australia
| | - Heidi M Luter
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Marie C Thomas
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Rebecca Fisher
- Australian Institute of Marine Science, Crawley 6009, Western Australia, Australia
| | - Laura S Stapp
- Australian Institute of Marine Science, Casuarina 0811, Northern Territory, Australia
| | - Paul Kurtenbach
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Andrea Severati
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | | | - Ross Jones
- Australian Institute of Marine Science, Crawley 6009, Western Australia, Australia
| |
Collapse
|
28
|
Zan S, Lv J, Li Z, Cai Y, Wang Z, Wang J. Genomic insights into Pseudoalteromonas sp. JSTW coping with petroleum-heavy metals combined pollution. J Basic Microbiol 2021; 61:947-957. [PMID: 34387369 DOI: 10.1002/jobm.202100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/02/2021] [Accepted: 08/08/2021] [Indexed: 11/05/2022]
Abstract
Worldwide marine compound contamination by petroleum products and heavy metals is a burgeoning environmental concern. Pseudoalteromonas, prevalently distributed in marine environment, has been proven to degrade petroleum and plays an essential role in the fate of oil pollution under the combined pollution. Nevertheless, the research on the reference genes is still incomplete. Therefore, this study aims to thoroughly investigate the reference genes represented by Pseudoalteromonas sp. JSTW via whole-genome sequencing. Next-generation sequencing technology unfolded a genome of 4,026,258 bp, database including Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to annotate the genes and metabolic pathways conferring to petroleum hydrocarbon degradation. The results show that common alkane and aromatic hydrocarbon degradation genes (alkB, ligB, yqhD, and ladA), chemotaxis gene (MCP, cheA, cheB, pcaY, and pcaR), heavy-metal resistance, and biofilm genes (σ54, merC, pcoA, copB, etc.) were observed in whole-genome sequence (WGS) of JSTW, which indicated that strain JSTW could potentially cope with combined pollution. The degradation efficiency of naphthalene in 60 h by JSTW was 99% without Cu2+ and 67% with 400 mg L-1 Cu2+ . Comparative genome analysis revealed that genomes of Pseudoalteromonas lipolytica strain LEMB 39 and Pseudoalteromonas donghaensis strain HJ51 shared similarity with strain JSTW, suggesting they are also the potential degradater of petroleum hydrocarbons under combined pollution. Therefore, this study provides a WGS annotation and reveals the mechanism of response to combined pollution of Pseudoalteromonas sp. JSTW.
Collapse
Affiliation(s)
- Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Jingping Lv
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Yingxue Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Zongcheng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
29
|
Turner NR, Parkerton TF, Renegar DA. Toxicity of two representative petroleum hydrocarbons, toluene and phenanthrene, to five Atlantic coral species. MARINE POLLUTION BULLETIN 2021; 169:112560. [PMID: 34091251 DOI: 10.1016/j.marpolbul.2021.112560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Coral reefs are keystone coastal ecosystems that can be exposed to petroleum hydrocarbons from multiple sources, and when selecting spill response methods to limit environmental damages, corals represent one of the highest valued resources for protection. Because previous research to characterize the sensitivity of coral species to petroleum hydrocarbon exposures is limited, a continuous-flow passive dosing system and toxicity testing protocol was designed to evaluate the acute effects of two representative petroleum compounds, toluene and phenanthrene, on five coral species: Acropora cervicornis, Porites astreoides, Siderastera siderea, Stephanocoenia intersepta, and Solenastrea bournoni. Using analytically confirmed exposures, sublethal and lethal endpoints were calculated for each species, and used as model inputs to determine critical target lipid body burdens (CTLBBs) for characterizing species sensitivity. Further, quantification of the time-dependent toxicity of single hydrocarbon exposures is described to provide model inputs for improved simulation of spill impacts to corals in coastal tropical environments.
Collapse
Affiliation(s)
- Nicholas R Turner
- Nova Southeastern University, Halmos College of Arts and Sciences, Dania, FL, USA.
| | | | - D Abigail Renegar
- Nova Southeastern University, Halmos College of Arts and Sciences, Dania, FL, USA
| |
Collapse
|
30
|
Oladi M, Shokri MR. Multiple benthic indicators are efficient for health assessment of coral reefs subjected to petroleum hydrocarbons contamination: A case study in the Persian Gulf. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124993. [PMID: 33482480 DOI: 10.1016/j.jhazmat.2020.124993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/11/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
The ever-increasing anthropogenic activities have adversely impacted coral reef ecosystems and their ecological functions. This calls for an urgent assessment of the health state of these valuable ecosystems to justify the need for mitigation and proper management efforts. In this contribution, we used multiple indicators to assess the impact of intense oil-related activities on coral reefs in two near-by impacted and non-impacted islands in the northwestern Persian Gulf. The efficacy of indices was assessed using estimations of the effect size (omega-squared), precision, and decision trees (Classification and Regression Tree (CART)). The results demonstrated that the combination of bioaccumulation of ƩPAH in coral tissues, the percent of live coral cover, and the Sediment Constituent (SEDCON) Index were the most robust proxies reflecting the influence of human activities on reef's health. Based on sedimentary PAH concentration, the CART classified most of the indicators into two classes consisting of those in impacted and those in non-impacted locations, further supporting the feasibility of the employed indices. The findings of this study provided a warning of degradation in coral reefs of the island subjected to PAH pollution. This encourages decision-makers to execute routine monitoring and mitigation practices to maintain healthy reefs in the study areas.
Collapse
Affiliation(s)
- Mahshid Oladi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C., Evin, Tehran, Iran.
| | - Mohammad Reza Shokri
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C., Evin, Tehran, Iran.
