1
|
Noor H, Ayub A, Dilshad E, Afsar T, Razak S, Husain FM, Trembley JH. Assessment of Bryophyllum pinnatum mediated Ag and ZnO nanoparticles as efficient antimicrobial and cytotoxic agent. Sci Rep 2024; 14:22200. [PMID: 39333327 PMCID: PMC11436798 DOI: 10.1038/s41598-024-73092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Bryophyllum pinnatum is used to cure infections worldwide. Although the flavonoids of this plant are well known, it is still unknown how much of the plant's Ag and ZnO nanoparticles are beneficial. In the current research work, silver and zinc oxide nanoparticles were prepared using Bryophyllum pinnatum extract. The synthesized particles were characterized by UV-visible spectroscopy, SEM, EDS, XRD and FTIR. Synthesized particles were subjected to evaluation of their bactericidal and antifungal activity at various doses. Uv vis spectra at 400 nm corresponding to AgNPs confirmed their synthesis. Strong peaks in the EDS spectra of Ag and ZnO indicate the purity of the sample. The scanning electron microscopic images of ZnONPs showed a size of about 60 nm ± 3 nm, which demonstrated the presence of triangular-shaped ZnO nanoparticles. Green synthesized nanoparticles showed bactericidal activity against both Gram-positive (Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Agrobacterium tumifaciens, Salmonella setubal, Enterobacter aerogenes) strains. AgNPs proved to be more effective against Gram-negative bacterial strains compared to Gram-positive owing to MIC values (10 ppm and 20 ppm respectively). Whereas, ZnONPs were found more effective against Gram-positive bacteria with lower MIC values (10 ppm) as compared to Gram-negative ones (20 ppm). Also, the synthesized nanoparticles exhibited moderate dose-dependent antifungal activity against tested fungal strains ranging from 10 to 70%. Cytotoxicity of nanoparticles was found significant using Brine shrimp's lethality assay with IC50 values of 4.09 ppm for AgNPs, 13.72 ppm for ZnONPs, and 24.83 ppm for plant extract. Conclusively, Ag and ZnO nanoparticles were more effective than plant extract and AgNPs had higher activities than those of ZnONPs. Further research is warranted to explore the precise mechanism of action and the potential applications of these nanoparticles in the medical field.
Collapse
Affiliation(s)
- Huma Noor
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, 44000, Pakistan
| | - Asma Ayub
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, 44000, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, 44000, Pakistan.
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Budhathoki S, Chaudhary N, Guragain B, Baral D, Adhikari J, Chaudhary NK. Green synthesis of silver nanoparticles from Brassaiopsis hainla extract for the evaluation of antibacterial and anticorrosion properties. Heliyon 2024; 10:e35642. [PMID: 39170326 PMCID: PMC11336820 DOI: 10.1016/j.heliyon.2024.e35642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Plant-mediated synthesis of silver nanoparticles (AgNPs) is an eco-friendly and convenient alternative to conventional methods. Brassaiopsis hainla (B. hainla) leaf extract (BHE) was used in this study to reduce metal salts and cap and stabilize nanoparticles (NPs), which were characterized and tested for antibacterial and anti-corrosion properties. Stirring the B. hainla extract with AgNO3 led to a color change, indicating nanoparticle formation. The absorption peak at 428 nm in the UV-visible spectrum further validated its formation. The AgNPs were characterized using various techniques such as FTIR, UV-visible, PXRD, HRTEM, SEM, and EDX. Powder X-ray diffraction analysis confirmed its nanocrystalline nature, with an average crystallite size of 17.92 nm. The FTIR spectrum showed hydroxyl, amine, amide, and carbonyl groups as capping and reducing agents for the AgNPs. SEM analysis revealed poly-dispersed NPs of various sizes, while EDX showed an intense peak for Ag, and TEM images revealed mostly hexagonal and triangular NPs. Antibacterial activity was tested against three human pathogens: Staphylococcus aureus (S. aureus), Pseudomonas, and Klebsiella oxytoca (K. oxytoca). Significant antibacterial activity was observed specifically against K. oxytoca, with an 11 mm inhibition zone. Both plant extracts and AgNPs inhibited acid-induced corrosion, with the highest inhibition efficiencies of 81.69 % and 69.54 % at 1000 ppm, respectively. With rising concerns over bacterial resistance and metal corrosion, this study addresses global challenges related to new antimicrobial agents, which are crucial for combating antibiotic resistance and protecting metals in various industries.
