1
|
Yokoi H, Toda N, Mukoyama M. Generation of Conditional KO Mice of CCN2 and Its Function in the Kidney. Methods Mol Biol 2023; 2582:391-409. [PMID: 36370365 DOI: 10.1007/978-1-0716-2744-0_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
CCN2 has been shown to be closely involved in the progression of renal fibrosis, indicating the potential of CCN2 inhibition as a therapeutic target. Although the examination of the renal disease phenotypes of adult CCN2 knockout mice has yielded valuable scientific insights, perinatal death has limited studies of CCN2 in vivo. Conditional knockout technology has become widely used to delete genes in the target cell populations or time points using cell-specific Cre recombinase-expressing mice. Therefore, several lines of CCN2-floxed mice have been developed to assess the functional role of CCN2 in adult mice.CCN2 levels are elevated in renal fibrosis and proliferative glomerulonephritis, making them suitable disease models for assessing the effects of CCN2 deletion on the kidney. Renal fibrosis is characterized by glomerulosclerosis and tubulointerstitial fibrosis and transforming growth factor-β. CCN2 is increased in fibrosis and modulates a number of downstream signaling pathways involved in the fibrogenic properties of TGF-β. Unilateral ureteral obstruction is one of the most widely used models of renal tubulointerstitial fibrosis. In addition, anti-glomerular basement membrane antibody glomerulonephritis has become the most widely used model for evaluating the effect of increased renal CCN2 expression. Herein, we describe the construction of CCN2-floxed mice and inducible systemic CCN2 conditional knockout mice and methods for the operation of unilateral ureteral obstruction and the induction of anti-glomerular basement membrane antibody glomerulonephritis.
Collapse
Affiliation(s)
- Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Naohiro Toda
- Department of Nephrology, Kansai Electric Power Hospital, Osaka, Japan
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
2
|
Valentijn FA, Knoppert SN, Marquez-Exposito L, Rodrigues-Diez RR, Pissas G, Tang J, Tejedor-Santamaria L, Broekhuizen R, Samarakoon R, Eleftheriadis T, Goldschmeding R, Nguyen TQ, Ruiz-Ortega M, Falke LL. Cellular communication network 2 (connective tissue growth factor) aggravates acute DNA damage and subsequent DNA damage response-senescence-fibrosis following kidney ischemia reperfusion injury. Kidney Int 2022; 102:1305-1319. [PMID: 35921911 DOI: 10.1016/j.kint.2022.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 01/12/2023]
Abstract
Chronic allograft dysfunction with progressive fibrosis of unknown cause remains a major issue after kidney transplantation, characterized by ischemia-reperfusion injury (IRI). One hypothesis to account for this is that spontaneous progressive tubulointerstitial fibrosis following IRI is driven by cellular senescence evolving from a prolonged, unresolved DNA damage response (DDR). Since cellular communication network factor 2 ((CCN2), formerly called connective tissue growth factor), an established mediator of kidney fibrosis, is also involved in senescence-associated pathways, we investigated the relation between CCN2 and cellular senescence following kidney transplantation. Tubular CCN2 overexpression was found to be associated with DDR, loss of kidney function and tubulointerstitial fibrosis in both the early and the late phase in human kidney allograft biopsies. Consistently, CCN2 deficient mice developed reduced senescence and tubulointerstitial fibrosis in the late phase; six weeks after experimental IRI. Moreover, tubular DDR markers and plasma urea were less elevated in CCN2 knockout than in wild-type mice. Finally, CCN2 administration or overexpression in epithelial cells induced upregulation of tubular senescence-associated genes including p21, while silencing of CCN2 alleviated DDR induced by anoxia-reoxygenation injury in cultured proximal tubule epithelial cells. Thus, our observations indicate that inhibition of CCN2 can mitigate IRI-induced acute kidney injury, DNA damage, and the subsequent DDR-senescence-fibrosis sequence. Hence, targeting CCN2 might help to protect the kidney from transplantation-associated post-IRI chronic kidney dysfunction.
Collapse
Affiliation(s)
- Floris A Valentijn
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Sebastiaan N Knoppert
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Laura Marquez-Exposito
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria -Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria -Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Jiaqi Tang
- Center for Cell Biology and Cancer Research, Albany Medical Center, Albany, New York, USA
| | - Lucia Tejedor-Santamaria
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria -Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Roel Broekhuizen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rohan Samarakoon
- Center for Cell Biology and Cancer Research, Albany Medical Center, Albany, New York, USA
| | | | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria -Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Lucas L Falke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
3
|
Nakayama T, Azegami T, Hayashi K, Hishikawa A, Yoshimoto N, Nakamichi R, Sugita E, Itoh H. Vaccination against connective tissue growth factor attenuates the development of renal fibrosis. Sci Rep 2022; 12:10933. [PMID: 35768626 PMCID: PMC9243061 DOI: 10.1038/s41598-022-15118-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
There is a critical need for efficient treatment of chronic kidney disease (CKD). Renal fibrosis is a final common pathway to end-stage renal disease independent of the underlying etiology, and connective tissue growth factor (CTGF) is a well-recognized profibrotic factor in fibrosis of various organ systems. Here, we developed a novel peptide vaccine against CTGF to attenuate the development of renal fibrosis. Three inoculations with this CTGF vaccine at 2-week intervals elicited antibodies specifically binding to human full-length CTGF, and the antigen-specific serum IgG antibody titers were maintained for > 30 weeks. The efficacy of the CTGF vaccine on renal fibrosis was evaluated in adenine-induced CKD and unilateral ureteral obstruction (UUO) murine models. In adenine-induced CKD model, immunization with the CTGF vaccine attenuated renal interstitial fibrosis. Vaccinated mice showed low levels of serum creatinine and urea nitrogen and low urine albumin–creatinine ratio compared with vehicle-treated mice. In UUO model, the CTGF vaccination also suppressed the onset of renal fibrosis. In an in vitro study, CTGF vaccine-elicited IgG antibodies efficiently suppressed CTGF-induced- and transforming growth factor-β-induced α-smooth muscle actin expression in kidney fibroblasts. These results demonstrate that the CTGF vaccine is a promising strategy to attenuate the development of renal fibrosis.
