1
|
Adedipe DT, Chen C, Lai RWS, Xu S, Luo Q, Zhou GJ, Boxall A, Brooks BW, Doblin MA, Wang X, Wang J, Leung KMY. Occurrence and potential risks of pharmaceutical contamination in global Estuaries: A critical review and analysis. ENVIRONMENT INTERNATIONAL 2024; 192:109031. [PMID: 39321536 DOI: 10.1016/j.envint.2024.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Input of pollutants to estuaries is one of the major threats to marine biodiversity and fishery resources, and pharmaceuticals are one of the most important contaminants of emerging concern in aquatic ecosystems. To synthesize pharmaceutical pollution levels in estuaries over the past 20 years from a global perspective, this review identified 3229 individual environmental occurrence data for 239 pharmaceuticals across 91 global estuaries distributed in 26 countries. The highest cumulative weighted average concentration level (WACL) of all detected pharmaceuticals in estuarine water was observed in Africa (145,461.86 ng/L), with 30 pharmaceuticals reported. North America (24,316.39 ng/L) was ranked second in terms of WACL, followed by South America (20,784.13 ng/L), Asia (5958.38 ng/L), Europe (4691.23 ng/L), and Oceania (2916.32 ng/L). Carbamazepine, diclofenac, and paracetamol were detected in all continents. A total of 41 functional categories of pharmaceuticals were identified, and analgesics, antibiotics, and stimulants were amongst the most ubiquitous groups in estuaries worldwide. Although many pharmaceuticals were observed to present lower than or equal to moderate ecological risk, 34 pharmaceuticals were identified with high or very high ecological risks in at least one continent. Pharmaceutical pollution in estuaries was positively correlated with regional unemployment and poverty ratios, but negatively correlated with life expectancy and GDP per capita. There are some limitations that may affect this synthesis, such as comparability of the sampling and pretreatment methodology, differences in the target pharmaceuticals for monitoring, and potentially limited number and diversity of estuaries covered, which prompt us to standardize methods for monitoring these pharmaceutical contaminants in future global studies.
Collapse
Affiliation(s)
- Demilade T Adedipe
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chong Chen
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Racliffe Weng Seng Lai
- Department of Ocean Science and Technology, Faculty of Science and Technology, The University of Macau, Macau, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qiong Luo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Guang-Jie Zhou
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Alistair Boxall
- Department of Environment and Geography, University of York, York YO10 5DD, United Kingdom
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Martina A Doblin
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia; Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen, China
| | - Juying Wang
- National Marine Environment Monitoring Center, Liaoning, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Adeoye JB, Tan YH, Lau SY, Tan YY, Chiong T, Mubarak NM, Khalid M. Advanced oxidation and biological integrated processes for pharmaceutical wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120170. [PMID: 38308991 DOI: 10.1016/j.jenvman.2024.120170] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
The stress of pharmaceutical and personal care products (PPCPs) discharging to water bodies and the environment due to increased industrialization has reduced the availability of clean water. This poses a potential health hazard to animals and human life because water contamination is a great issue to the climate, plants, humans, and aquatic habitats. Pharmaceutical compounds are quantified in concentrations ranging from ng/Lto μg/L in aquatic environments worldwide. According to (Alsubih et al., 2022), the concentrations of carbamazepine, sulfamethoxazole, Lutvastatin, ciprofloxacin, and lorazepam were 616-906 ng/L, 16,532-21635 ng/L, 694-2068 ng/L, 734-1178 ng/L, and 2742-3775 ng/L respectively. Protecting and preserving our environment must be well-driven by all sectors to sustain development. Various methods have been utilized to eliminate the emerging pollutants, such as adsorption and biological and advanced oxidation processes. These methods have their benefits and drawbacks in the removal of pharmaceuticals. Successful wastewater treatment can save the water bodies; integrating green initiatives into the main purposes of actor firms, combined with continually periodic awareness of the current and potential implications of environmental/water pollution, will play a major role in water conservation. This article reviews key publications on the adsorption, biological, and advanced oxidation processes used to remove pharmaceutical products from the aquatic environment. It also sheds light on the pharmaceutical adsorption capability of adsorption, biological and advanced oxidation methods, and their efficacy in pharmaceutical concentration removal. A research gap has been identified for researchers to explore in order to eliminate the problem associated with pharmaceutical wastes. Therefore, future study should focus on combining advanced oxidation and adsorption processes for an excellent way to eliminate pharmaceutical products, even at low concentrations. Biological processes should focus on ideal circumstances and microbial processes that enable the simultaneous removal of pharmaceutical compounds and the effects of diverse environments on removal efficiency.