| |
Collapse
|
31
|
Ranjbar Jafarabadi A, Mashjoor S, Riyahi Bakhtiari A, Cappello T. Ecotoxico Linking of Phthalates and Flame-Retardant Combustion Byproducts with Coral Solar Bleaching. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5970-5983. [PMID: 33886295 DOI: 10.1021/acs.est.0c08730] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Persian Gulf coral reefs are unique biota communities in the global sunbelts in being able to survive in multiple stressful fields during summertime (>36 °C). Despite the high-growth emerging health-hazard microplastic additive type of contaminants, its biological interactions with coral-algal symbiosis and/or its synergistic effects linked to solar-bleaching events remain unknown. This study investigated the bioaccumulation patterns of polybrominated diphenyl ether (PBDE) and phthalate ester (PAE) pollutants in six genera of living/bleached corals in Larak Island, Persian Gulf, and their ambient abiotic matrixes. Results showed that the levels of ∑18PBDEs and ∑13PAEs in abiotic matrixes followed the order of SPMs > surface sediments > seawater, and the cnidarian POP-uptake patterns (soft corals > hard corals) were as follows: coral mucus (138.49 ± 59.98 and 71.57 ± 47.39 ng g-1 dw) > zooxanthellae (82.05 ± 28.27 and 20.14 ± 12.65 ng g-1 dw) ≥ coral tissue (66.26 ± 21.42 and 34.97 ± 26.10 ng g-1 dw) > bleached corals (45.19 ± 8.73 and 13.83 ± 7.05 ng g-1 dw) > coral skeleton (35.66 ± 9.58 and 6.47 ± 6.47 ng g-1 dw, respectively). Overall, findings suggest that mucus checking is a key/facile diagnostic approach for fast detection of POP bioaccumulation (PB) in tropical corals. Although studied corals exhibited no consensus concerning hazardous levels of PB (log BSAF < 3.7), our bleaching evidence showed soft corals as the ultimate "summer winners" due to their flexibility/recovering ability.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Sakineh Mashjoor
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
32
|
Dalapati R, Nandi S, Gogoi C, Shome A, Biswas S. Metal-Organic Framework (MOF) Derived Recyclable, Superhydrophobic Composite of Cotton Fabrics for the Facile Removal of Oil Spills. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8563-8573. [PMID: 33577280 DOI: 10.1021/acsami.0c21337] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Marine oil spill cleanup is one of the major challenges in recent years due to its detrimental effect on our ecosystem. Hence, the development of new superhydrophobic oil absorbent materials is in high demand. The third-generation porous materials, namely metal-organic frameworks (MOFs), have drawn great attention due to their fascinating properties. In this work, a superhydrophobic MOF with UiO-66 (SH-UiO-66) topology was synthesized strategically with a new fluorinated dicarboxylate linker to absorb oil selectively from water. The fully characterized superhydrophobic MOF showed extreme water repellency with an advancing water contact angle (WCA) of 160° with a contact angle hysteresis (CAH) of 8°. The newly synthesized porous MOF (SBET = 873 m2 g-1) material with high WCA found its promising application in oil/water separation. The superhydrophobic SH-UiO-66 MOF was further used for the in-situ coating on naturally abundant cotton fiber to make a superhydrophobic MOF@cotton composite material. The MOF-coated cotton fiber composite (SH-UiO-66@CFs) showed water repellency with a WCA of 163° and a low CAH of 4°. The flexible superhydrophobic SH-UiO-66@CFs showed an oil absorption capacity more than 2500 wt % for both heavy and light oils at room temperature. The superoleophilicity of SH-UiO-66@CFs was further exploited to separate light floating oil as well as sedimentary heavy oil from water. SH-UiO-66@CFs material can also separate oil from the oil/water mixture by gravity-directed active filtration. Hence, the newly developed MOF-based composite material has high potential as an oil absorbent material for marine oil spill cleanup.
Collapse
Affiliation(s)
- Rana Dalapati
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Soutick Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Chiranjib Gogoi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arpita Shome
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Shyam Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
33
|
Renegar DA, Turner NR. Species sensitivity assessment of five Atlantic scleractinian coral species to 1-methylnaphthalene. Sci Rep 2021; 11:529. [PMID: 33436804 PMCID: PMC7804185 DOI: 10.1038/s41598-020-80055-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Coral reefs are keystone coastal ecosystems that are at risk of exposure to petroleum from a range of sources, and are one of the highest valued natural resources for protection in Net Environmental Benefit Analysis (NEBA) in oil spill response. Previous research evaluating dissolved hydrocarbon impacts to corals reflected no clear characterization of sensitivity, representing an important knowledge gap in oil spill preparedness related to the potential impact of oil spills to the coral animal and its photosymbiont zooxanthellae. This research addresses this gap, using a standardized toxicity protocol to evaluate effects of a dissolved reference hydrocarbon on scleractinian corals. The relative sensitivity of five Atlantic scleractinian coral species to hydrocarbon exposure was assessed with 48-h assays using the reference polycyclic aromatic hydrocarbon 1-methylnaphthalene, based on physical coral condition, mortality, and photosynthetic efficiency. The threatened staghorn coral Acropora cervicornis was found to be the most sensitive to 1-methylnaphthalene exposure. Overall, the acute and subacute endpoints indicated that the tested coral species were comparatively more resilient to hydrocarbon exposure than other marine species. These results provide a framework for the prediction of oil spill impacts and impact thresholds on the coral animal and related habitats, essential for informing oil spill response in coastal tropical environments.
Collapse
Affiliation(s)
- D Abigail Renegar
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Dania, FL, USA.
| | - Nicholas R Turner
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Dania, FL, USA
| |
Collapse
|
34
|
Asemoloye MD, Tosi S, Daccò C, Wang X, Xu S, Marchisio MA, Gao W, Jonathan SG, Pecoraro L. Hydrocarbon Degradation and Enzyme Activities of Aspergillus oryzae and Mucor irregularis Isolated from Nigerian Crude Oil-Polluted Sites. Microorganisms 2020; 8:E1912. [PMID: 33266344 PMCID: PMC7761101 DOI: 10.3390/microorganisms8121912] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/23/2022] Open
Abstract
Many free-living saprobic fungi are nature recruited organisms for the degradation of wastes, ranging from lignocellulose biomass to organic/inorganic chemicals, aided by their production of enzymes. In this study, fungal strains were isolated from contaminated crude-oil fields in Nigeria. The dominant fungi were selected from each site and identified as Aspergillus oryzae and Mucor irregularis based on morphological and molecular characterization, with site percentage incidences of 56.67% and 66.70%, respectively. Selected strains response/tolerance to complex hydrocarbon (used engine oil) was studied by growing them on Bushnell Haas (BH) mineral agar supplemented with the hydrocarbon at different concentrations, i.e., 5%, 10%, 15%, and 20%, with a control having dextrose. Hydrocarbon degradation potentials of these fungi were confirmed in BH broth culture filtrates pre-supplemented with 1% engine oil after 15 days of incubation using GC/MS. In addition, the presence of putative enzymes, laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP) was confirmed in culture filtrates using appropriate substrates. The analyzed fungi grew in hydrocarbon supplemented medium with no other carbon source and exhibited 39.40% and 45.85% dose inhibition response (DIR) respectively at 20% hydrocarbon concentration. An enzyme activity test revealed that these two fungi produced more Lac than MnP and LiP. It was also observed through the GC/MS analyses that while A. oryzae acted on all hydrocarbon components in the used engine oil, M. irregularis only degraded the long-chain hydrocarbons and BTEX. This study confirms that A. oryzae and M. irregularis have the potential to be exploited in the bio-treatment and removal of hydrocarbons from polluted soils.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; (M.D.A.); (X.W.); (S.X.); (W.G.)
| | - Solveig Tosi
- Laboratory of Mycology, Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (S.T.); (C.D.)
| | - Chiara Daccò
- Laboratory of Mycology, Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (S.T.); (C.D.)
| | - Xiao Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; (M.D.A.); (X.W.); (S.X.); (W.G.)
| | - Shihan Xu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; (M.D.A.); (X.W.); (S.X.); (W.G.)
