1
|
Dhara A, Dutta R. A review on sources and distribution of polycyclic aromatic hydrocarbons (PAHs) in wetland ecosystem: focusing on plant-biomonitoring and phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8743-8765. [PMID: 40100499 DOI: 10.1007/s11356-025-36240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
In the contemporary era, rapid global urbanization, coupled with intense industrial development, has led to a continuous influx of carcinogenic pollutants like PAHs, into the ecosystems. Owing to their long-range transportation potential, PAHs have driven their way from a regional scale to a global platform and become readily available in air, water, sediment, and biota of the most ecologically diverse ecosystems, like wetlands. The wetland ecosystems, due to their susceptibility to anthropogenic activities, face a heightened vulnerability to anthropogenic PAHs pollution. This PAHs pollution load adversely influences the unique biodiversity of wetlands. Hence, it is a pertinent to implement immediate and continuous monitoring programs to assess the present and ongoing PAHs pollution status. In this context, the use of plants for biomonitoring emerges as a potential alternative tool to the traditional monitoring process which also offers simultaneous mitigation mechanism and provides sustainability through detoxification. Therefore, sources and distribution of PAHs in wetland sediment and water are discussed in this review work to highlight the major sources of PAHs pollution and their distribution which would aid in proper strategic planning for phytoremediation the present study focuses on phytoremediation studies of wetland PAHs reported so far emphasizing its potential as a sustainable solution for addressing and mitigating PAHs pollution in wetlands. Various phytoremediation mechanisms are pointed out case to case to understand the plants' potential in bioremediation technique.
Collapse
Affiliation(s)
- Aparna Dhara
- Department of Chemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Ratna Dutta
- Department of Chemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
2
|
Hasan GMMA, Rinky F, Ahmed KS, Sikdar K, Moniruzzaman M. Assessment of polycyclic aromatic hydrocarbons (PAHs) and heavy metal contamination in Shitalakshya River water: ecological and health risk implications. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:282. [PMID: 39939546 DOI: 10.1007/s10661-025-13750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
The Shitalakshya River, vital to the Dhaka district, faces severe pollution challenges due to industrial discharges, urban runoff, and other anthropogenic activities. This study investigated the concentration of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in the river water, utilizing GC-MS/MS and ICP-MS techniques. The results revealed a total PAH concentration ranging from 4.97 to 5.87 ng/mL, with 3-ring PAHs being the most prevalent. Heavy metals such as Fe, As, Ni, and Zn were found in significant concentrations, exceeding international standards for drinking water and aquatic life. The ecological risk assessment identified benzo(b)fluoranthene, benzo(k)fluoranthene, and indeno(1,2,3-cd)pyrene as the highest threats to aquatic organisms. Health risk assessments indicated substantial risks from dermal and ingestion exposures, particularly due to arsenic, highlighting potential long-term health implications for local residents. The study underscores the urgent need for comprehensive monitoring, pollution source identification, and stringent regulatory measures to mitigate these risks.
Collapse
Affiliation(s)
- G M M Anwarul Hasan
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-i-Khuda Road, Dhaka, 1205, Bangladesh.
| | - Farhana Rinky
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-i-Khuda Road, Dhaka, 1205, Bangladesh
| | - Khondoker Shahin Ahmed
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-i-Khuda Road, Dhaka, 1205, Bangladesh
| | - Kiron Sikdar
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-i-Khuda Road, Dhaka, 1205, Bangladesh
| | - Mohammad Moniruzzaman
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research, Dr. Qudrat‑i‑Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
- Central Analytical Research Facilities (CARF), Bangladesh Council of Scientific and Industrial Research, Dr. Qudrat‑i‑Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| |
Collapse
|
3
|
Li R, Pang H, Guo Y, Zhou X, Fu K, Zhang T, Han J, Yang L, Zhou B, Zhou S. Distribution of Polycyclic Aromatic Hydrocarbons and Pesticides in Danjiangkou Reservoir and Evaluation of Ecological Risk. TOXICS 2024; 12:859. [PMID: 39771074 PMCID: PMC11680053 DOI: 10.3390/toxics12120859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
The Danjiangkou Reservoir is the largest artificial freshwater lake in Asia. This study investigated the spatiotemporal distribution of pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Danjiangkou Reservoir to assess the ecological and human health risks associated with these pollutants. Twenty-three sampling sites in the Danjiangkou Reservoir each collected 23 surface water samples and 23 sediment samples. These samples were analyzed using gas chromatography-mass spectrometry (GC-MS), combined with risk quotient methods and health risk assessment models. The results indicated that the total concentration of PAHs (ΣPAHs) in the surface water ranged from 64.64 to 868.23 ng/L (average 217.97 ± 184.97 ng/L), and they primarily consisted of low molecular weight PAHs, with the compounds with the highest concentrations being naphthalene (10.43-116.97 ng/L), fluorene (22.74-87.61 ng/L), and phenanthrene (26.54-162.86 ng/L). The total concentration of pesticides in the surface water varied between 2.62 and 72.89 ng/L (average 22.99 ± 18.27 ng/L). In the sediment samples, the ΣPAH concentration ranged from 0.01 to 2.93 ng/g (average 0.69 ± 0.94 ng/g), and these predominantly consisted of high molecular weight PAHs, while pesticide concentrations ranged from non-detectable (nd) to 28.46 ng/g (average 7.99 ± 8.53 ng/g), with higher concentrations of malathion (0.62-9.16 ng/g) and chlorpyrifos (10.01-21.38 ng/g). Through risk assessment, it was found that although the risks posed by PAHs and pesticides to human health are very low, the ecological risk assessment indicated that certain PAHs (such as phenanthrene) and organophosphate pesticides (such as malathion and chlorpyrifos) may pose potential threats to aquatic organisms.
Collapse
Affiliation(s)
- Ruiwen Li
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China; (R.L.); (Y.G.)
| | - Hao Pang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China; (H.P.); (X.Z.)
| | - Yemin Guo
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China; (R.L.); (Y.G.)
| | - Xuan Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China; (H.P.); (X.Z.)
| | - Kaiyu Fu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (K.F.); (J.H.); (B.Z.)
| | - Taotao Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China;
| | - Jian Han
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (K.F.); (J.H.); (B.Z.)
| | - Lihua Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (K.F.); (J.H.); (B.Z.)
| | - Bingsheng Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (K.F.); (J.H.); (B.Z.)
