1
|
Lu H, Ni Z, Wang Y, Ye S. Deposition characteristics of microplastics in coral reef fish with different feeding habits from the Xisha Islands Waters, South China Sea. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124736. [PMID: 40048976 DOI: 10.1016/j.jenvman.2025.124736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
Over the past decade, awareness of plastic pollution has significantly increased, leading to a focus on its potential adverse effects on biota, including the ingestion of microplastics by fish. This study investigates the abundance, composition, and characteristics of microplastics in the gills and gastrointestinal tracts (GITs) of 96 coral reef fish with different feeding habits (herbivorous fish: Scarus rivulatus, Naso lituratus, and Acanthurus triostegus; omnivorous fish: Abudefduf vaigensis; carnivorous fish: Epinephelus merra) from the Xisha Islands Waters, South China Sea. The relationships between microplastic abundance and fish length, weight, and feeding habits were also analyzed. Results show that 97.92% of the sampled coral reef fish contained microplastics. The average abundance of microplastics in the gills and GITs was 1.09 ± 0.25 items individual-1 and 1.74 ± 0.26 items individual-1, respectively. The predominant shapes of microplastics were fibers, with black and blue being the most common colors. Most microplastics (90%) were smaller than 1 mm, and the main polymer types were PET, CP, PE, and PP. Additionally, the GITs contained more microplastics than the gills. Unlike the scope of previous studies, this study newly found the following two points: 1.Herbivorous fish had higher microplastic content than omnivorous fish, while carnivorous fish had the lowest, likely due to herbivorous fish feeding primarily on microplastic-polluted coral reefs. 2.The abundance of microplastics in the gills and GITs was not related to gill weight or GITs weight, however, the abundance of microplastics was significantly correlated with fish body length and body weight.
Collapse
Affiliation(s)
- Huajie Lu
- College of Marine Biological Resources and Management, Shanghai Ocean University, Shanghai, 201306, China; Center for Marine Sciences and Technology of North Carolina State University, Morehead City, NC, 27607, USA; National Distant-Water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai, 201306, China.
| | - Zhenyu Ni
- College of Marine Biological Resources and Management, Shanghai Ocean University, Shanghai, 201306, China
| | - Yongqin Wang
- College of Marine Biological Resources and Management, Shanghai Ocean University, Shanghai, 201306, China
| | - Siqi Ye
- College of Marine Biological Resources and Management, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
2
|
Islam MM, Rayhan ABMS, Wang J, Shamim MAH, Ke H, Wang C, Zheng X, Chen D, Cai M. Tracing microplastics in marine fish: Ecological threats and human exposure in the Bay of Bengal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178462. [PMID: 39826218 DOI: 10.1016/j.scitotenv.2025.178462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/14/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
This research on microplastics (MPs) in marine environments, particularly in Bay of Bengal fish, underscores the limited comprehension of their accumulation and potential health and environmental consequences. The study investigated the abundance of MPs in the organs of nine marine fish species from the north Bay of Bengal, assessing their polymeric risks and implications for human health. The average MPs ingested by each individual was 32.9 ± 3.0 items/ind.10 g-1 predominantly fibers (93.1 %), followed by fragments (6.1 %), with black being the most common color (76.3 %). The primary polymers identified were polyvinyl alcohol (PVA) (19.4 %), polyether sulfone (PES) (10.7 %), polyamide PA (8.7 %), acrylic, and polyethylene (PE), in the 500-5000 (80 %) μm size range. A moderate negative correlation with strong statistical significance was found with girth sizes and MPs concentration of average (Pearson's r = -0.5728, p < 0.0001). Body weight exhibited moderate negative correlations with MPs abundance in fish tissues (Pearson's r = -0.4701, p < 0.0001). Movement behavior analysis showed a negative correlation between MPs in fish tissues and depth range (Pearson's r = -0.4231, p < 0.0001). Demersal species contained more MPs than pelagic species, and carnivorous fishes had higher MPs levels than omnivorous and planktivorous fishes. The contamination factors (CF), pollution load index (PLI), and polymeric hazard index (PHI) were high and associated with untreated industrial and municipal wastewater sources. The estimated daily intake (EDI) of MPs for adults and children indicates significant health risks. The study improves our comprehension of MPs contamination, providing a significant reference for the appropriate governance, tracking, and reducing pollutants in marine animals in coastal waters.
Collapse
Affiliation(s)
- Md Mazharul Islam
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China; Marine Fisheries Academy, Chittagong 4000, Bangladesh
| | - A B M Sadique Rayhan
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jun Wang
- Department of marine biology, Xiamen Ocean vocational college, Xiamen 361102, China
| | - Md Ali Hossain Shamim
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Hongwei Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Chunhui Wang
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Xuehong Zheng
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Ding Chen
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Minggang Cai
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; Department of marine biology, Xiamen Ocean vocational college, Xiamen 361102, China; College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Liu J, Gutang Q, Fan Y, Bi R, Zhao P, Zhang K, Sun Z, Li P, Liu W, Wang J. Microplastics in fish species from the eastern Guangdong: Implications to Indo-Pacific humpback dolphin (Sousa chinensis) and human health. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106852. [PMID: 39580953 DOI: 10.1016/j.marenvres.2024.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Microplastic (MP) pollution is widespread in aquatic environments, accumulating in organisms and transferring through the food web. This study investigated MP abundance, composition, and distribution in 15 fish species from eastern Guangdong, 11 of which are prey for Indo-Pacific humpback dolphins (Sousa chinensis). Results indicated the highest MP abundance in fish gastrointestinal tracts, with pelagic species being the most affected. Ethylene vinyl acetate (EVA) and polyethylene (PE), linked to local industrial activities, were the most prevalent polymers. Risk quotients (RQ) at 95th percentile for Indo-Pacific humpback dolphins exceeded one, suggesting significant MP exposure risk via prey ingestion. In contrast, the MPs risk for humans through fish consumption was minimal. These findings underscore the urgent need for improved plastic waste management to protect marine apex predators.