Collapse
Affiliation(s)
- Takashin Nakayama
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tatsuhiko Azegami
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Keio University Health Center, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa, 223-8521, Japan.
| | - Kaori Hayashi
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akihito Hishikawa
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Norifumi Yoshimoto
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ran Nakamichi
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Erina Sugita
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
4
|
Ahmed S, Sparidans RW, Lu J, Mihaila SM, Gerritsen KGF, Masereeuw R. A robust, accurate, sensitive LC-MS/MS method to measure indoxyl sulfate, validated for plasma and kidney cells. Biomed Chromatogr 2022; 36:e5307. [PMID: 34978088 PMCID: PMC9285569 DOI: 10.1002/bmc.5307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
Proximal tubular damage is an important prognostic determinant in various chronic kidney diseases (CKDs). Currently available diagnostic methods do not allow for early disease detection and are neither efficient. Indoxyl sulfate (IS) is an endogenous metabolite and protein-bound uremic toxin that is eliminated via renal secretion, but accumulates in plasma during tubular dysfunction. Therefore, it may be suitable as a tubular function marker. To evaluate this, a fast bioanalytical method was developed and validated for IS in various species and a kidney cell line using LC-MS/MS. An isotope-labeled IS potassium salt as an internal standard and acetonitrile (ACN) as a protein precipitant were used for sample pretreatment. The analyte was separated on a Polaris 3 C18-A column by gradient elution using 0.1% formic acid in water and ACN, and detected by negative electrospray ionization in selected reaction monitoring mode. The within-day (≤ 4.0%) and between-day (≤ 4.3%) precisions and accuracies (97.7 to 107.3%) were within the acceptable range. The analyte showed sufficient stability at all conditions investigated. Finally, applying this assay, significantly higher plasma and lower urine concentrations of IS were observed in mice with diabetic nephropathy with tubular damage, which encourages validation toward its use as a biomarker.
Collapse
Affiliation(s)
- Sabbir Ahmed
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Rolf W. Sparidans
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Jingyi Lu
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Silvia M. Mihaila
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Karin G. F. Gerritsen
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
5
|
Connective Tissue Growth Factor Single Nucleotide Polymorphisms in (Familial) Pulmonary Fibrosis and Connective Tissue Disease Associated Interstitial Lung Disease. Lung 2021; 199:659-666. [PMID: 34812907 DOI: 10.1007/s00408-021-00494-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/31/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Connective tissue growth factor (CTGF) is an important mediator in fibrotic disease. Single nucleotide polymorphisms (SNPs) in CTGF have been found to be associated with different fibrotic diseases and CTGF protein was found to be upregulated in lung tissue, bronchoalveolar lavage cells, and plasma of idiopathic pulmonary fibrosis (IPF) patients. We investigated whether genetic variants predispose to sporadic IPF (spIPF), familial pulmonary fibrosis (FPF), and connective tissue disease associated ILD (CTD-ILD). METHODS In total, 294 patients with spIPF and 294 healthy individuals were genotyped for CTGF rs12526196, rs9402373, rs6918698, and rs9399005. For replication of CTGF rs6918698 findings in pulmonary fibrosis, 128 patients with FPF, 125 with CTD-ILD, and an independent control cohort of 130 individuals were included. Lung tissue of 6 IPF patients was stained for CTGF to assess pulmonary localization. RESULTS Of the four SNPs, only the minor allele frequency (MAF) of CTGF rs6918698 deviated between spIPF (MAF 0.41) and controls (MAF 0.47; OR 0.774 (0.615-0.975); p = 0.030). Further comparison of CTGF rs6918698G showed a difference between FPF (MAF 0.33) and controls (MAF 0.48; OR 0.545 (0.382-0.778); p = 0.001), but not with CTD-ILD. CTGF was localized in alveolar and bronchiolar epithelium, alveolar macrophages, myofibroblasts and endothelium and highly expressed in the basal cell layer of sandwich foci. CONCLUSION CTGF rs6918698G associates with spIPF and with FPF, but not with CTD-ILD in a Dutch cohort. CTGF is localized in lung tissue involved in IPF pathogenesis. Further research into the role of this SNP on CTGF expression and fibrogenesis is warranted.
Collapse
|
6
|
Kranendonk MEG, Hackeng WM, Offerhaus GJA, Morsink FHM, Jonges GN, Groenewegen G, Krijtenburg PJ, Klümpen HJ, de Leng WWJ, Looijenga LHJ, Brosens LAA. The decisive role of molecular pathology in presumed somatic metastases of type II testicular germ cell tumors: report of 2 cases. Diagn Pathol 2020; 15:99. [PMID: 32711552 PMCID: PMC7382836 DOI: 10.1186/s13000-020-01011-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background Molecular diagnostics can be decisive in the differential diagnosis between a somatic metastasis of type II testicular germ cell tumor (TGCT) or a second primary carcinoma. This is in line with recent recommendations from the International Society of Urological Pathology, based on an international survey which showed that molecular testing is currently only performed by a minority of urological pathologists. Case presentations This case report illustrates the necessity of molecular testing in two patients with a history of type II TGCT and a metastatic (retro) peritoneal carcinoma years later. The genetic hallmark of type II TGCT, chromosome 12p gain, was studied by fluorescence in situ hybridization and whole genome methylation profiling in case 1, and by single nucleotide polymorphism (SNP)-array in case 2. Next generation sequencing (NGS) was used to further explore clonality between the primary TGCT and peritoneal metastasis in case 2. In case 1, chromosome 12p gain was found in the primary type II TGCT and in the acinar cell carcinoma of the metastatic malignancy. In case 2, SNP array showed 12p gain in the epithelial component of the primary teratomatous TGCT but not in the peritoneal adenocarcinoma. Furthermore, NGS showed no mutations in the primary teratomatous TGCT but a KRAS and GNAS mutation in the peritoneal adenocarcinoma, suggestive of an appendicular origin. Conclusions Without the molecular data, both cases would have been regarded as a metastatic TGCT with development of somatic-type malignancy, which appeared a wrong diagnosis for case 2. These cases demonstrate the importance of molecular methods as an adjunct in today’s pathology practice.
