1
|
Trzaskowska M, Vivcharenko V, Benko A, Franus W, Goryczka T, Barylski A, Palka K, Przekora A. Biocompatible nanocomposite hydroxyapatite-based granules with increased specific surface area and bioresorbability for bone regenerative medicine applications. Sci Rep 2024; 14:28137. [PMID: 39548237 PMCID: PMC11568164 DOI: 10.1038/s41598-024-79822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
Hydroxyapatite (HA) granules are frequently used in orthopedics and maxillofacial surgeries to fill bone defects and stimulate the regeneration process. Optimal HA granules should have high biocompatibility, high microporosity and/or mesoporosity, and high specific surface area (SSA), which are essential for their bioabsorbability, high bioactivity (ability to form apatite layer on their surfaces) and good osseointegration with the host tissue. Commercially available HA granules that are sintered at high temperatures (≥ 900 °C) are biocompatible but show low porosity and SSA (2-5 m2/g), reduced bioactivity, poor solubility and thereby, low bioabsorbability. HA granules of high microporosity and SSA can be produced by applying low sintering temperatures (below 900 °C). Nevertheless, although HA sintered at low temperatures shows significantly higher SSA (10-60 m2/g) and improved bioabsorbability, it also exhibits high ion reactivity and cytotoxicity under in vitro conditions. The latter is due to the presence of reaction by-products. Thus, the aim of this study was to fabricate novel biomaterials in the form of granules, composed of hydroxyapatite nanopowder sintered at a high temperature (1100 °C) and a biopolymer matrix: chitosan/agarose or chitosan/β-1,3-glucan (curdlan). It was hypothesized that appropriately selected ingredients would ensure high biocompatibility and microstructural properties comparable to HA sintered at low temperatures. Synthesized granules were subjected to the evaluation of their biological, microstructural, physicochemical, and mechanical properties. The obtained results showed that the developed nanocomposite granules were characterized by a lack of cytotoxicity towards both mouse preosteoblasts and normal human fetal osteoblasts, and supported cell adhesion to their surface. Moreover, produced biomaterials had the ability to induce precipitation of apatite crystals after immersion in simulated body fluid, which, combined with high biocompatibility, should ensure good osseointegration after implantation. Additionally, nanocomposite granules possessed microstructural parameters similar to HA sintered at a low temperature (porosity approx. 50%, SSA approx. 30 m²/g), Young's modulus (5-8 GPa) comparable to cancellous bone, and high fluid absorption capacity. Moreover, the nanocomposites were prone to biodegradation under the influence of enzymatic solution and in an acidic environment. Additionally, it was noted that the hydroxyapatite nanoparticles remaining after the physicochemical dissolution of the biomaterial were easily phagocytosed by mouse macrophages, mouse preosteoblasts, and normal human fetal osteoblasts (in vitro studies). The obtained materials show great potential as bone tissue implantation biomaterials with improved bioresorbability. The obtained materials show great potential as bone tissue implantation biomaterials with improved bioresorbability.
Collapse
Affiliation(s)
- Marta Trzaskowska
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Vladyslav Vivcharenko
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aleksandra Benko
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Wojciech Franus
- Department of Construction Materials Engineering and Geoengineering, Lublin University of Technology, Nadbystrzycka 38 D, 20-618, Lublin, Poland
| | - Tomasz Goryczka
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Krzysztof Palka
- Department of Materials Engineering, Lublin University of Technology, Nadbystrzycka 36, 20- 618, Lublin, Poland
| | - Agata Przekora
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| |
Collapse
|
2
|
Pedersen SHF. Acid-base transporters in the context of tumor heterogeneity. Pflugers Arch 2024; 476:689-701. [PMID: 38332178 DOI: 10.1007/s00424-024-02918-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
The copious metabolic acid production and -extrusion by cancer cells render poorly vascularized regions of solid tumors highly acidic. A growing list of proton - and bicarbonate transporters has been suggested to contribute to net acid extrusion from cancer cells, and/or been shown to be dysregulated and favor malignant development in various cancers. The great majority of these roles have been studied at the level of the cancer cells. However, recent advances in understanding of the cellular and physicochemical heterogeneity of solid tumors both enable and necessitate a reexamination of the regulation and roles of acid-base transporters in such malignancies. This review will briefly summarize the state-of-the-art, with a focus on the SLC9A and SLC4A families, for which most evidence is available. This is followed by a discussion of key concepts and open questions arising from recent insights and of the challenges that need to be tackled to address them. Finally, opportunities and challenges in therapeutic targeting of the acid-base transportome in cancers will be addressed.
Collapse
Affiliation(s)
- Stine Helene Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
| |
Collapse
|
3
|
Holmberg SR, Sakamoto Y, Kato A, Romero MF. The role of Na +-coupled bicarbonate transporters (NCBT) in health and disease. Pflugers Arch 2024; 476:479-503. [PMID: 38536494 PMCID: PMC11338471 DOI: 10.1007/s00424-024-02937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
Cellular and organism survival depends upon the regulation of pH, which is regulated by highly specialized cell membrane transporters, the solute carriers (SLC) (For a comprehensive list of the solute carrier family members, see: https://www.bioparadigms.org/slc/ ). The SLC4 family of bicarbonate (HCO3-) transporters consists of ten members, sorted by their coupling to either sodium (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE), chloride (AE1, AE2, AE3), or borate (BTR1). The ionic coupling of SLC4A9 (AE4) remains controversial. These SLC4 bicarbonate transporters may be controlled by cellular ionic gradients, cellular membrane voltage, and signaling molecules to maintain critical cellular and systemic pH (acid-base) balance. There are profound consequences when blood pH deviates even a small amount outside the normal range (7.35-7.45). Chiefly, Na+-coupled bicarbonate transporters (NCBT) control intracellular pH in nearly every living cell, maintaining the biological pH required for life. Additionally, NCBTs have important roles to regulate cell volume and maintain salt balance as well as absorption and secretion of acid-base equivalents. Due to their varied tissue expression, NCBTs have roles in pathophysiology, which become apparent in physiologic responses when their expression is reduced or genetically deleted. Variations in physiological pH are seen in a wide variety of conditions, from canonically acid-base related conditions to pathologies not necessarily associated with acid-base dysfunction such as cancer, glaucoma, or various neurological diseases. The membranous location of the SLC4 transporters as well as recent advances in discovering their structural biology makes them accessible and attractive as a druggable target in a disease context. The role of sodium-coupled bicarbonate transporters in such a large array of conditions illustrates the potential of treating a wide range of disease states by modifying function of these transporters, whether that be through inhibition or enhancement.