| | - Si Zhou
- Guizhou Institute of Environmental Science and Designing, Guiyang 550081, China
| |
Collapse
|
4
|
Xu K, Wang Q, Zhang Y, Huang Y, Liu Q, Chen M, Wang C. Benzo(a)pyrene exposure impacts cerebrovascular development in zebrafish embryos and the antagonistic effect of berberine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174980. [PMID: 39053545 DOI: 10.1016/j.scitotenv.2024.174980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) widely present in the environment, but their effect on cerebrovascular development has been rarely reported. In this study, dechorionated zebrafish embryos at 24 hpf were exposed to benzo(a)pyrene (BaP) at 0.5, 5 and 50 nM for 48 h, cerebrovascular density showed a significant reduction in the 5 and 50 nM groups. The expression of aryl hydrocarbon receptor (AhR) was significantly increased. Transcriptomic analysis showed that the pathway of positive regulation of vascular development was down-regulated and the pathway of inflammation response was up-regulated. The transcription of main genes related to vascular development, such as vegf, bmper, cdh5, f3b, itgb1 and prkd1, was down-regulated. Addition of AhR-specific inhibitor CH233191 in the 50 nM BaP group rescued cerebrovascular developmental defects and down-regulation of relative genes, suggesting that BaP-induced cerebrovascular defects was AhR-dependent. The cerebrovascular defects were persistent into adult fish raised in clean water, showing that the relative area of vascular network, the length of vessels per unit area and the number of vascular junctions per unit area were significantly decreased in the 50 nM group. Supplementation of berberine (BBR), a naturally derived medicine from a Chinese medicinal herb, alleviated BaP-induced cerebrovascular defects, accompanied by the restoration of altered expression of AhR and relative genes, which might be due to that BBR promoted BaP elimination via enhancing detoxification enzyme activities, suggesting that BBR could be a potential agent in the prevention of cerebrovascular developmental defects caused by PAHs.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qian Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, PR China
| | - Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Yuehong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qingfeng Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Meng Chen
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
5
|
Liu P, Guo Z, Wang Y, He M, Kang Y, Wu H, Hu Z, Zhang J. Occurrence of polycyclic aromatic hydrocarbons in the Yellow River delta: Sources, ecological risks, and microbial response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122432. [PMID: 39243646 DOI: 10.1016/j.jenvman.2024.122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
This research investigated the distribution, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in the Yellow River Delta (YRD), China, emphasizing the response of soil microorganisms. The study involved quantitative analyses of 16 PAHs specified by the U.S. Environmental Protection Agency (USEPA) in both water and soil, utilizing metagenomic technique to determine the response of microbial communities and metabolism within the soil. Results noted that PAHs in the water mainly originate from pyrogenic source and in the soil originate from mixture source, with higher concentrations found in wetland areas compared to river regions. The ecological risk assessment revealed low-to-moderate risk. Microbial analysis demonstrated increased diversity and abundance of bacteria associated with PAHs in areas with higher PAHs pollution. Metagenomic insights revealed significant effects of organic carbon on PAHs degradation genes (ko00624 and ko00626), as well as significant differences in specific metabolic pathways including phenanthrene degradation, with key enzymes showing significant differences between the two environments. The study underscores the importance of understanding PAHs distribution and microbial responses to effectively manage and mitigate pollution in estuarine environments.
Collapse
Affiliation(s)
- Peiqiong Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Yu Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mingyu He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yan Kang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
6
|
Liu X, Hong X, Song H, Zhang T, Chen K, Chu J. Exploring source-specific ecological risks of PAHs near oil platforms in the Yellow River Estuary, Bohai Sea. MARINE POLLUTION BULLETIN 2024; 207:116870. [PMID: 39173476 DOI: 10.1016/j.marpolbul.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
The Yellow River Estuary (YRE) is one of highly remarkable regions profoundly impacted by human activities, with numerous oil platforms dispersed throughout. In this area, offshore oil exploitation may pose significant ecological risks. To comprehensively evaluate the quantitative impacts of oil field exploitation on the marine coastal ecosystem, this study investigated the occurrence, sources, and ecological risks associated with 16 polycyclic aromatic hydrocarbons (PAHs) in seawater and sediment near oil platforms in the YRE. We found that 1) The concentrations of PAHs decreased from the surface seawater to sediments; 2) The ecological risk level of PAHs in seawater exceeded that in sediments; 3) terrestrial sources (combustion), rather than offshore oil drilling activities, significantly influenced regional ecological risks through processes of atmospheric deposition and surface runoff. These findings provide essential data for future estuarine research efforts while supporting mitigation measures aimed at addressing marine environmental pollution related to oil production activities.
Collapse
Affiliation(s)
- Xin Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; First Institute of Oceanography, MNR, Qingdao 266061, PR China
| | - Xuguang Hong
- First Institute of Oceanography, MNR, Qingdao 266061, PR China
| | - Hongjun Song
- First Institute of Oceanography, MNR, Qingdao 266061, PR China
| | - Tong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; First Institute of Oceanography, MNR, Qingdao 266061, PR China
| | - Kan Chen
- First Institute of Oceanography, MNR, Qingdao 266061, PR China.
| | - Jiansong Chu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
7
|
Zhang F, Zhang D, Lou H, Li X, Fu H, Sun X, Sun P, Wang X, Bao M. Distribution, sources and ecological risks of PAHs and n-alkanes in water and sediments of typically polluted estuaries: Insights from the Xiaoqing River. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121471. [PMID: 38878581 DOI: 10.1016/j.jenvman.2024.121471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Seasonal water and sediment samples were collected from the Xiaoqing River estuary and the neighboring sea to study the spatial and temporal distributions, sources and ecological risks of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes. The results showed significant spatial and temporal differences in the concentrations of PAHs and n-alkanes under the influence of precipitation, temperature, and human activities. The concentrations of PAHs in water were lower in the wet season than in the dry season, and those in sediments were higher in the wet season than in the dry season. The concentrations of n-alkanes were higher in the rainy season than in the dry season for both water and sediments. The spatial distributions of PAHs and n-alkanes were estuarine > offshore. The concentration ranges of ∑PAHs in water and sediments were 230.66-599.86 ng/L and 84.51-5548.62 ng/g, respectively, in the wet season and 192.46-8649.55 ng/L and 23.39-1208.92 ng/g, respectively, in the dry season. The proportion of three-ring PAHs in water (57.03% and 78.27% in the wet and dry seasons, respectively) was high, followed by two-ring PAHs (27.31% and 13.59% in the wet and dry seasons, respectively). The proportion of four-ring PAHs was higher in sediments (24.79% and 32.20% in the wet and dry seasons, respectively). The ecological risk of PAHs assessed using the toxicity equivalent quotient and risk quotient was at moderate to moderately high risk levels. The high concentration of n-alkane fraction C16 (611.65-75594.58 ng/L) in the water is indicative of petroleum or other fossil fuel inputs. The main peaks of n-alkanes in river sediments were C27, C29 and C31, indicating higher inputs of plant sources. The sediments in the estuary showed dominance of both short-chain C16 and long-chain C25-C31, indicating a combined input of higher plants and petroleum. The diagnostic ratios of PAHs and n-alkanes indicated that their sources were mainly oil/coal/biomass combustion and petroleum spills attributed to frequent vehicular, vessel and mariculture activities. Given the potential ecological risks of PAHs and n-alkanes in water and sediments, future studies should focus on their bioaccumulation and biotoxicity.