Collapse
Affiliation(s)
- Mariëtte E G Kranendonk
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pedriatric Oncology, Utrecht, The Netherlands
| | - Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G Johan A Offerhaus
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Folkert H M Morsink
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Geertruida N Jonges
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerard Groenewegen
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Heinz-Josef Klümpen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Wang S, Fan J, Mei X, Luan J, Li Y, Zhang X, Chen W, Wang Y, Meng G, Ju D. Interleukin-22 Attenuated Renal Tubular Injury in Aristolochic Acid Nephropathy via Suppressing Activation of NLRP3 Inflammasome. Front Immunol 2019; 10:2277. [PMID: 31616439 PMCID: PMC6768973 DOI: 10.3389/fimmu.2019.02277] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/09/2019] [Indexed: 01/03/2023] Open
Abstract
Aristolochic acid nephropathy (AAN), as a rapidly progressive interstitial nephropathy due to excessive ingestion of aristolochia herbal medications, has recently raised considerable concerns among clinicians and researchers as its underlying pathogenic mechanisms are largely unclear. In the current study, we identified NLRP3 inflammasome activation as a novel pathological mechanism of AAN. We found that NLRP3 inflammasome was aberrantly activated both in vivo and in vitro after AA exposure. Blockade of IL-1β and NLRP3 inflammasome activation by IL-1Ra significantly attenuated renal tubular injury and function loss in AA-induced nephropathy. Moreover, NLRP3 or Caspase-1 deficiency protected against renal injury in the mouse model of acute AAN, suggesting that the NLRP3 signaling pathway was probably involved in the pathogenesis of AAN. We also found that administration of IL-22 could markedly attenuate renal tubular injury in AAN. Notably, IL-22 intervention significantly alleviated renal fibrosis and dysfunction in AA-induced nephropathy. Furthermore, IL-22 largely inhibited renal activation of NLRP3 inflammasome in AA-induced nephropathy. These results indicated that IL-22 ameliorated renal tubular injury in AAN through suppression of NLRP3 inflammasome activation. In summary, this study identified renal activation of NLRP3 inflammasome as a novel mechanism underlying the pathogenesis of AAN, thus providing a potential therapeutic strategy for AAN based on suppression of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Shaofei Wang
- Minhang Hospital, Fudan University, Shanghai, China
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jiajun Fan
- Minhang Hospital, Fudan University, Shanghai, China
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaobin Mei
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jingyun Luan
- Minhang Hospital, Fudan University, Shanghai, China
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yubin Li
- Minhang Hospital, Fudan University, Shanghai, China
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xuyao Zhang
- Minhang Hospital, Fudan University, Shanghai, China
- School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Chen
- Minhang Hospital, Fudan University, Shanghai, China
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yichen Wang
- Minhang Hospital, Fudan University, Shanghai, China
- School of Pharmacy, Fudan University, Shanghai, China
| | - Guangxun Meng
- Unit of Innate Immunity, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dianwen Ju
- Minhang Hospital, Fudan University, Shanghai, China
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Toda N, Mukoyama M, Yanagita M, Yokoi H. CTGF in kidney fibrosis and glomerulonephritis. Inflamm Regen 2018; 38:14. [PMID: 30123390 PMCID: PMC6091167 DOI: 10.1186/s41232-018-0070-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/08/2018] [Indexed: 01/27/2023] Open
Abstract
Background Glomerulonephritis, which causes inflammation in glomeruli, is a common cause of end-stage renal failure. Severe and prolonged inflammation can damage glomeruli and lead to kidney fibrosis. Connective tissue growth factor (CTGF) is a member of the CCN matricellular protein family, consisting of four domains, that regulates the signaling of other growth factors and promotes kidney fibrosis. Main body of the abstract CTGF can simultaneously interact with several factors with its four domains. The microenvironment differs depending on the types of cells and tissues and differentiation stages of these cells. The diverse biological actions of CTGF on various types of cells and tissues depend on this difference in microenvironment. In the kidney, CTGF is expressed at low levels in normal condition and its expression is upregulated by kidney fibrosis. CTGF expression is known to be upregulated in the extra-capillary and mesangial lesions of glomerulonephritis in human kidney biopsy samples. In addition to involvement in fibrosis, CTGF modulates the expression of inflammatory mediators, including cytokines and chemokines, through distinct signaling pathways, in various cell systems. In anti-glomerular basement membrane (GBM) glomerulonephritis, systemic CTGF knockout (Rosa-CTGF cKO) mice exhibit 50% reduction of proteinuria and decreased crescent formation and mesangial expansion compared with control mice. In addition to fibrotic markers, the glomerular mRNA expression of Ccl2 is increased in the control mice with anti-GBM glomerulonephritis, and this increase is reduced in Rosa-CTGF cKO mice with nephritis. Accumulation of MAC2-positive cells in glomeruli is also reduced in Rosa-CTGF cKO mice. These results suggest that CTGF may be required for the upregulation of Ccl2 expression not only in anti-GBM glomerulonephritis but also in other types of glomerulonephritis, such as IgA nephropathy; CTGF expression and accumulation of macrophages in the mesangial area have been documented in these glomerular diseases. CTGF induces the expression of inflammatory mediators and promotes cell adhesion. Short conclusion CTGF plays an important role in the development of glomerulonephritis by inducing the inflammatory process. CTGF is a potentiate target for the treatment of glomerulonephritis.