Collapse
Affiliation(s)
- Shannon R Holmberg
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA
- Biochemistry & Molecular Biology, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA
| | - Yohei Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA.
- Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA.
| |
Collapse
|
4
|
Kang J, Shibasaki M, Terauchi M, Oshibe N, Hyodo K, Marukawa E. Comparative analysis of the in vivo kinetic properties of various bone substitutes filled into a peri-implant canine defect model. J Periodontal Implant Sci 2024; 54:96-107. [PMID: 37857516 PMCID: PMC11065534 DOI: 10.5051/jpis.2204660233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/21/2023] [Accepted: 04/30/2023] [Indexed: 10/21/2023] Open
Abstract
PURPOSE Deproteinized bovine bone or synthetic hydroxyapatite are 2 prevalent bone grafting materials used in the clinical treatment of peri-implant bone defects. However, the differences in bone formation among these materials remain unclear. This study evaluated osteogenesis kinetics in peri-implant defects using 2 types of deproteinized bovine bone (Bio-Oss® and Bio-Oss/Collagen®) and 2 types of synthetic hydroxyapatite (Apaceram-AX® and Refit®). We considered factors including newly generated bone volume; bone, osteoid, and material occupancy; and bone-to-implant contact. METHODS A beagle model with a mandibular defect was created by extracting the bilateral mandibular third and fourth premolars. Simultaneously, an implant was inserted into the defect, and the space between the implant and the surrounding bone walls was filled with Bio-Oss, Bio-Oss/Collagen, Apaceram-AX, Refit, or autologous bone. Micro-computed tomography and histological analyses were conducted at 3 and 6 months postoperatively (Refit and autologous bone were not included at the 6-month time point due to their rapid absorption). RESULTS All materials demonstrated excellent biocompatibility and osteoconductivity. At 3 months, Bio-Oss and Apaceram-AX exhibited significantly greater volumes of formation than the other materials, with Bio-Oss having a marginally higher amount. However, this outcome was reversed at 6 months, with no significant difference between the 2 materials at either time point. Apaceram-AX displayed notably slower bioresorption and the largest quantity of residual material at both time points. In contrast, Refit had significantly greater bioresorption, with complete resorption and rapid maturation involving cortical bone formation at the crest at 3 months, Refit demonstrated the highest mineralized tissue and osteoid occupancy after 3 months, albeit without statistical significance. CONCLUSIONS Overall, the materials demonstrated varying post-implantation behaviors in vivo. Thus, in a clinical setting, both the properties of these materials and the specific conditions of the defects needing reinforcement should be considered to identify the most suitable material.
Collapse
Affiliation(s)
- Jingyang Kang
- Department of Regenerative and Reconstructive Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Shibasaki
- Department of Regenerative and Reconstructive Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Masahiko Terauchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Narumi Oshibe
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuya Hyodo
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eriko Marukawa
- Department of Regenerative and Reconstructive Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
5
|
Everts V, Jansen IDC, de Vries TJ. Mechanisms of bone resorption. Bone 2022; 163:116499. [PMID: 35872106 DOI: 10.1016/j.bone.2022.116499] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Vincent Everts
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, the Netherlands; Department of Anatomy, Dental Faculty, Chulalongkorn University, Bangkok, Thailand.
| | - Ineke D C Jansen
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, the Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
7
|
Gong S, Ma J, Tian A, Lang S, Luo Z, Ma X. Effects and mechanisms of microenvironmental acidosis on osteoclast biology. Biosci Trends 2021; 16:58-72. [PMID: 34732613 DOI: 10.5582/bst.2021.01357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Due to continuous bone remodeling, the bone tissue is dynamic and constantly being updated. Bone remodeling is precisely regulated by the balance between osteoblast-induced bone formation and osteoclast-induced bone resorption. As a giant multinucleated cell, formation and activities of osteoclasts are regulated by macrophage colony-stimulating factor (M-CSF), receptor activator of nuclear factor-kappaB ligand (RANKL), and by pathological destabilization of the extracellular microenvironment. Microenvironmental acidosis, as the prime candidate, is a driving force of multiple biological activities of osteoclast precursor and osteoclasts. The mechanisms involved in these processes, especially acid-sensitive receptors/channels, are of great precision and complicated. Recently, remarkable progress has been achieved in the field of acid-sensitive mechanisms of osteoclasts. It is important to elucidate the relationship between microenvironmental acidosis and excessive osteoclasts activity, which will help in understanding the pathophysiology of diseases that are associated with excess bone resorption. This review summarizes physiological consequences and in particular, potential mechanisms of osteoclast precursor or osteoclasts in the context of acidosis microenvironments.