Collapse
Affiliation(s)
- Feifei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dong Zhang
- Shouguang Marine Fishery Development Center ,Weifang, 262700, China
| | - Huawei Lou
- Shouguang Marine Fishery Development Center ,Weifang, 262700, China
| | - Xiaoyue Li
- Shouguang Marine Fishery Development Center ,Weifang, 262700, China
| | - Hongrui Fu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Peiyan Sun
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, 266100, China
| | - Xinping Wang
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
8
|
Meng B, Min XZ, Xiao MY, Xie WX, Li WL, Cai MG, Xiao H, Zhang ZF. Multimedia distribution, dynamics, and seasonal variation of PAHs in Songhua wetland: Implications for ice-influenced conditions. CHEMOSPHERE 2024; 354:141641. [PMID: 38460850 DOI: 10.1016/j.chemosphere.2024.141641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/04/2024] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
The knowledge of polycyclic aromatic hydrocarbons (PAHs) in wetlands remains limited. There is a research need for the dynamics between interfaces of multimedia when ice is present in this fragile ecosystem. In this study, sediment, open-water, sub-ice water, and ice samples were collected from the Songhua wetland to study the behaviors of PAHs with and without influences from ice. The concentration of all individual PAHs in sub-ice water (370-1100 ng/L) were higher than the open-water collected from non-ice-covered seasons (50-250 ng/L). Enrichment of PAHs in the ice of wetland was found, particularly for high-molecular-weight PAHs (HMW). This could be attributed to the relatively lower polarity of hydrocarbons compounds, making them more likely to remain in the ice layer during freezing. Source assessments reveal common sources for sub-ice water and ice, which differ from those in the open water in non-ice-covered seasons. This difference is primarily attributed to heating activities in the Harbin during winter. The average percentage contributions were 79% for sub-ice water and 36% for ice related to vehicle exhausts and coal combustion. Additionally, wood burning contributed 25% to sub-ice water and 62% to ice. Sediment in the wetland was found to serve as a final deposit particularly for heavier PAHs, especially those with 6 rings. Sediment also has the potential to act as a source for the secondary emission of low-molecular-weight PAHs (LMW) congeners into the water. PAHs in wetland displayed low ecological risk, while HMW PAHs with relative higher ecological risk is recommended to be further monitored.
Collapse
Affiliation(s)
- Bo Meng
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, Harbin University, Harbin, 150086, China
| | - Xi-Ze Min
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China.
| | - Meng-Yuan Xiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Wen-Xi Xie
- Qiqihar Environmental Monitoring Station, No. 571 Bukunan Street, Longsha District, Qiqihar City, Heilongjiang Province, China
| | - Wen-Long Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States
| | - Ming-Gang Cai
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China.
| |
Collapse
|
9
|
Wang S, Li C, Zhang L, Chen Q, Wang S. Assessing the ecological impacts of polycyclic aromatic hydrocarbons petroleum pollutants using a network toxicity model. ENVIRONMENTAL RESEARCH 2024; 245:117901. [PMID: 38092235 DOI: 10.1016/j.envres.2023.117901] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are significant petroleum pollutants that have long-term impacts on human health and ecosystems. However, assessing their toxicity presents challenges due to factors such as cost, time, and the need for comprehensive multi-component analysis methods. In this study, we utilized network toxicity models, enrichment analysis, and molecular docking to analyze the toxicity mechanisms of PAHs at different levels: compounds, target genes, pathways, and species. Additionally, we used the maximum acceptable concentration (MAC) value and risk quotient (RQ) as an indicator for the potential ecological risk assessment of PAHs. The results showed that higher molecular weight PAHs had increased lipophilicity and higher toxicity. Benzo[a]pyrene and Fluoranthene were identified as core compounds, which increased the risk of cancer by affecting core target genes such as CCND1 in the human body, thereby influencing signal transduction and the immune system. In terms of biological species, PAHs had a greater toxic impact on aquatic organisms compared to terrestrial organisms. High molecular weight PAHs had lower effective concentrations on biological species, and the ecological risk was higher in the Yellow River Delta region. This research highlights the potential application of network toxicity models in understanding the toxicity mechanisms and species toxicity of PAHs and provides valuable insights for monitoring, prevention, and ecological risk assessment of these pollutants.
Collapse
Affiliation(s)
- Shiqi Wang
- School of Energy, Faculty of Engineering, China University of Geosciences, Beijing, 100083, PR China.
| | - Congcong Li
- College of Civil Engineering and Architecture, Binzhou University, Binzhou City, Shandong Province, 256600, PR China.
| | - Lisheng Zhang
- Shengli Geological Mud Logging Company of Sinopic Matrix Co., Ltd., Dongying, Shandong Province, 257000, PR China
| | - Qian Chen
- Shengli Geological Mud Logging Company of Sinopic Matrix Co., Ltd., Dongying, Shandong Province, 257000, PR China
| | - Shuoliang Wang
- School of Energy, Faculty of Engineering, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
10
|
Moon HG, Bae S, Chae Y, Kim YJ, Kim HM, Song M, Bae MS, Lee CH, Ha T, Seo JS, Kim S. Assessment of potential ecological risk for polycyclic aromatic hydrocarbons in urban soils with high level of atmospheric particulate matter concentration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116014. [PMID: 38295737 DOI: 10.1016/j.ecoenv.2024.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 01/21/2024] [Indexed: 02/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known to be representative carcinogenic environmental pollutants with high toxicity. However, information on the potential ecological and environmental risks of PAH contamination in soil remains scarce. Thus, this study was evaluated the potential ecological risks of PAHs in soils of five Korean areas (Gunsan (GS), Gwangju, Yeongnam, Busan, and Gangwon) using organic carbon (OC)-normalized analysis, mean effect range-median quotient (M-ERM-Q), toxic equivalent quantity (TEQ) analysis, and risk quotient (RQ) derived by the species sensitivity distribution model. In this study, atmospheric particulate matter has a significant effect on soil pollution in GS through the presence of hopanes and the similar pattern of PAHs in soil and atmospheric PAHs. From analysis of source identification, combustion sources in soils of GS were important PAH sources. For PAHs in soils of GS, the OC-normalized analysis, M-ERM-Q, and TEQ analysis have 26.78 × 105 ng/g-OC, 0.218, and 49.72, respectively. Therefore, the potential ecological risk assessment results showed that GS had moderate-high ecological risk and moderate-high carcinogenic risk, whereas the other regions had low ecological risk and low-moderate carcinogenic risk. The risk level (M-ERM-Q) of PAH contamination in GS was similar to that in Changchun and Xiangxi Bay in China. The Port Harcourt City in Nigeria for PAH has the highest risk (M-ERM-Q = 4.02 and TEQ = 7923). Especially, compared to China (RQPhe =0.025 and 0.05), and Nigeria (0.059), phenanthrene showed the highest ecological risk in Korea (0.001-0.18). Korea should focus on controlling the release of PAHs originating from the PM in GS.