Collapse
Affiliation(s)
- Jinyan Liu
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China; Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, 515063, China
| | - Qilin Gutang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, 515063, China
| | - Yingping Fan
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ran Bi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, 515063, China.
| | - Puhui Zhao
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, 515063, China
| | - Keqin Zhang
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China; Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, 515063, China
| | - Zewei Sun
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jianxin Wang
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
4
|
He J, Song K, Chang Y, Wang X, Song W, Wang S, Zhang R, Feng Z. The impact of wind farm construction on swimming animals in the South Yellow Sea: An evaluation based on the biodiversity and microplastics. ENVIRONMENTAL RESEARCH 2025; 265:120462. [PMID: 39608437 DOI: 10.1016/j.envres.2024.120462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Wind farms (WFs) have grown significantly in recent years, especially in the offshore. However, their construction can adversely affect marine life and expose species to microplastics (MPs) pollution, posing a threat to human health through seafood consumption. In order to further understand the impact of WF construction activities on swimming animal resources and the accumulation of MPs ingested by dominant economic species occupying significant ecological niches, this study investigated changes in swimming animal resources over six periods during three years of WF construction in the South Yellow Sea and evaluated MPs ingestion in three economically valuable dominant species (Portunus trituberculatus, Collichthys lucidus, and Coilia nasus) before and after construction. The study found that the most significant negative impacts on swimming animal resources occurred during the early construction stages, with recovery observed as construction finished. By the operational phase in autumn 2021, all indicators had exceeded pre-construction levels from spring 2019, except for biomass, which had not fully recovered. MPs were identified in every biological sample, and the MPs contamination in the gills was higher than that in the gut and skin tissues. The average abundance of MPs and the overall MPs hazard index of the three organisms were higher than those in other areas and pre-construction levels. WF construction in the South Yellow Sea caused short-term negative impacts on swimming animal resources with long-term recovery, but the increased MPs pollution during the construction process requires continuous monitoring and management to achieve sustainable development.
Collapse
Affiliation(s)
- Jincheng He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Kexin Song
- Analytical Instrumentation Center, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, PR China; University of Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Ying Chang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Xin Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Weijia Song
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Shuo Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Ruilin Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China; Key Laboratory of Coastal Salt Marsh Ecology and Resources, Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang, 222005, PR China.
| |
Collapse
|
5
|
Niari MH, Ghobadi H, Amani M, Aslani MR, Fazlzadeh M, Matin S, Takaldani AHS, Hosseininia S. Characteristics and assessment of exposure to microplastics through inhalation in indoor air of hospitals. AIR QUALITY, ATMOSPHERE & HEALTH 2025; 18:253-262. [DOI: 10.1007/s11869-024-01640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/28/2024] [Indexed: 10/22/2024]
|
6
|
Wang S, Li G, Ji X, Wang Y, Xu B, Tang J, Guo C. Machine learning-driven assessment of heavy metal contamination in the impounded lakes of China's South-to-North Water Diversion Project: Identifying spatiotemporal patterns and ecological risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135983. [PMID: 39348756 DOI: 10.1016/j.jhazmat.2024.135983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
The Eastern Route of China's South-to-North Water Diversion Project (SNWDP-ER) traverses through impounded lakes that are potentially vulnerable to heavy metals (HMs) contamination although the understanding remains elusive. This study employed machine learning approaches, including super-clustering of Self-Organizing Map (SOM) and Robust Principal Component Analysis (RPCA), to elucidate the spatiotemporal patterns and assess ecological risks associated with HMs in the surface sediments of Gao-Bao-Shaobo Lake (GBSL) and Dongping Lake (DPL). We collected 184 surface sediments from 47 stations across the two important impounded lakes over four seasons. The results revealed higher HMs concentrations in the south-central GBSL and west-central DPL, with a notable increase in contamination in autumn. The comprehensive risk assessment, utilizing various indicators such as the Sediment Quality Guidelines (SQGs), Improved Potential Ecological Risk Index (IPERI), Geo-accumulation Index (Igeo), Contamination Factor (CF), and Enrichment Factor (EF), identified arsenic (As), cadmium (Cd), nickel (Ni), and chromium (Cr) as primary contaminants of concern. Positive Matrix Factorization (PMF) model, coupled with Spearman analysis, attributed over 70 % of HMs pollution to anthropogenic activities. This research provides a nuanced understanding of HMs pollution in the context of large-scale water diversion projects and offers a scientific basis for targeted pollution mitigation strategies.
Collapse
Affiliation(s)
- Senyang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei 430070, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei 430070, China
| | - Xiang Ji
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Bo Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Jianfeng Tang
- Changjiang Basin Ecology and Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Wuhan, Hubei 430010, China.
| | - Chuanbo Guo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| |
Collapse
|
7
|
Le TXT, Duong MT, Huynh LD, Pham HT, Van Pham T, Van Do M. Risk assessments of microplastic exposure in bivalves living in the coral reefs of Vietnam. MARINE POLLUTION BULLETIN 2024; 209:117111. [PMID: 39418873 DOI: 10.1016/j.marpolbul.2024.117111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
This study aimed to assess the presence of microplastics in bottom sediment and bivalve species, including Pinna bicolor, Atrina vexillum, Saccostrea sp., and Pinctada margaritifera, living in coral reefs on Vietnam's Southern coastal. The average microplastic abundance were 0.45 ± 0.13 items/g of wet soft tissue weight or 5.60 ± 1.49 items/individual in bivalve samples and 294 ± 43 items/kg dry weight of sediment samples. The fragment shape, size smaller than 100 μm, and polyethylene, polyamide, cellophane and polyethylene terephthalate were identified as the predominant constituents of the microplastics. The pollution load and potential ecological risk index of microplastics were at a minor level, whereas the polymer hazard index was at a high level. Overall, this study provides a basis for assessing the risks posed by microplastics in the marine ecosystems of Vietnam.
Collapse
Affiliation(s)
- Thao Xuan Thanh Le
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 11300, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 11300, Viet Nam
| | - Manh Tuan Duong
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 11300, Viet Nam
| | - Long Duc Huynh
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 11300, Viet Nam
| | - Huyen Thu Pham
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi 11416, Viet Nam
| | - Toi Van Pham
- Faculty of Environmental Engineering, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hai Ba Trung District, Hanoi, Viet Nam
| | - Manh Van Do
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 11300, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 11300, Viet Nam.
| |
Collapse
|
8
|
Yu F, Zhang L, Chu W, Wu X, Pei Y, Ma J. Occurrence and distribution of microplastics in freshwater aquaculture area with different culture modes in Yangtze River Delta of China. MARINE POLLUTION BULLETIN 2024; 209:117135. [PMID: 39486204 DOI: 10.1016/j.marpolbul.2024.117135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
There are multiple sources of microplastic contamination in freshwater aquaculture areas, such as water inputs, use of plastic farming tools and weathering of discarded plastics, leading to microplastic contamination of aquaculture environments, but microplastics in freshwater aquaculture areas are still limited. In our study, we investigated the distribution of microplastics (MPs) in the aquaculture water, sediments and crabs during the growth cycle of crabs with different culture modes. The results show that from May to October, MPs in surface water first increased and then decreased, which is related to water evaporation and river water recharge caused by local hot and sunny weather. The concentration of microplastics in surface water reached a maximum of 9.25 items/L in September and 0.34 items/g-dry weight in sediment in June. The MPs in the sediments, although relatively stable, fluctuated due to river water replenishment. The number of detected MPs in male crabs was higher than that in female crabs, 17.96 ± 6.23 and 16.71 ± 4.45 items/individual, respectively. Crabs of different sexes were not selective for the color of MPs. The abundance of microplastics in different tissues of river crabs was in the order of foregut > hindgut > gill > hepatopancreas, whereas they were not detected in muscles. There were microplastic uptake and excretion behaviors during the growth culture cycle of river crabs. The microplastic amount was higher in the early stage and then showed a dynamic change of decreasing and then increasing. The number of MPs was higher in culture modes with different sex ratios, especially in male-dominated culture modes, which may be related to the more frequent activities of male crabs when the male ratio is high. This study provides useful information to understand the accumulation of microplastics in cultured hairy crabs and the source sinks and transportation of microplastics in artificial freshwater aquaculture in China.