Collapse
Affiliation(s)
- Shuwei Gong
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianxiong Ma
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Aixian Tian
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Shuang Lang
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiheng Luo
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Xinlong Ma
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| |
Collapse
|
8
|
Wang F, Nakata H, Sun X, Maung WM, Sato M, Kon K, Ozeki K, Ikumi R, Kasugai S, Kuroda S. A novel hydroxyapatite fiber material for the regeneration of critical-sized rabbit calvaria defects. Dent Mater J 2021; 40:964-971. [PMID: 33883351 DOI: 10.4012/dmj.2020-327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hydroxyapatite (HA) [Ca10 (PO4)6 (OH)2] has a high degree of chemical similarity with the mineral composition of animal bone. Hydroxyapatite fiber scaffold (HAF) is a biological material with a highly interconnected porous structure. We aimed to study the physical and biological characteristics of HAF and compare the osteogenic effects of HAF, natural osteogenic materials (NOM), and carbonate apatite (CO3Ap-DP) in the parietal defects of a rabbit's skull. X-ray analysis and histological assessment showed that HAF followed a trend of early initial osteogenesis and bone trabecular structure formation, especially at the cortical bone portion.Compared to the other two materials, HAF was more absorptive. Results indicated that HAF had the same osteoconductive and new bone formation properties as NOM and CO3Ap-DP. These findings will provide options for future material development and novel protocols for use in surgeries, ultimately leading to better patient outcomes.
Collapse
Affiliation(s)
- Fangshuo Wang
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| | - Hidemi Nakata
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| | - Xiaolong Sun
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| | - Wai Myo Maung
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| | - Masashi Sato
- Department of Oral and Maxillofacial Surgery, Tokyo Medical and Dental University
| | - Kazuhiro Kon
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| | - Kazuhide Ozeki
- Major in Mechanical Systems Engineering, Graduate School of Science and Engineering, Ibaraki University
| | - Reo Ikumi
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| | - Shohei Kasugai
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| | - Shinji Kuroda
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| |
Collapse
|
9
|
Ribet ABP, Ng PY, Pavlos NJ. Membrane Transport Proteins in Osteoclasts: The Ins and Outs. Front Cell Dev Biol 2021; 9:644986. [PMID: 33718388 PMCID: PMC7952445 DOI: 10.3389/fcell.2021.644986] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
During bone resorption, the osteoclast must sustain an extraordinarily low pH environment, withstand immense ionic pressures, and coordinate nutrient and waste exchange across its membrane to sustain its unique structural and functional polarity. To achieve this, osteoclasts are equipped with an elaborate set of membrane transport proteins (pumps, transporters and channels) that serve as molecular ‘gatekeepers’ to regulate the bilateral exchange of ions, amino acids, metabolites and macromolecules across the ruffled border and basolateral domains. Whereas the importance of the vacuolar-ATPase proton pump and chloride voltage-gated channel 7 in osteoclasts has long been established, comparatively little is known about the contributions of other membrane transport proteins, including those categorized as secondary active transporters. In this Special Issue review, we provide a contemporary update on the ‘ins and outs’ of membrane transport proteins implicated in osteoclast differentiation, function and bone homeostasis and discuss their therapeutic potential for the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Amy B P Ribet
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Pei Ying Ng
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Nathan J Pavlos
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
10
|
Abstract
Skeletal involvement is a frequent and troublesome complication in advanced cancers. In the process of tumor cells homing to the skeleton to form bone metastases (BM), different mechanisms allow tumor cells to interact with cells of the bone microenvironment and seed in the bone tissue. Among these, tumor acidosis has been directly associated with tumor invasion and aggressiveness in several types of cancer although it has been less explored in the context of BM. In bone, the association of local acidosis and cancer invasiveness is even more important for tumor expansion since the extracellular matrix is formed by both organic and hard inorganic matrices and bone cells are used to sense protons and adapt or react to a low pH to maintain tissue homeostasis. In the BM microenvironment, increased concentration of protons may derive not only from glycolytic tumor cells but also from tumor-induced osteoclasts, the bone-resorbing cells, and may influence the progression or symptoms of BM in many different ways, by directly enhancing cancer cell motility and aggressiveness, or by modulating the functions of bone cells versus a pro-tumorigenic phenotype, or by inducing bone pain. In this review, we will describe and discuss the cause of acidosis in BM, its role in BM microenvironment, and which are the final effectors that may be targeted to treat metastatic patients.
Collapse
Affiliation(s)
- Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123, Bologna, Italy
| |
Collapse
|
11
|
Sedlyarov V, Eichner R, Girardi E, Essletzbichler P, Goldmann U, Nunes-Hasler P, Srndic I, Moskovskich A, Heinz LX, Kartnig F, Bigenzahn JW, Rebsamen M, Kovarik P, Demaurex N, Superti-Furga G. The Bicarbonate Transporter SLC4A7 Plays a Key Role in Macrophage Phagosome Acidification. Cell Host Microbe 2018; 23:766-774.e5. [PMID: 29779931 PMCID: PMC6002608 DOI: 10.1016/j.chom.2018.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/14/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022]
Abstract
Macrophages represent the first line of immune defense against pathogens, and phagosome acidification is a necessary step in pathogen clearance. Here, we identified the bicarbonate transporter SLC4A7, which is strongly induced upon macrophage differentiation, as critical for phagosome acidification. Loss of SLC4A7 reduced acidification of phagocytosed beads or bacteria and impaired the intracellular microbicidal capacity in human macrophage cell lines. The phenotype was rescued by wild-type SLC4A7, but not by SLC4A7 mutants, affecting transport capacity or cell surface localization. Loss of SLC4A7 resulted in increased cytoplasmic acidification during phagocytosis, suggesting that SLC4A7-mediated, bicarbonate-driven maintenance of cytoplasmic pH is necessary for phagosome acidification. Altogether, we identify SLC4A7 and bicarbonate-driven cytoplasmic pH homeostasis as an important element of phagocytosis and the associated microbicidal functions in macrophages.