Collapse
Affiliation(s)
- Hi Gyu Moon
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Seonhee Bae
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Yooeun Chae
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Yong-Jae Kim
- Medical Industry Venture Center, Korea Testing Laboratory, Wonju 26495, the Republic of Korea
| | - Hyung-Min Kim
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Mijung Song
- Department of Earth and Environmental Sciences, Jeonbuk National University, the Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan 58554, the Republic of Korea
| | - Chil-Hyoung Lee
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, the Republic of Korea
| | - Taewon Ha
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, the Republic of Korea
| | - Jong-Su Seo
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea.
| | - Sooyeon Kim
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea.
| |
Collapse
|
11
|
Andrade ADC, Fernandes GM, Martins DA, Cavalcante RM, Chaves MRB, de Souza AA, da S Filho JP, Nascimento RF, de Lima SG. Concentrations, sources and risks of polycyclic aromatic hydrocarbons in sediments from the Parnaiba Delta basin, Northeast Brazil. CHEMOSPHERE 2024; 349:140889. [PMID: 38081521 DOI: 10.1016/j.chemosphere.2023.140889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/11/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023]
Abstract
The Parnaíba River is the main river in the Parnaíba Delta basin, the largest delta in the Americas. About 18 polycyclic aromatic hydrocarbons (PAHs) were identified and the environmental risk associated with the sediments was evaluated. The study found that PAHs levels ranged from 5.92 to 1521.17 ng g-1, which was classified as low to high pollution, and that there were multiple sources of pollution along the river, with pyrolytic sources predominating, mainly from urban activity such as trucking, although the influence of rural activity cannot be ruled out. PAHs correlated with black carbon and organic matter and showed high correlation with acenaphthylene, phenanthrene, pyrene, benzo(a)anthracene, chrysene, benzo(ghi)perylene, and ∑PAHs. The benzo(a)pyrene levels were classified as a risk to aquatic life because the threshold effect level and the probable effect level were exceeded. In addition, the sediments were classified as slightly contaminated with a benzo(a)pyrene toxicity equivalent value of 108.43 ng g-1. Thus, the priority level PAH exhibited carcinogenic and mutagenic activity that posed a potential risk to human health.
Collapse
Affiliation(s)
- Analine D C Andrade
- Laboratório de Geoquímica Orgânica (LAGO), Universidade Federal Do Piauí (UFPI), Ininga, 64049-550, Teresina, PI, Brazil
| | - Gabrielle M Fernandes
- Laboratório de Avaliação de Contaminantes Orgânicos (LACOr), Instituto de Ciências Do Mar (LABOMAR), Universidade Federal Do Ceará (UFC), Avenida Abolição, 3207, Meireles, 60165-081, Fortaleza, CE, Brazil
| | - Davi A Martins
- Laboratório de Avaliação de Contaminantes Orgânicos (LACOr), Instituto de Ciências Do Mar (LABOMAR), Universidade Federal Do Ceará (UFC), Avenida Abolição, 3207, Meireles, 60165-081, Fortaleza, CE, Brazil
| | - Rivelino M Cavalcante
- Laboratório de Avaliação de Contaminantes Orgânicos (LACOr), Instituto de Ciências Do Mar (LABOMAR), Universidade Federal Do Ceará (UFC), Avenida Abolição, 3207, Meireles, 60165-081, Fortaleza, CE, Brazil
| | - Michel R B Chaves
- Universidade Federal Do Maranhão (UFMA), Av. João Alberto, 700, 65700-000, Bacabal, MA, Brazil
| | - Alexandre A de Souza
- Departamento de Química, Centro de Ciências da Natureza, Universidade Federal Do Piauí (UFPI), Ininga, 64049-550, Teresina, PI, Brazil
| | - Jeremias P da S Filho
- Departamento de Biologia, Centro de Ciências Natureza, Universidade Federal Do Piauí (UFPI), Ininga, 64049-550, Teresina, PI, Brazil
| | - Ronaldo F Nascimento
- Departamento de Química Analítica e Físico-Química, Universidade Federal Do Ceará (UFC), 60455-760, Fortaleza, CE, Brazil
| | - Sidney G de Lima
- Laboratório de Geoquímica Orgânica (LAGO), Universidade Federal Do Piauí (UFPI), Ininga, 64049-550, Teresina, PI, Brazil.
| |
Collapse
|
12
|
Xiang Q, Shen X, Li K, Wang Z, Zhao X, Chen Q. Occurrence, distribution, and environmental risk of 61 glucocorticoids in surface water of the Yellow River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167504. [PMID: 37783438 DOI: 10.1016/j.scitotenv.2023.167504] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Glucocorticoids (GCs), as important endocrine disrupting compounds and emerging contaminants, could have irreversible adverse effects on aquatic organisms even at ng/L levels. However, previous studies have only focused on the dissolved concentrations of GCs in the water, and limited data are available for their occurrences in the solid phase. In this study, the occurrence, distribution, and environmental risks of 61 natural and synthetic GCs in surface water of the Yellow River Delta (YRD) were simultaneously analyzed by investigating water, suspended particulate matter (SPM) and sediment samples at 64 sites in six major rivers in the wet season. Overall, 51 GCs were detected in all samples from different matrices, and their concentrations were in the range of not detected (ND)-274 ng/L in water, ND-42 ng/g dry weight (dw) in SPM and ND-9.98 ng/g dw in sediment. Natural GCs were the dominant compounds in all samples, followed by synthetic halogenated esters. High concentrations of GCs were observed in discharge outlet samples from livestock farming, aquaculture and industrial production, and the composition differences of GCs between human/animal sources and industrial sources could be used as indicators to identify pollution sources. Most GCs were distributed in the water phase, while compounds with higher log octanol/water partition coefficients (log Kow) tended to be adsorbed to SPM and sediment. The spatial distribution of GCs was primarily affected by anthropogenic activities and hydrodynamic conditions. Four synthetic compounds (budesonide [BD], fluocinolone acetonide [FOA], fluticasone propionate [FP], and clobetasol propionate [CBSP]) were identified as the main contributors to GC activity with a combined contribution of 57 %-95 %. Risk assessment using the risk quotient revealed that low to moderate risks are posed to aquatic organisms in surface water.
Collapse
Affiliation(s)
- Qingyue Xiang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Xiaoyan Shen
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China.
| | - Kun Li
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Zihao Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
13
|
Lu J, Li M, Tan J, He M, Wu H, Kang Y, Hu Z, Zhang J, Guo Z. Distribution, sources, ecological risk and microbial response of polycyclic aromatic hydrocarbons in Qingdao bays, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122687. [PMID: 37797927 DOI: 10.1016/j.envpol.2023.122687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Bay ecosystem has garnered significant attention due to the severe threat posed by organic pollutants, particularly polycyclic aromatic hydrocarbons (PAHs). However, there is a dearth of information regarding the extent of PAHs pollutant risk and its impact on microbial communities and metabolism within this environment. In this study, the distribution, sources, ecological risk, and microbial community and metabolic response of PAHs in Jiaozhou Bay, Aoshan Bay, and Lingshan Bay in Qingdao, China were investigated. The results showed that the average concentration of ∑PAHs ranged from 120 to 614 ng/L across three bays, with Jiaozhou and Aoshan Bay exhibiting a higher risk than Lingshan Bay due to an increased concentration of high-molecular-weight PAHs. Further analysis revealed a negative correlation between dissolved organic carbon concentration and ∑PAHs concentration in water. Metagenomic analysis demonstrated that higher levels of PAHs can lead to decreased microbial diversity, while the abundance of PAHs-degrading bacteria is enhanced. Additionally, the Erythrobacter, Jannaschia and Ruegeria genera were found to have a significant correlation with low-molecular-weight PAH concentrations. In terms of microbial metabolism, higher PAH concentrations were beneficial for carbohydrate metabolic pathway but unfavorable for amino acid metabolic pathways and membrane transport pathways in natural bay environments. These findings provide a foundation for controlling PAHs pollution and offer insights into the impact of PAHs on bacterial communities and metabolism in natural bay environments.