Collapse
Affiliation(s)
- John Busayo Adeoye
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Yie Hua Tan
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Sie Yon Lau
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Yee Yong Tan
- Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Sarawak, Miri, 98009, Malaysia
| | - Tung Chiong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia; Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
| |
Collapse
|
3
|
Santos N, Oliveira M, Domingues I. Influence of exposure scenario on the sensitivity to caffeine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122808-122821. [PMID: 37978123 PMCID: PMC10724325 DOI: 10.1007/s11356-023-30945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The chorion acts as a protective barrier, restricting some chemical absorption into the embryo and the surrounding fluids. In this sense, larvae may only have direct contact with some chemicals after dechorionation. This study aimed to evaluate the effects of caffeine (CAF) (0, 13, 20, 44, 67, and 100 mg.L-1) under different exposure scenarios (embryos with chorion or embryos/larvae already hatched) and rank the stage sensitivity. Thus, three scenarios were investigated: from 2 to 120 hours post fertilization (hpf) (5 days of exposure- 5dE), from 72 to 120 hpf (2dE), and from 96 to 120 hpf (1dE). Heart rate (48 hpf) and energy reserves (120 hpf) were measured in the 5dE scenario, and behavior and acetylcholinesterase (AChE) activity were evaluated at 120 hpf in all scenarios (5dE, 2dE, and 1dE). At 120 hpf, some of the fish was transferred to clean medium for a 10 days depuration period (10dPE). Behavior and AChE activity were assessed after this period. In the 5dE scenario, CAF increased heartbeat (13, 20, and 30 mg.L-1) and reduced carbohydrates (67, and 100 mg.L-1), while inhibiting AChE activity (100 mg.L-1) in the 5dE, 2dE, and 1dE scenarios. CAF reduced the total distance moved in the 5dE (67, and 100 mg.L-1), 2dE (20, 30, 44, 67, and 100 mg.L-1), and 1dE fish (67, and 100 mg.L-1) and increased erratic movements. Based on the lowest observed effect concentration (LOEC) for total distance moved (20 mg.L-1) and higher inhibition of AChE activity (100 mg.L-1) (65%), 2dE fish appear to be more sensitive to CAF. After 10dPE, a recovery in behavior was detected in all scenarios (5dE, 2dE, and 1dE). AChE activity remained inhibited in the 2dE scenario while increasing in the 1dE scenario. This study demonstrated that the presence of the chorion is an important factor for the analysis of CAF toxicity. After the loss of the chorion, organisms show greater sensitivity to CAF and can be used to evaluate the toxicity of various substances, including nanomaterials or chemicals with low capacity to cross the chorion. Therefore, the use of hatched embryos in toxicity tests is suggested, as they allow a shorter and less expensive exposure scenario that provides similar outcome as the conventional scenario.
Collapse
Affiliation(s)
- Niedja Santos
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
4
|
Huynh NC, Nguyen TTT, Nguyen DTC, Tran TV. Occurrence, toxicity, impact and removal of selected non-steroidal anti-inflammatory drugs (NSAIDs): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165317. [PMID: 37419350 DOI: 10.1016/j.scitotenv.2023.165317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most frequently used pharmaceuticals for human therapy, pet therapeutics, and veterinary feeds, enabling them to enter into water sources such as wastewater, soil and sediment, and seawater. The control of NSAIDs has led to the advent of the novel materials for treatment techniques. Herein, we review the occurrence, impact and toxicity of NSAIDs against aquatic microorganisms, plants and humans. Typical NSAIDs, e.g., ibuprofen, ketoprofen, diclofenac, naproxen and aspirin were detected at high concentrations in wastewater up to 2,747,000 ng L-1. NSAIDs in water could cause genotoxicity, endocrine disruption, locomotive disorders, body deformations, organs damage, and photosynthetic corruption. Considering treatment methods, among adsorbents for removal of NSAIDs from water, metal-organic frameworks (10.7-638 mg g-1) and advanced porous carbons (7.4-400 mg g-1) were the most robust. Therefore, these carbon-based adsorbents showed promise in efficiency for the treatment of NSAIDs.
Collapse
Affiliation(s)
- Nguyen Chi Huynh
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
5
|
Yan Z, Li Y, Lin A, Yang X, Lu Z, Zhang H, Tang J, Zhao J, Niu D, Zhang T, Zhao X, Li K. Development of a trace quantitative method to investigate caffeine distribution in the Yellow and Bohai Seas, China, and assessment of its potential neurotoxic effect on fish larvae. MARINE POLLUTION BULLETIN 2023; 195:115492. [PMID: 37690407 DOI: 10.1016/j.marpolbul.2023.115492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Caffeine is an emerging contaminant in aquatic environments. The study utilized a validated method to investigate the presence and distribution of caffeine in the surface water of the Yellow and Bohai Seas, urban rivers, and the Yantai estuary area. The analytical method conforms to EPA guidelines and exhibits a limit of quantification that is 200 times lower than that of prior investigations. The study revealed that the highest concentration of 1436.4 ng/L was found in convergence of ocean currents in the Yellow and Bohai Seas. The presence of larger populations and the process of urban industrialization have been observed to result in elevated levels of caffeine in offshore regions, confirming that caffeine can serve as a potential indicator of anthropogenic contamination. Fish larvae exhibited hypoactivity in response to caffeine exposure at environmentally relevant concentrations. The study revealed that caffeine pollution can have adverse effects on marine and offshore ecosystems. This emphasizes the importance of decreasing neurotoxic pollution in the aquatic environment.