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; (M.D.A.); (X.W.); (S.X.); (W.G.)
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; (M.D.A.); (X.W.); (S.X.); (W.G.)
| | - Segun Gbolagade Jonathan
- Mycology & Applied Microbiology Group, Department of Botany, University of Ibadan, Ibadan 200284, Oyo State, Nigeria;
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; (M.D.A.); (X.W.); (S.X.); (W.G.)
| |
Collapse
|
35
|
Hook SE. Beyond Thresholds: A Holistic Approach to Impact Assessment Is Needed to Enable Accurate Predictions of Environmental Risk from Oil Spills. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:813-830. [PMID: 32729983 DOI: 10.1002/ieam.4321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/13/2020] [Accepted: 06/04/2020] [Indexed: 05/25/2023]
Abstract
The risk assessment for the environmental impact of oil spills in Australia is often conducted in part using a combination of spill mapping and toxicological thresholds derived from laboratory studies. While this process is useful in planning operational responses, such as where to position equipment stockpiles and whether to disperse oil, and can be used to identify areas near the spill site where impacts are likely to occur, it cannot accurately predict the environmental consequences of an oil spill or the ecosystem recovery times. Evidence of this disconnect between model predictions and observed impacts is the lack of a profound effect of the Deepwater Horizon wellhead blowout on recruitment to fisheries in the northern Gulf of Mexico, contrary to the predictions made in the Natural Resources Damage Assessment and despite the occurrence of impacts of the spill on marine mammals, marshes, and deep water ecosystems. The incongruity between predictions made with the current approach using threshold monitoring and impacts measured in the field results from some of the assumptions included in the oil spill models. The incorrect assumptions include that toxicity is acute, results from dissolved phase exposure, and would be readily reversible. The toxicity tests from which threshold models are derived use members of the ecosystem that are easily studied in the lab but may not represent the ecosystem as a whole. The test species are typically highly abundant plankton or planktonic life stages, and they have life histories that account for rapid changes in environmental conditions. As a consequence, these organisms recover quickly from an oil spill. The interdependence of ecosystem components, including the reliance of organisms on their microbiomes, is often overlooked. Additional research to assess these data gaps conducted using economically and ecologically relevant species, especially in Australia and other understudied areas of the world, and the use of population dynamic models, will improve the accuracy of environmental risk assessment for oil spills. Integr Environ Assess Manag 2020;16:813-830. © 2020 SETAC.
Collapse
Affiliation(s)
- Sharon E Hook
- CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
| |
Collapse
|
36
|
French KE, Zhou Z, Terry N. Horizontal 'gene drives' harness indigenous bacteria for bioremediation. Sci Rep 2020; 10:15091. [PMID: 32934307 PMCID: PMC7492276 DOI: 10.1038/s41598-020-72138-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/24/2020] [Indexed: 01/21/2023] Open
Abstract
Engineering bacteria to clean-up oil spills is rapidly advancing but faces regulatory hurdles and environmental concerns. Here, we develop a new technology to harness indigenous soil microbial communities for bioremediation by flooding local populations with catabolic genes for petroleum hydrocarbon degradation. Overexpressing three enzymes (almA, xylE, p450cam) in Escherichia coli led to degradation of 60-99% of target hydrocarbon substrates. Mating experiments, fluorescence microscopy and TEM revealed indigenous bacteria could obtain these vectors from E. coli through several mechanisms of horizontal gene transfer (HGT), including conjugation and cytoplasmic exchange through nanotubes. Inoculating petroleum-polluted sediments with E. coli carrying the vector pSF-OXB15-p450camfusion showed that the E. coli cells died after five days but a variety of bacteria received and carried the vector for over 60 days after inoculation. Within 60 days, the total petroleum hydrocarbon content of the polluted soil was reduced by 46%. Pilot experiments show that vectors only persist in indigenous populations when under selection pressure, disappearing when this carbon source is removed. This approach to remediation could prime indigenous bacteria for degrading pollutants while providing minimal ecosystem disturbance.
Collapse
Affiliation(s)
- Katherine E French
- Department of Plant and Microbial Biology, University of California Berkeley, Koshland Hall, Berkeley, CA, 94720, USA.
| | - Zhongrui Zhou
- QB3, University of California Berkeley, Stanley Hall, Berkeley, CA, 94720, USA
| | - Norman Terry
- Department of Plant and Microbial Biology, University of California Berkeley, Koshland Hall, Berkeley, CA, 94720, USA
| |
Collapse
|
37
|
Wang Y, Yu K, Chen X, Wang W, Huang X, Wang Y, Liao Z. An approach for assessing ecosystem-based adaptation in coral reefs at relatively high latitudes to climate change and human pressure. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:579. [PMID: 32783089 DOI: 10.1007/s10661-020-08534-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Relatively high-latitude waters are supposed as a refuge for corals under ocean warming. A systematic assessment of the Weizhou Island reef in the northern South China Sea, a relatively high-latitude region, shows that the ecosystem restoration index decreased from 0.96 to 0.62 during the period between 1990 and 2015. Although the biotic community, supporting services, and regulating services remained at good or very good states, the provisioning services, cultural services, and especially habitat structure deteriorated to very poor or moderate states. Gray relational analysis showed that these ecological declines exhibited a strong relationship with human pressures from tourism activities and the petrochemical industry. The recoveries of the biotic community and supporting services that benefited from wintertime warming appeared to be partly offset by intensive human pressures. The long-term effects on ecosystem structure and functions suggest that anthropogenic disturbances have impaired the possibility of this area serving as a potential thermal refuge for reef-building corals in the South China Sea. This study thus provides an integrated approach for assessing the adaptive responses of coral reef ecosystems to climate change and local human activities.