Collapse
Affiliation(s)
- Jiaxing Lu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mengting Li
- Yantai Geological Survey Center of Coastal Zone, China Geological Survey, Yantai, 264004, China
| | - Jingchu Tan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mingyu He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
14
|
Sun X, Zhao Q, Li X, Zhang Q, Gao M, Ge Z, Wang Y, Sun H. Spatial distribution and risk assessment of polycyclic aromatic hydrocarbons in soils from contaminated sites in Eastern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9745-9756. [PMID: 37838635 DOI: 10.1007/s10653-023-01770-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
A total of 16 polycyclic aromatic hydrocarbons (PAHs) were measured in 28 soil column samples from two contaminated industrial sites in Eastern China. The total concentration of 16 PAHs (∑PAHs) in the surface soil (0-20 cm) was measured up to 52,600 ng/g (dry weight basis) with a remarkable spatial difference in the studied contaminated sites. The concentrations of the ∑PAHs in soils decreased with the increase in soil depth (0-10 m). The surface and subsurface soil presented a tenfold higher concentration than the soil with depth greater than 4 m. Additionally, the vertical migration tendency of the PAHs was found to be correlated significantly with their hydrophobicity (R2 = 0.79, P < 0.01). Naphthalene (with lowest octanol-water partition coefficient among the studied PAHs) showed the greatest average soil depth at which its peak concentration occurred. Furthermore, risk quotient analysis by using benzo[a]pyrene as reference compound showed that 71.4% of the samples exhibited high ecological risk for soil. Moreover, the total carcinogenic risk of the PAHs in the surface soil samples was assessed at 5.61 × 10-5-1.28 × 10-4 and 4.41 × 10-6-9.43 × 10-5 for male and female workers, respectively, in which 67.9%-71.4% of the samples showed potential risk. Generally, these results suggest a further consideration of ecological and health risks associated with PAHs in contaminated sites in Eastern China.
Collapse
Affiliation(s)
- Xinhui Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Qi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xuelin Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Zhanpeng Ge
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
15
|
Lu Z, Tian W, Zhang S, Chu M, Zhao J, Liu B, Yang K, Cao H, Chen Z. Spatiotemporal variability of PAHs and their derivatives in sediments of the Laizhou Bay in the eastern China: Occurrence, source, and ecological risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132351. [PMID: 37625296 DOI: 10.1016/j.jhazmat.2023.132351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
To understand the pollution status and risk levels in the Laizhou Bay, the spatiotemporal distribution, source, and ecological risk of 16 polycyclic aromatic hydrocarbons (PAHs) and 20 substituted PAHs (SPAHs) were studied in surface sediments in 2022. The findings indicated significant seasonal differences in the concentrations of PAHs and SPAHs under the influences of precipitation, temperature, light, and human activities, with higher storage levels in summer than in spring, and there was also a spatial distribution trend of estuary > coast > offshore. 2-Nitrofluorene (2-NF) and 2-methylnaphthalene (2-MN) were the most abundant components of SPAHs in both spring and summer, with levels of 21.44 ng/g and 17.89 ng/g in spring, 43.22 ng/g and 25.51 ng/g in summer, respectively. The results of the diagnostic ratio and principal component analysis - multiple linear regression identified sources of PAHs and SPAHs as combustion sources, including petroleum, coal, and biomass. The risk level of PAHs was low-to-moderate according to the toxicity equivalent quotient (TEQ) and risk quotient. A novel calculation method based on TEQ was proposed to assess the ecological risk of SPAHs, and the results indicated that the risk level of SPAHs was moderate-to-high.
Collapse
Affiliation(s)
- Zhiyang Lu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, PR China.
| | - Surong Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Meile Chu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Jing Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Qingdao 266100, PR China
| | - Bingkun Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Kun Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Huimin Cao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Zhuo Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
16
|
de Mello Souza T, Choueri RB, Nobre CR, de Souza Abessa DM, Moreno BB, Carnaúba JH, Mendes GI, de Albergaria-Barbosa ACR, Simões FR, Gusso-Choueri PK. Interactive effects of microplastics and benzo[a]pyrene on two species of marine invertebrates. MARINE POLLUTION BULLETIN 2023; 193:115170. [PMID: 37329735 DOI: 10.1016/j.marpolbul.2023.115170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to evaluate B[a]P and low-density polyethylene microplastics (MPs) toxicty, alone and in mixture (0.03 to 30 μg L-1 of B[a]P; and 5, 50 and 500 mg L-1 for MPs). Five mg L-1 of MPs is considerably higher than commonly reported environmental concentrations, although it has been reported for marine environments. Individual (sea urchin embryo-larval development and mortality of mysids) and sub-individual responses (LPO and DNA damage in mysids) were assessed. The toxicity increased as the B[a]P concentration increased, and microplastics alone did not cause toxicity. B[a]P toxicity was not modified by the lowest concentration of MPs (5 mg L-1), but at higher MPs concentrations (50 and 500 mg L-1), the effects of B[a]P on sea urchin development and in biomarkers in mysids were diminished. Microplastics interacted with B[a]P in seawater, reducing its toxicity, probably due to adsorption of B[a]P to the surface of microplastics.
Collapse
Affiliation(s)
- Tawany de Mello Souza
- Universidade Santa Cecília (Unisanta), R. Oswaldo Cruz, 277, Boqueirão, 11045-907 Santos, São Paulo, Brazil; Laboratório de Ecotoxicologia - ALS Life Sciences Brasil - Food & Agro, R. Fábia, 59, Vila Romana, 05051-030 São Paulo, SP, Brazil
| | - Rodrigo Brasil Choueri
- Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo (Unifesp), Campus Baixada Santista. Rua Maria Máximo, 168, Ponta da Praia, 11030-100 Santos, São Paulo, Brazil.
| | - Caio Rodrigues Nobre
- Laboratório de Ecotoxicologia - ALS Life Sciences Brasil - Food & Agro, R. Fábia, 59, Vila Romana, 05051-030 São Paulo, SP, Brazil
| | - Denis Moledo de Souza Abessa
- NEPEA, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho (Unesp), Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, São Paulo, Brazil
| | - Beatriz Barbosa Moreno
- Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo (Unifesp), Campus Baixada Santista. Rua Maria Máximo, 168, Ponta da Praia, 11030-100 Santos, São Paulo, Brazil
| | - José Hérelis Carnaúba
- Programa de Pós-Graduação em Química: Ciência e Tecnologia da Sustentabilidade, Universidade Federal de São Paulo (Unifesp), Diadema, São Paulo, Brazil
| | - Gabriel Izar Mendes
- Laboratório de Geoquímica Marinha, Instituto de Geociências, Universidade Federal da Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; Laboratório de Estudos do Petróleo, Instituto de Geociências, Universidade Federal da Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil
| | - Ana Cecilia Rizzatti de Albergaria-Barbosa
- Laboratório de Geoquímica Marinha, Instituto de Geociências, Universidade Federal da Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; Laboratório de Estudos do Petróleo, Instituto de Geociências, Universidade Federal da Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil
| | - Fábio Ruiz Simões
- Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo (Unifesp), Campus Baixada Santista. Rua Maria Máximo, 168, Ponta da Praia, 11030-100 Santos, São Paulo, Brazil
| | | |
Collapse
|
17
|
Nahar A, Akbor MA, Sarker S, Bakar Siddique MA, Shaikh MAA, Chowdhury NJ, Ahmed S, Hasan M, Sultana S. Dissemination and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in water and sediment of Buriganga and Dhaleswari rivers of Dhaka, Bangladesh. Heliyon 2023; 9:e18465. [PMID: 37560670 PMCID: PMC10407051 DOI: 10.1016/j.heliyon.2023.e18465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
Concentration, source, ecological and health risks of sixteen polycyclic aromatic hydrocarbons (PAHs) were estimated for water and sediment samples of two urban rivers namely Buriganga River (BR) and Dhaleswari River (DR). The mean concentration of ∑PAHs in BR water and sediment were 9619.2 ngL-1 and 351.6 ngg-1, respectively. Furthermore, the average PAH concentrations detected in DR water and sediment were 1979.1 ngL-1 and 792.9 ngg-1, respectively. The composition profile showed that 3-ring PAHs were dominant in the water matrix; however, 5-ring PAHs were prevalent in the sediment samples of both rivers. Sources apportion study of PAHs indicated that mixed combustion and petroleum sources are responsible for PAHs contamination in the rivers. Ecological risk study of water suggested that the aquatic lives of both rivers are threatened by Fla, BbF, BkF, DahA, and IcdP, as presented above the threshold level. Comparison with sediment quality guidelines (SQGs) indicated that adverse effects might cause occasionally in the sediment ecosystem in DR at certain sampling sites for Nap, Acy, Fl, Phe, Ant, Pyr, Chr, BaP, and DahA. On the other hand, the presence of Nap, Acy and DahA might occasionally cause adverse biological effects in the BR sediment ecosystem. Estimated hazard quotient (HI > 1) and carcinogenic risk (CRtotal > 10-4) values indicated that local inhabitants living in the vicinity of the rivers are prone to high health risks.