Collapse
Affiliation(s)
- Zhi Yan
- School of Ocean, Yantai University, Yantai 264005, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yaxi Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ainuo Lin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Lu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Huilin Zhang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, China
| | - Jianhui Tang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jianmin Zhao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Donglei Niu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyu Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Zhao
- School of Ocean, Yantai University, Yantai 264005, China
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
6
|
Tyumina E, Subbotina M, Polygalov M, Tyan S, Ivshina I. Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Front Microbiol 2023; 14:1200108. [PMID: 37608946 PMCID: PMC10441242 DOI: 10.3389/fmicb.2023.1200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Ketoprofen, a bicyclic non-steroidal anti-inflammatory drug commonly used in human and veterinary medicine, has recently been cited as an environmental contaminant that raises concerns for ecological well-being. It poses a growing threat due to its racemic mixture, enantiomers, and transformation products, which have ecotoxicological effects on various organisms, including invertebrates, vertebrates, plants, and microorganisms. Furthermore, ketoprofen is bioaccumulated and biomagnified throughout the food chain, threatening the ecosystem function. Surprisingly, despite these concerns, ketoprofen is not currently considered a priority substance. While targeted eco-pharmacovigilance for ketoprofen has been proposed, data on ketoprofen as a pharmaceutical contaminant are limited and incomplete. This review aims to provide a comprehensive summary of the most recent findings (from 2017 to March 2023) regarding the global distribution of ketoprofen in the environment, its ecotoxicity towards aquatic animals and plants, and available removal methods. Special emphasis is placed on understanding how ketoprofen affects microorganisms that play a pivotal role in Earth's ecosystems. The review broadly covers various approaches to ketoprofen biodegradation, including whole-cell fungal and bacterial systems as well as enzyme biocatalysts. Additionally, it explores the potential of adsorption by algae and phytoremediation for removing ketoprofen. This review will be of interest to a wide range of readers, including ecologists, microbiologists, policymakers, and those concerned about pharmaceutical pollution.
Collapse
Affiliation(s)
- Elena Tyumina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maria Subbotina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maxim Polygalov
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Semyon Tyan
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Irina Ivshina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| |
Collapse
|
7
|
Thanasoponkul W, Changbunjong T, Sukkurd R, Saiwichai T. Spent Coffee Grounds and Novaluron Are Toxic to Aedes aegypti (Diptera: Culicidae) Larvae. INSECTS 2023; 14:564. [PMID: 37367380 DOI: 10.3390/insects14060564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Aedes aegypti (Diptera: Culicidae) is a vector for mosquito-borne diseases worldwide. Insecticide resistance is a major concern in controlling this mosquito. We investigated the chemical compounds in wet and dry spent coffee grounds (wSCGs and dSCGs) and evaluated the efficacy of dSCGs, wSCGs, and novaluron on the mortality and adult emergence inhibition of Ae. aegypti. We found higher concentrations of chemical compounds in wSCGs than in dSCGs. The wSCGs and dSCGs both contained total phenolic compounds, total flavonoid compounds, caffeic acid, coumaric acid, protocatechuic acid, and vanillic acid. Complete mortality was observed after 48 h of exposure to 50 g/L wSCGs, while similar mortality was found after 120 h of exposure to 10 µg/L of novaluron. The sublethal dose was a concentration of wSCGs (5 g/L) and novaluron (0.01, 0.1, and 1 µg/L) combined that resulted in a larval mortality lower than twenty percent (at 72 h) to determine their synergistic effects. The death rate of larvae exposed in sublethal combination of wSCGs and novaluron was significantly higher than that of its stand-alone. The findings indicate that the combination of wSCGs and novaluron at sublethal concentrations had synergistic effects on the mortality of Ae. aegypti larvae and could be applied as an alternative control measure.
Collapse
Affiliation(s)
- Waralee Thanasoponkul
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Rattanavadee Sukkurd
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Tawee Saiwichai
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
8
|
Shiu RF, Lee HJ, Hsu HT, Gong GC. Suspended particulate matter-bound per- and polyfluoroalkyl substances (PFASs) in a river-coastal system: Possible correlation with transparent exopolymer particles. MARINE POLLUTION BULLETIN 2023; 191:114975. [PMID: 37121184 DOI: 10.1016/j.marpolbul.2023.114975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
The transport and ultimate fate of per- and polyfluoroalkyl substances (PFASs) are generally considered to be influenced by partitioning behavior between water, suspended particulate matters (SPM), and sediments. This study examined the distribution and partitioning of the PFASs in the water, SPM, and sediments in a densely populated urban river-coastal system. The total concentrations of eight PFASs (∑8 PFASs) in the water phase, SPM, and sediments varied from 0.59 to 7.40 ng/L, 0.54 to 9.08 ng/g, and 0.05 to 0.13 ng/g, respectively. The PFAS concentrations in the water and SPM phase decreased as the salinity increased, confirming contaminant inputs from the upstream of the river to the estuary zone. Notably, the positive correlation between SPM-bound PFASs and transparent exopolymer particles (TEPs) content, providing first evidence that TEPs may accumulate and concentrate more PFASs on the SPM. Collectively, this results offers useful information about roles of TEPs in determining environmental fate of PFASs.