Collapse
Affiliation(s)
- Yongzhi Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, Guangxi, China
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, Guangxi, China
- School of Marine Sciences, Guangxi University, Nanning, 530004, Guangxi, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, Guangxi, China.
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, Guangxi, China.
- School of Marine Sciences, Guangxi University, Nanning, 530004, Guangxi, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, Guangdong, China.
| | - Xiaoyan Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, Guangxi, China.
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, Guangxi, China.
- School of Marine Sciences, Guangxi University, Nanning, 530004, Guangxi, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, Guangdong, China.
| | - Wenhuan Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, Guangxi, China
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, Guangxi, China
- School of Marine Sciences, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, Guangxi, China
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, Guangxi, China
- School of Marine Sciences, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, Guangxi, China
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, Guangxi, China
- School of Marine Sciences, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, Guangxi, China
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, Guangxi, China
- School of Marine Sciences, Guangxi University, Nanning, 530004, Guangxi, China
| |
Collapse
|
38
|
Nascimento MKS, Loureiro S, Souza MRDR, Alexandre MDR, Nilin J. Toxicity of a mixture of monoaromatic hydrocarbons (BTX) to a tropical marine microcrustacean. MARINE POLLUTION BULLETIN 2020; 156:111272. [PMID: 32510411 DOI: 10.1016/j.marpolbul.2020.111272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the toxicity of benzene, toluene, and xylenes (BTX), isolated and in binary mixtures to Mysidopsis juniae. The organisms were exposed to BTX, and combined effect patterns were predicted by applying the theoretical models of Concentration Addition and Independent Action. According to the LC50 of the isolated compounds, xylene (16.1 ± 2.4 mg L-1) was considered the most toxic, followed by toluene (38.0 ± 5.3 mg L-1) and, lastly, benzene (78.0 ± 2.9 mg L-1). The binary combinations showed deviations from additivity, with exposure to the xylene-benzene mixture presenting as antagonistic, while the xylene-toluene and toluene-benzene mixtures were better explained by a dose ratio deviation, with toluene being responsible for the antagonistic pattern. This study provides new insights into toxicity prediction of a BTX mixture, which adds value to the risk assessment procedure over evaluation of chemical hazards on a case-by-case basis.
Collapse
Affiliation(s)
- Meggie Karoline Silva Nascimento
- Graduate Program in Ecology and Conservation, Federal University of Sergipe, Av. Marechal Rondon s/n, CEP 49100-000 São Cristóvão, Sergipe, Brazil
| | - Susana Loureiro
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Michel Rubens Dos Reis Souza
- Graduate Program in Industrial Biotechnology, Tiradentes University, Av. Murilo Dantas, 300 - Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Marcelo da Rosa Alexandre
- Graduate Program in Chemistry, Federal University of Sergipe, Av. Marechal Rondon s/n, CEP 49100-000 São Cristóvão, Sergipe, Brazil; Department of Chemistry, Federal University of Sergipe, Av. Marechal Rondon s/n, CEP 49100-000 São Cristóvão, Sergipe, Brazil
| | - Jeamylle Nilin
- Graduate Program in Ecology and Conservation, Federal University of Sergipe, Av. Marechal Rondon s/n, CEP 49100-000 São Cristóvão, Sergipe, Brazil; Biology Institute, Federal University of Uberlândia, Av. Ceará, s/n Bloco D sala 28, 38405-302 Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
39
|
Ashok A, Kottuparambil S, Høj L, Negri AP, Duarte CM, Agustí S. Accumulation of 13C-labelled phenanthrene in phytoplankton and transfer to corals resolved using cavity ring-down spectroscopy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110511. [PMID: 32247239 DOI: 10.1016/j.ecoenv.2020.110511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread pollutants in marine ecosystems including threatened and potentially sensitive coral reefs. Lower organisms such as phytoplankton, known to bioconcentrate PAHs, could serve as potential entry points for these chemicals into higher trophic levels. Here, we present a novel method using a 13C-labelled PAH and cavity ring-down spectroscopy (CRDS) to investigate accumulation, uptake rates and trophic transfer of PAHs in corals, which are key organisms to sustain biodiversity in tropical seas. We quantified the accumulation of 13C-phenanthrene in the marine microalga Dunaliella salina, and in the coral Acropora millepora after diffusive uptake from seawater or dietary uptake via labelled D. salina. Additionally, we monitored the photophysiological health of D. salina and A. millepora during phenanthrene exposure by pulse-amplitude modulation (PAM) fluorometry. Dose-dependent accumulation of 13C-phenanthrene in the microalga showed a mean bioconcentration factor (BCF) of 2590 ± 787 L kg-1 dry weight. Corals accumulated phenanthrene from both exposure routes. While uptake of 13C-phenanthrene in corals was faster through aqueous exposure than dietary exposure, passive diffusion showed larger variability between individuals and both routes resulted in accumulation of similar concentrations of phenanthrene. The 13C-PAH labelling and analysis by CRDS proved to be a highly sensitive method. The use of stable isotopic label eliminated additional toxicity and risks by radioactive isotopic-labelling, and CRDS reduced the analytical complexity of PAH (less biomass, no extraction, fast analysis). The simultaneous, precise quantification of both carbon content and 13C/12C ratio (δ13C) enabled accurate determination of 13C-phenanthrene accumulation and uptake rate. This is the first study to provide empirical evidence for accumulation of phenanthrene in a phytoplankton-coral food chain.