Collapse
Affiliation(s)
- Naohiro Toda
- 1Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Masashi Mukoyama
- 2Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Motoko Yanagita
- 1Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Hideki Yokoi
- 1Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
9
|
Törmänen S, Pörsti I, Lakkisto P, Tikkanen I, Niemelä O, Paavonen T, Mustonen J, Eräranta A. Endothelin A receptor blocker and calcimimetic in the adenine rat model of chronic renal insufficiency. BMC Nephrol 2017; 18:323. [PMID: 29078759 PMCID: PMC5659028 DOI: 10.1186/s12882-017-0742-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 10/17/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND We studied whether endothelin receptor antagonist and calcimimetic treatments influence renal damage and kidney renin-angiotensin (RA) components in adenine-induced chronic renal insufficiency (CRI). METHODS Male Wistar rats (n = 80) were divided into 5 groups for 12 weeks: control (n = 12), 0.3% adenine (Ade; n = 20), Ade + 50 mg/kg/day sitaxentan (n = 16), Ade + 20 mg/kg/day cinacalcet (n = 16), and Ade + sitaxentan + cinacalcet (n = 16). Blood pressure (BP) was measured using tail-cuff, kidney histology was examined, and RA components measured using RT-qPCR. RESULTS Adenine caused tubulointerstitial damage with severe CRI, anemia, hyperphosphatemia, 1.8-fold increase in urinary calcium excretion, and 3.5-fold and 18-fold increases in plasma creatinine and PTH, respectively. Sitaxentan alleviated tubular atrophy, while sitaxentan + cinacalcet combination reduced interstitial inflammation, tubular dilatation and atrophy in adenine-rats. Adenine diet did not influence kidney angiotensin converting enzyme (ACE) and AT4 receptor mRNA, but reduced mRNA of renin, AT1a, AT2, (pro)renin receptor and Mas to 40-60%, and suppressed ACE2 to 6% of that in controls. Sitaxentan reduced BP by 8 mmHg, creatinine, urea, and phosphate concentrations by 16-24%, and PTH by 42%. Cinacalcet did not influence BP or creatinine, but reduced PTH by 84%, and increased hemoglobin by 28% in adenine-rats. The treatments further reduced renin mRNA by 40%, while combined treatment normalized plasma PTH, urinary calcium, and increased ACE2 mRNA 2.5-fold versus the Ade group (p < 0.001). CONCLUSIONS In adenine-induced interstitial nephritis, sitaxentan improved renal function and tubular atrophy. Sitaxentan and cinacalcet reduced kidney renin mRNA by 40%, while their combination alleviated tubulointerstitial damage and urinary calcium loss, and increased kidney tissue ACE2 mRNA.
Collapse
Affiliation(s)
- Suvi Törmänen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Ilkka Pörsti
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland. .,Department of Internal Medicine, Tampere University Hospital, Tampere, Finland. .,School of Medicine / Internal Medicine, FIN-33014 University of Tampere, Tampere, Finland.
| | - Päivi Lakkisto
- Minerva Institute for Medical Research, Helsinki, Finland.,Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ilkka Tikkanen
- Minerva Institute for Medical Research, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Onni Niemelä
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Medical Research Unit, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Timo Paavonen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Jukka Mustonen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Arttu Eräranta
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
10
|
Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis. Kidney Int 2017; 92:850-863. [PMID: 28545716 DOI: 10.1016/j.kint.2017.03.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 11/20/2022]
Abstract
Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor β induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its possible involvement in lymphangiogenesis has not been explored. We found prominent lymphangiogenesis during tubulointerstitial fibrosis to be associated with increased expression of CTGF and VEGF-C in human obstructed nephropathy as well as in diabetic kidney disease. Using CTGF knockout mice, we investigated the involvement of CTGF in development of fibrosis and associated lymphangiogenesis in obstructive nephropathy. The increase of lymphatic vessels and VEGF-C in obstructed kidneys was significantly reduced in CTGF knockout compared to wild-type mice. Also in mouse kidneys subjected to ischemia-reperfusion injury, CTGF knockdown was associated with reduced lymphangiogenesis. In vitro, CTGF induced VEGF-C production in HK-2 cells, while CTGF siRNA suppressed transforming growth factor β1-induced VEGF-C upregulation. Furthermore, surface plasmon resonance analysis showed that CTGF and VEGF-C directly interact. Interestingly, VEGF-C-induced capillary-like tube formation by human lymphatic endothelial cells was suppressed by full-length CTGF but not by naturally occurring proteolytic CTGF fragments. Thus, CTGF is significantly involved in fibrosis-associated renal lymphangiogenesis through regulation of, and direct interaction with, VEGF-C.
Collapse
|
11
|
Vanhove T, Kinashi H, Nguyen TQ, Metalidis C, Poesen K, Naesens M, Lerut E, Goldschmeding R, Kuypers DRJ. Tubulointerstitial expression and urinary excretion of connective tissue growth factor 3 months after renal transplantation predict interstitial fibrosis and tubular atrophy at 5 years in a retrospective cohort analysis. Transpl Int 2017; 30:695-705. [PMID: 28390067 DOI: 10.1111/tri.12960] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/27/2017] [Accepted: 03/23/2017] [Indexed: 11/29/2022]
Abstract
Connective tissue growth factor (CTGF) is an important mediator of renal allograft fibrosis, and urinary CTGF (CTGFu) levels correlate with the development of human allograft interstitial fibrosis. We evaluated the predictive value of CTGF protein expression in 160 kidney transplant recipients with paired protocol biopsies at 3 months and 5 years after transplantation. At month 3 and year 1, CTGFu was measured using ELISA, and biopsies were immunohistochemically stained for CTGF, with semiquantitative scoring of tubulointerstitial CTGF-positive area (CTGFti). Predictors of interstitial fibrosis and tubular atrophy (IF/TA) severity at 5 years were donor age [OR 1.05 (1.02-1.08), P = 0.001], female donor [OR 0.40 (0.18-0.90), P = 0.026], induction therapy [OR 2.76 (1.10-6.89), P = 0.030], and CTGFti >10% at month 3 [OR 2.72 (1.20-6.15), P = 0.016]. In subgroups of patients with little histologic damage at 3 months [either ci score 0 (n = 119), IF/TA score ≤1 (n = 123), or absence of IF/TA, interstitial inflammation, and tubulitis (n = 45)], consistent predictors of progression of chronic histologic damage by 5 years were donor age, induction therapy, CTGFti >10%, and CTGFu. These results suggest that, even in patients with favorable histology at 3 months, significant CTGF expression is often present which may predict accelerated accumulation of histologic damage.