Collapse
Affiliation(s)
- Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Ruth Eichner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Patrick Essletzbichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Ismet Srndic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Anna Moskovskich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Felix Kartnig
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Johannes W Bigenzahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
12
|
Chinetti-Gbaguidi G, Daoudi M, Rosa M, Vinod M, Louvet L, Copin C, Fanchon M, Vanhoutte J, Derudas B, Belloy L, Haulon S, Zawadzki C, Susen S, Massy ZA, Eeckhoute J, Staels B. Human Alternative Macrophages Populate Calcified Areas of Atherosclerotic Lesions and Display Impaired RANKL-Induced Osteoclastic Bone Resorption Activity. Circ Res 2017; 121:19-30. [DOI: 10.1161/circresaha.116.310262] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 11/16/2022]
Abstract
Rationale:
Vascular calcification is a process similar to bone formation leading to an inappropriate deposition of calcium phosphate minerals in advanced atherosclerotic plaques. Monocyte-derived macrophages, located in atherosclerotic lesions and presenting heterogeneous phenotypes, from classical proinflammatory M1 to alternative anti-inflammatory M2 macrophages, could potentially display osteoclast-like functions.
Objective:
To characterize the phenotype of macrophages located in areas surrounding the calcium deposits in human atherosclerotic plaques.
Methods and Results:
Macrophages near calcium deposits display an alternative phenotype being both CD68 and mannose receptor–positive, expressing carbonic anhydrase type II, but relatively low levels of cathepsin K. In vitro interleukin-4-polarization of human primary monocytes into macrophages results in lower expression and activity of cathepsin K compared with resting unpolarized macrophages. Moreover, interleukin-4 polarization lowers expression levels of the osteoclast transcriptional activator nuclear factor of activated T cells type c-1, associated with increased gene promoter levels of the transcriptional repression mark H3K27me3 (histone 3 lysine 27 trimethylation). Despite higher expression of the receptor activator of nuclear factor κB receptor, receptor activator of nuclear factor κB ligand/macrophage colony-stimulating factor induction of nuclear factor of activated T cells type c-1 and cathepsin K expression is defective in these macrophages because of reduced Erk/c-fos–mediated downstream signaling resulting in impaired bone resorption capacity.
Conclusions:
These results indicate that macrophages surrounding calcium deposits in human atherosclerotic plaques are phenotypically defective being unable to resorb calcification.
Collapse
Affiliation(s)
- Giulia Chinetti-Gbaguidi
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| | - Mehdi Daoudi
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| | - Mickael Rosa
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| | - Manjula Vinod
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| | - Loïc Louvet
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| | - Corinne Copin
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| | - Mélanie Fanchon
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| | - Jonathan Vanhoutte
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| | - Bruno Derudas
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| | - Loic Belloy
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| | - Stephan Haulon
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| | - Christophe Zawadzki
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| | - Sophie Susen
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| | - Ziad A. Massy
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| | - Jérôme Eeckhoute
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| | - Bart Staels
- From the Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Lille, France (G.C.-G., M.D., M.R., M.V., C.C., M.F., J.V., B.D., L.B., C.Z., S.S., J.E., B.S.); University of Côte d’Azur, CHU, Inserm, CNRS, IRCAN, Nice, France (G.C.-G.); Inserm U1088, University of Picardie Jules Verne, and Amiens University Hospital, Amiens, France (L.L.); CHU Lille, Lille, France (S.H.); Division of Nephrology, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt (Z.A.M.); and
| |
Collapse
|
13
|
Müller WEG, Ackermann M, Neufurth M, Tolba E, Wang S, Feng Q, Schröder HC, Wang X. A Novel Biomimetic Approach to Repair Enamel Cracks/Carious Damages and to Reseal Dentinal Tubules by Amorphous Polyphosphate. Polymers (Basel) 2017; 9:120. [PMID: 30970799 PMCID: PMC6432492 DOI: 10.3390/polym9040120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/21/2022] Open
Abstract
Based on natural principles, we developed a novel toothpaste, containing morphogenetically active amorphous calcium polyphosphate (polyP) microparticles which are enriched with retinyl acetate ("a-polyP/RA-MP"). The spherical microparticles (average size, 550 ± 120 nm), prepared by co-precipitating soluble Na-polyP with calcium chloride and supplemented with retinyl acetate, were incorporated into a base toothpaste at a final concentration of 1% or 10%. The "a-polyP/RA-MP" ingredient significantly enhanced the stimulatory effect of the toothpaste on the growth of human mesenchymal stem cells (MSC). This increase was paralleled by an upregulation of the MSC marker genes for osteoblast differentiation, collagen type I and alkaline phosphatase. In addition, polyP, applied as Zn-polyP microparticles ("Zn-a-polyP-MP"), showed a distinct inhibitory effect on growth of Streptococcus mutans, in contrast to a toothpaste containing the broad-spectrum antibiotic triclosan that only marginally inhibits this cariogenic bacterium. Moreover, we demonstrate that the "a-polyP/RA-MP"-containing toothpaste efficiently repairs cracks/fissures in the enamel and dental regions and reseals dentinal tubules, already after a five-day treatment (brushing) of teeth as examined by SEM (scanning electron microscopy) and semi-quantitative EDX (energy-dispersive X-ray spectroscopy). The occlusion of the dentin cracks by the microparticles turned out to be stable and resistant against short-time high power sonication. Our results demonstrate that the novel toothpaste prepared here, containing amorphous polyP microparticles enriched with retinyl acetate, is particularly suitable for prevention/repair of (cariogenic) damages of tooth enamel/dentin and for treatment of dental hypersensitivity. While the polyP microparticles function as a sealant for dentinal damages and inducer of remineralization processes, the retinyl acetate acts as a regenerative stimulus for collagen gene expression in cells of the surrounding tissue, the periodontium.