Collapse
Affiliation(s)
- Ananya Ashok
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Sreejith Kottuparambil
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lone Høj
- Australian Institute of Marine Science (AIMS), Townsville, 4810, Queensland, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science (AIMS), Townsville, 4810, Queensland, Australia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Susana Agustí
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
40
|
Nordborg FM, Jones RJ, Oelgemöller M, Negri AP. The effects of ultraviolet radiation and climate on oil toxicity to coral reef organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137486. [PMID: 32325569 DOI: 10.1016/j.scitotenv.2020.137486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 05/20/2023]
Abstract
Oil pollution remains a significant local threat to shallow tropical coral reef environments, but the environmental conditions typical of coral reefs are rarely considered in oil toxicity testing and risk assessments. Here we review the effects of three environmental co-factors on petroleum oil toxicity towards coral reef organisms, and show that the impacts of oil pollution on coral reef taxa can be exacerbated by environmental conditions commonly encountered in tropical reef environments. Shallow reefs are routinely exposed to high levels of ultraviolet radiation (UVR), which can substantially increase the toxicity of some oil components through phototoxicity. Exposure to UVR represents the most likely and harmful environmental co-factor reviewed here, leading to an average toxicity increase of 7.2-fold across all tests reviewed. The clear relevance of UVR co-exposure and its strong influence on tropical reef oil toxicity highlights the need to account for UVR as a standard practice in future oil toxicity studies. Indeed, quantifying the influence of UVR on toxic thresholds of oil to coral reef species is essential to develop credible oil spill risk models required for oil extraction developments, shipping management and spill responses in the tropics. The few studies available indicate that co-exposure to elevated temperature and low pH, both within the range of current daily and seasonal fluctuations and/or projected under continued climate change, can increase oil toxicity on average by 3.0- and 1.3-fold, respectively. While all three of the reviewed environmental co-factors have the potential to substantially increase the impacts of oil pollution in shallow reef environments, their simultaneous effects have not been investigated. Assessments of the combined effects of oil pollution, UVR, temperature and low pH will become increasingly important to identify realistic hazard thresholds suitable for future risk assessments over the coming century.
Collapse
Affiliation(s)
- F Mikaela Nordborg
- James Cook University, College of Science & Engineering, Townsville, Queensland 4810, Australia; AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia.
| | - Ross J Jones
- Australian Institute of Marine Science, Crawley 6009, Western Australia, Australia
| | - Michael Oelgemöller
- James Cook University, College of Science & Engineering, Townsville, Queensland 4810, Australia
| | - Andrew P Negri
- AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| |
Collapse
|
41
|
May LA, Burnett AR, Miller CV, Pisarski E, Webster LF, Moffitt ZJ, Pennington P, Wirth E, Baker G, Ricker R, Woodley CM. Effect of Louisiana sweet crude oil on a Pacific coral, Pocillopora damicornis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105454. [PMID: 32179335 DOI: 10.1016/j.aquatox.2020.105454] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/23/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Recent oil spill responses such as the Deepwater Horizon event have underscored the need for crude oil ecotoxicological threshold data for shallow water corals to assist in natural resource damage assessments. We determined the toxicity of a mechanically agitated oil-seawater mixture (high-energy water-accommodated fraction, HEWAF) of a sweet crude oil on a branched stony coral, Pocillopora damicornis. We report the results of two experiments: a 96 h static renewal exposure experiment and a "pulse-chase" experiment of three short-term exposure durations followed by a recovery period in artificial seawater. Five endpoints were used to determine ecotoxicological values: 1) algal symbiont chlorophyll fluorescence, 2) a tissue regeneration assay and a visual health metric with three endpoints: 3) tissue integrity, 4) tissue color, and 5) polyp behavior. The sum of 50 entrained polycyclic aromatic hydrocarbons (tPAH50) was used as a proxy for oil exposure. For the 96 h exposure dose response experiment, dark-adapted maximum quantum yield (Fv/Fm) of the dinoflagellate symbionts was least affected by crude oil (EC50 = 913 μg/L tPAH50); light-adapted effective quantum yield (EQY) was more sensitive (EC50 = 428 μg/L tPAH50). In the health assessment, polyp behavior (EC50 = 27 μg/L tPAH50) was more sensitive than tissue integrity (EC50 = 806 μg/L tPAH50) or tissue color (EC50 = 926 μg/L tPAH50). Tissue regeneration proved to be a particularly sensitive measurement for toxicity effects (EC50 = 10 μg/L tPAH50). Short duration (6-24 h) exposures using 503 μg/L tPAH50 (average concentration) resulted in negative impacts to P. damicornis and its symbionts. Recovery of chlorophyll a fluorescence levels for 6-24 h oil exposures was observed in a few hours (Fv/Fm) to several days (EQY) following recovery in fresh seawater. The coral health assessments for tissue integrity and tissue color were not affected following short-term oil exposure durations, but the 96 h treatment duration resulted in significant decreases for both. A reduction in polyp behavior (extension) was observed for all treatment durations, with recovery observed for the short-term (6-24 h) exposures within 1-2 days following placement in fresh seawater. Wounded and intact fragments exposed to oil treatments were particularly sensitive, with significant delays observed in tissue regeneration. Estimating ecotoxicological values for P. damicornis exposed to crude oil HEWAFs provides a basis for natural resource damage assessments for oil spills in reef ecosystems. These data, when combined with ecotoxicological values for other coral reef species, will contribute to the development of species sensitivity models.
Collapse
Affiliation(s)
- Lisa A May
- Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA.
| | - Athena R Burnett
- Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA
| | - Carl V Miller
- Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA
| | - Emily Pisarski
- Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA
| | - Laura F Webster
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC, 29412, USA
| | - Zachary J Moffitt
- Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA
| | - Paul Pennington
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, 219 Ft. Johnson Rd., Charleston, SC, 29412, USA
| | - Edward Wirth
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC, 29412, USA
| | - Greg Baker
- National Oceanic and Atmospheric Administration, National Ocean Service, Office of Response and Restoration, 1305 East West Highway, Room 10317, Silver Spring, MD, 20910, USA
| | - Robert Ricker
- National Oceanic and Atmospheric Administration, National Ocean Service, Office of Response and Restoration, Assessment and Restoration Division, 1410 Neotomas Ave., Suite 110, Santa Rosa, CA, 95405, USA
| | - Cheryl M Woodley
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC, 29412, USA
| |
Collapse
|
42
|
van den Hurk P, Edhlund I, Davis R, Hahn JJ, McComb MJ, Rogers EL, Pisarski E, Chung K, DeLorenzo M. Lionfish (Pterois volitans) as biomonitoring species for oil pollution effects in coral reef ecosystems. MARINE ENVIRONMENTAL RESEARCH 2020; 156:104915. [PMID: 32174335 DOI: 10.1016/j.marenvres.2020.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
With oil spills, and other sources of aromatic hydrocarbons, being a continuous threat to coral reef systems, and most reef fish species being protected or difficult to collect, the use of the invasive lionfish (Pterois volitans) might be a good model species to monitor biomarkers in potentially exposed fish in the Caribbean and western Atlantic. The rapid expansion of lionfish in the Caribbean and western Atlantic, and the unregulated fishing for this species, would make the lionfish a suitable candidate as biomonitoring species for oil pollution effects. However, to date little has been published about the responses of lionfish to environmental pollutants. For this study lionfish were collected in the Florida Keys a few weeks after Hurricane Irma, which sank numerous boats resulting in leaks of oil and fuel, and during the winter and early spring after that. Several biomarkers indicative of exposure to PAHs (bile fluorescence, cytochrome P450-1A induction, glutathione S-transferase activity) were measured. To establish if these biomarkers are inducible in PAH exposed lionfish, dosing experiments with different concentrations of High Energy Water Accommodated Fraction of crude oil were performed. The results revealed no significant effects in the biomarkers in the field collected fish, while the exposure experiments demonstrated that lionfish did show strong effects in the measured biomarkers, even at the lowest concentration tested (0.3% HEWAF, or 25 μg/l ƩPAH50). Based on its widespread distribution, relative ease of collection, and significant biomarker responses in the controlled dosing experiment, it is concluded that lionfish has good potential to be used as a standardized biomonitoring species for oil pollution in its neotropical realm.