Collapse
Affiliation(s)
- Thomas Vanhove
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Hiroshi Kinashi
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Nephrology, Nagoya University Hospital, Nagoya, Japan
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christoph Metalidis
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Poesen
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Evelyne Lerut
- Department of Imaging and Pathology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dirk R J Kuypers
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Song Y, Yao S, Liu Y, Long L, Yang H, Li Q, Liang J, Li X, Lu Y, Zhu H, Zhang N. Expression levels of TGF-β1 and CTGF are associated with the severity of Duchenne muscular dystrophy. Exp Ther Med 2017; 13:1209-1214. [PMID: 28413459 PMCID: PMC5377242 DOI: 10.3892/etm.2017.4105] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/26/2016] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to analyze the association of transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) expression levels in skeletal muscle with the clinical manifestation of Duchenne muscular dystrophy (DMD). A total of 18 cases of DMD, which were confirmed by routine pathological diagnosis were recruited into the present study, along with 8 subjects who suffered from acute trauma but did not present any neuromuscular diseases and were enrolled as the healthy controls. Immunohistochemical staining was used to detect the expression levels of CTGF and TGF-β1 in muscle biopsy specimens. Furthermore, Spearman rank correlation analysis was conducted among the expression levels of CTGF and TGF-β1, age, clinical severity and pathological severity in DMD patients. The immunohistochemical staining results revealed that the expression levels of CTGF and TGF-β1 were significantly increased in the DMD group compared with those in the control group (P<0.05). These levels were not found to be significantly correlated with the onset age (P>0.05), but there was a significant correlation with the degree of pathology and clinical severity (P<0.05). In conclusion, an upregulated expression of CTGF and TGF-β1 was revealed in the skeletal muscle of DMD patients, which were in positive correlation with the degree of pathology and clinical severity. These two factors may be involved in the pathophysiology of fibrosis in DMD.
Collapse
Affiliation(s)
- Yanmin Song
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shuai Yao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Department of Rehabilitation Medicine, Mental Health Centre of Wuxi, Wuxi, Jiangsu 214151, P.R. China
| | - Yunhai Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qiuxiang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jinghui Liang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xinxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuling Lu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Haoran Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ning Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
13
|
Design and Analysis of CCN Gene Activity Using CCN Knockout Mice Containing LacZ Reporters. Methods Mol Biol 2017; 1489:325-345. [PMID: 27734387 DOI: 10.1007/978-1-4939-6430-7_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two developments have greatly facilitated the construction of CCN mutant mouse strains. The first is the availability of modified embryonic stem (ES) cells and mice developed through several large-scale government-sponsored research programs. The second is the advent of CRISPR/Cas9 technology. In this chapter, we describe the available mouse strains generated by gene targeting techniques and the CCN targeting vectors and genetically modified ES cells that are available for the generation of CCN mutant mice. Many of these mutant mouse lines and ES cells carry a β-galactosidase reporter that can be used to track CCN expression, facilitating phenotypic analysis and revealing new sites of CCN action. Therefore, we also describe a method for β-galactosidase staining.
Collapse
|
14
|
Toda N, Yokoi H, Mori K, Mukoyama M. Production and Analysis of Conditional KO Mice of CCN2 in Kidney. Methods Mol Biol 2017; 1489:377-390. [PMID: 27734390 DOI: 10.1007/978-1-4939-6430-7_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CCN2 has been shown to be closely involved in the progression of renal fibrosis, indicating the potential of CCN2 inhibition as a therapeutic target. Although the examination of the phenotypes of adult CCN2 knockout mice with renal diseases has yielded valuable scientific insights, perinatal death has limited studies of CCN2 in vivo. Conditional knockout technology has become widely used for the deletion of genes in the desired cell populations and time points through the use of cell-specific Cre recombinase-expressing mice. Accordingly, several lines of CCN2 floxed mice have been developed for the assessment of the functional role of CCN2 in adult mice.CCN2 levels are increased in renal fibrosis and proliferative glomerulonephritis, which represent good disease models for evaluating the effects of CCN2 deletion on the kidney. Of these, anti-glomerular basement membrane antibody glomerulonephritis has become the most widely used model for evaluating the effect of increased renal CCN2 expression. Herein, we describe the construction of CCN2 floxed mice and inducible systemic CCN2 conditional knockout mice and methods for the induction of anti-glomerular basement membrane antibody glomerulonephritis.
Collapse
Affiliation(s)
- Naohiro Toda
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Hideki Yokoi
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
| | - Kiyoshi Mori
- School of Phamaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.,Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
15
|
CCN2 reduction mediates protective effects of BMP7 treatment in obstructive nephropathy. J Cell Commun Signal 2016; 11:39-48. [PMID: 27766493 PMCID: PMC5362571 DOI: 10.1007/s12079-016-0358-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/06/2016] [Indexed: 11/29/2022] Open
Abstract
Treatment with rhBMP7 exerts profound protective effects in a wide variety of experimental models of renal disease. However, little is known about how these protective effects are mediated, and which cells in the kidney are targeted by exogenous rhBMP7 treatment. To determine if rhBMP7 increases glomerular and tubulointerstitial canonical BMP signaling, we performed Unilateral Ureteral Obstruction (UUO, a widely used obstructive nephropathy model) in mice reporting transcriptional activity downstream of canonical BMP signaling by the expression of GFP under the BMP Responsive Element of the Id1 promoter (BRE:gfp mice). We also analysed the impact of rhBMP7 treatment on severity of the UUO phenotype, on TGFβ signaling, and on expression of CCN2 (CTGF). Despite profound protective effects with respect to morphological damage, macrophage infiltration, and fibrosis, no significant difference in GFP-expression was observed upon rhBMP7 administration. Also TGFβ signalling was similar in rhBMP7 and vehicle treated mice, but CCN2 expression in obstructed kidneys was significantly reduced by rhBMP7 treatment. Of note, in heterozygous CCN2 mice (CCN2+/−) treatment with rhBMP7 did not (further) reduce the severity of kidney damage in the UUO-model. These data suggest that protection against obstructive nephropathy by exogenous rhBMP7 treatment relies primarily on non-canonical BMP signaling, and may be mediated in large part by downregulation of CCN2 expression.