Collapse
Affiliation(s)
- Fei Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110044, China
| | - Leilihe Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Wei Chu
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Xugan Wu
- College of Fisheries and Life Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China.
| | - Yizhi Pei
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
9
|
Pei Y, Lin Y, Guo J, Luo K, Wu J, Wu J, Yang W, Gao J. Microplastics in wild fish in the Three Gorges Reservoir, China: A detailed investigation of their occurrence, characteristics, biomagnification and risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135551. [PMID: 39154484 DOI: 10.1016/j.jhazmat.2024.135551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Microplastics (MPs) pollution in freshwater poses a risk to various ecosystems and health security. In 2018, the Chinese government banned fishing since 2018 in the Three Gorges Reservoir (TGR), but the fate and risk of MPs in wild fish remain unclear. Therefore, a detailed investigation was conducted into the occurrence of MPs in 18 wild fish species in the TGR using a Micro Fourier Transform Infrared Spectrometer, and the trophic transfer and risks were assessed. MPs in fish were aged, with abundances ranging from 0.68 ± 0.98 to 4.00 ± 2.12 items/individual. Most particles were less than 1 mm in size (73.4 %), with fibers being the dominant shape (48.9 %) and transparent as the dominant color (35 %). Polyethylene (PE) was the most prevalent type. The bioconcentration factor (BCF), bioaccumulation factor (BAF), trophic magnification factor (TMF) and polymer hazard index (PHI) were low, suggesting no trophic transfer and a low risk of MPs. The BAF may provide a more reasonable description of the degree of enrichment of MPs, and 'items/individual' or 'g/individual' can be used to describe MPs concentrations in fish. This study proposes new insights and prospectives that can help researchers better understand MPs enrichment in fish across various trophic levels.
Collapse
Affiliation(s)
- Yizhi Pei
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ying Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Kongyan Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jianyong Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jingcheng Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Wenhao Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Junmin Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
10
|
Conger E, Dziobak M, McCabe EJB, Curtin T, Gaur A, Wells RS, Weinstein JE, Hart LB. An analysis of suspected microplastics in the muscle and gastrointestinal tissues of fish from Sarasota Bay, FL: exposure and implications for apex predators and seafood consumers. ENVIRONMENTS 2024; 11:185. [PMID: 39391169 PMCID: PMC11466323 DOI: 10.3390/environments11090185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microplastics have been found in the gastrointestinal (GI) fluid of bottlenose dolphins (Tursiops truncatus), inhabiting Sarasota Bay, FL, suggesting exposure by ingestion, possibly via contaminated fish. To better understand the potential for trophic transfer, muscle and GI tissues from 11 species of dolphin prey fish collected from Sarasota Bay were screened for microplastics (particles <5 mm diameter). Suspected microplastics were found in 82% of muscle samples (n=89), and 97% of GI samples (n=86). Particle abundance and shapes varied by species (p<0.05) and foraging habit (omnivore vs. carnivore, p<0.05). Pinfish (Lagodon rhomboides) had the highest particle abundance for both tissue types (muscle: 0.38 particles/g; GI: 15.20 particles/g), which has implications for dolphins as they are a common prey item. Findings from this study support research demonstrating the ubiquity of estuarine plastic contamination and underscore the risks of ingestion exposure for wildlife and potentially seafood consumers.
Collapse
Affiliation(s)
- Eric Conger
- Department of Biology, School of Sciences, Mathematics, and Engineering, College of Charleston, Charleston, SC, USA
| | - Miranda Dziobak
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Elizabeth J Berens McCabe
- Sarasota Dolphin Research Program, Brookfield Zoo Chicago, c/o Mote Marine Laboratory, Sarasota, FL, USA
| | - Tita Curtin
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, USA
| | - Ayushi Gaur
- Department of Biology, School of Sciences, Mathematics, and Engineering, College of Charleston, Charleston, SC, USA
| | - Randall S Wells
- Sarasota Dolphin Research Program, Brookfield Zoo Chicago, c/o Mote Marine Laboratory, Sarasota, FL, USA
| | | | - Leslie B Hart
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, USA
| |
Collapse
|
11
|
Sampsonidis I, Michailidou K, Spritinoudi K, Dimitriadi A, Ainali NM, Bobori DC, Lambropoulou DA, Kyzas GZ, Bikiaris DN, Kalogiannis S. Genotoxicity and metabolic changes induced via ingestion of virgin and UV-aged polyethylene microplastics by the freshwater fish Perca fluviatilis. CHEMOSPHERE 2024; 362:142619. [PMID: 38880257 DOI: 10.1016/j.chemosphere.2024.142619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The present study aims to compare and assess the toxicity induced by aged (irradiated with ultraviolet radiation for 120 days) polyethylene microplastics (PE-MPs) in comparison to virgin (non-irradiated) ones, after feeding the freshwater fish Perca fluviatilis. To this end, MPs mediated genotoxicity was assessed by the investigation of micronucleus nuclear abnormalities frequency in fish blood, and the degree of DNA damage in the liver and muscle tissues, while metabolic alterations were also recorded in both tissues. Results showed that both virgin and aged PE-MPs induced signaling pathways leading to DNA damage and nuclear abnormalities, as well as metabolites changes in all tissues studied. Metabolic changes revealed that the metabolism of nucleic acids, energy, amino acids, and neurotransmitters was more disrupted in the liver and by aged PE-MPs compared to muscles. Fish fed with aged PE-MPs exhibited greater DNA damage, while blood cells of fish fed with virgin PE-MPs seemed to be more vulnerable to nuclear abnormalities in relation to those fed with aged PE-MPs. Moreover, aged PE-MPs induced more acute overall effects on the metabolic profiles of fish tissues, and initiated stronger stress responses, inflammation, and cellular damages in fish tissues in relation to virgin ones. Characterization of both virgin and aged MPs revealed that the latter exhibited lower crystallinity and melting point, more irregular shapes and higher moiety of oxygen and carbonyl groups, which could be attributed for their observed higher toxicity. The research outcomes provide significant insights for advancing toxicological investigations in this field.