Collapse
Affiliation(s)
- Werner E G Müller
- European Research Council-Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University,Johann Joachim Becher Weg 13, D-55099 Mainz, Germany.
| | - Meik Neufurth
- European Research Council-Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Emad Tolba
- European Research Council-Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Shunfeng Wang
- European Research Council-Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China.
| | - Heinz C Schröder
- European Research Council-Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Xiaohong Wang
- European Research Council-Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
14
|
Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite–-Past, Present, and Future in Bone Regeneration. ACTA ACUST UNITED AC 2016. [DOI: 10.4137/btri.s36138] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hydroxyapatite (HA) is an essential element required for bone regeneration. Different forms of HA have been used for a long time. The essence of bone regeneration always revolves around the healthy underlying bone or it may be the surroundings that give enough strength. HA is well known for bone regeneration through conduction or by acting as a scaffold for filling of defects from ancient times, but emerging trends of osteoinductive property of HA are much promising for new bone regeneration. Emerging technology has made the dreams of clinicians to realize the use of HA in different forms for various regenerative purposes both in vivo and in vitro. The nanostructured calcium apatite plays an important role in the construction of calcified tissues. The nanostructured material has the ability to attach biological molecules such as proteins, which can be used as functional materials in many aspects, and the capability of synthesizing controlled structures of apatite to simulate the basic structure of bone and other calcified tissues. The process of regeneration requires a biomimetic and biocompatible nanostructured novel material. The nanostructured bioceramic particles are of interest in synthetic bone grafts and bone cements both injectable and controlled setting, so that such composites will reinforce the strength of bioceramics. Extensive research is being carried out for bone regeneration using nanotechnology. Artificial bone formation is not far from now. Nanotechnology has made many dreams come true. This paper gives comprehensive insights into the history and evolution with changing trends in the use of HA for various regenerative purposes.
Collapse
Affiliation(s)
| | - Sudheer Kondaka
- Department of Prosthodontics, Lenora Institute of Dental Sciences, Rajahmundry, Andhra Pradesh, India
| | - Krishna Prasad Lingamaneni
- Department of Oral and Maxillofacial Surgery, SIBAR Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| |
Collapse
|
15
|
Liu Y, Yang J, Chen LM. Structure and Function of SLC4 Family [Formula: see text] Transporters. Front Physiol 2015; 6:355. [PMID: 26648873 PMCID: PMC4664831 DOI: 10.3389/fphys.2015.00355] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
The solute carrier SLC4 family consists of 10 members, nine of which are [Formula: see text] transporters, including three Na(+)-independent Cl(-)/[Formula: see text] exchangers AE1, AE2, and AE3, five Na(+)-coupled [Formula: see text] transporters NBCe1, NBCe2, NBCn1, NBCn2, and NDCBE, as well as "AE4" whose Na(+)-dependence remains controversial. The SLC4 [Formula: see text] transporters play critical roles in pH regulation and transepithelial movement of electrolytes with a broad range of demonstrated physiological relevances. Dysfunctions of these transporters are associated with a series of human diseases. During the past decades, tremendous amount of effort has been undertaken to investigate the topological organization of the SLC4 transporters in the plasma membrane. Based upon the proposed topology models, mutational and functional studies have identified important structural elements likely involved in the ion translocation by the SLC4 transporters. In the present article, we review the advances during the past decades in understanding the structure and function of the SLC4 transporters.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
16
|
|
17
|
Morethson P. Extracellular fluid flow and chloride content modulate H(+) transport by osteoclasts. BMC Cell Biol 2015; 16:20. [PMID: 26271334 PMCID: PMC4536797 DOI: 10.1186/s12860-015-0066-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/28/2015] [Indexed: 11/18/2022] Open
Abstract
Background Bone resorption takes place within the basic multicellular units (BMU), and the surface to be resorbed is isolated from adjacent bone surfaces by a sealing zone between osteoclast membrane and bone matrix, which defines the limits of the resorption lacuna. Considering that the extracellular fluid (ECF) in both BMU and the resorption lacuna can be isolated from its surroundings, I hypothesize that flow and ion composition of the bone ECF in these sites might contribute to the regulation of osteoclast H+ secretion. To investigate this hypothesis, I evaluated the H+ secretion properties of individual osteoclasts and osteoclast-like cells (OCL-cells) and investigated whether changes in flow or chloride content of the extracellular solution modify the H+ secretion properties in vitro. Results The results show that 1) osteoclasts are unable to secrete H+ and regulate intracellular pH (pHi) under continuous flow conditions and exhibit progressive intracellular acidification; 2) the cessation of flow coincides with the onset of H+ secretion and subsequent progressive intracellular alkalinization of osteoclasts and OCL-cells; 3) osteoclasts exhibit spontaneous rhythmic oscillations of pHi in non-flowing ECF, 4) pHi oscillations are not abolished by concanamycin, NPPB, or removal of extracellular Na+ or Cl−; 5) extracellular Cl− removal modifies the pattern of oscillations, by diminishing H+ secretion; 6) pHi oscillations are abolished by continuous flowing of ECF over osteoclasts and OCL-cells. Conclusions The data suggest, for the first time, that ECF flow and Cl− content have direct effects on osteoclast H+ secretion and could be part of a mechanism determining the onset of osteoclast H+ secretion required for bone resorption. Electronic supplementary material The online version of this article (doi:10.1186/s12860-015-0066-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priscilla Morethson
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil. .,Department of Biosciences, Federal University of São Paulo - Unifesp, R. Silva Jardim 136 Vila Mathias, Santos, 11065-201, SP, Brazil.
| |
Collapse
|
18
|
Abstract
Cation-coupled HCO3(-) transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3(-) and associated with Na(+) and Cl(-) movement. The first Na(+)-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na(+)-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na(+)-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3(-) transporters of the SLC4-family.