Collapse
|
16
|
Falke LL, Kinashi H, Dendooven A, Broekhuizen R, Stoop R, Joles JA, Nguyen TQ, Goldschmeding R. Age-dependent shifts in renal response to injury relate to altered BMP6/CTGF expression and signaling. Am J Physiol Renal Physiol 2016; 311:F926-F934. [PMID: 27558559 DOI: 10.1152/ajprenal.00324.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023] Open
Abstract
Age is associated with an increased prevalence of chronic kidney disease (CKD), which, through progressive tissue damage and fibrosis, ultimately leads to loss of kidney function. Although much effort is put into studying CKD development experimentally, age has rarely been taken into account. Therefore, we investigated the effect of age on the development of renal tissue damage and fibrosis in a mouse model of obstructive nephropathy (i.e., unilateral ureter obstruction; UUO). We observed that after 14 days, obstructed kidneys of old mice had more tubulointerstitial atrophic damage but less fibrosis than those of young mice. This was associated with reduced connective tissue growth factor (CTGF), and higher bone morphogenetic protein 6 (BMP6) expression and pSMAD1/5/8 signaling, while transforming growth factor-β expression and transcriptional activity were no different in obstructed kidneys of old and young mice. In vitro, CTGF bound to and inhibited BMP6 activity. In summary, our data suggest that in obstructive nephropathy atrophy increases and fibrosis decreases with age and that this relates to increased BMP signaling, most likely due to higher BMP6 and lower CTGF expression.
Collapse
Affiliation(s)
- Lucas L Falke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hiroshi Kinashi
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Nephrology and Renal Replacement Therapy, Nagoya University, Nagoya, Japan
| | - Amelie Dendooven
- Department of Pathology, University Medical Center, Antwerp, Belgium
| | - Roel Broekhuizen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Reinout Stoop
- Department of Metabolic Health Research, TNO, Leiden, The Netherlands; and
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands;
| |
Collapse
|
17
|
CTGF knockout does not affect cardiac hypertrophy and fibrosis formation upon chronic pressure overload. J Mol Cell Cardiol 2015; 88:82-90. [PMID: 26410398 DOI: 10.1016/j.yjmcc.2015.09.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND One of the main contributors to maladaptive cardiac remodeling is fibrosis. Connective tissue growth factor (CTGF), a matricellular protein that is secreted into the cardiac extracellular matrix by both cardiomyocytes and fibroblasts, is often associated with development of fibrosis. However, recent studies have questioned the role of CTGF as a pro-fibrotic factor. Therefore, we aimed to investigate the effect of CTGF on cardiac fibrosis, and on functional, structural, and electrophysiological parameters in a mouse model of CTGF knockout (KO) and chronic pressure overload. METHODS AND RESULTS A new mouse model of global conditional CTGF KO induced by tamoxifen-driven deletion of CTGF, was subjected to 16weeks of chronic pressure overload via transverse aortic constriction (TAC, control was sham surgery). CTGF KO TAC mice presented with hypertrophic hearts, and echocardiography revealed a decrease in contractility on a similar level as control TAC mice. Ex vivo epicardial mapping showed a low incidence of pacing-induced ventricular arrhythmias (2/12 in control TAC vs. 0/10 in CTGF KO TAC, n.s.) and a tendency towards recovery of the longitudinal conduction velocity of CTGF KO TAC hearts. Picrosirius Red staining on these hearts unveiled increased fibrosis at a similar level as control TAC hearts. Furthermore, genes related to fibrogenesis were also similarly upregulated in both TAC groups. Histological analysis revealed an increase in fibronectin and vimentin protein expression, a significant reduction in connexin43 (Cx43) protein expression, and no difference in NaV1.5 expression of CTGF KO ventricles as compared with sham treated animals. CONCLUSION Conditional CTGF inhibition failed to prevent TAC-induced cardiac fibrosis and hypertrophy. Additionally, no large differences were found in other parameters between CTGF KO and control TAC mice. With no profound effect of CTGF on fibrosis formation, other factors or pathways are likely responsible for fibrosis development.