Collapse
Affiliation(s)
- Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400, Thessaloniki, Greece
| | - Kostantina Michailidou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Kalliopi Spritinoudi
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | | | - Nina Maria Ainali
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-570 01, Thessaloniki, Greece
| | - George Z Kyzas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala, GR-654 04, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400, Thessaloniki, Greece.
| |
Collapse
|
12
|
Sultana S, Anisuzzaman M, Hossain MK, Rana MS, Paray BA, Arai T, Yu J, Hossain MB. Ecological risk assessment of microplastics and mesoplastics in six common fishes from the Bay of Bengal Coast. MARINE POLLUTION BULLETIN 2024; 204:116544. [PMID: 38824706 DOI: 10.1016/j.marpolbul.2024.116544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Plastic particles have emerged as a growing threat to both ecosystems and human well-being, as they are being ingested and accumulate at different trophic levels. However, microplastic and mesoplastic contamination and its risk to coastal and marine water fish have not been well studied, particularly in the northern Bay of Bengal. In this study, the presence of small-scale plastic particles (micro- and meso-sized) in the gastrointestinal tract (GIT) and muscles of six edible fish species from the northern Bay of Bengal Coast were identified and analyzed. The overall range of microplastics was 1.74 ± 0.23-3.79 ± 2.03items/g in muscle and 0.54 ± 0.22-5.96 ± 3.16 items/g in the GIT, with 16.38 ± 8.08-31.88 ± 12.09 items/individual. No mesoplastics were found in muscle tissue, but they were present in the GIT at concentrations ranging from 0.33 ± 0.27 to 0.03 ± 0.02 items/g and from 0.51 ± 0.05to 1.38 ± 1.01 items/individual. Lepturacanthus savala accumulated the most microplastics in muscle, and Harpadon nehereus had the least. In addition, the highest levels of mesoplastics were detected in the GIT of Polynemus paradiseus and the lowest was detected in the GIT of Lutjenus sanguineus. Omnivorous fish showed higher plastic concentrations than carnivorous fish, which was linked to dietary habits, feeding strategies and digestive processes. Plastic material predominantly accumulated in the GIT rather than in the muscle. The majority of ingested plastic particles were fibres (95.18 %), were violet in color (34 %), and were < 0.5 mm in size (87 %). The dominant microplastic polymers included 38 % PE, 15 % PP, 33 % PU, and 14 % CES. In contrast, the prevalent mesoplastic polymers comprised 45 % PE, 19 % PP, 13 % PS, 16 % PA, and 7 % PET. Subsequently, a hazard analysis using the polymer hazard index (PHI) revealed that plastic contamination was of distinct hazard categories for different polymer types, ranging from grade I (<1) to grade IV (100-1000). The assessment of the contamination factor (1 < CF < 3) and pollution load index (PLI > 1) indicated moderate contamination of fish by the ingestion of plastic debris. This study provides the foremost evidence for the presence of mesoplastics and microplastics in coastal and marine fish in the study region, paving the way for future investigations and policy implementation.
Collapse
Affiliation(s)
- Salma Sultana
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur 3814, Bangladesh
| | - Md Anisuzzaman
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur 3814, Bangladesh
| | - Md Kamal Hossain
- Soil and Environment Research Section, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Md Sohel Rana
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur 3814, Bangladesh
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Takaomi Arai
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
| | - Jimmy Yu
- School of Engineering and Built Environment, Griffith University, Nathan Campus, QLD, Australia
| | - M Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur 3814, Bangladesh; School of Engineering and Built Environment, Griffith University, Nathan Campus, QLD, Australia.
| |
Collapse
|
13
|
Ji J, Pei J, Ding F, Zeng C, Zhou J, Dong W, Cui Z, Yan X. Isolation and characterization of polyester polyurethane-degrading bacterium Bacillus sp. YXP1. ENVIRONMENTAL RESEARCH 2024; 249:118468. [PMID: 38354881 DOI: 10.1016/j.envres.2024.118468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Microorganisms have the potential to be applied for the degradation or depolymerization of polyurethane (PU) and other plastic waste, which have attracted global attention. The appropriate strain or enzyme that can effectively degrade PU is the key to treat PU plastic wastes by biological methods. Here, a polyester PU-degrading bacterium Bacillus sp. YXP1 was isolated and identified from a plastic landfill. Three PU substrates with increasing structure complexities, including Impranil DLN, poly (1,4-butylene adipate)-based PU (PBA-PU), and polyester PU foam, were used to evaluate the degradation capacity of Bacillus sp. YXP1. Under optimal conditions, strain YXP1 could completely degrade 0.5% Impranil DLN within 7 days. After 30 days, the weight loss of polyester PU foam by strain YXP1 was as high as 42.1%. In addition, PBA-PU was applied for degradation pathway analysis due to its clear composition and chemical structure. Five degradation intermediates of PBA-PU were identified, including 4,4'-methylenedianiline (MDA), 1,4-butanediol, adipic acid, and two MDA derivates, indicating that strain YXP1 could depolymerize PBA-PU by the hydrolysis of ester and urethane bonds. Furthermore, the extracellular enzymes produced by strain YXP1 could hydrolyze PBA-PU to generate MDA. Together, this study provides a potential bacterium for the biological treatment of PU plastic wastes and for the mining of functional enzymes.
Collapse
Affiliation(s)
- Junbin Ji
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Nanjing Key Laboratory of Quality and Safety of Agricultural Products, College of Food Science, Nanjing XiaoZhuang University, Nanjing, Jiangsu 211171, China
| | - Jing Pei
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fanghui Ding
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Caiting Zeng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Zhou
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Weiliang Dong
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
14
|
Zhou Z, Song X, Dong D, Li X, Sun Y, Wang L, Huang Z, Li M. Occurrence, distribution and sources of microplastics in typical marine recirculating aquaculture system (RAS) in China: The critical role of RAS operating time and microfilter. WATER RESEARCH 2024; 255:121476. [PMID: 38503181 DOI: 10.1016/j.watres.2024.121476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Industrial mariculture, a vital means of providing high quality protein to humans, is a potential source of microplastics (MPs) which have recently received increasing attention. This study investigated the occurrence and distribution of microplastics in feed, source water and recirculating aquaculture system (RAS) with long & short operating times as well as in fish from typical industrial mariculture farms in China. Results showed that microplastics occurred in all samples with the average concentration of 3.53 ± 1.39 particles/g, 0.70 ± 0.17 particles/L, 1.53 ± 0.21 particles/L and 2.21 ± 0.62 particles/individual for feed, source water, RAS and fish, respectively. Microplastics were mainly fiber in shape, blue in color and 20-500 μm in size. Compared with short operated RAS, long operating time led to higher microplastic concentration in RAS, especially that of microplastic in 20-500 μm, granular and blue. Regardless of short or long operating time, microplastics in RAS mainly gathered in culture tank, tank before microfilter and fixed-bed biological filter, and the microfilter removed efficiently the microplastic with the shape of film, granule, fragment as well as those with size > 1000 μm. As for the polymer types, polyamide (PA, 71.9 %) and polyethylene terephthalate (PET, 65.7 %) dominated in feed and source water, respectively, which may be the reason for the high proportion of PA (38.8 % and 26.4 %) and PET (31.8 % and 30.2 %) in RAS and fish. In addition, polypropylene (PP) was also detected in RAS (18.7 %) and fish (22.6 %), indicating that other plastic facilities such as PP brush carrier also made a contribution. Positive matrix factorization (PMF) model revealed three sources of MP in RAS, namely plastic facilities, industrial sewage and plastic packaging products. Our results provided a theoretical basis for the management of MP in RAS.