Collapse
Affiliation(s)
- Ruei-Feng Shiu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Hui-Ju Lee
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hung-Te Hsu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Gwo-Ching Gong
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
9
|
Sun S, Wang Q, Wang N, Yang S, Qi H. High-risk antibiotics positively correlated with antibiotic resistance genes in five typical urban wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118296. [PMID: 37267763 DOI: 10.1016/j.jenvman.2023.118296] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Antibiotic resistance genes (ARGs) and antibiotic amount increased within close proximity to human dominated ecosystems. However, few studies assessed the distribution of antibiotics and ARGs in multiple ecosystems especially the different urban wastewater. In this study, the spatial distribution of ARGs and antibiotics across the urban wastewater included domestic, livestock, hospital, pharmaceutical wastewater, influent of the wastewater treatment plant (WWTP) in Northeast China. The q-PCR results showed that ARGs were most abundant in community wastewater and followed by WWTP influent, livestock wastewater, pharmaceutical wastewater and hospital wastewater. The ARG composition differed among the five ecotypes with qnrS was the dominant ARG subtypes in WWTP influent and community wastewater, while sul2 dominant in livestock, hospital, pharmaceutical wastewater. The concentration of antibiotics was closely related to the antibiotic usage and consumption data. In addition to the high concentration of azithromycin at all sampling points, more than half of the antibiotics in livestock wastewater were veterinary antibiotics. However, antibiotics that closely related to humankind such as roxithromycin and sulfamethoxazole accounted for a higher proportion in hospital wastewater (13.6%) and domestic sewage (33.6%), respectively. The ambiguous correlation between ARGs and their corresponding antibiotics was detected. However, antibiotics that exhibited high ecotoxic effects were closely and positively correlated with ARGs and the class 1 integrons (intI1), which indicated that high ecotoxic compounds might affect antimicrobial resistance of bacteria by mediating horizontal gene transfer of ARGs. The coupling mechanism between the ecological risk of antibiotics and bacterial resistance needed to be further studied, and thereby provided a new insight to study the impact of environmental pollutants on ARGs in various ecotypes.
Collapse
Affiliation(s)
- Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan, 056038, China.
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan, 056038, China
| | - Na Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Shengjuan Yang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan, 056038, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
10
|
Lin K, Wang R, Han T, Tan L, Yang X, Wan M, Chen Y, Zhao T, Jiang S, Wang J. Seasonal variation and ecological risk assessment of Pharmaceuticals and Personal Care Products (PPCPs) in a typical semi-enclosed bay - The Bohai Bay in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159682. [PMID: 36302405 DOI: 10.1016/j.scitotenv.2022.159682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/04/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The Bohai Bay as a typical semi-enclosed bay in northern China with poor water exchange capacity and significant coastal urbanization, is greatly influenced by land-based inputs and human activities. As a class of pseudo-persistent organic pollutants, the spatial and temporal distribution of Pharmaceuticals and Personal Care Products (PPCPs) is particularly important to the ecological environment, and it will be imperfect to assess the ecological risk of PPCPs for the lack of systematic investigation of their distribution in different season. 14 typical PPCPs were selected to analyze the spatial and temporal distribution in the Bohai Bay by combining online solid-phase extraction (SPE) and HPLC-MS/MS techniques in this study, and their ecological risks to aquatic organisms were assessed by risk quotients (RQs) and concentration addition (CA) model. It was found that PPCPs widely presented in the Bohai Bay with significant differences of spatial and seasonal distribution. The concentrations of ∑PPCPs were higher in autumn than in summer. The distribution of individual pollutants also showed significant seasonal differences. The high values were mainly distributed in estuaries and near-shore outfalls. Mariculture activities in the northern part of the Bohai Bay made a greater contribution to the input of PPCPs. Caffeine, florfenicol, enrofloxacin and norfloxacin were the main pollutants in the Bohai Bay, with detection frequencies exceeding 80 %. The ecological risk of PPCPs to algae was significantly higher than that to invertebrates and fish. CA model indicated that the potential mixture risk of total PPCPs was not negligible, with 34 % and 88 % of stations having mixture risk in summer and autumn, respectively. The temporary stagnation of productive life caused by Covid-19 weakened the input of PPCPs to the Bohai Bay, reducing the cumulative effects of the pollutants. This study was the first full-coverage investigation of PPCPs in the Bohai Bay for different seasons, providing an important basis for the ecological risk assessment and pollution prevention of PPCPs in the bay.