Collapse
|
18
|
Li X, Chen Y, Ye W, Tao X, Zhu J, Wu S, Lou L. Blockade of CCN4 attenuates CCl4-induced liver fibrosis. Arch Med Sci 2015; 11:647-53. [PMID: 26170860 PMCID: PMC4495160 DOI: 10.5114/aoms.2015.52371] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/12/2013] [Accepted: 07/07/2013] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION CCN4, also termed WNT-inducible signaling pathway protein-1 (WISP-1), has important roles in inflammation and tissue injury. This study aimed to investigate the effect of CCN4 inhibition using monoclonal anti-CCN4 antibody (CCN4mAb) on the liver injury and fibrosis in a mouse model of liver fibrosis. MATERIAL AND METHODS The mouse liver fibrosis model was induced by carbon tetrachloride (CCl4). Mice received vehicle (saline/olive oil) by subcutaneous injection, CCl4 by subcutaneous injection or CCl4 (subcutaneous) plus CCN4mAb by subcutaneous injection. The pro-inflammatory and pro-fibrotic factors were determined by Western blot. The biochemistry and histopathology, collagen deposition and nuclear factor (NF)-κB activity were also assessed. RESULTS Chronic CCl4 treatment caused liver injury and collagen accumulation. The expression levels of CCN4, pro-inflammatory and pro-fibrotic mediators as well as the activity of NF-κB were markedly increased. Treatment with CCN4mAb significantly inhibited CCl4-induced CCN4 expression, leading to attenuated CCl4-induced liver injury and the inflammatory response. CCN4 blockade also significantly reduced the formation of collagen in the liver and the expression of α-smooth muscle actin and transforming growth factor β1. CONCLUSIONS CCN4 inhibition by CCN4mAb in vivo significantly attenuated the CCl4-induced liver injury and the progression of liver fibrosis. CCN4 may represent a novel therapeutic target for liver injury and fibrosis.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Infectious Diseases, Yiwu Central Hospital, Zhejiang, China
| | - Yongxin Chen
- Department of Infectious Diseases, Yiwu Central Hospital, Zhejiang, China
| | - Weiwei Ye
- Department of Infectious Diseases, Yiwu Central Hospital, Zhejiang, China
| | - Xingfei Tao
- Department of Infectious Diseases, Yiwu Central Hospital, Zhejiang, China
| | - Jinhong Zhu
- Department of Infectious Diseases, Yiwu Central Hospital, Zhejiang, China
| | - Shuang Wu
- Department of Infectious Diseases, Yiwu Central Hospital, Zhejiang, China
| | - Lianqing Lou
- Department of Infectious Diseases, Yiwu Central Hospital, Zhejiang, China
| |
Collapse
|
19
|
Samarakoon R, Helo S, Dobberfuhl AD, Khakoo NS, Falke L, Overstreet JM, Goldschmeding R, Higgins PJ. Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses. J Pathol 2015; 236:421-32. [PMID: 25810340 DOI: 10.1002/path.4538] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/27/2015] [Accepted: 03/19/2015] [Indexed: 12/31/2022]
Abstract
Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in several models of renal injury, including aristolochic acid nephropathy (AAN), streptozotocin (STZ)-mediated injury and ureteral unilateral obstruction (UUO), correlating with Akt, p53 and SMAD3 activation and fibrosis. Stable silencing of PTEN in HK-2 human tubular epithelial cells induced dedifferentiation and CTGF, PAI-1, vimentin, α-SMA and fibronectin expression, compared to HK-2 cells expressing control shRNA. Furthermore, PTEN knockdown stimulated Akt, SMAD3 and p53(Ser15) phosphorylation, with an accompanying decrease in population density and an increase in epithelial G1 cell cycle arrest. SMAD3 or p53 gene silencing or pharmacological blockade partially suppressed fibrotic gene expression and relieved growth inhibition orchestrated by deficiency or inhibition of PTEN. Similarly, shRNA suppression of PAI-1 rescued the PTEN loss-associated epithelial proliferative arrest. Moreover, TGFβ1-initiated fibrotic gene expression is further enhanced by PTEN depletion. Combined TGFβ1 treatment and PTEN silencing potentiated epithelial cell death via p53-dependent pathways. Thus, PTEN loss initiates tubular dysfunction via SMAD3- and p53-mediated fibrotic gene induction, with accompanying PAI-1-dependent proliferative arrest, and cooperates with TGFβ1 to induce the expression of profibrotic genes and tubular apoptosis.
Collapse
Affiliation(s)
- Rohan Samarakoon
- Center for Cell Biology and Cancer Research, Albany Medical Center, NY, USA
| | - Sevann Helo
- Division of Urology, Albany Medical College, NY, USA
| | | | - Nidah S Khakoo
- Center for Cell Biology and Cancer Research, Albany Medical Center, NY, USA
| | - Lucas Falke
- Department of Pathology, University Medical Centre Utrecht, The Netherlands
| | | | - Roel Goldschmeding
- Department of Pathology, University Medical Centre Utrecht, The Netherlands
| | - Paul J Higgins
- Center for Cell Biology and Cancer Research, Albany Medical Center, NY, USA
| |
Collapse
|
20
|
Hilhorst M, Kok HM, Broekhuizen R, van Paassen P, van Breda Vriesman P, Goldschmeding R, Nguyen TQ, Cohen Tervaert JW. Connective tissue growth factor and the cicatrization of cellular crescents in ANCA-associated glomerulonephritis. Nephrol Dial Transplant 2015; 30:1291-9. [DOI: 10.1093/ndt/gfv088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/10/2015] [Indexed: 12/22/2022] Open
|
21
|
Lee SY, Kim SI, Choi ME. Therapeutic targets for treating fibrotic kidney diseases. Transl Res 2015; 165:512-30. [PMID: 25176603 PMCID: PMC4326607 DOI: 10.1016/j.trsl.2014.07.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
Renal fibrosis is the hallmark of virtually all progressive kidney diseases and strongly correlates with the deterioration of kidney function. The renin-angiotensin-aldosterone system blockade is central to the current treatment of patients with chronic kidney disease (CKD) for the renoprotective effects aimed to prevent or slow progression to end-stage renal disease (ESRD). However, the incidence of CKD is still increasing, and there is a critical need for new therapeutics. Here, we review novel strategies targeting various components implicated in the fibrogenic pathway to inhibit or retard the loss of kidney function. We focus, in particular, on antifibrotic approaches that target transforming growth factor (TGF)-β1, a key mediator of kidney fibrosis, and exciting new data on the role of autophagy. Bone morphogenetic protein (BMP)-7 and connective tissue growth factor (CTGF) are highlighted as modulators of profibrotic TGF-β activity. BMP-7 has a protective role against TGF-β1 in kidney fibrosis, whereas CTGF enhances TGF-β-mediated fibrosis. We also discuss recent advances in the development of additional strategies for antifibrotic therapy. These include strategies targeting chemokine pathways via CC chemokine receptors 1 and 2 to modulate the inflammatory response, inhibition of phosphodiesterase to restore nitric oxide-cyclic 3',5'-guanosine monophosphate function, inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 and 4 to suppress reactive oxygen species production, and inhibition of endothelin 1 or tumor necrosis factor α to ameliorate progressive renal fibrosis. Furthermore, a brief overview of some of the biomarkers of kidney fibrosis is currently being explored that may improve the ability to monitor antifibrotic therapies. It is hoped that evidence based on the preclinical and clinical data discussed in this review leads to novel antifibrotic therapies effective in patients with CKD to prevent or delay progression to ESRD.