Collapse
Affiliation(s)
- Zheng Zhou
- College of Fisheries, Ocean University of China, Qingdao 266003, PR China
| | - Xiefa Song
- College of Fisheries, Ocean University of China, Qingdao 266003, PR China.
| | - Dengpan Dong
- College of Fisheries, Ocean University of China, Qingdao 266003, PR China
| | - Xian Li
- College of Fisheries, Ocean University of China, Qingdao 266003, PR China
| | - Yue Sun
- College of Fisheries, Ocean University of China, Qingdao 266003, PR China
| | - Liwei Wang
- College of Fisheries, Ocean University of China, Qingdao 266003, PR China
| | - Zhitao Huang
- Norwegian Institute for Water Research (NIVA), Thormøhlengate 53 D, Bergen 5006, Norway
| | - Meng Li
- College of Fisheries, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
15
|
Lin J, Zhao YM, Zhan ZG, Zheng JY, Zhou QZ, Peng J, Li Y, Xiao X, Wang JH. Microplastics in remote coral reef environments of the Xisha Islands in the South China Sea: Source, accumulation and potential risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133872. [PMID: 38447364 DOI: 10.1016/j.jhazmat.2024.133872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Microplastics (MPs) are of great concern to coral health, particularly enhanced biotoxicity of small microplastics (< 100 µm) (SMPs). However, their fate and harm to remote coral reef ecosystems remain poorly elucidated. This work systematically investigated the distributions and features of MPs and SMPs in sediments from 13 islands/reefs of the Xisha Islands, the South China Sea for comprehensively deciphering their accumulation, sources and risk to coral reef ecosystems. The results show that both MPs (average, 682 items/kg) and SMPs (average, 375 items/kg) exhibit heterogeneous distributions, with accumulation within atolls and dispersion across fringing islands, which controlled by human activities and hydrodynamic conditions. Cluster analysis for the first time reveals a pronounced difference in their compositions between the southern and northern Xisha Islands and resultant distinct sources, i.e., MPs in the north part were leaked mainly from local domestic sewage and fishing waste, while in the south part were probably derived from industrial effluents from adjacent countries. Our ecological risk assessment suggests that the ecosystem within the Yongle Atoll is exposed to a high-risk of MPs pollution. The novel results and proposed framework facilitate to effectively manage and control MPs and accordingly preserve a fragile biosphere in remote coral reefs.
Collapse
Affiliation(s)
- Jia Lin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Yuan-Ming Zhao
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Zhi-Geng Zhan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Jia-Yuan Zheng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Qian-Zhi Zhou
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Juan Peng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Yan Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Xi Xiao
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou 510075, China.
| | - Jiang-Hai Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| |
Collapse
|
16
|
Xie S, Song K, Liu S, Li Y, Wang J, Huang W, Feng Z. Distribution and characteristics of microplastics in 16 benthic organisms in Haizhou Bay, China: Influence of habitat, feeding habits and trophic level. MARINE POLLUTION BULLETIN 2024; 199:115962. [PMID: 38157831 DOI: 10.1016/j.marpolbul.2023.115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Microplastics (MPs) are widely found in the ocean and cause a serious risk to marine organisms. However, fewer studies have been conducted on benthic organisms. This study conducted a case study on the pollution characteristics of MPs on 16 marine benthic organisms in Haizhou Bay, and analyzed the effects of habitat, trophic level, and feeding mode on the MPs pollution characters. The results showed that MPs were detected in all 16 organisms with an average abundance of 8.84 ± 9.14 items/individual, which is in the middle-high level in the international scale. Among the detected MPs, the main material was cellophane. This study showed that benthic organisms can be used as indicator organisms for MPs pollution. MPs in organisms can be affected by their habitat, trophic level, and feeding mode. Comprehensive analysis of MPs in benthic organisms will contribute to fully understand the characterization and source resolution of MPs pollution.
Collapse
Affiliation(s)
- Siqi Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Kexin Song
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Analytical Instrumentation Center, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, PR China; University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shiwei Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - You Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Jiaxuan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China; Key Laboratory of Coastal Salt Marsh Ecology and Resources, Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang 222005, PR China.
| |
Collapse
|
17
|
Mendrik F, Houseago RC, Hackney CR, Parsons DR. Microplastic trapping efficiency and hydrodynamics in model coral reefs: A physical experimental investigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123094. [PMID: 38072017 DOI: 10.1016/j.envpol.2023.123094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024]
Abstract
Coastal ecosystems, such as coral reefs, are vulnerable to microplastic pollution input from proximal riverine and shoreline sources. However, deposition, retention, and transport processes are largely unevaluated, especially in relation to hydrodynamics. For the first time, we experimentally investigate the retention of biofilmed microplastic by branching 3D printed corals (staghorn coral Acropora genus) under various unidirectional flows (U = {0.15, 0.20, 0.25, 0.30} ms-1) and canopy densities (15 and 48 corals m-2). These variables are found to drive trapping efficiency, with 79-98% of microplastics retained in coral canopies across the experimental duration at high flow velocities (U = 0.25-0.30 ms-1), compared to 10-13% for the bare bed, with denser canopies retaining only 15% more microplastics than the sparse canopy at highest flow conditions (U = 0.30 ms-1). Three fundamental trapping mechanisms were identified: (a) particle interception, (b) settlement on branches or within coral, and (c) accumulation in the downstream wake region of the coral. Corresponding hydrodynamics reveal that microplastic retention and spatial distribution is modulated by the energy-dissipative effects of corals due to flow-structure interactions reducing in-canopy velocities and generating localised turbulence. The wider ecological implications for coral systems are discussed in light of the findings, particularly in terms of concentrations and locations of plastic accumulation.
