1
|
Chen X, Liu H, Huang Y, Li L, Jiang X, Liu B, Li N, Zhu L, Liu C, Xiao J. FAM20B-Catalyzed Glycosylation Regulates the Chondrogenic and Osteogenic Differentiation of the Embryonic Condyle by Controlling IHH Diffusion and Release. Int J Mol Sci 2025; 26:4033. [PMID: 40362273 PMCID: PMC12071210 DOI: 10.3390/ijms26094033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Although the roles of proteoglycans (PGs) have been well documented in the development and homeostasis of the temporomandibular joint (TMJ), how the glycosaminoglycan (GAG) chains of PGs contribute to TMJ chondrogenesis and osteogenesis still requires explication. In this study, we found that FAM20B, a hexokinase essential for attaching GAG chains to the core proteins of PGs, was robustly activated in the condylar mesenchyme during TMJ development. The inactivation of Fam20b in craniofacial neural crest cells (CNCCs) dramatically reduced the synthesis and accumulation of GAG chains rather than core proteins in the condylar cartilage, which resulted in a hypoplastic condylar cartilage by severely promoting chondrocyte hypertrophy and perichondral ossification. In the condyles of Wnt1-Cre;Fam20bf/f mouse embryos, enlarged Ihh- and COL10-expressing domains indicated premature hypertrophy resulting from an attenuated IHH-PTHRP negative feedback in condylar chondrocytes, while increased osteogenic markers, canonical Wnt activity, and type-H angiogenesis verified the enhanced osteogenesis in the perichondrium. Further ex vivo investigations revealed that the loss of Fam20b decreased the domain area but increased the activity of HH signaling in the embryonic condylar mesenchyme. Moreover, the abrogation of GAG chains in heparan sulfate and chondroitin sulfate proteoglycans led to a rapid up- and then downregulation of HH signaling in condylar chondrocytes, implicating a "slow-release" manner of growth factors controlled by GAG chains. Overall, this study revealed a comprehensive role of the FAM20B-catalyzed GAG chain synthesis in the chondrogenic and osteogenic differentiation of the embryonic TMJ condyle.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Han Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Yuhong Huang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Leilei Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Xuxi Jiang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Bo Liu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China
| | - Nan Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Lei Zhu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
2
|
Peng W, Li GF, Lin GW, Cheng XX, Zuo XY, Lin QH, Liu SQ, Li DJ, Lin DC, Yin JQ, Luo CL, Zhang YY, Xie XB, Bei JX. Identification of novel germline mutations in FUT7 and EXT1 linked with hereditary multiple exostoses. Oncogene 2025; 44:835-848. [PMID: 39690272 DOI: 10.1038/s41388-024-03254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
Hereditary multiple exostoses (HME) is an autosomal dominant skeletal disorder primarily linked with mutations in Exostosin-1 (EXT1) and Exostosin-2 (EXT2) genes. However, not all HME cases can be explained by these mutations, and its pathogenic mechanisms are not fully understood. Herein, utilizing whole-exome sequencing and genetic screening with a family trio design, we identify two novel rare mutations co-segregating with HME in a Chinese family, including a nonsense mutation (c.204G>A, p.Trp68*) in EXT1 and a missense mutation (c.893T>G, p.Phe298Cys) in FUT7. Functional assays reveal that the FUT7 mutation affects the cellular localization of FUT7 protein and regulates cell proliferation. Notably, the simultaneous loss of fut7 and ext1 in a zebrafish model results in severe chondrodysplasia, indicating a functional link between FUT7 and EXT1 in chondrocyte regulation. Additionally, we unveil that FUT7 p.Phe298Cys reduces EXT1 expression through IL6/STAT3/SLUG axis at the transcription level and through ubiquitination-related proteasomal degradation at the protein level. Together, our findings not only identify novel germline mutations in FUT7 and EXT1 genes, but also highlight the critical interaction between these genes, suggesting a potential 'second-hit' mechanism over EXT1 mutations in HME pathogenesis. This insight enhances our understanding of the mechanisms underlying HME and opens new avenues for potential therapeutic interventions.
Collapse
Affiliation(s)
- Wan Peng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Blood Tranfusion Department, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, P. R. China
| | - Gao-Fei Li
- Innovation Centre of Ministry of Education for Development and Diseases, School of medicine, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Guo-Wang Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xi-Xi Cheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xiao-Yu Zuo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Qiao-Hong Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shu-Qiang Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - De-Jun Li
- Prenatal Diagnosis Center, Reproductive Medicine Center, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| | - Dao-Chao Lin
- Department of Orthopaedics, Shulan (Hangzhou) Hospital, Hangzhou, 311000, P. R. China
| | - Jun-Qiang Yin
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Chun-Ling Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yi-Yue Zhang
- Innovation Centre of Ministry of Education for Development and Diseases, School of medicine, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xian-Biao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China.
| | - Jin-Xin Bei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Medical Oncology, National Cancer Centre of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Majumder N, Seit S, Bhabesh NS, Ghosh S. An Advanced Bioconjugation Strategy for Covalent Tethering of TGFβ3 with Silk Fibroin Matrices and its Implications in the Chondrogenesis Profile of Human BMSCs and Human Chondrocytes: A Paradigm Shift in Cartilage Tissue Engineering. Adv Healthc Mater 2024; 13:e2303513. [PMID: 38291832 DOI: 10.1002/adhm.202303513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/25/2024] [Indexed: 02/01/2024]
Abstract
The transforming growth factor-β class of cytokines plays a significant role in articular cartilage formation from mesenchymal condensation to chondrogenic differentiation. However, their exogenous addition to the chondrogenic media makes the protocol expensive. It reduces the bioavailability of the cytokine to the cells owing to their burst release. The present study demonstrates an advanced bioconjugation strategy to conjugate transforming growth factor-β3 (TGFβ3) with silk fibroin matrix covalently via a cyanuric chloride coupling reaction. The tethering and change in secondary conformation are confirmed using various spectroscopic analyses. To assess the functionality of the chemically modified silk matrix, human bone marrow-derived mesenchymal stem cells (hBMSCs) and chondrocytes are cultured for 28 days in a chondrogenic differentiation medium. Gene expression and histological analysis reveal enhanced expression of chondrogenic markers with intense Safranin-O and Alcian Blue staining in TGFβ3 conjugated silk matrices than where TGFβ3 is exogenously added to the media for both hBMSCs and chondrocytes. Therefore, this study successfully recapitulates the native niche of TGFβ3 and the role of the silk as a growth factor stabilizer. When cultured over TGFβ3 conjugated silk matrices, hBMSCs display increased proteoglycan secretion and maximum chondrogenic trait with attenuation of chondrocyte hypertrophy over human chondrocytes.
Collapse
Affiliation(s)
- Nilotpal Majumder
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sinchan Seit
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Neel Sarovar Bhabesh
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Transcription Regulation group, New Delhi, 110067, India
| | - Sourabh Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
4
|
Saito S, Mizumoto S, Yonekura T, Yamashita R, Nakano K, Okubo T, Yamada S, Okamura T, Furuichi T. Mice lacking nucleotide sugar transporter SLC35A3 exhibit lethal chondrodysplasia with vertebral anomalies and impaired glycosaminoglycan biosynthesis. PLoS One 2023; 18:e0284292. [PMID: 37053259 PMCID: PMC10101523 DOI: 10.1371/journal.pone.0284292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
SLC35A3 is considered an uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) transporter in mammals and regulates the branching of N-glycans. A missense mutation in SLC35A3 causes complex vertebral malformation (CVM) in cattle. However, the biological functions of SLC35A3 have not been fully clarified. To address these issues, we have established Slc35a3-/-mice using CRISPR/Cas9 genome editing system. The generated mutant mice were perinatal lethal and exhibited chondrodysplasia recapitulating CVM-like vertebral anomalies. During embryogenesis, Slc35a3 mRNA was expressed in the presomitic mesoderm of wild-type mice, suggesting that SLC35A3 transports UDP-GlcNAc used for the sugar modification that is essential for somite formation. In the growth plate cartilage of Slc35a3-/-embryos, extracellular space was drastically reduced, and many flat proliferative chondrocytes were reshaped. Proliferation, apoptosis and differentiation were not affected in the chondrocytes of Slc35a3-/-mice, suggesting that the chondrodysplasia phenotypes were mainly caused by the abnormal extracellular matrix quality. Because these histological abnormalities were similar to those observed in several mutant mice accompanying the impaired glycosaminoglycan (GAG) biosynthesis, GAG levels were measured in the spine and limbs of Slc35a3-/-mice using disaccharide composition analysis. Compared with control mice, the amounts of heparan sulfate, keratan sulfate, and chondroitin sulfate/dermatan sulfate, were significantly decreased in Slc35a3-/-mice. These findings suggest that SLC35A3 regulates GAG biosynthesis and the chondrodysplasia phenotypes were partially caused by the decreased GAG synthesis. Hence, Slc35a3-/- mice would be a useful model for investigating the in vivo roles of SLC35A3 and the pathological mechanisms of SLC35A3-associated diseases.