Collapse
Affiliation(s)
- So-Young Lee
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Department of Internal Medicine, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Sung I Kim
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mary E Choi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
22
|
Falke LL, Goldschmeding R, Nguyen TQ. A perspective on anti-CCN2 therapy for chronic kidney disease. Nephrol Dial Transplant 2014; 29 Suppl 1:i30-i37. [PMID: 24493868 DOI: 10.1093/ndt/gft430] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Kidney fibrosis is the common end point of chronic kidney disease independent of aetiology. Currently, no effective therapy exists to reduce kidney fibrosis. CCN2 appears to be an interesting candidate for anti-fibrotic drug targeting, because it holds a central position in the development of kidney fibrosis and interacts with a variety of factors that are involved in the fibrotic response, including transforming growth factor (TGF) β and Bone morphogenetic proteins. Although CCN2 modifies many pathways, it does not appear to have a membrane receptor of its own. Numerous experimental and clinical studies lowering CCN2 bioavailability have shown promising results with minimal adverse side effects. This review aims to provide an overview of the current state of CCN2 research with a focus on anti-fibrotic therapy.
Collapse
Affiliation(s)
- Lucas L Falke
- Department of Pathology, UMC Utrecht, Utrecht, Netherlands
| | | | | |
Collapse
|
23
|
Kok HM, Falke LL, Goldschmeding R, Nguyen TQ. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 2014; 10:700-11. [PMID: 25311535 DOI: 10.1038/nrneph.2014.184] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a major health and economic burden with a rising incidence. During progression of CKD, the sustained release of proinflammatory and profibrotic cytokines and growth factors leads to an excessive accumulation of extracellular matrix. Transforming growth factor β (TGF-β) and angiotensin II are considered to be the two main driving forces in fibrotic development. Blockade of the renin-angiotensin-aldosterone system has become the mainstay therapy for preservation of kidney function, but this treatment is not sufficient to prevent progression of fibrosis and CKD. Several factors that induce fibrosis have been identified, not only by TGF-β-dependent mechanisms, but also by TGF-β-independent mechanisms. Among these factors are the (partially) TGF-β-independent profibrotic pathways involving connective tissue growth factor, epidermal growth factor and platelet-derived growth factor and their receptors. In this Review, we discuss the specific roles of these pathways, their interactions and preclinical evidence supporting their qualification as additional targets for novel antifibrotic therapies.
Collapse
Affiliation(s)
- Helena M Kok
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Lucas L Falke
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Tri Q Nguyen
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| |
Collapse
|
24
|
Nastase MV, Iozzo RV, Schaefer L. Key roles for the small leucine-rich proteoglycans in renal and pulmonary pathophysiology. Biochim Biophys Acta Gen Subj 2014; 1840:2460-70. [PMID: 24508120 DOI: 10.1016/j.bbagen.2014.01.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 01/28/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Small leucine-rich proteoglycans (SLRPs) are molecules that have signaling roles in a multitude of biological processes. In this respect, SLRPs play key roles in the evolution of a variety of diseases throughout the human body. SCOPE OF REVIEW We will critically review current developments in the roles of SLRPs in several types of disease of the kidney and lungs. Particular emphasis will be given to the roles of decorin and biglycan, the best characterized members of the SLRP gene family. MAJOR CONCLUSIONS In both renal and pulmonary disorders, SLRPs are essential elements that regulate several pathophysiological processes including fibrosis, inflammation and tumor progression. Decorin has remarkable antifibrotic and antitumorigenic properties and is considered a valuable potential treatment of these diseases. Biglycan can modulate inflammatory processes in lung and renal inflammation and is a potential target in the treatment of inflammatory conditions. GENERAL SIGNIFICANCE SLRPs can serve as either treatment targets or as potential treatment in renal or lung disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Madalina V Nastase
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
25
|
James LR, Le C, Doherty H, Kim HS, Maeda N. Connective tissue growth factor (CTGF) expression modulates response to high glucose. PLoS One 2013; 8:e70441. [PMID: 23950936 PMCID: PMC3741286 DOI: 10.1371/journal.pone.0070441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 06/24/2013] [Indexed: 12/13/2022] Open
Abstract
Connective tissue growth factor (CTGF) is an important mediator of fibrosis; emerging evidence link changes in plasma and urinary CTGF levels to diabetic kidney disease. To further ascertain the role of CTGF in responses to high glucose, we assessed the consequence of 4 months of streptozotocin-induced diabetes in wild type (+/+) and CTGF heterozygous (+/−) mice. Subsequently, we studied the influence of glucose on gene expression and protein in mice embryonic fibroblasts (MEF) cells derived from wildtype and heterozygous mice. At study initiation, plasma glucose, creatinine, triglyceride and cholesterol levels were similar between non-diabetic CTGF+/+ and CTGF+/− mice. In the diabetic state, plasma glucose levels were increased in CTGF+/+ and CTGF+/− mice (28.2 3.3 mmol/L vs 27.0 3.1 mmol/L), plasma triglyceride levels were lower in CTGF+/− mice than in CTGF+/+ (0.7 0.2 mmol/L vs 0.5 0.1 mmol/L, p<0.05), but cholesterol was essentially unchanged in both groups. Plasma creatinine was higher in diabetic CTGF+/+ group (11.7±1.2 vs 7.9±0.6 µmol/L p<0.01), while urinary albumin excretion and mesangial expansion were reduced in diabetic CTGF+/− animals. Cortices from diabetic mice (both CTGF +/+ and CTGF +/−) manifested higher expression of CTGF and thrombospondin 1 (TSP1). Expression of nephrin was reduced in CTGF +/+ animals; this reduction was attenuated in CTGF+/− group. In cultured MEF from CTGF+/+ mice, glucose (25 mM) increased expression of pro-collagens 1, IV and XVIII as well as fibronectin and thrombospondin 1 (TSP1). In contrast, activation of these genes by high glucose was attenuated in CTGF+/− MEF. We conclude that induction of Ctgf mediates expression of extracellular matrix proteins in diabetic kidney. Thus, genetic variability in CTGF expression directly modulates the severity of diabetic nephropathy.
Collapse
Affiliation(s)
- Leighton R James
- Department of Medicine, University of Florida, Jacksonville, Florida, USA.
| | | | | | | | | |
Collapse
|