Collapse
Affiliation(s)
- Freija Mendrik
- Energy and Environment Institute, University of Hull, UK; International Marine Litter Research Unit, University of Plymouth, UK; School of Biological and Marine Sciences, University of Plymouth, UK.
| | | | | | | |
Collapse
|
18
|
Shaw KR, Whitney JL, Nalley EM, Schmidbauer MC, Donahue MJ, Black J, Corniuk RN, Teague K, Sandquist R, Pirkle C, Dacks R, Sudnovsky M, Lynch JM. Microplastics absent from reef fish in the Marshall Islands: Multistage screening methods reduced false positives. MARINE POLLUTION BULLETIN 2024; 198:115820. [PMID: 38029668 DOI: 10.1016/j.marpolbul.2023.115820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Island communities, like the Republic of the Marshall Islands (RMI), depend on marine resources for food and economics, so plastic ingestion by those resources is a concern. The gastrointestinal tracts of nine species of reef fish across five trophic groups (97 fish) were examined for plastics >1 mm. Over 2100 putative plastic particles from 72 fish were identified under light microscopy. Only 115 of these from 47 fish passed a plastic screening method using Fourier-transform infrared microspectroscopy (μFTIR) in reflectance mode. All of these were identified as natural materials in a final confirmatory analysis, attenuated total reflectance FTIR. The high false-positive rate of visual and μFTIR methods highlight the importance of using multiple polymer identification methods. Limited studies on ingested plastic in reef fish present challenging comparisons because of different methods used. No plastic >1 mm were found in the RMI reef fish, reassuring human consumers.
Collapse
Affiliation(s)
- Katherine R Shaw
- Hawai'i Pacific University Center for Marine Debris Research, Waimānalo, HI 96795, USA; National Institute of Standards and Technology, Waimānalo, HI 96795, USA.
| | | | - Eileen M Nalley
- Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96815, USA; Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Madeline C Schmidbauer
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Megan J Donahue
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Jesse Black
- Hawai'i Pacific University Center for Marine Debris Research, Waimānalo, HI 96795, USA
| | - Raquel N Corniuk
- Hawai'i Pacific University Center for Marine Debris Research, Waimānalo, HI 96795, USA
| | - Kellie Teague
- Hawai'i Pacific University Center for Marine Debris Research, Waimānalo, HI 96795, USA
| | - Rachel Sandquist
- Hawai'i Pacific University Center for Marine Debris Research, Waimānalo, HI 96795, USA
| | - Catherine Pirkle
- Office of Public Health Studies, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Rachel Dacks
- Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96815, USA
| | - Max Sudnovsky
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA; NOAA, USA
| | - Jennifer M Lynch
- Hawai'i Pacific University Center for Marine Debris Research, Waimānalo, HI 96795, USA; National Institute of Standards and Technology, Waimānalo, HI 96795, USA
| |
Collapse
|
19
|
Xu J, Zuo R, Shang J, Wu G, Dong Y, Zheng S, Xu Z, Liu J, Xu Y, Wu Z, Huang C. Nano- and micro-plastic transport in soil and groundwater environments: Sources, behaviors, theories, and models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166641. [PMID: 37647954 DOI: 10.1016/j.scitotenv.2023.166641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
With the increasing use of plastics, nano- and micro-plastic (NMP) pollution has become a hot topic in the scientific community. Ubiquitous NMPs, as emerging contaminants, are becoming a global issue owing to their persistence and potential toxicity. Compared with studies of marine and freshwater environments, investigations into the sources, transport properties, and fate of NMPs in soil and groundwater environments remain at a primary stage. Hence, the promotion of such research is critically important. Here, we integrate existing information and recent advancements to compile a comprehensive evaluation of the sources and transport properties of NMPs in soil and groundwater environments. We first provide a systematic description of the various sources and transport behaviors of NMPs. We then discuss the theories (e.g., clean-bed filtration and Derjaguin-Landau-Verwey-Overbeek theories) and models (e.g., single-site and dual-site kinetic retention and transport models) of NMP transport through saturated porous media. Finally, we outline the potential limitations of current research and suggest directions for future research. Overall, this review intends to assimilate and outline current knowledge and provide a useful reference frame to determine the sources and transport properties of NMPs in soil and groundwater environments.
Collapse
Affiliation(s)
- Jun Xu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Rui Zuo
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Jinhua Shang
- Jinan Rail Transit Group Co., Ltd, Jinan 250014, China
| | - Guanlan Wu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Yanan Dong
- Jinan Rail Transit Group Co., Ltd, Jinan 250014, China
| | - Shida Zheng
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Zuorong Xu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Jingchao Liu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Yunxiang Xu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Ziyi Wu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Chenxi Huang
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| |
Collapse
|
20
|
Hart LB, Dziobak M, Wells RS, McCabe EB, Conger E, Curtin T, Knight M, Weinstein J. Plastic, It's What's for Dinner: A Preliminary Comparison of Ingested Particles in Bottlenose Dolphins and Their Prey. OCEANS (BASEL, SWITZERLAND) 2023; 4:409-422. [PMID: 38766537 PMCID: PMC11101200 DOI: 10.3390/oceans4040028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Microplastic ingestion was reported for common bottlenose dolphins (Tursiops truncatus) inhabiting Sarasota Bay, FL, USA, a community that also has prevalent exposure to plasticizers (i.e., phthalates) at concentrations higher than human reference populations. Exposure sources are currently unknown, but plastic-contaminated prey could be a vector. To explore the potential for trophic exposure, prey fish muscle and gastrointestinal tract (GIT) tissues and contents were screened for suspected microplastics, and particle properties (e.g., color, shape, surface texture) were compared with those observed in gastric samples from free-ranging dolphins. Twenty-nine fish across four species (hardhead catfish, Ariopsis felis; pigfish, Orthopristis chrysoptera; pinfish, Lagodon rhomboides; and Gulf toadfish, Opsanus beta) were collected from Sarasota Bay during September 2022. Overall, 97% of fish (n = 28) had suspected microplastics, and GIT abundance was higher than muscle. Fish and dolphin samples contained fibers and films; however, foams were common in dolphin samples and not observed in fish. Suspected tire wear particles (TWPs) were not in dolphin samples, but 23.1% and 32.0% of fish muscle and GIT samples, respectively, contained at least one suspected TWP. While some similarities in particles were shared between dolphins and fish, small sample sizes and incongruent findings for foams and TWPs suggest further investigation is warranted to understand trophic transfer potential.