Collapse
Affiliation(s)
- Soichiro Saito
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Tsukasa Yonekura
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Rina Yamashita
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, Japan
| | - Tadashi Okubo
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, Japan
| | - Tatsuya Furuichi
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
5
|
Smith MM, Melrose J. Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues. Pharmaceuticals (Basel) 2023; 16:437. [PMID: 36986536 PMCID: PMC10132487 DOI: 10.3390/ph16030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
- Graduate Schools of Biomedical Engineering, University of NSW, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
6
|
Sargison L, Smith RAA, Carnachan SM, Daines AM, Brackovic A, Kidgell JT, Nurcombe V, Cool SM, Sims IM, Hinkley SFR. Variability in the composition of porcine mucosal heparan sulfates. Carbohydr Polym 2022; 282:119081. [PMID: 35123736 DOI: 10.1016/j.carbpol.2021.119081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Commercial porcine intestinal mucosal heparan sulfate (HS) is a valuable material for research into its biological functions. As it is usually produced as a side-stream of pharmaceutical heparin manufacture, its chemical composition may vary from batch to batch. We analysed the composition and structure of nine batches of HS from the same manufacturer. Statistical analysis of the disaccharide compositions placed these batches in three categories: group A had high GlcNAc and GlcNS, and low GlcN typical of HS; group B had high GlcN and GlcNS, and low GlcNAc; group C had high di- and trisulfated, and low unsulfated and monosulfated disaccharide repeats. These batches could be placed in the same categories based on their 1H NMR spectra and molecular weights. Anticoagulant and growth factor binding activities of these HS batches did not fit within these same groups but were related to the proportions of more highly sulfated disaccharide repeats.
Collapse
Affiliation(s)
- Liam Sargison
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Raymond A A Smith
- Institute of Molecular and Cell Biology (IMCB), Glycotherapeutics Group, Agency for Science, Technology and Research (A*STAR), A*STAR, 138673, Singapore.
| | - Susan M Carnachan
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Alison M Daines
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Amira Brackovic
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Joel T Kidgell
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Victor Nurcombe
- Institute of Molecular and Cell Biology (IMCB), Glycotherapeutics Group, Agency for Science, Technology and Research (A*STAR), A*STAR, 138673, Singapore
| | - Simon M Cool
- Institute of Molecular and Cell Biology (IMCB), Glycotherapeutics Group, Agency for Science, Technology and Research (A*STAR), A*STAR, 138673, Singapore.
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Simon F R Hinkley
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| |
Collapse
|
7
|
The characterization, cytotoxicity, macrophage response and tissue regeneration of decellularized cartilage in costal cartilage defects. Acta Biomater 2021; 136:147-158. [PMID: 34563726 DOI: 10.1016/j.actbio.2021.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022]
Abstract
After harvesting multiple costal cartilages, the local defect disrupts the integrity of the chest wall and may lead to obvious thoracic complications, such as local depression and asymmetry of the bilateral thoracic height. Decellularized materials have been used for tissue reconstruction in clinical surgeries. To apply xenogenic decellularized cartilage in costal cartilage defects, porcine-derived auricular and costal cartilage was tested for characterization, cytotoxicity, macrophage response, and tissue regeneration. Most of the DNA and α-Gal were effectively removed, and the collagen was well preserved after the decellularization process. The glycosaminoglycan (GAG) content decreased significantly compared to that in untreated cartilage. The decellularized auricular cartilage had a larger pore size, more pores, and a higher degradation rate than the decellularized costal cartilage. No apparent nuclei or structural damage was observed in the extracellular matrix. The decellularized auricular cartilage had a higher cell proliferation rate and more prominent immunomodulatory effect than the other groups. Two types of decellularized cartilage, particularly decellularized auricular cartilage, promoted the tissue regeneration in the cartilage defect area, combined with noticeable cartilage morphology and increased chondrogenic gene expression. In our research, the functional components and structure of the extracellular matrix were well preserved after the decellularization process. The decellularized cartilage had better biocompatibility and suitable microenvironment for tissue regeneration in the defect area, suggesting its potential application in cartilage repair during the surgery. STATEMENT OF SIGNIFICANCE: Autologous costal cartilage has been widely used in various surgeries, while the cartilage defects after the harvesting of multiple costal cartilages may cause localized chest wall deformities. Decellularized cartilage is an ideal material that could be produced in the factory and applied in surgeries. In this study, both decellularized costal cartilage and auricular cartilage preserved original structure, functional biocompatibility, immunosuppressive effects, and promoted tissue regeneration in the cartilage defect area.
Collapse
|
8
|
Xu Z, Chen S, Feng D, Liu Y, Wang Q, Gao T, Liu Z, Zhang Y, Chen J, Qiu L. Biological role of heparan sulfate in osteogenesis: A review. Carbohydr Polym 2021; 272:118490. [PMID: 34420746 DOI: 10.1016/j.carbpol.2021.118490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022]
Abstract
Heparan sulfate (HS) is extensively expressed in cells, for example, cell membrane and extracellular matrix of most mammalian cells and tissues, playing a key role in the growth and development of life by maintaining homeostasis and implicating in the etiology and diseases. Recent studies have revealed that HS is involved in osteogenesis via coordinating multiple signaling pathways. The potential effect of HS on osteogenesis is a complicated and delicate biological process, which involves the participation of osteocytes, chondrocytes, osteoblasts, osteoclasts and a variety of cytokines. In this review, we summarized the structural and functional characteristics of HS and highlighted the molecular mechanism of HS in bone metabolism to provide novel research perspectives for the further medical research.
Collapse
Affiliation(s)
- Zhujie Xu
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Shayang Chen
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Dehong Feng
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Yi Liu
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China.
| | - Qiqi Wang
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Tianshu Gao
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Zhenwei Liu
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Yan Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jinghua Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Lipeng Qiu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
9
|
Liu H, Wu C, Zhao H, Zhang F, Zhao G, Lin X, Wang S, Wang X, Yu F, Ning Y, Yang L, Liu P, Zhang F, Xu P, Qu C, Lammi MJ, Guo X. The first human induced pluripotent stem cell line of Kashin-Beck disease reveals involvement of heparan sulfate proteoglycan biosynthesis and PPAR pathway. FEBS J 2021; 289:279-293. [PMID: 34324261 DOI: 10.1111/febs.16143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/28/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022]
Abstract
Kashin-Beck disease (KBD) is an endemic osteochondropathy. Due to a lack of suitable animal or cellular disease models, the research progress on KBD has been limited. Our goal was to establish the first disease-specific human induced pluripotent stem cell (hiPSC) cellular disease model of KBD, and to explore its etiology and pathogenesis exploiting transcriptome sequencing. HiPSCs were reprogrammed from dermal fibroblasts of two KBD and one healthy control donor via integration-free vectors. Subsequently, hiPSCs were differentiated into chondrocytes through three-week culture. Gene expression profiles in KBD, normal primary chondrocytes, and hiPSC-derived chondrocytes were defined by RNA sequencing. A Venn diagram was constructed to show the number of shared differentially expressed genes (DEGs) between KBD and normal. Gene oncology and Kyoto Encyclopedia of Genes and Genomes annotations were performed, and six DEGs were further validated in other individuals by RT-qPCR. KBD cellular disease models were successfully established by generation of hiPSC lines. Seventeen consistent and significant DEGs present in all compared groups (KBD and normal) were identified. RT-qPCR validation gave consistent results with the sequencing data. Glycosaminoglycan biosynthesis-heparan sulfate/heparin; PPAR signaling pathway; and cell adhesion molecules (CAMs) were identified to be significantly altered in KBD. Differentiated chondrocytes derived from KBD-origin hiPSCs provide the first cellular disease model for etiological studies of KBD. This study also provides new sights into the pathogenesis and etiology of KBD and is likely to inform the development of targeted therapeutics for its treatment.