Collapse
Affiliation(s)
- Peter van den Hurk
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC, USA; Graduate Program in Environmental Toxicology, Clemson University, Clemson, SC, USA.
| | - Ian Edhlund
- Graduate Program in Environmental Toxicology, Clemson University, Clemson, SC, USA
| | - Ryan Davis
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC, USA
| | - Jacob J Hahn
- Department of Genetics and Biochemistry, College of Science, Clemson University, Clemson, SC, USA
| | - Michel J McComb
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC, USA
| | - Elizabeth L Rogers
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA
| | | | | | - Marie DeLorenzo
- NOAA, National Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC, USA
| |
Collapse
|
43
|
Abstract
Larvae of the sponge R. odorabile survived exposure to high concentrations of petroleum hydrocarbons; however, their ability to settle and metamorphose was adversely affected at environmentally relevant concentrations, and these effects were paralleled by marked changes in sponge gene expression and preceded by disruption of the symbiotic microbiome. Given the ecological importance of sponges, uncontrolled hydrocarbon releases from shipping accidents or production could affect sponge recruitment, which would have concomitant consequences for reef ecosystem function. Accidental oil spills from shipping and during extraction can threaten marine biota, particularly coral reef species which are already under pressure from anthropogenic disturbances. Marine sponges are an important structural and functional component of coral reef ecosystems; however, despite their ecological importance, little is known about how sponges and their microbial symbionts respond to petroleum products. Here, we use a systems biology-based approach to assess the effects of water-accommodated fractions (WAF) of crude oil, chemically enhanced water-accommodated fractions of crude oil (CWAF), and dispersant (Corexit EC9500A) on the survival, metamorphosis, gene expression, and microbial symbiosis of the abundant reef sponge Rhopaloeides odorabile in larval laboratory-based assays. Larval survival was unaffected by the 100% WAF treatment (107 μg liter−1 polycyclic aromatic hydrocarbon [PAH]), whereas significant decreases in metamorphosis were observed at 13% WAF (13.9 μg liter−1 PAH). The CWAF and dispersant treatments were more toxic, with decreases in metamorphosis identified at 0.8% (0.58 μg liter−1 PAH) and 1.6% (38 mg liter−1 Corexit EC9500A), respectively. In addition to the negative impact on larval settlement, significant changes in host gene expression and disruptions to the microbiome were evident, with microbial shifts detected at the lowest treatment level (1.6% WAF; 1.7 μg liter−1 PAH), including a significant reduction in the relative abundance of a previously described thaumarchaeal symbiont. The responsiveness of the R. odorabile microbial community to the lowest level of hydrocarbon treatment highlights the utility of the sponge microbiome as a sensitive marker for exposure to crude oils and dispersants. IMPORTANCE Larvae of the sponge R. odorabile survived exposure to high concentrations of petroleum hydrocarbons; however, their ability to settle and metamorphose was adversely affected at environmentally relevant concentrations, and these effects were paralleled by marked changes in sponge gene expression and preceded by disruption of the symbiotic microbiome. Given the ecological importance of sponges, uncontrolled hydrocarbon releases from shipping accidents or production could affect sponge recruitment, which would have concomitant consequences for reef ecosystem function.
Collapse
|
44
|
French KE, Terry N. A High-Throughput Fluorescence-Based Assay for Rapid Identification of Petroleum-Degrading Bacteria. Front Microbiol 2019; 10:1318. [PMID: 31275261 PMCID: PMC6594354 DOI: 10.3389/fmicb.2019.01318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/27/2019] [Indexed: 01/05/2023] Open
Abstract
Over the past 100 years, oil spills and long-term waste deposition from oil refineries have significantly polluted the environment. These contaminants have widespread negative effects on human health and ecosystem functioning. Natural attenuation of long chain and polyaromatic hydrocarbons is slow and often incomplete. Bioaugmentation of polluted soils with indigenous bacteria that naturally consume petroleum hydrocarbons could speed up this process. However, the characterization of bacterial crude oil degradation efficiency – which often relies upon expensive, highly specialized gas-chromatography mass spectrometry analyses – can present a substantial bottleneck in developing and implementing these bioremediation strategies. Here, we develop a low-cost, rapid, high-throughput fluorescence-based assay for identifying wild-type bacteria that degrade crude oil using the dye Nile Red. We show that Nile Red fluoresces when in contact with crude oil and developed a robust linear model to calculate crude oil content in liquid cell cultures based on fluorescence intensity (FI). To test whether this assay could identify bacteria with enhanced metabolic capacities to break down crude oil, we screened bacteria isolated from a former Shell Oil refinery in Bay Point, CA, and identified one strain (Cupriavidus sp. OPK) with superior crude oil depletion efficiencies (up to 83%) in only 3 days. We further illustrate that this assay can be combined with fluorescence microscopy to study how bacteria interact with crude oil and the strategies they use to degrade this complex substance. We show for the first time that bacteria use three key strategies for degrading crude oil: biofilm formation, direct adherence to oil droplets, and vesicle encapsulation of oil. We propose that the quantitative and qualitative data from this assay can be used to develop new bioremediation strategies based on bioaugmentation and/or biomimetic materials that imitate the natural ability of bacteria to degrade crude oil.