Collapse
Affiliation(s)
- Kun Lin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Rui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tongzhu Han
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xue Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengmeng Wan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yanshan Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Ting Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shan Jiang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
11
|
Alygizakis N, Giannakopoulos T, Τhomaidis NS, Slobodnik J. Detecting the sources of chemicals in the Black Sea using non-target screening and deep learning convolutional neural networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157554. [PMID: 35878861 DOI: 10.1016/j.scitotenv.2022.157554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The Black Sea is an important ecosystem, which is affected by various anthropogenic pressures, such as shipping activities and wastewater inputs from large coastal cities. Significant loads of chemical pollutants are being continuously brought in by major European rivers. This study investigated the spatial distribution of chemicals in the Ukrainian shelf (the northwestern part of the Black Sea) and their main sources. Chemical occurrence data used in the study was generated within the Joint Black Sea Surveys (JBSS), which took place in 2016 and 2017 as a part of the EU/UNDP EMBLAS II project (www.emblasproject.org). During the JBSS, seawater samples were analyzed by a non-target screening workflow using liquid chromatography high-resolution mass spectrometry (LC-HRMS). Open-source algorithms were applied to generate a combined dataset of 30,489 detected chemical signals and their intensities. Out of these, 35 compounds were tentatively identified by the application of a non-target screening identification workflow based on automated matching of their mass spectra against those in available mass spectral libraries. The dataset was used to generate images, representing spatial distribution of each of the signals. These images were then used as an input to a deep learning convolutional neural network classification model. The study resulted in the development of an open-source end-to-end workflow for the estimation of the pollution load by chemicals contributed by the two major inflowing rivers (Danube and Dnieper) and other, so far unidentified, sources. A dedicated dashboard was built to facilitate data visualization per detected signal/compound. The presented model proved to be especially useful at the prioritization of signals of unknown compounds, which is of key importance for the follow up structure elucidation efforts of bulky non-target screening data. The deep learning approach for peak prioritization of unknown chemicals in the environment has been used for the first time.
Collapse
Affiliation(s)
- Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic.
| | | | - Nikolaos S Τhomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | | |
Collapse
|
12
|
Shen QC, Wang DD, Qu YY, Zhang J, Zhang XQ. Occurrence, transport and environmental risk assessment of pharmaceuticals and personal care products (PPCPs) at the mouth of Jiaozhou Bay, China based on stir bar sorptive extraction. MARINE POLLUTION BULLETIN 2022; 184:114130. [PMID: 36137439 DOI: 10.1016/j.marpolbul.2022.114130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
In recent years, research on pharmaceuticals and personal care products (PPCPs) in the marine environment has attracted increasing attention worldwide. However, more work is needed to improve PPCPs detection methods, specifically for seawater environments. An analytical method based on stir bar sorptive extraction (SBSE) had been developed and fully optimized for the pretreatment and detection of ten widely used PPCPs that are commonly found in seawater samples. By optimizing several variables including the material of the stir bars, extraction temperature, extraction time, ionic strength, desorption solvent, and desorption time, the optimized method has achieved excellent results in the detection and quantification of target PPCPs with detection limits ranging from 0.03 to 1 ng/L. The distribution of target PPCPs at the mouth of Jiaozhou Bay was successfully determined by this method, and the concentrations and detection frequencies of PPCPs varied greatly from N.D. to 449.36 ng/L and from 9.1 % to 100 %, respectively. Moreover, the distributions of PPCPs were explained by the Lagrangian particle-tracking model, and the results showed that the Tuandao sewage treatment plant had the most significant impact on the study area. The environmental risk assessment results showed that several target PPCPs might pose risks to aquatic organisms. In particular, triclocarban should receive more attention and the risk quotients of the mixtures (MRQ) should not be ignored.
Collapse
Affiliation(s)
- Qiu-Cen Shen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Dan-Dan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yu-Ying Qu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jing Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China.
| | - Xue-Qing Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
13
|
Madikizela LM, Ncube S. Health effects and risks associated with the occurrence of pharmaceuticals and their metabolites in marine organisms and seafood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155780. [PMID: 35537516 DOI: 10.1016/j.scitotenv.2022.155780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals and their metabolites are continuously invading the marine environment due to their input from the land such as their disposal into the drains and sewers which is mostly followed by their transfer into wastewater treatment plants (WWTPs). Their incomplete removal in WWTPs introduces pharmaceuticals into oceans and surface water. To date, various pharmaceuticals and their metabolites have been detected in marine environment. Their occurrence in marine organisms raises concerns regarding toxic effects and development of drug resistant genes. Therefore, it is crucial to review the health effects and risks associated with the presence of pharmaceuticals and their metabolites in marine organisms and seafood. This is an important study area which is related to the availability of seafood and its quality. Hence, this study provides a critical review of the information available in literature which relates to the occurrence and toxic effects of pharmaceuticals in marine organisms and seafood. This was initiated through conducting a literature search focussing on articles investigating the occurrence and effects of pharmaceuticals and their metabolites in marine organisms and seafood. In general, most studies on the monitoring of pharmaceuticals and their metabolites in marine environment are conducted in well developed countries such as Europe while research in developing countries is still limited. Pharmaceuticals present in freshwater are mostly found in seawater and marine organisms. Furthermore, the toxicity caused by different pharmaceutical mixtures was observed to be more severe than that of individual compounds.