Collapse
Affiliation(s)
- Huan Liu
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Cuiyan Wu
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Hong Hui Hospital of Xi'an Jiaotong University, China
| | - Feng'e Zhang
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Guanghui Zhao
- Department of Joint Surgery, Hong Hui Hospital of Xi'an Jiaotong University, China
| | - Xialu Lin
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Sen Wang
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Xi Wang
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Fangfang Yu
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Yujie Ning
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Lei Yang
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Peilong Liu
- Department of Foot and Ankle Surgery, Hong Hui Hospital of Xi'an Jiaotong University, China
| | - Feng Zhang
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, Hong Hui Hospital of Xi'an Jiaotong University, China
| | - Chengjuan Qu
- Department of Odontology, Umeå University, Sweden
| | - Mikko J Lammi
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Department of Integrative Medical Biology, Umeå University, Sweden
| | - Xiong Guo
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| |
Collapse
|
10
|
Chen CG, Iozzo RV. Angiostatic cues from the matrix: Endothelial cell autophagy meets hyaluronan biology. J Biol Chem 2020; 295:16797-16812. [PMID: 33020183 PMCID: PMC7864073 DOI: 10.1074/jbc.rev120.014391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/02/2020] [Indexed: 01/21/2023] Open
Abstract
The extracellular matrix encompasses a reservoir of bioactive macromolecules that modulates a cornucopia of biological functions. A prominent body of work posits matrix constituents as master regulators of autophagy and angiogenesis and provides molecular insight into how these two processes are coordinated. Here, we review current understanding of the molecular mechanisms underlying hyaluronan and HAS2 regulation and the role of soluble proteoglycan in affecting autophagy and angiogenesis. Specifically, we assess the role of proteoglycan-evoked autophagy in regulating angiogenesis via the HAS2-hyaluronan axis and ATG9A, a novel HAS2 binding partner. We discuss extracellular hyaluronan biology and the post-transcriptional and post-translational modifications that regulate its main synthesizer, HAS2. We highlight the emerging group of proteoglycans that utilize outside-in signaling to modulate autophagy and angiogenesis in cancer microenvironments and thoroughly review the most up-to-date understanding of endorepellin signaling in vascular endothelia, providing insight into the temporal complexities involved.
Collapse
Affiliation(s)
- Carolyn G Chen
- Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Jiang Z, Derrick-Roberts AL, Byers S. Altered IHH signaling contributes to reduced chondrocyte proliferation in the growth plate of MPS VII mice. Mol Genet Metab Rep 2020; 25:100668. [PMID: 33117654 PMCID: PMC7582094 DOI: 10.1016/j.ymgmr.2020.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 10/29/2022] Open
Abstract
Bone elongation is driven by chondrocyte proliferation and hypertrophy in the growth plate. Both processes are modulated by multiple signaling pathways including the Indian Hedgehog (IHH) signaling pathway. Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders characterized by accumulation of glycosaminoglycans (GAGs) in multiple tissues and organs, leading to a range of clinical symptoms including bone shortening through mechanisms that are not fully understood. Using MPS VII mice, we previously observed a reduction in the number of proliferating and hypertrophic chondrocytes and a reduced gene expression of Ihh in the tibial growth plate. We further demonstrate here that IHH secretion by MPS VII chondrocytes was reduced both in vitro and in vivo. While normal chondrocytes showed no response to exogenous IHH, proliferation of MPS VII chondrocytes was stimulated in response to exogenous IHH in vitro. This was accompanied by an elevated gene expression of patched receptor (Ptch1). The results from this study suggested that reduced proliferation in MPS VII growth plate may be partially due to dysfunction of the IHH signaling pathway.
Collapse
Affiliation(s)
- Zhirui Jiang
- Genetics and Evolution, The University of Adelaide, Adelaide, SA, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Ainslie L.K. Derrick-Roberts
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Paediatrics, The University of Adelaide, Adelaide, SA, Australia
| | - Sharon Byers
- Genetics and Evolution, The University of Adelaide, Adelaide, SA, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Paediatrics, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
Kawashima K, Ogawa H, Komura S, Ishihara T, Yamaguchi Y, Akiyama H, Matsumoto K. Heparan sulfate deficiency leads to hypertrophic chondrocytes by increasing bone morphogenetic protein signaling. Osteoarthritis Cartilage 2020; 28:1459-1470. [PMID: 32818603 PMCID: PMC7606622 DOI: 10.1016/j.joca.2020.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Exostosin-1 (EXT1) and EXT2 are the major genetic etiologies of multiple hereditary exostoses and are essential for heparan sulfate (HS) biosynthesis. Previous studies investigating HS in several mouse models of multiple hereditary exostoses have reported that aberrant bone morphogenetic protein (BMP) signaling promotes osteochondroma formation in Ext1-deficient mice. This study examined the mechanism underlying the effects of HS deficiency on BMP/Smad signaling in articular cartilage in a cartilage-specific Ext-/- mouse model. METHOD We generated mice with a conditional Ext1 knockout in cartilage tissue (Ext1-cKO mice) using Prg4-Cre transgenic mice. Structural cartilage alterations were histologically evaluated and phospho-Smad1/5/9 (pSmad1/5/9) expression in mouse chondrocytes was analyzed. The effect of pharmacological intervention of BMP signaling using a specific inhibitor was assessed in the articular cartilage of Ext1-cKO mice. RESULTS Hypertrophic chondrocytes were significantly more abundant (P = 0.021) and cartilage thickness was greater in Ext1-cKO mice at 3 months postnatal than in control littermates (P = 0.036 for femur; and P < 0.001 for tibia). However, osteoarthritis did not spontaneously occur before the 1-year follow-up. matrix metalloproteinase (MMP)-13 and adamalysin-like metalloproteinases with thrombospondin motifs(ADAMTS)-5 were upregulated in hypertrophic chondrocytes of transgenic mice. Immunostaining and western blotting revealed that pSmad1/5/9-positive chondrocytes were more abundant in the articular cartilage of Ext1-cKO mice than in control littermates. Furthermore, the BMP inhibitor significantly decreased the number of hypertrophic chondrocytes in Ext1-cKO mice (P = 0.007). CONCLUSIONS HS deficiency in articular chondrocytes causes chondrocyte hypertrophy, wherein upregulated BMP/Smad signaling partially contributes to this phenotype. HS might play an important role in maintaining the cartilaginous matrix by regulating BMP signaling.
Collapse
Affiliation(s)
- K. Kawashima
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - H. Ogawa
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - S. Komura
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - T. Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, 1-1 Yanagido, Gifu, Japan
| | - Y. Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - H. Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - K. Matsumoto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan,Address correspondence and reprint requests to: K. Matsumoto, Department of Orthopedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan. Tel.: 81-58-230-6333; Fax: 81-58-230-6334. (K. Matsumoto)
| |
Collapse
|
13
|
Li Y, Lin X, Zhu M, Li J, Yuan Z, Xu H. Whole‑exome sequencing identifies a novel mutation of SLC20A2 (c.C1849T) as a possible cause of hereditary multiple exostoses in a Chinese family. Mol Med Rep 2020; 22:2469-2477. [PMID: 32705272 PMCID: PMC7411400 DOI: 10.3892/mmr.2020.11298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Although the main causative genes for hereditary multiple exostoses (HME) are exostosin (EXT)‑1 and EXT‑2, there are numerous patients with HME without EXT‑1 and EXT‑2 mutations. The present study aimed to identify novel candidate genes for the development of HME in patients without EXT‑1 and EXT‑2 mutations. Whole‑exome sequencing was performed in a Chinese family with HME and without EXT‑1 and EXT‑2 mutations, followed by a combined bioinformatics pipeline including annotation and filtering processes to identify candidate variants. Candidate variants were then validated using Sanger sequencing. A total of 1,830 original variants were revealed to be heterozygous mutations in three patients with HME which were not present in healthy controls. Two mutations [c.C1849T in solute carrier family 20 member 2 (SLC20A2) and c.G506A in leucine zipper and EF‑hand containing transmembrane protein 1 (LETM1)] were identified as possible causative variants for HME through a bioinformatics filtering procedure and harmful prediction. Sanger sequencing results confirmed these two mutations in all patients with HME. A mutation in SLC20A2 (c.C1849T) led to a change in an amino acid (p.R617C), which may be involved in the development of HME by inducing metabolic disorders of phosphate and abnormal proliferation and differentiation in chondrocytes. In conclusion, the present study revealed two mutations [SLC20A2 (c.C1849T) and LETM1 (c.G506A) in a Chinese family with HME. The mutation in SLC20A2 (c.C1849T)] was more likely to be involved in the development of HME.