Collapse
Affiliation(s)
- Aynun Nahar
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Md. Ahedul Akbor
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Shudeepta Sarker
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC, 27695, USA
| | - Md. Abu Bakar Siddique
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Md. Aftab Ali Shaikh
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
- Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nushrat Jahan Chowdhury
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Shamim Ahmed
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Mehedi Hasan
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Shahnaz Sultana
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| |
Collapse
|
18
|
Yang Y, Li F, Zhu M, Su B, Chen W, Liu X, Zhang X, Sun Z, Wang X, Su H, Gu W. Community structure characteristics of ichthyoplankton during the water-sediment regulation scheme in the Yellow River in 2020 and 2021. MARINE POLLUTION BULLETIN 2023; 191:114972. [PMID: 37119587 DOI: 10.1016/j.marpolbul.2023.114972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/23/2022] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
The Water-Sediment Regulation Scheme (WSRS) will deliver large amounts of water and sand to the Yellow River basin within a short period of time. This will significantly change the physicochemical environment of the Yellow River estuary and the surrounding marine ecosystem. Its effects on the spatial and temporal distribution patterns of ichthyoplankton are still unknown. In this study, six surface horizontal trawl surveys of ichthyoplankton were conducted during the WSRS in 2020 and 2021 using plankton nets. The results were as follows: (1) the estuarine sedentary fish Cynoglossus joyeri was the main species controlling the succession pattern of summer ichthyoplankton communities in the Yellow River estuary. (2) The WSRS influenced the ichthyoplankton community structure by changing the runoff, salinity, and suspension environment in the estuary. (3) The northern and southeastern parts of the estuary near Laizhou Bay were the main aggregation areas of the ichthyoplankton community.
Collapse
Affiliation(s)
- Yanyan Yang
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, Shandong, PR China
| | - Fan Li
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, Shandong, PR China.
| | - Mingming Zhu
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, Shandong, PR China.
| | - Bo Su
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, Shandong, PR China
| | - Wei Chen
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, Shandong, PR China
| | - Xiaobo Liu
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, Shandong, PR China
| | - Xiaomin Zhang
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, Shandong, PR China
| | - Zhenning Sun
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, Shandong, PR China
| | - Xiuxia Wang
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, Shandong, PR China
| | - Haixia Su
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, Shandong, PR China
| | - Weili Gu
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, Shandong, PR China
| |
Collapse
|
19
|
Liu S, Qiu Y, Fu R, Liu Y, Suo C. Identifying the water quality variation characteristics and their main driving factors from 2008 to 2020 in the Yellow River Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66753-66766. [PMID: 37099101 DOI: 10.1007/s11356-023-27142-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Understanding of the water quality dynamics and their main influence factors is crucial for sustainable water environment management especially in the sensitive ecosystem area. Here, the spatiotemporal dynamic of water quality in the Yellow River Basin from 2008 to 2020 and its relationship with physical geography, human activities, and meteorology were studied by using Pearson correlation test, and a generalized linear model. The results showed that water quality was significantly improved since 2008, which was reflected from the decreasing trend of the permanganate index (CODMn) and ammonia nitrogen (NH3-N), and increasing trend of the dissolved oxygen (DO). However, the total nitrogen (TN) remained severely polluted with average annual concentration inferior to level V. Spatially speaking, the water quality in the upper and lower reaches was better than that of the middle reaches. The whole basin was severely contaminated by TN with 2.62 ± 1.52, 3.91 ± 1.71, and 2.91 ± 1.20 mg L-1 from upper, middle, and lower reaches, respectively. Thus, TN should be paid much attention in the water quality management of the Yellow River Basin. The water quality improvement could be attributed to the reduction of pollution discharges and ecological restoration. Further analysis found the variation of water consumption and increase of forest and wetland area contributed 39.90% and 47.49% for CODMn and 58.92% and 30.87% for NH3-N, respectively. Meteorological variables and total water resources contributed slightly. This study is expected to provide in-depth insights for the water quality dynamics and their response to human activities and natural factors in the Yellow River Basin, which could provide theoretical references for water quality protection and management.
Collapse
Affiliation(s)
- Shasha Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yue Qiu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rui Fu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yun Liu
- China National Environmental Monitoring Center, Beijing, 100012, China.
| | - Chengyu Suo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
20
|
Li Y, Zhang Q, Guo D, Dang J. Characteristics and Risk Assessment of PAH Pollution in Soil of a Retired Coking Wastewater Treatment Plant in Taiyuan, Northern China. TOXICS 2023; 11:toxics11050415. [PMID: 37235231 DOI: 10.3390/toxics11050415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
We analyzed the soil at the site of a former coking wastewater treatment plant on redeveloped land in Taiyuan, northern China, in an attempt to detect the presence of 16 types of priority polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency (US EPA) and evaluate the potential pollution risks. The results show that the total proportion of PAHs in the surface soil of the redeveloped land ranged from 0.3 to 1092.57 mg/kg, with an average value of 218.5 mg/kg, mainly consisting of high-ring (5-6 rings) components. Characteristic ratio analysis indicated that the pollution was mainly related to the combustion of petroleum, coal, and biomasses. The wastewater treatment units operated according to the following treatment train: advection oil separation tank, dissolved air flotation tank, aerobic tank, secondary sedimentation tank, and sludge concentration tank. Our study found that pollution resulting from low-ring PAHs mainly appeared in the advection oil separation tank during the pre-wastewater treatment stage, while medium-ring PAH contamination mainly occurred in the dissolved air floatation tank, aerobic tank, and secondary sedimentation tank during the middle stages of wastewater treatment. High-ring PAH contamination primarily appeared in the sludge concentration tank in the latter stage of wastewater treatment. Based on our assessment of the ecological risk using the Nemerow Comprehensive Pollution Index and the toxicity equivalent factor (TEF) method, we determined that individual PAHs in the study area exceeded acceptable levels and the total amount of pollution was potentially harmful to the ecological environment. In addition, the comprehensive lifetime cancer risk for different populations resulting from exposure to the soil in the study area was determined to be within acceptable limits based on the average PAH concentrations.