Collapse
Affiliation(s)
- Leslie B. Hart
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC 29424, USA
- Center for Coastal Environmental and Human Health, College of Charleston, Charleston, SC 29424, USA
| | - Miranda Dziobak
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC 29424, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Elizabeth Berens McCabe
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Eric Conger
- Department of Biology, School of Sciences, Mathematics, and Engineering, College of Charleston, Charleston, SC 29424, USA
| | - Tita Curtin
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC 29424, USA
| | - Maggie Knight
- Graduate Program in Marine Biology, Grice Marine Laboratory, College of Charleston, Charleston, SC 29424, USA
| | - John Weinstein
- Department of Biology, The Citadel, Charleston, SC 29409, USA
| |
Collapse
|
21
|
Huang L, Li QP, Li H, Yuan X. Microplastic pollution and regulating factors in the surface sediment of the Xuande Atolls in the South China Sea. MARINE POLLUTION BULLETIN 2023; 196:115562. [PMID: 37769406 DOI: 10.1016/j.marpolbul.2023.115562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/20/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023]
Abstract
Microplastics are widely present in the marine environment, but their pollution and potential risk assessment in the seabed sediments have not been well addressed in remote sea areas. In this study, microplastics in 50 surface sediment samples from the Xuande Atolls at the Xisha of the South China Sea were studied. There were 20 samples with detectable microplastics of 5-20 items kg-1. They were all fibers in shapes and blue/transparent in colors with the dominant chemical component of polyester and the typical size of 0.02-3 mm. We found a large spatial variability of microplastic abundance in the surface sediment with generally low or undetectable levels in the lagoon deposits and the offshore deep-sea sediments but elevated abundances in the slope sediments of the Xuande Atolls. Correlation analyses suggested that microplastic variability in the Xisha sediment was less affected by local environmental parameters such as water depth, sediment particle size, organic carbon content, and sediment types. We also found that elevated microplastics in the seabed sediments on various sides of the Xuande Atolls could be related to the seasonal change in monsoon-driven currents. Finally, a low risk of microplastic pollution in the surface sediment of the Xisha is concluded based on the assessments of the polymer hazard index and the pollution load index. These findings provide not only a baseline understanding of microplastics but also their dynamics in the surface sediment of the remote Xisha area of the South China Sea.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou 510760, China; College of Oceanography, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian P Li
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; College of Oceanography, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaojie Yuan
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou 510760, China
| |
Collapse
|
22
|
Rani-Borges B, Gomes E, Maricato G, Lins LHFDC, Moraes BRD, Lima GV, Côrtes LGF, Tavares M, Pereira PHC, Ando RA, Queiroz LG. Unveiling the hidden threat of microplastics to coral reefs in remote South Atlantic islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165401. [PMID: 37451469 DOI: 10.1016/j.scitotenv.2023.165401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
The widespread presence of marine microplastics (< 5 mm) is a significant concern, as it may harm marine biodiversity and ocean ecosystems. Corals' capacity to ingest microplastics has emerged as a significant threat to reef ecosystems, owing to the detrimental physiological and ecological effects it can trigger. The extent of the impact of microplastics on Brazilian corals remains unclear and this study aimed to investigate its distribution and characteristics in four coral species: Favia gravida, Mussismilia hispida, Montastrea cavernosa, and Siderastrea stellata, found in the Trindade and Martim Vaz Islands - the most isolated archipelago of Brazil, located about 1200 km (680 miles) east of the coast. This study aims to reveal the extent of microplastic distribution in the coral reef environment, assess the amount of microplastics in different coral species, and compare each species' capacity to adhere and accumulate microplastics. A high concentration of ingested and adhered microplastics was detected in all coral species evaluated in the present study. No significant differences were observed in the sampling points which indicates that although the sampling points are located at different distances from the coast, the microplastic pollution is equally distributed in the region. Polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), poly(methyl methacrylate) (PMMA), Rayon, and Nylon particles were detected, with a predominance of PE (45.5 %). No significant differences in microplastic concentration were detected among the various species and locations studied. Our research presents findings that demonstrate the extensive occurrence of microplastic contamination in coral colonies located on remote islands.
Collapse
Affiliation(s)
- Bárbara Rani-Borges
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, Prof. Lineu Prestes Ave. 748, 05508-000 São Paulo, Brazil.
| | - Erandy Gomes
- Department of Oceanography, Federal University of Pernambuco, UFPE, Prof. Moraes Rego St. 1235, 50740-540 Recife, Brazil; Reef Conservation Project, PCR, Vigário Tenório St. 194, 50030-230, Pernambuco, Brazil; Brazilian Institute of Citizenship and Social Action, IBRAS, Amapá St. 709, 69305-520, Roraima, Brazil; Estácio University Center, Salete St. 290, 02016-001 São Paulo, Brazil
| | - Guilherme Maricato
- Ecology and Evolution Graduate Program, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, UERJ, 28 de Setembro Blvd 87, 20551-030 Rio de Janeiro, Brazil
| | | | - Beatriz Rocha de Moraes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, Prof. Lineu Prestes Ave. 748, 05508-000 São Paulo, Brazil
| | - Gislaine Vanessa Lima
- Reef Conservation Project, PCR, Vigário Tenório St. 194, 50030-230, Pernambuco, Brazil; Federal University of São Paulo, UNIFESP, Silva Jardim St. 136, 11015-020 Santos, Brazil
| | - Luís Guilherme França Côrtes
- Department of Oceanography, Federal University of Pernambuco, UFPE, Prof. Moraes Rego St. 1235, 50740-540 Recife, Brazil; Reef Conservation Project, PCR, Vigário Tenório St. 194, 50030-230, Pernambuco, Brazil
| | - Marcos Tavares
- Museum of Zoology, University of São Paulo, Nazaré Ave. 481, 04263-000 São Paulo, Brazil
| | | | - Rômulo Augusto Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, Prof. Lineu Prestes Ave. 748, 05508-000 São Paulo, Brazil
| | - Lucas Gonçalves Queiroz
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, Prof. Lineu Prestes Ave. 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
23
|
Shu R, Li Z, Gao S, Zhang S, Yu W. Occurrence and accumulation of microplastics in commercial fish in the coastal waters of the Lvsi fishing ground in China. MARINE POLLUTION BULLETIN 2023; 194:115181. [PMID: 37542947 DOI: 10.1016/j.marpolbul.2023.115181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 08/07/2023]
Abstract
In recent years, there has been an exponential increase in the research popularity of microplastics (MPs) in offshore marine environments. However, there is still a gap in the research on the accumulation of MPs in different tissues of aquatic organisms and the trophic transfer of MPs between aquatic organisms. The common occurrence of MPs in the gills and guts of 11 species of commercial fishes was examined in the coastal waters of the Lvsi fishing ground (LSFG). The obtained results showed that >85 % of MPs existed in the gills and guts of these fish, and the abundance was 2.39 ± 1.38 pieces/fish and 2.56 ± 1.42 pieces/fish, respectively. Fibrous and blue are the most common colors and shapes of MPs, and PET is the main polymer type. At the species level, the abundance of MPs in the gills and guts of a few fishes (e.g., Larimichthys polyactis, Setipinna tenuifilis, Collichthys lucidus) decreased with increasing body length and body weight (P < 0.05). At the community level, this situation was not significant (P > 0.05). With increasing trophic level (TL), MPs tended to decrease in the gills (trophic magnification factor, TMF = 0.86) but did not significantly vary in the gut. We believe that MPs are multidimensional pollutants, and their accumulation in tissues/organs of organisms has not been accurately and qualitatively determined. To establish the relationship of MP transport and trophic transfer among water, sediments and organisms, we suggest that more efforts should be made to investigate MPs in aquatic organisms in the coastal waters of LSFG and to increase the examination of MPs in the water column and sediments. This study will help us improve our understanding of MPs pollution, and provide a good reference and basis for the management, monitoring and implementation of pollutants in marine organism of coastal water.