Collapse
Affiliation(s)
- Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa.
| | - Somandla Ncube
- Department of Chemistry, Sefako Makgatho Health Sciences University, P.O Box 60, Medunsa 0204, South Africa
| |
Collapse
|
14
|
Tseng CM, Chen YS, Ang SJ, Li KC, Peng HC, Gong GC. Probing the outfall-related anomalous Hg levels in the Danshuei Estuarine Coastal, Taiwan. MARINE POLLUTION BULLETIN 2022; 181:113840. [PMID: 35732090 DOI: 10.1016/j.marpolbul.2022.113840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Seasonal and spatial distributions of total mercury (THg) in the Danshuei Estuary and adjacent coastal areas near the ocean outfall of Taipei, Taiwan, have been successfully investigated from May 2003 to January 2005. We found spatio-temporal variation in THg levels in the Danshuei coastal area was the result of sources and supplies of Hg. High THg concentrations in sediments and seawater were particularly found near the effluent outfall. Average THg levels (avg.: 9-22 ng L-1) were much higher than those in surrounding coastal seawaters (avg.:1-2 ng L-1). Organic carbon contents then played vital roles in controlling water and sedimentary Hg concentrations and occurrences. Hg enrichment factor (EF) as an index of contamination status in surface sediments of the Danshuei coastal area averaged 2.0 ± 0.8 (EFs > 1), indicating an extra non-crustal source from anthropogenic loadings. It implies the Dansheui coastal environment nearby the sewer outfall is facing Hg pollution.
Collapse
Affiliation(s)
- Chun-Mao Tseng
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, ROC.
| | - Yi-Sheng Chen
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Shin-Jing Ang
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Kuo-Chen Li
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Hao-Cheng Peng
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Gwo-Ching Gong
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan, ROC
| |
Collapse
|
15
|
Korkmaz NE, Savun-Hekimoğlu B, Aksu A, Burak S, Caglar NB. Occurrence, sources and environmental risk assessment of pharmaceuticals in the Sea of Marmara, Turkey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152996. [PMID: 35031378 DOI: 10.1016/j.scitotenv.2022.152996] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
In the present study, the occurrence and spatial distribution of selected eleven pharmaceuticals were investigated in the Sea of Marmara, Turkey. Samples were collected from different depths of the nine stations in April and October 2019. Pharmaceuticals were analyzed using liquid-liquid and solid-phase extraction (SPE) methods followed by high-performance liquid chromatography (HPLC). All target pharmaceutical compounds were detected at least once in the study area. Gemfibrozil, which belongs to the lipid regulatory group, was the most frequently detected in seawater at high concentrations (<0.016-9.71 μg/L). Ibuprofen (<0.015-2.13 μg/L) and 17α-ethynylestradiol (<0.010-3.55 μg/L) were identified as the other frequently detected pharmaceuticals. In addition, the presence of these selected compounds in April was higher than in October. According to the risk assessment results, naproxen, diclofenac, clofibric acid, gemfibrozil, 17β-estradiol, and 17α-ethynylestradiol represent a high risk to aquatic organisms in the Sea of Marmara. These findings underline the importance of continued monitoring of these compounds as relevant organic contaminants in the study area to take appropriate measures to protect the ecosystem and, ultimately, human health.
Collapse
Affiliation(s)
- Nagihan E Korkmaz
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Başak Savun-Hekimoğlu
- Istanbul University, Institute of Marine Sciences and Management, Department of Marine Environment, Istanbul, Turkey
| | - Abdullah Aksu
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Selmin Burak
- Istanbul University, Institute of Marine Sciences and Management, Department of Marine Environment, Istanbul, Turkey
| | - Nuray Balkis Caglar
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey.
| |
Collapse
|
16
|
Dao KC, Yang CC, Chen KF, Tsai YP. Effect of Operational Parameters on the Removal of Carbamazepine and Nutrients in a Submerged Ceramic Membrane Bioreactor. MEMBRANES 2022; 12:membranes12040420. [PMID: 35448390 PMCID: PMC9030045 DOI: 10.3390/membranes12040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
Abstract
Pharmaceuticals and personal care products have raised significant concerns because of their extensive use, presence in aquatic environments, and potential impacts on wildlife and humans. Carbamazepine was the most frequently detected pharmaceutical residue among pharmaceuticals and personal care products. Nevertheless, the low removal efficiency of carbamazepine by conventional wastewater treatment plants was due to resistance to biodegradation at low concentrations. A membrane bioreactor (MBR) has recently attracted attention as a new separation process for wastewater treatment in cities and industries because of its effectiveness in separating pollutants and its tolerance to high or shock loadings. In the current research, the main and interaction effects of three operating parameters, including hydraulic retention time (12-24 h), dissolved oxygen (1.5-5.5 mg/L), and sludge retention time (5-15 days), on removing carbamazepine, chemical oxygen demand, ammonia nitrogen, and phosphorus using ceramic membranes was investigated by applying a two-level full-factorial design analysis. Optimum dissolved oxygen, hydraulic retention time, and sludge retention time were 1.7 mg/L, 24 h, and 5 days, respectively. The research results showed the applicability of the MBR to wastewater treatment with a high carbamazepine loading rate and the removal of nutrients.