Collapse
Affiliation(s)
- Katherine E French
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Norman Terry
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
45
|
Silva DP, Duarte G, Villela HD, Santos HF, Rosado PM, Rosado JG, Rosado AS, Ferreira EM, Soriano AU, Peixoto RS. Adaptable mesocosm facility to study oil spill impacts on corals. Ecol Evol 2019; 9:5172-5185. [PMID: 31110670 PMCID: PMC6509398 DOI: 10.1002/ece3.5095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/13/2019] [Accepted: 03/01/2019] [Indexed: 11/05/2022] Open
Abstract
Although numerous studies have been carried out on the impacts of oil spills on coral physiology, most have relied on laboratory assays. This scarcity is partly explained by the difficulty of reproducing realistic conditions in a laboratory setting or of performing experiments with toxic compounds in the field. Mesocosm systems provide the opportunity to carry out such studies with safe handling of contaminants while reproducing natural conditions required by living organisms. The mesocosm design is crucial and can lead to the development of innovative technologies to mitigate environmental impacts. Therefore, this study aimed to develop a mesocosm system for studies simulating oil spills with several key advantages, including true replication and the use of gravity to control flow-through that reduces reliance on pumps that can clog thereby decreasing errors and costs. This adaptable system can be configured to (a) have continuous flow-through; (b) operate as an open or closed system; (c) be fed by gravity; (d) have separate mesocosm sections that can be used for individual and simultaneous experiments; and (e) simulate the migration of oil from ocean oil spills to the nearby reefs. The mesocosm performance was assessed with two experiments using the hydrocoral Millepora alcicornis and different configurations to simulate two magnitudes of oil spills. With few exceptions, physical and chemical parameters remained stable within replicates and within treatments throughout the experiments. Physical and chemical parameters that expressed change during the experiment were still within the range of natural conditions observed in Brazilian marine environments. The photosynthetic potential (Fv/Fm ) of the algae associated with M. alcicornis decreased in response to an 1% crude-oil contamination, suggesting a successful delivery of the toxic contaminant to the targeted replicates. This mesocosm is customizable and adjustable for several types of experiments and proved to be effective for studies of oil spills.
Collapse
Affiliation(s)
- Denise P. Silva
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - Gustavo Duarte
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- IMAM‐AquaRio – Rio de Janeiro Aquarium Research CenterRio de JaneiroBrazil
| | - Helena D.M. Villela
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - Henrique F. Santos
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Present address:
Department of Marine BiologyFluminense Federal UniversityRio de JaneiroBrazil
| | - Phillipe M. Rosado
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - João Gabriel Rosado
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - Alexandre S. Rosado
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - Edir M. Ferreira
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - Adriana U. Soriano
- Biotechnology Section, Leopoldo Américo Miguez de Mello Research & Development Center – CENPESPETROBRASRio de JaneiroBrazil
| | - Raquel S. Peixoto
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- IMAM‐AquaRio – Rio de Janeiro Aquarium Research CenterRio de JaneiroBrazil
| |
Collapse
|
46
|
Takesue RK, Storlazzi CD. Geochemical sourcing of runoff from a young volcanic watershed to an impacted coral reef in Pelekane Bay, Hawaii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:353-363. [PMID: 30176448 DOI: 10.1016/j.scitotenv.2018.08.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Runoff of sediment and other contaminants from developed watersheds threatens coastal ecosystems and services. A sediment geochemical sourcing study was undertaken on a sediment-impacted coral reef flat to identify terrestrial sediment sources and how these changed over time. Geochemical signatures were identified for watershed soils that formed on Hawaiian basaltic and alkalic lavas using relatively immobile compatible (Ni, Sc) and incompatible (Nb, REE, Th) elements quantified by ICP-MS in total decompositions of the fine fraction of surface soils. Some soils also contained ash from late-erupting cinder cones that added alkalic geochemical signatures, resulting in distinctive mixed signatures near these geologic features. Sediment was collected in Pelekane Bay using sediment traps during winter 2010-2011 and a sediment core in order to geochemically source runoff entering the bay. Geochemical signatures in trapped sediment showed that runoff predominantly originated from the lower watershed along a highway corridor rather than from the upper watershed or areas with alkalic lavas. Soil in the highway corridor also contained Zn above levels of concern for aquatic organisms and anthropogenic Pb, indications that runoff control measures could reduce the exposure of the reef community to potentially toxic metals and other road-associated contaminants. The upper portion of a 60-yr long sediment record from Pelekane Bay was disturbed by tsunamigenic waves from the Tohoku earthquake, and the remainder was likely subject to mixing by winter waves that averaged out geochemical variations. On average, watershed regions with basaltic soils were the predominant source of runoff to the bay over the past 60 years. By linking sediment runoff to geographic regions or features in watersheds, geochemical sourcing can provide insights that allow resource managers to direct runoff mitigation and soil conservation efforts to areas where they will be most effective.
Collapse
Affiliation(s)
- Renee K Takesue
- U.S. Geological Survey, Pacific Coastal & Marine Science Center, 2885 Mission Street, Santa Cruz, CA 95060, USA.
| | - Curt D Storlazzi
- U.S. Geological Survey, Pacific Coastal & Marine Science Center, 2885 Mission Street, Santa Cruz, CA 95060, USA
| |
Collapse
|
47
|
Rivers ML, Gwinnett C, Woodall LC. Quantification is more than counting: Actions required to accurately quantify and report isolated marine microplastics. MARINE POLLUTION BULLETIN 2019; 139:100-104. [PMID: 30686405 DOI: 10.1016/j.marpolbul.2018.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Research on marine microplastics continues to increase in popularity, with a large number of studies being published every year. However, with this plethora of research comes the need for a standardised approach to quantification and analysis procedures in order to produce comparative assessments. Using data collected from neuston nets in 2016, parameters for quantifying microplastics were compared. Surface area was the most accurate parameter to describe plastic size and should be used to describe plastic quantity (per km2 or m3), alongside abundance. Of the two most commonly used methods for calculating plastic concentration (flowmeter and ship's log), ship's log provided consistently smaller abundances, with the exception of one sample, calling for a standardisation in the techniques and measurements used to quantify floating microplastics.