Collapse
Affiliation(s)
- Yuan Li
- Insitute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Quanxi Zhang
- Insitute of Environmental Science, Shanxi University, Taiyuan 030006, China
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Donggang Guo
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Jinhua Dang
- Shanxi Province Ecological Environment Monitoring and Emergency Support Center (Shanxi Province Eco-Environmental Science Research Institute), Taiyuan 030001, China
| |
Collapse
|
21
|
Chunyan X, Qaria MA, Qi X, Daochen Z. The role of microorganisms in petroleum degradation: Current development and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161112. [PMID: 36586680 DOI: 10.1016/j.scitotenv.2022.161112] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Petroleum hydrocarbon compounds are persistent organic pollutants, which can cause permanent damage to ecosystems due to their biomagnification. Bioremediation of oil is currently the main solution for the remediation of petroleum hydrocarbon pollutants in ecosystems. Despite several lab studies on oil microbial biodegradation efficiency, still there are various challenges for microorganisms to perform efficiently in outside environments. Herewith, investigating efficient biodegradation technologies through discovering new microorganisms, biodegradation pathways modification, and new bioremediations technologies are in great demand. The degradation of petroleum pollutants by microorganisms and the remediation of contaminated soils are achieved through their key enzymes and metabolic pathways. Although, several challenges hinder the effective biodegradation processes such as the toxic environment, long chains and versatility of petroleum hydrocarbons and the existence of the full metabolism pathways in a single microorganism. There are several developed oil biodegradation strategies by microorganisms such as synthetic biology, biofilm, recombinant technology and microbial consortia. Herewith, the application of multi-omics technology to discover oil-contaminated environments microbial communities, synthetic biology, microbial consortia, and other technologies would help improve the efficiency of microbial remediation.
Collapse
Affiliation(s)
- Xu Chunyan
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Majjid A Qaria
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xu Qi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhu Daochen
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
22
|
Han B, Wang G, Liu A, Zheng Y, Zheng L, Ding R. Characteristics and source analysis of polycyclic aromatic hydrocarbons in organisms and manure near Ardley Island, Antarctica. MARINE POLLUTION BULLETIN 2023; 188:114577. [PMID: 36689872 DOI: 10.1016/j.marpolbul.2023.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
In order to better understand the migration and accumulation behavior of polycyclic aromatic hydrocarbons (PAHs) in biological chains in the cold environment around the Ardley Island, a variety of biological and penguin manure samples during China's 36th Antarctic Scientific expedition have been collected and studied. A certain difference in PAHs concentration was observed in the environmental samples, and the order of size was as follows: fish > limpets > krill > manure > brown alga > mosses. The percentage of PAHs with different ring numbers in brown alga, moss, and krill was in the following order: three rings > two rings > four rings > five rings > six rings. The proportion of HMW-PAHs in limpets and fish samples was higher than that in brown alga, moss, manure, and krill samples. The main source of PAHs in environmental samples near Ardley Island is oil, which may be due to the development of tourism in Antarctica, the number of ships and human activities around the region. Therefore, it is imperative to strengthen the protection of the ecological environment in the area around Ardley Island.
Collapse
Affiliation(s)
- Bin Han
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Gui Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266500, China
| | - Ang Liu
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yunchao Zheng
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Li Zheng
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Runtian Ding
- Qingdao Hailukong Environmental Automatic-control Engineering Co., Ltd, China
| |
Collapse
|
23
|
Cao M, Fan J, Guo C, Chen M, Lv J, Sun W, Xi B, Xu J. Comprehensive investigation and risk assessment of organic contaminants in Yellow River Estuary using suspect and nontarget screening strategies. ENVIRONMENT INTERNATIONAL 2023; 173:107843. [PMID: 36822001 DOI: 10.1016/j.envint.2023.107843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Contaminants of emerging concerns (CECs) include numerous chemicals that may pose known and unknown risks to the ecosystem, and identification and risk ranking of these compounds is essential for the environmental management. In this study, liquid and gas chromatography time-of-flight mass spectrometry (LC-QTOF-MS and GC-QTOF-MS) were used to characterize the occurrence of CECs in the surface water of the Yellow River Estuary (YRE). A total of 295 and 315 chemicals were identified by LC-QTOF-MS and GC-QTOF-MS, respectively. The occurrence of two compounds, erucamide and 2-phenylquinoline, was for the first time reported in the aquatic environment in YRE. The concentrations of 121 CECs, including 35 antibiotics, 49 pesticides and veterinary, 16 polycyclic aromatic hydrocarbons and 21 phthalic acid esters were further quantified by target analysis, which showed the detection of 99 compounds in the surface water in the range of 7.07-4611.26 ng/L. Ecological risks of pollutants based on the risk quotient (RQ) method revealed that 13 pollutants posed ecological risks to the aquatic ecosystem (RQ > 1), and pesticides (n = 12) were the main risk contributors. Here, all CECs data sets were finally transformed and ranked in the framework of the toxicological priority index (ToxPi), and a total of 81 priority control pollutants were identified in the surface water of YRE. This study highlighted the necessity of suspect and nontarget screening for CECs in estuaries, and revealed the importance of localized contamination sources in urban and agricultural environment.
Collapse
Affiliation(s)
- Miao Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jingpu Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenjun Sun
- Waters Technologies Shanghai Limited, Shanghai 201206, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
24
|
Gu S, Cui J, Liu F, Chen J. Biochar loaded with cobalt ferrate activated persulfate to degrade naphthalene. RSC Adv 2023; 13:5283-5292. [PMID: 36777931 PMCID: PMC9912118 DOI: 10.1039/d2ra08120b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Considering the simple preparation of biochar and the excellent activation performance of cobalt ferrate material, a biochar supported cobalt ferrate composite was synthesized by a solvothermal method. The material was used to activate persulfate (PS) to degrade naphthalene (NAP) in water. The structure and morphology characterization showed that the composite (CoFe2O4-BC) was successfully prepared. Under the conditions of 0.25 g L-1 CoFe2O4-BC and 1 mM PS, 90.6% NAP (the initial concentration was 0.1 mM) was degraded after 30 minutes. The degradation kinetics of NAP followed the pseudo-first-order kinetic model with a rate constant of 0.0645 min-1. With the increase of the dosage of activator and PS, the removal rate of NAP could be increased to 99.5%. The coexistence of anions and humic acids inhibited the removal of NAP. The acid environment promoted the removal of NAP while the alkaline environment inhibited it. After four cycles of CoFe2O4-BC material, the removal rate of NAP decreased from 90.6% to 79.4%. The removal of TOC was about 45% after each cycle. After the first cycle, the concentration of leached cobalt ion and leached iron ion was about 310 μg L-1 and 30 μg L-1 respectively. The free radical quenching experiments showed that SO4 -˙ and OH˙ were the main causes of NAP removal, and the possible degradation path of NAP was elucidated by DFT calculation.