Collapse
Affiliation(s)
- Khanh-Chau Dao
- Department of Civil Engineering, National Chi Nan University, Nantou Hsien 54561, Taiwan; (K.-C.D.); (C.-C.Y.); (K.-F.C.)
- Department of Health, Dong Nai Technology University, Bien Hoa 810000, Dong Nai, Vietnam
| | - Chih-Chi Yang
- Department of Civil Engineering, National Chi Nan University, Nantou Hsien 54561, Taiwan; (K.-C.D.); (C.-C.Y.); (K.-F.C.)
| | - Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Nantou Hsien 54561, Taiwan; (K.-C.D.); (C.-C.Y.); (K.-F.C.)
| | - Yung-Pin Tsai
- Department of Civil Engineering, National Chi Nan University, Nantou Hsien 54561, Taiwan; (K.-C.D.); (C.-C.Y.); (K.-F.C.)
- Correspondence: ; Tel.: +886-49-2910960 (ext. 4121)
| |
Collapse
|
17
|
Vieira LR, Soares AMVM, Freitas R. Caffeine as a contaminant of concern: A review on concentrations and impacts in marine coastal systems. CHEMOSPHERE 2022; 286:131675. [PMID: 34358890 DOI: 10.1016/j.chemosphere.2021.131675] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Caffeine has been identified as emerging contaminant of concern due to its widespread occurrence in the aquatic environment and potential to be biologically active. Recently, these concerns have been translated in an increasing research on its occurrence and effects on biota. However, there is still a limited knowledge on seawater matrices and the implications of caffeine presence in coastal and marine ecosystems are not fully known. The present review aims to fill these knowledge gaps, analysing the existing literature regarding the occurrence, effects and potential risks of caffeine residues to coastal ecosystems, contributing to the risk assessment of this psychoactive drug in the aquatic environment. The analysed literature reported caffeine concentrations in the coastal ecosystems, raising high concerns about the potential adverse impacts on the ecological safety and human health. Caffeine has been found in tissues from coastal and marine biota including microalgae, coral reefs, bivalves and fish due to bioaccumulation after chronic, long-term exposures in a contaminated environment. Additionally, caffeine residues had been demonstrated to have adverse impacts on aquatic organisms, at environmentally realistic concentrations, inducing oxidative stress and lipid peroxidation, neurotoxicity, changing energy reserves and metabolic activity, affecting reproduction and development and, in some cases, causing mortality. Considering the increasing adverse impacts of caffeine pollution in the coastal environment, this review highlights the urgent need to minimize the increasing load of caffeine to the aquatic ecosystems; being imperative the implementation of scientific programs and projects to classify effectively the caffeine as a high-priority environmentally hazardous emerging pollutant.
Collapse
Affiliation(s)
- L R Vieira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - R Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
18
|
Ohoro CR, Adeniji AO, Okoh AI, Okoh OO. Spatial and seasonal variations of endocrine disrupting compounds in water and sediment samples of Markman Canal and Swartkops River Estuary, South Africa and their ecological risk assessment. MARINE POLLUTION BULLETIN 2021; 173:113012. [PMID: 34607130 DOI: 10.1016/j.marpolbul.2021.113012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 05/12/2023]
Abstract
The presence of pharmaceuticals in surface water and sediment has sparked up a global concern, as they could cause harm to human health. In this study, we investigated five pharmaceuticals (caffeine, carbamazepine, sulfamethoxazole, testosterone, and trimethoprim) in surface water and sediment samples from Swartkops River Estuary and Markman Stormwater Canal, in the Eastern Cape Province, South Africa. Ultra-Performance Liquid Chromatography (UPLC) systems coupled with a hyphenated quadrupole-time-of-flight mass spectrometry (QTOF-MS) was used for the analysis. Of the five pharmaceuticals investigated, three were detected in sediment samples at concentrations ranging from BDL - 23.86 μg/kg (dw). Caffeine and sulfamethoxazole were below the detection limit. The finding of this current study suggests that Markman and Motherwell's stormwater canals were potential contributors to pollution in Swartkops River Estuary. Ecotoxicity risk assessment indicated that trimethoprim and carbamazepine could constitute potential risk to aquatic organisms in Markman Canal and Swartkops Estuary, suggesting the need for proper control measure to prevent the pollution from toxicants in aquatic resources.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa.