Collapse
Affiliation(s)
- Molly L Rivers
- Nekton Foundation, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke, Oxfordshire OX5 1PF, United Kingdom.
| | - Claire Gwinnett
- School of Law, Policing and Forensics, Science Centre, Staffordshire University, Leek Road, Stoke on Trent ST4 2DF, United Kingdom
| | - Lucy C Woodall
- Nekton Foundation, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke, Oxfordshire OX5 1PF, United Kingdom; Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, United Kingdom
| |
Collapse
|
48
|
Martins CC, Castellanos-Iglesias S, Cabral AC, de Souza AC, Ferraz MA, Alves TP. Hydrocarbon and sewage contamination near fringing reefs along the west coast of Havana, Cuba: A multiple sedimentary molecular marker approach. MARINE POLLUTION BULLETIN 2018; 136:38-49. [PMID: 30509820 DOI: 10.1016/j.marpolbul.2018.08.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 06/09/2023]
Abstract
Organic contamination is a major environmental concern in coastal regions, and it can be evaluated by the determination of aliphatic hydrocarbons (AHs), polycyclic aromatic hydrocarbons (PAHs), faecal sterols and linear alkylbenzenes (LABs). The concentrations of these organic markers were obtained from nine surface sediment samples to evaluate a possible contamination near a fringing reef on the west coast of Havana, Cuba. The AH levels ranged from 1.24 to 135.6 μg g-1, the PAH levels were up to 2133 ng g-1, the faecal sterol levels ranged from 0.03 to 1.54 μg g-1, and the total LAB levels were up to 22.7 ng g-1. The highest concentrations were obtained at sites close to Havana Bay and at the sources of untreated sewage input. A decreasing concentration gradient was observed from Havana Bay to the outer sites. Although only two sites presented high levels of contamination, untreated sewage discharged close to the fringing reef may affect its environment.
Collapse
Affiliation(s)
- César C Martins
- Centro de Estudos do Mar, Universidade Federal do Paraná, Caixa Postal 61, Pontal do Sul, Pontal do Paraná 83255-976, PR, Brazil.
| | - Susel Castellanos-Iglesias
- Departamento de Zoologia, Setor de Ciências Biológicas da Universidade Federal do Paraná, Centro Politécnico, 81531-990 Curitiba, PR, Brazil
| | - Ana Caroline Cabral
- Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos (PGSISCO) da Universidade Federal do Paraná, Caixa Postal 61, 83255-976 Pontal do Paraná, PR, Brazil
| | - Amanda Câmara de Souza
- Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos (PGSISCO) da Universidade Federal do Paraná, Caixa Postal 61, 83255-976 Pontal do Paraná, PR, Brazil
| | - Mariana Aliceda Ferraz
- Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos (PGSISCO) da Universidade Federal do Paraná, Caixa Postal 61, 83255-976 Pontal do Paraná, PR, Brazil
| | - Thiago Pereira Alves
- Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos (PGSISCO) da Universidade Federal do Paraná, Caixa Postal 61, 83255-976 Pontal do Paraná, PR, Brazil; Instituto Federal de Santa Catarina, Campus Itajaí, 88307-303 Itajaí, SC, Brazil
| |
Collapse
|
49
|
Xiao R, Zhou H, Chen CM, Cheng H, Li H, Xie J, Zhao H, Han Q, Diao X. Transcriptional responses of Acropora hyacinthus embryo under the benzo(a)pyrene stress by deep sequencing. CHEMOSPHERE 2018; 206:387-397. [PMID: 29754063 DOI: 10.1016/j.chemosphere.2018.04.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Coral embryos are a critical and sensitive period for the early growth and development of coral. Benzo(a)pyrene (BaP) is widely distributed in the ocean and has strong toxicity, but there is little information on the toxic effects to coral embryos exposed to this widespread environmental contaminant. Thus, in this study, we utilized the Illumina Hiseq™ 4000 platform to explore the gene response of Acropora hyacinthus embryos under the BaP stress. A total of 130,042 Unigenes were obtained and analyzed, and approximately 37.67% of those matched with sequences from four different species. In total, 2606 Unigenes were up-regulated, and 3872 Unigenes were down-regulated. After Gene Ontology (GO) annotation, the results show that the "cellular process" and "metabolic process" were leading in the category of biological processes, which the "binding" and "catalytic activity" were the most abundant subcategories in molecular function. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the most differentially expressed genes (DEGs) were enriched, as well as down-regulated in the pathways of oxidative phosphorylation, metabolism of xenobiotics, immune-related genes, apoptosis and human disease genes. At the same time, 388,197 of Single-nucleotide Polymorphisms (SNPs) and 6164 of Simple Sequence Repeats (SSRs) were obtained, which can be served as the richer and more valuable SSRs molecular markers in the future. The results of this study can help to better understand the toxicological mechanism of coral embryo exposed to BaP, and it is also essential for the protection and restoration of coral reef ecosystem in the future.
Collapse
Affiliation(s)
- Rong Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Chien-Min Chen
- Department of Environmental Resources Management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan, China
| | - Huamin Cheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hongwu Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ocean, Hainan University, Haikou 570228, China
| | - Jia Xie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ocean, Hainan University, Haikou 570228, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qian Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Ministry of Education Key Laboratory of Tropical Island Ecology, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
50
|
Phototoxic effects of two common marine fuels on the settlement success of the coral Acropora tenuis. Sci Rep 2018; 8:8635. [PMID: 29872088 PMCID: PMC5988723 DOI: 10.1038/s41598-018-26972-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/23/2018] [Indexed: 11/10/2022] Open
Abstract
Coral reefs are at risk of exposure to petroleum hydrocarbons from shipping spills and uncontrolled discharges during extraction. The toxicity of petroleum hydrocarbons can substantially increase in the presence of ultraviolet radiation (UVR), therefore spills in shallow coral reef environments may be particularly hazardous to reef species. Here we investigated the sensitivity of coral larvae (Acropora tenuis) to dissolved hydrocarbons from heavy fuel oil (HFO) and diesel in the absence and presence of UVR. Larval settlement success decreased with increasing concentrations of dissolved HFO, and co-exposure to UVR doubled the toxicity: 50% effect concentrations (EC50) decreased from 96 (−UVR) to 51 (+UVR) total petroleum aromatic hydrocarbons (TPAH). Toxic thresholds for HFO were similar to concentrations reported during marine spills: EC10s of 24 (−UVR) and 15 (+UVR) µg l−1. While less toxic, diesel also reduced settlement and exhibited phototoxicity: EC10s of 122 (+UVR) and 302 (−UVR) µg l−1. This study demonstrates that the presence of UVR increases the hazard posed by oil pollution to tropical, shallow-water coral reefs. Further research on the effects of oils in the presence of UVR is needed to improve the environmental relevance of risk assessments and ensure appropriate protection for shallow reef environments against oil pollution.
Collapse
|