Collapse
Affiliation(s)
- Yiqiang Li
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Xuemei Lin
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Mingwei Zhu
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Jingchun Li
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Zhe Yuan
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Hongwen Xu
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| |
Collapse
|
14
|
Kodama K, Takahashi H, Oiji N, Nakano K, Okamura T, Niimi K, Takahashi E, Guo L, Ikegawa S, Furuichi T. CANT1 deficiency in a mouse model of Desbuquois dysplasia impairs glycosaminoglycan synthesis and chondrocyte differentiation in growth plate cartilage. FEBS Open Bio 2020; 10:1096-1103. [PMID: 32277574 PMCID: PMC7262921 DOI: 10.1002/2211-5463.12859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
Desbuquois dysplasia (DD) type 1 is a rare skeletal dysplasia characterized by a short stature, round face, progressive scoliosis, and joint laxity. The causative gene has been identified as calcium‐activated nucleotidase 1 (CANT1), which encodes a nucleotidase that preferentially hydrolyzes UDP to UMP and phosphate. In this study, we generated Cant1 KO mice using CRISPR/Cas9‐mediated genome editing. All F0 mice possessing frameshift deletions at both Cant1 alleles exhibited a dwarf phenotype. Germline transmission of the edited allele was confirmed in an F0 heterozygous mouse, and KO mice were generated by crossing of the heterozygous breeding pairs. Cant1 KO mice exhibited skeletal defects, including short stature, thoracic kyphosis, and delta phalanx, all of which are observed in DD type 1 patients. The glycosaminoglycan (GAG) content and extracellular matrix space were reduced in the growth plate cartilage of mutants, and proliferating chondrocytes lost their typical flat shape and became round. Chondrocyte differentiation, especially terminal differentiation to hypertrophic chondrocytes, was impaired in Cant1 KO mice. These findings indicate that CANT1 is involved in the synthesis of GAG and regulation of chondrocyte differentiation in the cartilage and contribute to a better understanding of the pathogenesis of DD type 1.
Collapse
Affiliation(s)
- Kazuki Kodama
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Hiroaki Takahashi
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Nobuyasu Oiji
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan.,Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan.,Section of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Kimie Niimi
- Support Unit for Animal Resources Development, Research Resources Division, RIKEN Center for Brain Science, Saitama, Japan
| | - Eiki Takahashi
- Support Unit for Animal Resources Development, Research Resources Division, RIKEN Center for Brain Science, Saitama, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Tatsuya Furuichi
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Japan.,Department of Basic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, Japan
| |
Collapse
|
15
|
Extracellular matrix: the gatekeeper of tumor angiogenesis. Biochem Soc Trans 2020; 47:1543-1555. [PMID: 31652436 DOI: 10.1042/bst20190653] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.
Collapse
|
16
|
Heparanase: A Potential Therapeutic Target in Sarcomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:405-431. [PMID: 32274719 DOI: 10.1007/978-3-030-34521-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sarcomas comprise a heterogeneous group of rare malignancies of mesenchymal origin including more than 70 subtypes. They may arise in muscle, bone, cartilage and other connective tissues. Their high histological and genetic heterogeneity makes diagnosis and treatment very challenging. Deregulation of heparanase has been found in several sarcoma subtypes and high expression levels have been correlated with poor prognosis in Ewing's sarcoma and osteosarcoma. Altered expression of specific heparan sulfate proteoglycans and heparan sulfate biosynthetic enzymes has also been observed. Advances in molecular pathogenesis of sarcomas have evidenced the critical role of several heparan sulfate binding growth factors and receptor tyrosine kinases, highly interconnected with the microenvironment, in sustaining tumor growth and progression. Interference with heparanase/heparan sulfate functions represents a potential therapeutic approach in sarcoma. In this chapter, we summarize the current knowledge about the biological significance of heparanase expression and its potential as a therapeutic target in subtypes of both soft tissue and bone sarcomas. Particular emphasis is given to the involvement of heparan sulfate proteoglycans and their synthesizing and modifying enzymes in bone physiology and disorders leading up to the pathobiology of bone sarcomas. The chapter also describes the cooperation between exostin loss-of-function and heparanase upregulation in hereditary Multiple Osteochondroma syndrome as a paradigmatic example of constitutive alteration of the heparanase/heparan sulfate proteoglycan system which may contribute to progression to malignant secondary chondrosarcoma. Preclinical evidence of the role of heparanase as a promising therapeutic target in various sarcoma subtypes is finally resumed.
Collapse
|
17
|
Wang X, Cornelis FMF, Lories RJ, Monteagudo S. Exostosin-1 enhances canonical Wnt signaling activity during chondrogenic differentiation. Osteoarthritis Cartilage 2019; 27:1702-1710. [PMID: 31330188 DOI: 10.1016/j.joca.2019.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Exostosin-1 (Ext1) encodes a glycosyltransferase required for heparan sulfate (HS) chain elongation in HS-proteoglycan biosynthesis. HS chains serve as binding partners for signaling proteins, affecting their distribution and activity. The Wnt/β-catenin pathway emerged as critical regulator of chondrogenesis. Yet, how EXT1 and HS affect Wnt/β-catenin signaling during chondrogenesis remains unexplored. METHOD Ext1 was stably knocked-down or overexpressed in ATDC5 chondrogenic cells cultured as micromasses. HS content was determined using ELISA. Chondrogenic markers Sox9, Col2a1, Aggrecan, and Wnt direct target gene Axin2 were measured by RT-qPCR. Proteoglycan content was evaluated by Alcian blue and DMMB assay, canonical Wnt signaling activation by β-catenin Western blot and TOP/FOP assay. ATDC5 cells and human articular chondrocytes were treated with Wnt activators CHIR99021 and recombinant WNT3A. RESULTS Ext1 knock-down reduced HS, and increased chondrogenic markers and proteoglycan accumulation. Ext1 knock-down reduced active Wnt/β-catenin signaling. Conversely, Ext1 overexpressing cells, with higher HS content, showed decreased chondrogenic differentiation and enhanced Wnt/β-catenin signaling. Wnt/β-catenin signaling activation led to a down-regulation of Ext1 expression in ATDC5 cells and in human articular chondrocytes. CONCLUSIONS EXT1 affects chondrogenic differentiation of precursor cells, in part via changes in the activity of Wnt/β-catenin signaling. Wnt/β-catenin signaling controls Ext1 expression, suggesting a regulatory loop between EXT1 and Wnt/β-catenin signaling during chondrogenesis.
Collapse
Affiliation(s)
- X Wang
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.
| | - F M F Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.
| | - R J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium.
| | - S Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Peck SH, Tobias JW, Shore EM, Malhotra NR, Haskins ME, Casal ML, Smith LJ. Molecular profiling of failed endochondral ossification in mucopolysaccharidosis VII. Bone 2019; 128:115042. [PMID: 31442675 PMCID: PMC6813906 DOI: 10.1016/j.bone.2019.115042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder characterized by deficient activity of β-glucuronidase, leading to progressive accumulation of incompletely degraded heparan, dermatan, and chondroitin sulfate glycosaminoglycans (GAGs). Patients with MPS VII exhibit progressive skeletal deformity including kyphoscoliosis and joint dysplasia, which decrease quality of life and increase mortality. Previously, using the naturally-occurring canine model, we demonstrated that one of the earliest skeletal abnormalities to manifest in MPS VII is failed initiation of secondary ossification in vertebrae and long bones at the requisite postnatal developmental stage. The objective of this study was to obtain global insights into the molecular mechanisms underlying this failed initiation of secondary ossification. Epiphyseal tissue was isolated postmortem from the vertebrae of control and MPS VII-affected dogs at 9 and 14 days-of-age (n = 5 for each group). Differences in global gene expression across this developmental window for both cohorts were measured using whole-transcriptome sequencing (RNA-Seq). Principal Component Analysis revealed clustering of samples within each group, indicating clear effects of both age and disease state. At 9 days-of-age, 1375 genes were significantly differentially expressed between MPS VII and control, and by 14 days-of-age, this increased to 4719 genes. A targeted analysis focused on signaling pathways important in the regulation of endochondral ossification was performed, and a subset of gene expression differences were validated using qPCR. Osteoactivin (GPNMB) was the top upregulated gene in MPS VII at both ages. In control samples, temporal changes in gene expression from 9 to 14 days-of-age were consistent with chondrocyte maturation, cartilage resorption, and osteogenesis. In MPS VII samples, however, elements of key osteogenic pathways such as Wnt/β-catenin and BMP signaling were not upregulated during this same developmental window suggesting that important bone formation pathways are not activated. In conclusion, this study represents an important step towards identifying therapeutic targets and biomarkers for bone disease in MPS VII patients during postnatal growth.