Collapse
Affiliation(s)
- Christian Aalkjaer
- Department of Biomedicine, and the Water and Salt Research Center, Aarhus University, Aarhus, Denmark; Department of Physiology, Emory University School of Medicine, Atlanta, USA
| | | | | | | |
Collapse
|
19
|
Nested Levels of Adaptive Divergence: The Genetic Basis of Craniofacial Divergence and Ecological Sexual Dimorphism. G3-GENES GENOMES GENETICS 2015; 5:1613-24. [PMID: 26038365 PMCID: PMC4528318 DOI: 10.1534/g3.115.018226] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exemplary systems for adaptive divergence are often characterized by their large degrees of phenotypic variation. This variation represents the outcome of generations of diversifying selection. However, adaptive radiations can also contain a hierarchy of differentiation nested within them where species display only subtle phenotypic differences that still have substantial effects on ecology, function, and ultimately fitness. Sexual dimorphisms are also common in species displaying adaptive divergence and can be the result of differential selection between sexes that produce ecological differences between sexes. Understanding the genetic basis of subtle variation (between certain species or sexes) is therefore important for understanding the process of adaptive divergence. Using cichlids from the dramatic adaptive radiation of Lake Malawi, we focus on understanding the genetic basis of two aspects of relatively subtle phenotypic variation. This included a morphometric comparison of the patterns of craniofacial divergence between two ecologically similar species in relation to the larger adaptive radiation of Malawi, and male-female morphological divergence between their F2 hybrids. We then genetically map craniofacial traits within the context of sex and locate several regions of the genome that contribute to variation in craniofacial shape that is relevant to sexual dimorphism within species and subtle divergence between closely related species, and possibly to craniofacial divergence in the Malawi radiation as a whole. To enhance our search for candidate genes we take advantage of population genomic data and a genetic map that is anchored to the cichlid genome to determine which genes within our QTL regions are associated with SNPs that are alternatively fixed between species. This study provides a holistic understanding of the genetic underpinnings of adaptive divergence in craniofacial shape.
Collapse
|
20
|
Liotier P, Rossi J, Wendling-Mansuy S, Chabrand P. Trabecular bone remodelling under pathological conditions based on biochemical and mechanical processes involved in BMU activity. Comput Methods Biomech Biomed Engin 2013; 16:1150-62. [DOI: 10.1080/10255842.2012.654781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Romero MF, Chen AP, Parker MD, Boron WF. The SLC4 family of bicarbonate (HCO₃⁻) transporters. Mol Aspects Med 2013; 34:159-82. [PMID: 23506864 DOI: 10.1016/j.mam.2012.10.008] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/28/2012] [Indexed: 01/13/2023]
Abstract
The SLC4 family consists of 10 genes (SLC4A1-5; SLC4A7-11). All encode integral membrane proteins with very similar hydropathy plots-consistent with 10-14 transmembrane segments. Nine SLC4 members encode proteins that transport HCO3(-) (or a related species, such as CO3(2-)) across the plasma membrane. Functionally, eight of these proteins fall into two major groups: three Cl-HCO3 exchangers (AE1-3) and five Na(+)-coupled HCO3(-) transporters (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE). Two of the Na(+)-coupled transporters (NBCe1, NBCe2) are electrogenic; the other three Na(+)-coupled HCO3(-) transporters and all three AEs are electroneutral. In addition, two other SLC4 members (AE4, SLC4A9 and BTR1, SLC4A11) do not yet have a firmly established function. Most, though not all, SLC4 members are functionally inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). SLC4 proteins play important roles many modes of acid-base homeostasis: the carriage of CO2 by erythrocytes, the transport of H(+) or HCO3(-) by several epithelia, as well as the regulation of cell volume and intracellular pH.
Collapse
Affiliation(s)
- Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
22
|
Dorozhkin SV. Calcium Orthophosphate-Based Bioceramics. MATERIALS (BASEL, SWITZERLAND) 2013; 6:3840-3942. [PMID: 28788309 PMCID: PMC5452669 DOI: 10.3390/ma6093840] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/07/2013] [Accepted: 08/19/2013] [Indexed: 02/07/2023]
Abstract
Various types of grafts have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A bit later, such synthetic biomaterials were called bioceramics. In principle, bioceramics can be prepared from diverse materials but this review is limited to calcium orthophosphate-based formulations only, which possess the specific advantages due to the chemical similarity to mammalian bones and teeth. During the past 40 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the calcium orthophosphate-based implants remain biologically stable once incorporated into the skeletal structure or whether they were resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed and such formulations became an integrated part of the tissue engineering approach. Now calcium orthophosphate scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous and harbor different biomolecules and/or cells. Therefore, current biomedical applications of calcium orthophosphate bioceramics include bone augmentations, artificial bone grafts, maxillofacial reconstruction, spinal fusion, periodontal disease repairs and bone fillers after tumor surgery. Perspective future applications comprise drug delivery and tissue engineering purposes because calcium orthophosphates appear to be promising carriers of growth factors, bioactive peptides and various types of cells.
Collapse
|
23
|
Liu Y, Qin X, Wang DK, Guo YM, Gill HS, Morris N, Parker MD, Chen LM, Boron WF. Effects of optional structural elements, including two alternative amino termini and a new splicing cassette IV, on the function of the sodium-bicarbonate cotransporter NBCn1 (SLC4A7). J Physiol 2013; 591:4983-5004. [PMID: 23959679 DOI: 10.1113/jphysiol.2013.258673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The SLC4A7 gene encodes the electroneutral sodium/HCO3 cotransporter NBCn1, which plays important physiological and pathophysiological roles in many cell types. Previous work identified six NBCn1 variants differing in the sequence of the extreme N terminus--MEAD in rat only, MERF in human only--as well as in the optional inclusion of cassettes I, II, and III. Earlier work also left open the question of whether optional structural elements (OSEs) affect surface abundance or intrinsic (per-molecule) transport activity. Here, we demonstrate for the first time that SLC4A7 from one species can express both MEAD- and MERF-NBCn1. We also identify a novel cassette IV of 20 aa, and extend by 10 the number of full-length NBCn1 variants. The alternative N termini and four cassettes could theoretically produce 32 major variants. Moreover, we identify a group of cDNAs predicted to encode just the cytosolic N-terminal domain (Nt) of NBCn1. A combination of electrophysiology and biotinylation shows that the OSEs can affect surface abundance and intrinsic HCO3(-) transport activity of NBCn1, as expressed in Xenopus oocytes. Specifically, MEAD tends to increase whereas novel cassette IV reduces surface abundance. Cassettes II, III and novel cassette IV all appear to increase the intrinsic activity of NBCn1.