| | - Abiodun Olagoke Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa; Department of Chemistry and Chemical Technology, National University of Lesotho, P. O. Roma, 180, Lesotho
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa; Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola Oluranti Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
19
|
Almeida Â, Soares AMVM, Esteves VI, Freitas R. Occurrence of the antiepileptic carbamazepine in water and bivalves from marine environments: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103661. [PMID: 33878451 DOI: 10.1016/j.etap.2021.103661] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 05/23/2023]
Abstract
A vast literature has already demonstrated that pharmaceutical drugs exert negative impacts on aquatic organisms but data is sparse on the occurrence of these contaminants in marine aquatic environments and their biota, particularly in comparison with freshwater systems. In marine environments, bivalves are known as good bioindicator species for environmental pollution monitoring. This review summarizes the current knowledge on carbamazepine (CBZ) concentrations in the marine environment (seawater and bivalves) and the analytical methods involved in the drug determination. Carbamazepine was chosen based on its ubiquitous occurrence and proven negative impacts on the aquatic organisms. Overall, CBZ is distributed in the marine environment with concentrations up to ∼ 1 μg/L, revealing its stability and high persistence. Also, CBZ was found in some species of marine bivalves, with concentrations up to 13 ng/g dry weight (DW), however, a bioaccumulation factor could not be calculated due to the absence of CBZ determination in seawater samples for most of the studies. CAPSULE: Carbamazepine is found in seawater up to the low μg/L level, and in bivalve tissue up to a few ng/g DW, with SPE and LC as the techniques of choice for drug extraction and identification.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
20
|
Hidayati NV, Syakti AD, Asia L, Lebarillier S, Khabouchi I, Widowati I, Sabdono A, Piram A, Doumenq P. Emerging contaminants detected in aquaculture sites in Java, Indonesia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145057. [PMID: 33592457 DOI: 10.1016/j.scitotenv.2021.145057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals of emerging concern (acetaminophen (ACM), trimethoprim (TMP), oxytetracycline (OTC), and sulfamethoxazole (SMX)) were detected in water samples from aquaculture environments and nonaquaculture sites in four regions located on the northern coast of Central Java. ACM was the most prevalent pharmaceutical, with a mean concentration ranging from not detected (n.d.) to 5.5 ± 1.9 ngL-1 (Brebes). Among the target antibiotics (TMP, OTC, SMX), OTC was the most ubiquitous, with a mean concentration varying from n.d. to 8.0 ± 3.3 ngL-1. Correlation analysis demonstrated that there was a significant correlation between TMP and SMX concentrations. Based on ecological risk assessment evaluation, the use of OTC requires serious consideration, as it presented high health risks to algae, while ACM, TMP, and SMX posed an insignificant to moderate risk to algae, invertebrates, and fish. The findings obtained from this study highlight OTC as an emerging contaminant of prominent concern. More attention needs to be given to managing and planning for the sustainable management of shrimp farms, particularly in the northern part of Central Java.
Collapse
Affiliation(s)
- Nuning Vita Hidayati
- Aix Marseille Univ, CNRS, LCE, Marseille, France; Fisheries and Marine Science Faculty - Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto 53123, Indonesia; Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia; Center for Maritime Biosciences Studies - Institute for Sciences and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto 53123, Indonesia
| | - Agung Dhamar Syakti
- Center for Maritime Biosciences Studies - Institute for Sciences and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto 53123, Indonesia; Marine Science and Fisheries Faculty - Raja Ali Haji Maritime University, Jl. Politeknik Senggarang-Tanjungpinang, Riau Islands Province 29100, Indonesia.
| | | | | | | | - Ita Widowati
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Agus Sabdono
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Anne Piram
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | | |
Collapse
|
21
|
Hung CM, Huang CP, Chen SK, Chen CW, Dong CD. Electrochemical analysis of naproxen in water using poly(l-serine)-modified glassy carbon electrode. CHEMOSPHERE 2020; 254:126686. [PMID: 32320830 DOI: 10.1016/j.chemosphere.2020.126686] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
A poly(l-serine)-modified glassy carbon electrode (PLS/GCE) was fabricated by electropolymerization and used to study the detection of naproxen (NPX), a representative non-steroidal anti-inflammatory drug, in phosphate buffer supporting electrolyte at pH 5.0. Results indicated that the PLS/GCE was capable of determination of NPX at a working potential of 0.92 (vs. Ag/AgCl) in voltammetry mode. Experimental factors such as scan rate, accumulation time, solution pH, initial NPX concentration, and interferences were optimized for NPX determination efficiency. The morphology and elemental distribution of the electrode surface were characterized by ESEM, TEM, PSD, XRD, FTIR, TGA, XPS, and zeta potential. NPX oxidation current increased with increasing analyte concentration and scan rate but decreased with increasing pH. Linear sweep voltammetry calibration curve was established in the NPX concentration range of 4.3-65 μM, with detection limit and average recovery of 0.69 μM (n = 3) and 104 ± 2.5%, respectively. PLS/GCE is simple, accurate, reproducible, and easy for operation, therefore would be cost-effective for the determination of NPX.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - C P Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Shih-Kai Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|