Collapse
Affiliation(s)
- Sun H Peck
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA, USA
| | - Neil R Malhotra
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - Mark E Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St, Philadelphia, PA, USA
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Yang C, Pan J, Linpeng S, Li Z, Tan H, Wu L. Identification of Five Novel Mutations Causing Rare Lysosomal Storage Diseases. Med Sci Monit 2019; 25:7634-7644. [PMID: 31603145 PMCID: PMC6800466 DOI: 10.12659/msm.915876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/06/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Lysosomal storage diseases (LSDs), a group of rare inherited metabolic disorders, result from specific lysosomal proteins deficiencies in the degradation of biomacromolecule, including over 70 different diseases, most of which are autosomal recessive. LSDs are multisystem disorders, and the clinical manifestations are usually broad and severe, involving the skeletal system, central nervous system (CNS), cardiovascular system, etc. Besides, patients with some subtypes of LSD have distinctive facial features. MATERIAL AND METHODS We performed next generation sequencing on 4 suspected mucopolysaccharidosis (MPS) cases to determine the genetic causes of the disease. By in vitro molecular cell assay, such as real-time polymerase chain reaction (RT-PCR) and western blot, we tested the pathogenicity of candidate variants. RESULTS We detected 5 novel mutations in 4 patients. The mutations were: c.211_214del and c.1270C>T in GUSB; c.1284+1C>A and c.2404C>T in GNPTAB; and c.717C>A in FUCA1). We identified a rare mucopolysaccharidosis VII patient, a rare fucosidosis patient, and 2 rare mucolipidosis II patients, one of which was an atypical patient. We also present a new pathogenic conjecture about a small deletion in GUSB. CONCLUSIONS Our study described rare diseases in Chinese patients and our results enrich the phenotype spectrum of related diseases, as well as mutation spectrum of related genes, which might be significant for clinical disease diagnosis and prenatal diagnosis.
Collapse
|
20
|
De Pasquale V, Pavone LM. Heparan sulfate proteoglycans: The sweet side of development turns sour in mucopolysaccharidoses. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165539. [PMID: 31465828 DOI: 10.1016/j.bbadis.2019.165539] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are complex carbohydrate-modified proteins ubiquitously expressed on cell surfaces, extracellular matrix and basement membrane of mammalian tissues. Beside to serve as structural constituents, they regulate multiple cellular activities. A critical involvement of HSPGs in development has been established, and perturbations of HSPG-dependent pathways are associated with many human diseases. Recent evidence suggest a role of HSPGs in the pathogenesis of mucopolysaccharidoses (MPSs) where the accumulation of undigested HS results in the loss of cellular functions, tissue damage and organ dysfunctions accounting for clinical manifestations which include central nervous system (CNS) involvement, degenerative joint disease and reduced bone growth. Current therapies are not curative but only ameliorate the disease symptoms. Here, we highlight the link between HSPG functions in the development of CNS and musculoskeletal structures and the etiology of some MPS phenotypes, suggesting that HSPGs may represent potential targets for the therapy of such incurable diseases.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, Via S. Pansini n. 5, 80131 Naples, Italy.
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, Via S. Pansini n. 5, 80131 Naples, Italy.
| |
Collapse
|
21
|
Silagi ES, Shapiro IM, Risbud MV. Glycosaminoglycan synthesis in the nucleus pulposus: Dysregulation and the pathogenesis of disc degeneration. Matrix Biol 2018; 71-72:368-379. [PMID: 29501510 PMCID: PMC6119535 DOI: 10.1016/j.matbio.2018.02.025] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/21/2022]
Abstract
Few human tissues have functions as closely linked to the composition of their extracellular matrices as the intervertebral disc. In fact, the hallmark of intervertebral disc degeneration, commonly accompanying low back and neck pain, is the progressive loss of extracellular matrix molecules - specifically the GAG-substituted proteoglycans. While this loss is often associated with increased extracellular catabolism via metalloproteinases and pro-inflammatory cytokines, there is strong evidence that disc degeneration is related to dysregulation of the enzymes involved in GAG biosynthesis. In this review, we discuss those environmental factors, unique to the disc, that control expression and function of XT-1, GlcAT-I, and ChSy/ChPF in the healthy and degenerative state. Additionally, we address the pathophysiology of aberrant GAG biosynthesis and highlight therapeutic strategies designed to augment the loss of extracellular matrix molecules that afflict the degenerative state.
Collapse
Affiliation(s)
- Elizabeth S Silagi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, USA.
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, USA.
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
22
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [PMID: 30204432 DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
23
|
miR-324-5p is up regulated in end-stage osteoarthritis and regulates Indian Hedgehog signalling by differing mechanisms in human and mouse. Matrix Biol 2018; 77:87-100. [PMID: 30193893 PMCID: PMC6456721 DOI: 10.1016/j.matbio.2018.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 01/07/2023]
Abstract
The Hedgehog (Hh) signalling pathway plays important roles during embryonic development and in adult tissue homeostasis, for example cartilage, where its deregulation can lead to osteoarthritis (OA). microRNAs (miRNAs) are important regulators of gene expression, and have been implicated in the regulation of signalling pathways, including Hh, thereby impacting upon development and disease. Our aim was to identify the function of miRNAs whose expression is altered in OA cartilage. Here we identified an increase in miR-324-5p expression in OA cartilage and hypothesised that, as in glioma, miR-324-5p would regulate Hh signalling. We determined that miR-324-5p regulates osteogenesis in human mesenchymal stem cells (MSCs) and in mouse C3H10T1/2 cells. Luciferase reporter assays demonstrated that miR-324-5p directly regulated established targets GLI1 and SMO in human but not in mouse, suggesting species-dependent mechanism of Hh pathway regulation. Stable Isotope Labelling with Amino acids in Cell culture (SILAC), mass spectrometry and whole genome transcriptome analysis identified Glypican 1 (Gpc1) as a novel miR-324-5p target in mouse, which was confirmed by real-time RT-PCR, immunoblotting and 3′UTR-luciferase reporters. Knockdown of Gpc1 reduced Hh pathway activity, and phenocopied the effect of miR-324-5p on osteogenesis, indicating that miR-324-5p regulates Hh signalling in mouse via direct targeting of Gpc1. Finally, we showed that human GPC1 is not a direct target of miR-324-5p. Importantly, as well as identifying novel regulation of Indian Hedgehog (Ihh) signalling, this study demonstrates how a miRNA can show conserved pathway regulation in two species but by distinct mechanisms and highlights important differences between human diseases and mouse models.
Collapse
|
24
|
Chen Z, Bi Q, Kong M, Chen Y. A Novel EXT1 Mutation Identified in a Family with Multiple Osteochondromas. Genet Test Mol Biomarkers 2018; 23:251-254. [PMID: 29989442 DOI: 10.1089/gtmb.2018.0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS Multiple exostoses (MO), also referred to as hereditary multiple exostoses (HME), is an autosomal dominant inherited skeletal disorder that has been found to be associated with mutations in the EXT1 and EXT2 genes. In the present study, we report a Chinese family with HME and our mutational analyses of the EXT1 and EXT2 genes in affected and unaffected individuals. METHODS All exons of the EXT1 and EXT2 genes in seven family members were polymerase chain reaction amplified from blood and sequenced. RESULTS A heterozygous mutation (c.1056G>T) was identified in exon 2 of the EXT1 gene in the proband and other affected family members; this mutation was not found in the unaffected family members. DISCUSSION This c.1056G>T mutation is located in the exostosin domain of the EXT1 protein and leads to an amino acid change of Glutamine (Gln) to Histidine (His) at position 352. Homology searches reveal that Gln352 is highly conserved in many species and may play an essential role in the normal function of the EXT1 protein. CONCLUSIONS This study contributes to a better understanding of the genetic basis of HME, expands the known mutational spectrum of EXT1, and provides a reference for genetic counseling and prenatal diagnosis of this family.