Collapse
Affiliation(s)
- Shuaijie Gu
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China
| | - Jingying Cui
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China
| | - Fangqin Liu
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China
| | - Jinyang Chen
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China
| |
Collapse
|
25
|
Aydın H, Tepe Y, Ustaoğlu F. Spatiotemporal PAH levels in surface water of the Southeastern Black Sea; baseline study from the Giresun shores. MARINE POLLUTION BULLETIN 2023; 187:114583. [PMID: 36630793 DOI: 10.1016/j.marpolbul.2023.114583] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Samples of surface water were collected seasonally along the 121 km long Giresun coastline to comparatively evaluate the source, distribution, and ecological risk of 16 polycyclic aromatic hydrocarbons (PAHs). The total PAHs levels, varied between 47.42 and 576.69 ng L-1 with the mean of 161.5 ng L-1, were consistent with seawater studies worldwide. Diagnosis rates evinced that PAHs in seawater along the Giresun coastline are primarily sourced from biomass, coal and petroleum combustion and petroleum at lesser extent. The three-ring PAHs (40.2 %) was proportionally high, followed by 2-ring PAHs (26.5 %). The toxicity equivalent quotient (TEQ) and risk quotients (RQ) were employed to assess ecological risk posed by PAHs in Giresun coastal seawater. As a result, the ecological risk in all seasons was at moderate to high risk level, except for autumn, which shows low to moderate risk according to TEQ. RQ values of ∑PAHs displayed low to moderate ecological risk.
Collapse
Affiliation(s)
- Handan Aydın
- Department of Biology, Faculty of Arts and Science, Giresun University, Güre Campus, Giresun 28200, Turkey
| | - Yalçın Tepe
- Department of Biology, Faculty of Arts and Science, Giresun University, Güre Campus, Giresun 28200, Turkey.
| | - Fikret Ustaoğlu
- Department of Biology, Faculty of Arts and Science, Giresun University, Güre Campus, Giresun 28200, Turkey
| |
Collapse
|
26
|
Zhang H, Yuan L, Xue J, Wu H. Polycyclic aromatic hydrocarbons in surface water and sediment from Shanghai port, China: spatial distribution, source apportionment, and potential risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7973-7986. [PMID: 36048385 DOI: 10.1007/s11356-022-22706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The spatial distribution, sources, and potential risk of polycyclic aromatic hydrocarbons (PAHs) were systematically investigated in Shanghai port, one of the most important hubs in international trade. The 16 priority PAHs in surface water and sediment were determined. Total concentrations of 16 PAHs (Σ16PAHs) ranged from 140.6 to 647.4 ng/L in surface water and from 12.7 to 573.2 ng/g (dry weight, dw) in sediment, respectively. The 2-ring and 3-ring PAHs with low molecular weight were main components in water, while the 3-ring and 4-ring PAHs were abundant in sediment. Flu was the main component of the Σ16PAHs in water and sediment. According to the source apportionment, the PAHs in water mostly originated from combustion of fossil fuels and petroleum and petroleum combustion were the main contributors to the PAHs in sediment. The results obtained from potential risk assessment indicate that the PAHs in surface water present a moderate ecological risk, whereas the PAHs in sediment show low ecological risk indicating a less possibility of toxic pollution.
Collapse
Affiliation(s)
- Hui Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Lin Yuan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Junzeng Xue
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Huixian Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
27
|
Zhang B, Wei W, Zhu H, Liu X, Lv L, Chen H. Polycyclic aromatic hydrocarbons in soils of Central Plains Urban Agglomeration, China: The bidirectional effects of urbanization and anthropogenic activities. ENVIRONMENTAL RESEARCH 2022; 214:113930. [PMID: 35868582 DOI: 10.1016/j.envres.2022.113930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
To investigate the variations in environmental behavior (levels, distribution, sources, and soil toxicity) of polycyclic aromatic hydrocarbons (PAHs) under the impact of anthropogenic activities during the urbanization process, we collected soil samples from 195 sites in the Central Plains Urban Agglomeration (CPUA), North China, and analyzed 16 U.S. Environmental Protection Agency (EPA) PAH priority pollutants. We divided the sampling sites into three groups (urban area, industrial area, and farmland) and collected soil samples (0-20 cm surface layer). ∑16PAHs concentrations in the soils of the urban area, industrial area, and farmland ranged from 24.2 to 4400 ng/g, 12.3-8780 ng/g, and 20.9-852 ng/g (the average value of 349, 634, and 186 ng/g), respectively. The 4 to 5 ring PAHs were dominant compounds in three soil types, accounting for 65-80% of the ∑16PAHs. The results of the source analysis showed that the PAHs in the soils of CPUA were mainly from energy consumption. PAH levels in urban and industrial soils had a potential low cancer risk. The impact of urbanization on PAHs in the soil was bidirectional. On the one hand, the level of PAHs in the farmland soil might increase due to burning coal and agricultural machinery, which releases diesel or petrol fumes. On the other hand, in the urbanization process, the PAH content in urban soil and industrial soil showed a downward trend due to the implementation of environmental protection policies in China, which have reduced the atmospheric input of PAHs into the soil.
Collapse
Affiliation(s)
- Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan Province, People's Republic of China.
| | - Wenhao Wei
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Huina Zhu
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Xiaolong Liu
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Lina Lv
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Hanyu Chen
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| |
Collapse
|
28
|
Qin L, Li P, Gao C, Fu P, Wang D, Wang J. Development of seawater quality criteria for phenanthrene based on toxicity data of native species in the Bohai Sea. MARINE POLLUTION BULLETIN 2022; 183:114045. [PMID: 36029588 DOI: 10.1016/j.marpolbul.2022.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Phenanthrene (Phe), one of the most commonly detected polycyclic aromatic hydrocarbons, poses a potential threat to marine ecosystems due to its strong toxicity to aquatic organisms. Developing marine water quality criteria (WQC) is critical to effectively control Phe pollution. This study conducted 10 acute toxicity tests and 4 chronic toxicity tests using native species in the Bohai Sea, China and found that the half-lethal/effective concentrations (LC50/EC50) of Phe for all tested organisms were in the range of 0.198-50.142 mg/L. Among them, the mysid Neomysis awatschensis was the most sensitive species, and the rotifer Brachionus plicatilis was the least sensitive. In terms of chronic toxicity, the range of no-observed-effect concentrations (NOECs) for the four tested organisms was 0.0156-4.00 mg/L. Based on the toxicity data and other data collected from existing databases and literature, the established species sensitivity distribution (SSD) model revealed that the marine WQC for Phe was 39.55 μg/L. Furthermore, the reliability of the derived criteria was verified by measuring multiple endpoints of Skeletonema costatum and Brachionus plicatilis after chronic exposure to Phe. Finally, the environmental concentrations of Phe in the Bohai Sea were determined to be 8.0-318 ng/L, and the joint probability curve (JPC) results showed that the ecological risk of Phe was acceptable. This study provides a reference for developing seawater quality standards for Phe.
Collapse
Affiliation(s)
- Lu Qin
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Peng Li
- Shandong Gold Group Co., Ltd., No. 2503, Jingshi Road, Jinan 250100, China
| | - Chen Gao
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Ping Fu
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Dong Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China.
| |
Collapse
|