Collapse
Affiliation(s)
- Ying Liu
- L.-M. Chen: Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science and Technology, 1037 Luoyu Rd, Wuhan, Hubei, China 430074.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
25
|
Larsen AM, Krogsgaard-Larsen N, Lauritzen G, Olesen CW, Honoré Hansen S, Boedtkjer E, Pedersen SF, Bunch L. Gram-Scale Solution-Phase Synthesis of Selective Sodium Bicarbonate Co-transport Inhibitor S0859: in vitro Efficacy Studies in Breast Cancer Cells. ChemMedChem 2012; 7:1808-14. [DOI: 10.1002/cmdc.201200335] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Indexed: 12/15/2022]
|
26
|
Brisson L, Reshkin SJ, Goré J, Roger S. pH regulators in invadosomal functioning: proton delivery for matrix tasting. Eur J Cell Biol 2012; 91:847-60. [PMID: 22673002 DOI: 10.1016/j.ejcb.2012.04.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/20/2022] Open
Abstract
Invadosomes are actin-rich finger-like cellular structures sensing and interacting with the surrounding extracellular matrix (ECM) and involved in its proteolytic remodeling. Invadosomes are structures distinct from other adhesion complexes, and have been identified in normal cells that have to cross tissue barriers to fulfill their function such as leukocytes, osteoclasts and endothelial cells. They also represent features of highly aggressive cancer cells, allowing them to escape from the primary tumor, to invade surrounding tissues and to reach systemic circulation. They are localized to the ventral membrane of cells grown under 2-dimensional conditions and are supposed to be present all around cells grown in 3-dimensional matrices. Indeed invadosomes are key structures in physiological processes such as inflammation and the immune response, bone remodeling, tissue repair, but also in pathological conditions such as osteopetrosis and the development of metastases. Invadosomes are subdivided into podosomes, found in normal cells, and into invadopodia specific for cancer cells. While these two structures exhibit differences in organization, size, number and half-life, they share similarities in molecular composition, participation in cell-matrix adhesion and promoting matrix degradation. A key determinant in invadosomal function is the recruitment and release of proteases, such as matrix metalloproteinases (MMPs), serine proteases and cysteine cathepsins, together with their activation in a tightly controlled and highly acidic microenvironment. Therefore numerous pH regulators such as V-ATPases and Na(+)/H(+) exchangers, are found in invadosomes and are directly involved in their constitution as well as their functioning. This review focuses on the participation of pH regulators in invadosome function in physiological and pathological conditions, with a particular emphasis on ECM remodeling by osteoclasts during bone resorption and by cancer cells.
Collapse
Affiliation(s)
- Lucie Brisson
- Nutrition, Growth and Cancer, Université François-Rabelais de Tours, Inserm U, France
| | | | | | | |
Collapse
|
27
|
Chen LM, Qin X, Moss FJ, Liu Y, Boron WF. Effect of simultaneously replacing putative TM6 and TM12 of human NBCe1-A with those from NBCn1 on surface abundance in Xenopus oocytes. J Membr Biol 2012; 245:131-40. [PMID: 22383045 DOI: 10.1007/s00232-012-9421-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/04/2012] [Indexed: 01/20/2023]
Abstract
HCO₃⁻ translocation across the plasma membrane via the electrogenic Na/HCO₃⁻ cotransporter NBCe1 plays an important role in intracellular pH regulation and transepithelial HCO₃⁻ transport. However, the structural determinants of transporter function remain largely unknown. A previous study showed that the putative fourth extracellular loop (EL4) plays an essential role in determining the electrogenicity of NBCe1. In the present study, we generated eight new chimeras of human NBCe1-A and NBCn1-A. All possess the putative NBCe1 EL4 and are electrogenic. Chimera O, in which the putative sixth transmembrane segment (TM6) and EL5 through the C terminus (Ct) of NBCe1 was replaced by corresponding NBCn1 sequence, produces the smallest hyperpolarization (1-2 mV) when CO₂/HCO₃⁻ is added to the extracellular solution. Biotinylation experiments show that O has a very low abundance at the plasma membrane. However, chimeras in which we simultaneously replaced the putative TM6 and smaller subdomains of the EL5-Ct region for the NBCn1 sequence were strongly electrogenic except for chimera T, in which we replaced TM6 and TM12 of NBCe1 with the corresponding regions of NBCn1. T exhibited greatly reduced transporter surface expression compared to wild-type NBCe1-A, while retaining at least some electrogenic character. We hypothesize that putative TM6 and TM12 are part of a functional unit and that if the two TMs are replaced by those of the same transporter type, high surface expression would require that the surrounding TMs are also from the same transporter type.
Collapse
Affiliation(s)
- Li-Ming Chen
- Department of Biological Sciences, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, Hubei Province, China.
| | | | | | | | | |
Collapse
|
28
|
Houillier P, Bourgeois S. More actors in ammonia absorption by the thick ascending limb. Am J Physiol Renal Physiol 2011; 302:F293-7. [PMID: 22088435 DOI: 10.1152/ajprenal.00307.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review will briefly summarize current knowledge on the basolateral ammonia transport mechanisms in the thick ascending limb (TAL) of the loop of Henle. This segment transports ammonia against a concentration gradient and is responsible for the accumulation of ammonia in the medullary interstitium, which, in turn, favors ammonia secretion across the collecting duct. Experimental data indicate that the sodium/hydrogen ion exchanger isoform 4 (NHE4; Scl9a4) is a sodium/ammonia exchanger and plays a major role in this process. Disruption of murine NHE4 leads to metabolic acidosis with inappropriate urinary ammonia excretion and decreases the ability of the TAL to absorb ammonia and to build the corticopapillary ammonia gradient. However, NHE4 does not account for the entirety of ammonia absorption by the TAL, indicating that, at least, one more transporter is involved.