Collapse
Affiliation(s)
| | - Qing Bi
- 2 Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Mingxiang Kong
- 2 Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yu Chen
- 2 Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
25
|
Friedenberg SG, Vansteenkiste D, Yost O, Treeful AE, Meurs KM, Tokarz DA, Olby NJ. A de novo mutation in the EXT2 gene associated with osteochondromatosis in a litter of American Staffordshire Terriers. J Vet Intern Med 2018; 32:986-992. [PMID: 29485212 PMCID: PMC5980316 DOI: 10.1111/jvim.15073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/02/2018] [Accepted: 01/18/2018] [Indexed: 12/30/2022] Open
Abstract
Background We aimed to identify mutations associated with osteochondromatosis in a litter of American Staffordshire Terrier puppies. Hypothesis We hypothesized that the associated mutation would be located in a gene that causes osteochondromatosis in humans. Animals A litter of 9 American Staffordshire puppies, their sire and dam, 3 of 4 grandparents, 26 healthy unrelated American Staffordshire Terriers, and 154 dogs of 27 different breeds. Methods Whole genome sequencing was performed on the proband, and variants were compared against polymorphisms derived from 154 additional dogs across 27 breeds, as well as single nucleotide polymorphism database 146. One variant was selected for follow‐up sequencing. Parentage and genetic mosaicism were evaluated across the litter. Results We found 56,301 genetic variants unique to the proband. Eleven variants were located in or near the gene exostosin 2 (EXT2), which is strongly associated with osteochondromatosis in humans. One heterozygous variant (c.969C > A) is predicted to result in a stop codon in exon 5 of the gene. Sanger sequencing identified the identical mutation in all affected offspring. The mutation was absent in the unaffected offspring, both parents, all available grandparents, and 26 healthy unrelated American Staffordshire Terriers. Conclusions and Clinical Importance These findings represent the first reported mutation associated with osteochondromatosis in dogs. Because this mutation arose de novo, the identical mutation is unlikely to be the cause of osteochondromatosis in other dogs. However, de novo mutations in EXT2 are common in humans with osteochondromatosis, and by extension, it is possible that dogs with osteochondromatosis could be identified by sequencing the entire EXT2 gene.
Collapse
Affiliation(s)
- Steven G Friedenberg
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, Minnesota
| | | | - Oriana Yost
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina
| | - Amy E Treeful
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Kathryn M Meurs
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Debra A Tokarz
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina
| | - Natasha J Olby
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
26
|
de Andrea CE, San-Julian M, Bovée JVMG. Integrating Morphology and Genetics in the Diagnosis of Cartilage Tumors. Surg Pathol Clin 2017; 10:537-552. [PMID: 28797501 DOI: 10.1016/j.path.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cartilage-forming tumors of bone are a heterogeneous group of tumors with different molecular mechanisms involved. Enchondromas are benign hyaline cartilage-forming tumors of medullary bone caused by mutations in IDH1 or IDH2. Osteochondromas are benign cartilage-capped bony projections at the surface of bone. IDH mutations are also found in dedifferentiated and periosteal chondrosarcoma. A recurrent HEY1-NCOA2 fusion characterizes mesenchymal chondrosarcoma. Molecular changes are increasingly used to improve diagnostic accuracy in chondrosarcomas. Detection of IDH mutations or HEY1-NCOA2 fusions has already proved their immense value, especially on small biopsy specimens or in case of unusual presentation.
Collapse
Affiliation(s)
- Carlos E de Andrea
- Department of Histology and Pathology, University of Navarra, Irunlarrea 1, Navarra, Pamplona 31008, Spain
| | - Mikel San-Julian
- Department of Orthopaedic Surgery and Traumatology, University Clinic of Navarra, Irunlarrea 1, Navarra, Pamplona 31008, Spain
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, PO Box 9600, L1-Q, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
27
|
Inubushi T, Nozawa S, Matsumoto K, Irie F, Yamaguchi Y. Aberrant perichondrial BMP signaling mediates multiple osteochondromagenesis in mice. JCI Insight 2017; 2:90049. [PMID: 28768899 DOI: 10.1172/jci.insight.90049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 06/23/2017] [Indexed: 01/20/2023] Open
Abstract
Multiple hereditary exostoses (MHE) is characterized by the development of numerous benign bony tumors (osteochondromas). Although it has been well established that MHE is caused by mutations in EXT1 and EXT2, which encode glycosyltransferase essential for heparan sulfate (HS) biosynthesis, the cellular origin and molecular mechanisms of MHE remain elusive. Here, we show that in Ext1 mutant mice, osteochondromas develop from mesenchymal stem cell-like progenitor cells residing in the perichondrium, and we show that enhanced BMP signaling in these cells is the primary signaling defect that leads to osteochondromagenesis. We demonstrate that progenitor cells in the perichondrium, including those in the groove of Ranvier, highly express HS and that Ext1 ablation targeted to the perichondrium results in the development of osteochondromas. Ext1-deficient perichondrial progenitor cells show enhanced BMP signaling and increased chondrogenic differentiation both in vitro and in vivo. Consistent with the functional role for enhanced BMP signaling in osteochondromagenesis, administration of the small molecule BMP inhibitor LDN-193189 suppresses osteochondroma formation in two MHE mouse models. Together, our results demonstrate a role for enhanced perichondrial BMP signaling in osteochondromagenesis in mice, and they suggest the possibility of pharmacological treatment of MHE with BMP inhibitors.
Collapse
|
28
|
Tanimoto R, Palladino C, Xu SQ, Buraschi S, Neill T, Gomella LG, Peiper SC, Belfiore A, Iozzo RV, Morrione A. The perlecan-interacting growth factor progranulin regulates ubiquitination, sorting, and lysosomal degradation of sortilin. Matrix Biol 2017; 64:27-39. [PMID: 28433812 DOI: 10.1016/j.matbio.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite extensive clinical and experimental studies over the past decades, the pathogenesis and progression to the castration-resistant stage of prostate cancer remains largely unknown. Progranulin, a secreted growth factor, strongly binds the heparin-sulfate proteoglycan perlecan, and counteracts its biological activity. We established that progranulin acts as an autocrine growth factor and promotes prostate cancer cell motility, invasion, and anchorage-independent growth. Progranulin was overexpressed in prostate cancer tissues vis-à-vis non-neoplastic tissues supporting the hypothesis that progranulin may play a key role in prostate cancer progression. However, progranulin's mode of action is not well understood and proteins regulating progranulin signaling have not been identified. Sortilin, a single-pass type I transmembrane protein of the Vps10 family, binds progranulin in neurons and targets progranulin for lysosomal degradation. Significantly, in DU145 and PC3 cells, we detected very low levels of sortilin associated with high levels of progranulin production and enhanced motility. Restoring sortilin expression decreased progranulin levels, inhibited motility and anchorage-independent growth and destabilized Akt. These results demonstrated a critical role for sortilin in regulating progranulin and suggest that sortilin loss may contribute to prostate cancer progression. Here, we provide the novel observation that progranulin downregulated sortilin protein levels independent of transcription. Progranulin induced sortilin ubiquitination, internalization via clathrin-dependent endocytosis and sorting into early endosomes for lysosomal degradation. Collectively, these results constitute a regulatory feed-back mechanism whereby sortilin downregulation ensures sustained progranulin-mediated oncogenesis.
Collapse
Affiliation(s)
- Ryuta Tanimoto
- Department of Urology, Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chiara Palladino
- Department of Urology, Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Health, Endocrinology, University of Catanzaro, 88100 Catanzaro, Italy
| | - Shi-Qiong Xu
- Department of Urology, Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Leonard G Gomella
- Department of Urology, Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Stephen C Peiper
- Department of Pathology, Anatomy and Cell Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonino Belfiore
- Department of Health, Endocrinology, University of Catanzaro, 88100 Catanzaro, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrea Morrione
- Department of Urology, Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
29
|
Kierdorf U, Miller KV, Flohr S, Gomez S, Kierdorf H. Multiple osteochondromas of the antlers and cranium in a free-ranging white-tailed deer (Odocoileus virginianus). PLoS One 2017; 12:e0173775. [PMID: 28296944 PMCID: PMC5351974 DOI: 10.1371/journal.pone.0173775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/27/2017] [Indexed: 11/21/2022] Open
Abstract
This paper reports a case of multiple osteochondromas affecting the antlers and the left zygomatic bone of a free-ranging adult white-tailed buck (Odocoileus virginianus) from Georgia, USA. Along with a few postcranial bones, the antlered cranium of the individual was found in a severely weathered condition and devoid of any soft tissue. The antlers exhibited five pedunculated exostoses that were composed of cancellous bone and, in their peripheral portions, also mineralized cartilage. The largest of the exostoses, located on the right antler, had a maximum circumference of 55 cm. The exostosis arising from the zygomatic bone was broad-based and much smaller than the exophytic outgrowths on the antlers. Diagnosis of the exostoses as osteochondromas was based on their overall morphology, the normal bone structure in their stalk regions, and the continuity of their spongiosa and cortex with the respective components of the parent bones. Antleromas, i.e., pathological outgrowths developing on antlers as a result of insufficient androgen production, were excluded in the differential diagnosis, based on (1) the apparent maturity and, except for the tumors, normal shape of the antlers and (2) the fact that exostosis formation had also affected the zygomatic bone. Previously only a single case of solitary osteochondroma of an antler has been described in the scientific literature. The case presented here is the first report of multiple osteochondromas in a deer. As antlers are regularly collected as trophies, and huge numbers of them are critically inspected each year, the fact that thus far only two cases of antler osteochondromas have been reported suggests that these tumors are very rare.