Collapse
Affiliation(s)
- Ruilin Shu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Zheng Li
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Shike Gao
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Shuo Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources In the Yangtze Estuary, Shanghai 200000, China.
| | - Wenwen Yu
- Jiangsu Research Institute of Marine Fisheries, Nantong 226007, China.
| |
Collapse
|
24
|
Justino AKS, Ferreira GVB, Fauvelle V, Schmidt N, Lenoble V, Pelage L, Lucena-Frédou F. Exploring microplastic contamination in reef-associated fishes of the Tropical Atlantic. MARINE POLLUTION BULLETIN 2023; 192:115087. [PMID: 37263026 DOI: 10.1016/j.marpolbul.2023.115087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
Microplastics (MPs) are ubiquitous in marine compartments, and their transboundary distribution favours the dispersion and accumulation of particles in ecosystems. This study investigated MP contamination in four coastal fish species (Haemulon squamipinna, Chaetodon ocellatus, Syacium micrurum, and Alphestes afer) from the southwestern Tropical Atlantic. An alkaline treatment was applied to extract MPs from the digestive tracts, and a Laser Direct Infrared (LDIR) system was used to identify polymers. All species analysed were contaminated with MPs, with Alphestes afer being the most contaminated (1.45 ± 1.09 MPs individual-1; frequency of occurrence 80 %). No significant differences were found in the number and size of detected particles among species. The most common shapes were fibres and films, and polyethylene was the most abundant polymer. This study provides important baseline data on MP contamination in coastal fish species inhabiting complex habitat areas relevant for conserving marine biodiversity.
Collapse
Affiliation(s)
- Anne K S Justino
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, s/n, 52171-900 Recife, Brazil; Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France.
| | - Guilherme V B Ferreira
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, s/n, 52171-900 Recife, Brazil
| | - Vincent Fauvelle
- Université de Toulouse, LEGOS (CNES/CNRS/IRD/UPS), Toulouse, France
| | - Natascha Schmidt
- NILU - Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway
| | - Véronique Lenoble
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| | - Latifa Pelage
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, s/n, 52171-900 Recife, Brazil
| | - Flávia Lucena-Frédou
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, s/n, 52171-900 Recife, Brazil
| |
Collapse
|
25
|
Gurumoorthi K, Luis AJ. Recent trends on microplastics abundance and risk assessment in coastal Antarctica: Regional meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121385. [PMID: 36868550 DOI: 10.1016/j.envpol.2023.121385] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
We investigated sources, abundance and risk of microplastics (MPs) in water, sediments and biota around Antarctica. The concentration of MPs in Southern Ocean (SO) ranged from 0 to 0.56 items/m3 (mean = 0.01 items/m3) and 0-1.96 items/m3 (mean = 0.13 items/m3) in surface and sub-surface water. The distribution of fibers in water was 50%, sediments were 61%, and biota had 43%, which were followed by fragments in the water (42%), sediments (26%), and biota (28%). Shapes of film had lowest concentrations in water (2%), sediments 13%), and biota (3%). Ship traffic, drift of MPs by currents, and untreated waste water discharge contributed to the variety of MPs. The degree of pollution in all matrices was evaluated using the pollution load index (PLI), polymer hazard index (PHI), and potential ecological risk index (PERI). PLI at about 90.3% of locations were at category I followed by 5.9% at category II, 1.6% at category III, and 2.2% at category IV. Average PLI for water (3.14), sediments (6.6), and biota (2.72) had low pollution load (<10). Mean PHI for water, sediments, and biota showed hazards level V with a higher percentage of 84.6% (>1000) and 63.9% (PHI:0-1) in sediments and water, respectively. PERI for water showed 63.9% minor risk, and 36.1% extreme risk. Around 84.6% of sediments were at extreme risk, 7.7% faced minor risk, and 7.7% were at high risk. While 20% of marine organisms living in cold environments experienced minor risk, 20% were in high risk, and 60% were in extreme risk. Highest PERI was found in the water, sediments, and biota in Ross Sea, due to high hazardous polymer composition of polyvinylchloride (PVC) in the water and sediments due to human activity, particularly use of personnel care products and waste water discharge from research stations.
Collapse
Affiliation(s)
- K Gurumoorthi
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Goa, 403 804, India
| | - Alvarinho J Luis
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Goa, 403 804, India.
| |
Collapse
|
26
|
Zheng X, Sun R, Dai Z, He L, Li C. Distribution and risk assessment of microplastics in typical ecosystems in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163678. [PMID: 37100141 DOI: 10.1016/j.scitotenv.2023.163678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Microplastic pollution in the marine environment has attracted worldwide attention. The South China Sea is considered a hotspot for microplastic pollution due to the developed industries and high population density around the South China Sea. The accumulation of microplastics in ecosystems can adversely affect the health of the environment and organisms. This paper reviews the recent microplastic studies conducted in the South China Sea, which novelty summarizes the abundance, types, and potential hazards of microplastics in coral reef ecosystems, mangrove ecosystems, seagrass bed ecosystems, and macroalgal ecosystems. A summary of the microplastic pollution status of four ecosystems and a risk assessment provides a more comprehensive understanding of the impact of microplastic pollution on marine ecosystems in the South China Sea. Microplastic abundances of up to 45,200 items/m3 were reported in coral reef surface waters, 5738.3 items/kg in mangrove sediments, and 927.3 items/kg in seagrass bed sediments. There are few studies of microplastics in the South China Sea macroalgae ecosystems. However, studies from other areas indicate that macroalgae can accumulate microplastics and are more likely to enter the food chain or be consumed by humans. Finally, this paper compared the current risk levels of microplastics in the coral reef, mangrove, and seagrass bed ecosystems based on available studies. Pollution load index (PLI) ranges from 3 to 31 in mangrove ecosystems, 5.7 to 11.9 in seagrass bed ecosystems, and 6.1 to 10.2 in coral reef ecosystems, respectively. The PLI index varies considerably between mangroves depending on the intensity of anthropogenic activity around the mangrove. Further studies on seagrass beds and macroalgal ecosystems are required to extend our understanding of microplastic pollution in marine environments. Recent microplastic detection in fish muscle tissue in mangroves requires more research to further the biological impact of microplastic ingestion and the potential food safety risks.
Collapse
Affiliation(s)
- Xuanjing Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|