Collapse
Affiliation(s)
- Pascal Houillier
- Département de Physiologie, Hôpital Européen Georges Pompidou, Paris, France.
| | | |
Collapse
|
29
|
Lee S, Choi I. Sodium-bicarbonate cotransporter NBCn1/Slc4a7 inhibits NH4Cl-mediated inward current in Xenopus oocytes. Exp Physiol 2011; 96:745-55. [PMID: 21571816 DOI: 10.1113/expphysiol.2011.057844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The electroneutral Na(+)-HCO(3)(-) cotransporter NBCn1 (SLC4A7) contributes to intracellular pH maintenance and transepithelial HCO(3)(-) movement. In this study, we expressed NBCn1 in Xenopus oocytes and examined the effect of NBCn1 on oocyte NH(4)(+) transport by analysing changes in membrane potential, current and intracellular pH mediated by NH(4)Cl. In the presence of HCO(3)(-)/CO(2), applying NH(4)Cl (20 mm) produced intracellular acidification of oocytes. The acidification was faster in oocytes expressing NBCn1 than in control oocytes injected with water; however, NH(4)Cl-mediated membrane depolarization was smaller in oocytes expressing NBCn1. In HCO(3)(-)/CO(2)-free solution, NH(4)Cl produced a smaller inward current in NBCn1-expressing oocytes (56% inhibition by 20 mm NH(4)Cl, measured at --60 mV), while minimally affecting intracellular acidification. The inhibition of the current by NBCn1 was unaffected when BaCl(2) replaced KCl. Current-voltage relationships showed a positive and nearly linear relationship between NH(4)Cl-mediated current and voltage, which was markedly reduced by NBCn1. Large basal currents (before NH(4)Cl exposure) were produced in NBCn1-expressing oocytes owing to the previously characterized channel-like activity of NBCn1. Inhibiting this channel-like activity by Na(+) removal abolished the inhibitory effect of NBCn1 on NH(4)Cl-mediated currents. The currents were progressively reduced over 72-120 h after NBCn1 cRNA injection, during which the channel-like activity was high. These results indicate that NBCn1 stimulates NH(4)(+) transport by its Na(+)-HCO(3)(-) cotransport activity, while reducing NH(4)(+) conductance by its channel-like activity.
Collapse
Affiliation(s)
- Soojung Lee
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
30
|
Blair HC, Robinson LJ, Huang CLH, Sun L, Friedman PA, Schlesinger PH, Zaidi M. Calcium and bone disease. Biofactors 2011; 37:159-67. [PMID: 21674636 PMCID: PMC3608212 DOI: 10.1002/biof.143] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/18/2010] [Indexed: 11/12/2022]
Abstract
Calcium transport and calcium signaling are of basic importance in bone cells. Bone is the major store of calcium and a key regulatory organ for calcium homeostasis. Bone, in major part, responds to calcium-dependent signals from the parathyroids and via vitamin D metabolites, although bone retains direct response to extracellular calcium if parathyroid regulation is lost. Improved understanding of calcium transporters and calcium-regulated cellular processes has resulted from analysis of genetic defects, including several defects with low or high bone mass. Osteoblasts deposit calcium by mechanisms including phosphate and calcium transport with alkalinization to absorb acid created by mineral deposition; cartilage calcium mineralization occurs by passive diffusion and phosphate production. Calcium mobilization by osteoclasts is mediated by acid secretion. Both bone forming and bone resorbing cells use calcium signals as regulators of differentiation and activity. This has been studied in more detail in osteoclasts, where both osteoclast differentiation and motility are regulated by calcium.
Collapse
Affiliation(s)
- Harry C Blair
- Department of Pathology, University of Pittsburgh, Veterans Affairs Health System, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Barsony J, Sugimura Y, Verbalis JG. Osteoclast response to low extracellular sodium and the mechanism of hyponatremia-induced bone loss. J Biol Chem 2011; 286:10864-75. [PMID: 21135109 PMCID: PMC3060537 DOI: 10.1074/jbc.m110.155002] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/18/2010] [Indexed: 02/02/2023] Open
Abstract
Our recent animal and human studies revealed that chronic hyponatremia is a previously unrecognized cause of osteoporosis that is associated with increased osteoclast numbers in a rat model of the human disease of the syndrome of inappropriate antidiuretic hormone secretion (SIADH). We used cellular and molecular approaches to demonstrate that sustained low extracellular sodium ion concentrations ([Na(+)]) directly stimulate osteoclastogenesis and resorptive activity and to explore the mechanisms underlying this effect. Assays on murine preosteoclastic RAW 264.7 cells and on primary bone marrow monocytes both indicated that lowering the medium [Na(+)] dose-dependently increased osteoclast formation and resorptive activity. Low [Na(+)], rather than low osmolality, triggered these effects. Chronic reduction of [Na(+)] dose-dependently decreased intracellular calcium without depleting endoplasmic reticulum calcium stores. Moreover, we found that reduction of [Na(+)] dose-dependently decreased cellular uptake of radiolabeled ascorbic acid, and reduction of ascorbic acid in the culture medium mimicked the osteoclastogenic effect of low [Na(+)]. We also detected downstream effects of reduced ascorbic acid uptake, namely evidence of hyponatremia-induced oxidative stress. This was manifested by increased intracellular free oxygen radical accumulation and proportional changes in protein expression and phosphorylation, as indicated by Western blot analysis from cellular extracts and by increased serum 8-hydroxy-2'-deoxyguanosine levels in vivo in rats. Our results therefore reveal novel sodium signaling mechanisms in osteoclasts that may serve to mobilize sodium from bone stores during prolonged hyponatremia, thereby leading to a resorptive osteoporosis in patients with SIADH.
Collapse
Affiliation(s)
- Julia Barsony
- Division of Endocrinology and Metabolism, Georgetown University, Washington, DC 20007, USA.
| | | | | |
Collapse
|