Collapse
Affiliation(s)
- Uwe Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Karl V. Miller
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, United States of America
| | - Stefan Flohr
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Santiago Gomez
- Department of Pathological Anatomy, University of Cádiz, Cádiz, Spain
| | - Horst Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
30
|
Azeem A, Marani L, Fuller K, Spanoudes K, Pandit A, Zeugolis D. Influence of Nonsulfated Polysaccharides on the Properties of Electrospun Poly(lactic-co-glycolic acid) Fibers. ACS Biomater Sci Eng 2016; 3:1304-1312. [DOI: 10.1021/acsbiomaterials.6b00206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. Azeem
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - L. Marani
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - K. Fuller
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - K. Spanoudes
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - A. Pandit
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D.I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
31
|
Gubbiotti MA, Neill T, Iozzo RV. A current view of perlecan in physiology and pathology: A mosaic of functions. Matrix Biol 2016; 57-58:285-298. [PMID: 27613501 DOI: 10.1016/j.matbio.2016.09.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/01/2016] [Indexed: 01/06/2023]
Abstract
Perlecan, a large basement membrane heparan sulfate proteoglycan, is expressed in a wide array of tissues where it regulates diverse cellular processes including bone formation, inflammation, cardiac development, and angiogenesis. Here we provide a contemporary review germane to the biology of perlecan encompassing its genetic regulation as well as an analysis of its modular protein structure as it pertains to function. As perlecan signaling from the extracellular matrix converges on master regulators of autophagy, including AMPK and mTOR, via a specific interaction with vascular endothelial growth factor receptor 2, we specifically focus on the mechanism of action of perlecan in autophagy and angiogenesis and contrast the role of endorepellin, the C-terminal fragment of perlecan, in these cellular and morphogenic events.
Collapse
Affiliation(s)
- Maria A Gubbiotti
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
32
|
Peck SH, Casal ML, Malhotra NR, Ficicioglu C, Smith LJ. Pathogenesis and treatment of spine disease in the mucopolysaccharidoses. Mol Genet Metab 2016; 118:232-43. [PMID: 27296532 PMCID: PMC4970936 DOI: 10.1016/j.ymgme.2016.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
The mucopolysaccharidoses (MPS) are a family of lysosomal storage disorders characterized by deficient activity of enzymes that degrade glycosaminoglycans (GAGs). Skeletal disease is common in MPS patients, with the severity varying both within and between subtypes. Within the spectrum of skeletal disease, spinal manifestations are particularly prevalent. Developmental and degenerative abnormalities affecting the substructures of the spine can result in compression of the spinal cord and associated neural elements. Resulting neurological complications, including pain and paralysis, significantly reduce patient quality of life and life expectancy. Systemic therapies for MPS, such as hematopoietic stem cell transplantation and enzyme replacement therapy, have shown limited efficacy for improving spinal manifestations in patients and animal models. Therefore, there is a pressing need for new therapeutic approaches that specifically target this debilitating aspect of the disease. In this review, we examine how pathological abnormalities affecting the key substructures of the spine - the discs, vertebrae, odontoid process and dura - contribute to the progression of spinal deformity and symptomatic compression of neural elements. Specifically, we review current understanding of the underlying pathophysiology of spine disease in MPS, how the tissues of the spine respond to current clinical and experimental treatments, and discuss future strategies for improving the efficacy of these treatments.
Collapse
Affiliation(s)
- Sun H Peck
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, United States; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, United States
| | - Margret L Casal
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, United States
| | - Neil R Malhotra
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, United States; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, United States
| | - Can Ficicioglu
- Division of Human Genetics and Metabolism, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, United States
| | - Lachlan J Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, United States; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
33
|
Marchini A, Ogata T, Rappold GA. A Track Record on SHOX: From Basic Research to Complex Models and Therapy. Endocr Rev 2016; 37:417-48. [PMID: 27355317 PMCID: PMC4971310 DOI: 10.1210/er.2016-1036] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SHOX deficiency is the most frequent genetic growth disorder associated with isolated and syndromic forms of short stature. Caused by mutations in the homeobox gene SHOX, its varied clinical manifestations include isolated short stature, Léri-Weill dyschondrosteosis, and Langer mesomelic dysplasia. In addition, SHOX deficiency contributes to the skeletal features in Turner syndrome. Causative SHOX mutations have allowed downstream pathology to be linked to defined molecular lesions. Expression levels of SHOX are tightly regulated, and almost half of the pathogenic mutations have affected enhancers. Clinical severity of SHOX deficiency varies between genders and ranges from normal stature to profound mesomelic skeletal dysplasia. Treatment options for children with SHOX deficiency are available. Two decades of research support the concept of SHOX as a transcription factor that integrates diverse aspects of bone development, growth plate biology, and apoptosis. Due to its absence in mouse, the animal models of choice have become chicken and zebrafish. These models, therefore, together with micromass cultures and primary cell lines, have been used to address SHOX function. Pathway and network analyses have identified interactors, target genes, and regulators. Here, we summarize recent data and give insight into the critical molecular and cellular functions of SHOX in the etiopathogenesis of short stature and limb development.
Collapse
Affiliation(s)
- Antonio Marchini
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Tsutomu Ogata
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Gudrun A Rappold
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Goyal A, Gubbiotti MA, Chery DR, Han L, Iozzo RV. Endorepellin-evoked Autophagy Contributes to Angiostasis. J Biol Chem 2016; 291:19245-56. [PMID: 27435676 DOI: 10.1074/jbc.m116.740266] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 12/27/2022] Open
Abstract
Endorepellin, the C-terminal domain of perlecan, is an angiostatic molecule that acts as a potent inducer of autophagy via its interaction with VEGFR2. In this study, we examined the effect of endorepellin on endothelial cells using atomic force microscopy. Soluble endorepellin caused morphological and biophysical changes such as an increase in cell surface roughness and cell height. Surprisingly, these changes were not accompanied by alterations in the endothelial cell elastic modulus. We discovered that endorepellin-induced autophagic flux led to co-localization of mammalian target of rapamycin with LC3-positive autophagosomes. Endorepellin functioned upstream of AMP-activated kinase α, as compound C, an inhibitor of AMP-activated kinase α, abrogated endorepellin-mediated activation and co-localization of Beclin 1 and LC3, thereby reducing autophagic progression. Functionally, we discovered that both endorepellin and Torin 1, a canonical autophagic inducer, blunted ex vivo angiogenesis. We conclude that autophagy is a novel mechanism by which endorepellin promotes angiostasis independent of nutrient deprivation.
Collapse
Affiliation(s)
- Atul Goyal
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Maria A Gubbiotti
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Daphney R Chery
- the School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Lin Han
- the School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Renato V Iozzo
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| |
Collapse
|
35
|
Odgren PR, Witwicka H, Reyes-Gutierrez P. The cast of clasts: catabolism and vascular invasion during bone growth, repair, and disease by osteoclasts, chondroclasts, and septoclasts. Connect Tissue Res 2016; 57:161-74. [PMID: 26818783 PMCID: PMC4912663 DOI: 10.3109/03008207.2016.1140752] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three named cell types degrade and remove skeletal tissues during growth, repair, or disease: osteoclasts, chondroclasts, and septoclasts. A fourth type, unnamed and less understood, removes nonmineralized cartilage during development of secondary ossification centers. "Osteoclasts," best known and studied, are polykaryons formed by fusion of monocyte precursors under the influence of colony stimulating factor 1 (CSF)-1 (M-CSF) and RANKL. They resorb bone during growth, remodeling, repair, and disease. "Chondroclasts," originally described as highly similar in cytological detail to osteoclasts, reside on and degrade mineralized cartilage. They may be identical to osteoclasts since to date there are no distinguishing markers for them. Because osteoclasts also consume cartilage cores along with bone during growth, the term "chondroclast" might best be reserved for cells attached only to cartilage. "Septoclasts" are less studied and appreciated. They are mononuclear perivascular cells rich in cathepsin B. They extend a cytoplasmic projection with a ruffled membrane and degrade the last transverse septum of hypertrophic cartilage in the growth plate, permitting capillaries to bud into it. To do this, antiangiogenic signals in cartilage must give way to vascular trophic factors, mainly vascular endothelial growth factor (VEGF). The final cell type excavates cartilage canals for vascular invasion of articular cartilage during development of secondary ossification centers. The "clasts" are considered in the context of fracture repair and diseases such as arthritis and tumor metastasis. Many observations support an essential role for hypertrophic chondrocytes in recruiting septoclasts and osteoclasts/chondroclasts by supplying VEGF and RANKL. The intimate relationship between blood vessels and skeletal turnover and repair is also examined.
Collapse
Affiliation(s)
- Paul R. Odgren
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655,Corresponding author: Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue, North, Worcester, MA 01655, USA, Phone: 508 856 8609, Fax: 508 856 1033,
| | - Hanna Witwicka
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Pablo Reyes-Gutierrez
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
36
|
Altered heparan sulfate structure in Glce−/− mice leads to increased Hedgehog signaling in endochondral bones. Matrix Biol 2016; 49:82-92. [DOI: 10.1016/j.matbio.2015.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/12/2015] [Accepted: 06/12/2015] [Indexed: 01/01/2023]
|
37
|
Exogenous Heparan Sulfate Enhances the TGF-β3-Induced Chondrogenesis in Human Mesenchymal Stem Cells by Activating TGF-β/Smad Signaling. Stem Cells Int 2015; 2016:1520136. [PMID: 26783399 PMCID: PMC4691498 DOI: 10.1155/2016/1520136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/21/2015] [Accepted: 08/10/2015] [Indexed: 12/25/2022] Open
Abstract
Heparan sulfate (HS) interacts with growth factors and has been implicated in regulating chondrogenesis. However, the effect of HS on TGF-β-mediated mesenchymal stem cell (MSC) chondrogenesis and molecular mechanisms remains unknown. In this study, we explored the effects of exogenous HS alone and in combination with TGF-β3 on chondrogenic differentiation of human MSCs and possible signal mechanisms. The results indicated that HS alone had no obvious effects on chondrogenic differentiation of human MSCs and TGF-β/Smad2/3 signal pathways. However, the combined TGF-β3/HS treatment resulted in a significant increase in GAG synthesis, cartilage matrix protein secretion, and cartilage-specific gene expression compared to cells treated with TGF-β3 alone. Furthermore, HS inhibited type III TGF-β receptors (TβRIII) expression and increased TGF-β3-mediated ratio of the type II (TβRII) to the type I (TβRI) TGF-β receptors and phosphorylation levels of Smad2/3. The inhibitor of the TGF-β/Smad signal, SB431542, not only completely inhibited HS-stimulated TGF-β3-mediated Smad2/3 phosphorylation but also completely inhibited the effects of HS on TGF-β3-induced chondrogenic differentiation. These results demonstrate exogenous HS enhances TGF-β3-induced chondrogenic differentiation of human MSCs by activating TGF-β/Smad2/3 signaling.
Collapse
|
38
|
Mutations in Biosynthetic Enzymes for the Protein Linker Region of Chondroitin/Dermatan/Heparan Sulfate Cause Skeletal and Skin Dysplasias. BIOMED RESEARCH INTERNATIONAL 2015; 2015:861752. [PMID: 26582078 PMCID: PMC4637088 DOI: 10.1155/2015/861752] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/05/2015] [Indexed: 01/11/2023]
Abstract
Glycosaminoglycans, including chondroitin, dermatan, and heparan sulfate, have various roles in a wide range of biological events such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Their polysaccharides covalently attach to the serine residues on specific core proteins through the common linker region tetrasaccharide, -xylose-galactose-galactose-glucuronic acid, which is produced through the stepwise addition of respective monosaccharides by four distinct glycosyltransferases. Mutations in the human genes encoding the glycosyltransferases responsible for the biosynthesis of the linker region tetrasaccharide cause a number of genetic disorders, called glycosaminoglycan linkeropathies, including Desbuquois dysplasia type 2, spondyloepimetaphyseal dysplasia, Ehlers-Danlos syndrome, and Larsen syndrome. This review focused on recent studies on genetic diseases caused by defects in the biosynthesis of the common linker region tetrasaccharide.
Collapse
|
39
|
Remde H, Kaminsky E, Werner M, Quinkler M. A patient with novel mutations causing MEN1 and hereditary multiple osteochondroma. Endocrinol Diabetes Metab Case Rep 2015; 2015:EDM140120. [PMID: 26515642 PMCID: PMC4621953 DOI: 10.1530/edm-14-0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/25/2015] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED We report of a male patient aged 32 years who presented with primary hyperparathyroidism. Three parathyroid glands were resected. At the age of 46 years, nervus facialis irritation was noted, and an MRI scan incidentally revealed a non-functioning pituitary adenoma with affection of the chiasma opticum. The patient underwent transsphenoidal operation resulting in pituitary insufficiency postoperatively. At the same time, primary hyperparathyroidism reoccurred and a parathyroid adenoma located at the thymus was resected. The mother of the patient died early due to multiple tumors. The patient was suspected to have multiple endocrine neoplasia type 1 (MEN1) and genetic analysis was performed. In addition, on clinical examination, multiple exostoses were noticed and an additional genetic analysis was performed. His father was reported to have multiple osteochondromas too. MEN1 was diagnosed in the patient showing a novel heterozygote mutation c.2T>A in exon 2, codon 1 (start codon ATG>AAG;p.Met1?) of the MEN1 gene. In genetic mutational analysis of the EXT1 gene, another not yet known mutation c.1418-2A>C was found in intron 5 of the EXT1 gene (heterozygotic). In conclusion, we report novel mutations of the EXT1 and the MEN1 genes causing hereditary multiple osteochondromas and MEN1 in one patient. LEARNING POINTS It is important to ask for the patient's family history in detail.Patients with MEN1 are characterized by the occurrence of tumors in multiple endocrine tissues and nonendocrine tissues, most frequently parathyroid (95%), enteropancreatic neuroendocrine (50%), and anterior pituitary (40%) tissues.Familiar MEN1 has a high degree of penetrance (80-95%) by the age over 50; however, combinations of the tumors may be different in members of the same family.Patients with EXT1 gene mutations should be monitored for possible transformation of bone lesions into osteochondrosarcoma.
Collapse
Affiliation(s)
- Hanna Remde
- Charité University Medicine , Berlin , Germany
| | - Elke Kaminsky
- Laboratory for Molecular Genetics , Hamburg , Germany
| | - Mathias Werner
- Institute of Pathology , HELIOS Klinikum Emil von Behring, Stiftung Oskar-Helene-Heim, Berlin , Germany
| | - Marcus Quinkler
- Endocrinology in Charlottenburg , Stuttgarter Platz 1, Berlin, D 10627 , Germany
| |
Collapse
|
40
|
Billings PC, Pacifici M. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries. Connect Tissue Res 2015; 56:272-80. [PMID: 26076122 PMCID: PMC4785798 DOI: 10.3109/03008207.2015.1045066] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heparan sulfate (HS) is a component of cell surface and matrix-associated proteoglycans (HSPGs) that, collectively, play crucial roles in many physiologic processes including cell differentiation, organ morphogenesis and cancer. A key function of HS is to bind and interact with signaling proteins, growth factors, plasma proteins, immune-modulators and other factors. In doing so, the HS chains and HSPGs are able to regulate protein distribution, bio-availability and action on target cells and can also serve as cell surface co-receptors, facilitating ligand-receptor interactions. These proteins contain an HS/heparin-binding domain (HBD) that mediates their association and contacts with HS. HBDs are highly diverse in sequence and predicted structure, contain clusters of basic amino acids (Lys and Arg) and possess an overall net positive charge, most often within a consensus Cardin-Weintraub (CW) motif. Interestingly, other domains and residues are now known to influence protein-HS interactions, as well as interactions with other glycosaminoglycans, such as chondroitin sulfate. In this review, we provide a description and analysis of HBDs in proteins including amphiregulin, fibroblast growth factor family members, heparanase, sclerostin and hedgehog protein family members. We discuss HBD structural and functional features and important roles carried out by other protein domains, and also provide novel conformational insights into the diversity of CW motifs present in Sonic, Indian and Desert hedgehogs. Finally, we review progress in understanding the pathogenesis of a rare pediatric skeletal disorder, Hereditary Multiple Exostoses (HME), characterized by HS deficiency and cartilage tumor formation. Advances in understanding protein-HS interactions will have broad implications for basic biology and translational medicine as well as for the development of HS-based therapeutics.
Collapse
Affiliation(s)
- Paul C. Billings
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104
| |
Collapse
|