Collapse
Affiliation(s)
- Sujan Budhathoki
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar, Tribhuvan University, Nepal
| | - Nabina Chaudhary
- Department of Intensive Care Unit, Birat Medical College and Teaching Hospital, Biratnagar, Nepal
| | - Biswash Guragain
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar, Tribhuvan University, Nepal
| | - Dipak Baral
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar, Tribhuvan University, Nepal
| | - Janak Adhikari
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar, Tribhuvan University, Nepal
| | - Narendra Kumar Chaudhary
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar, Tribhuvan University, Nepal
| |
Collapse
|
3
|
Ohiduzzaman M, Khan M, Khan K, Paul B, Zilani MNH, Nazmul Hasan M. Crystallographic structure, antibacterial effect, and catalytic activities of fig extract mediated silver nanoparticles. Heliyon 2024; 10:e32419. [PMID: 38961897 PMCID: PMC11219361 DOI: 10.1016/j.heliyon.2024.e32419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Silver nanoparticles (Ag NPs) play a pivotal role in the current research landscape due to their extensive applications in engineering, biotechnology, and industry. The aim is to use fig (Ficus hispida Linn. f.) extract (FE) for eco-friendly Ag NPs synthesis, followed by detailed characterization, antibacterial testing, and investigation of bioelectricity generation. This study focuses on the crystallographic features and nanostructures of Ag NPs synthesized from FE. Locally sourced fig was boiled in deionized water, cooled, and doubly filtered. A color change in 45 mL 0.005 M AgNO3 and 5 mL FE after 40 min confirmed the bio-reduction of silver ions to Ag NPs. Acting as a reducing and capping agent, the fig extract ensures a green and sustainable process. Various analyses, including UV-vis absorption spectrophotometry (UV), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and Transmission electron microscopy (TEM) were employed to characterize the synthesized nanoparticles, and Gas chromatography-mass spectrometry (GC-MS) analysis of the fig extract revealed the presence of eleven chemicals. Notably, the Ag NPs exhibited a surface plasmon resonance (SPR) band at 418 nm, confirmed by UV analysis, while FTIR and XRD results highlighted the presence of active functional groups in FE and the crystalline nature of Ag NPs respectively. With an average particle size of 44.57 nm determined by FESEM and a crystalline size of 35.87 nm determined by XRD, the nanoparticles showed strong antibacterial activities against Staphylococcus epidermidis and Escherichia coli. Most importantly, fig fruit extract has been used as the bio-electrolyte solution to generate electricity for the first time in this report. The findings of this report can be the headway of nano-biotechnology in medicinal and device applications.
Collapse
Affiliation(s)
- Md Ohiduzzaman
- Department of Physics, Jagannath University, Dhaka, 1100, Bangladesh
- Department of Physics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M.N.I. Khan
- Materials Science Division, Atomic Energy Centre, Dhaka, Bangladesh
| | - K.A. Khan
- Department of Physics, Jagannath University, Dhaka, 1100, Bangladesh
- Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University, Jamalpur, Bangladesh
| | - Bithi Paul
- Department of Physics, American International University-Bangladesh, Dhaka, Bangladesh
| | - Md Nazmul Hasan Zilani
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
4
|
Ohiduzzaman M, Khan M, Khan K, Paul B. Biosynthesis and characterizations of silver nanoparticles by using green banana peel extract: Evaluation of their antibacterial and electrical performances. Heliyon 2024; 10:e31140. [PMID: 38778959 PMCID: PMC11109888 DOI: 10.1016/j.heliyon.2024.e31140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Biosynthesized silver nanoparticles (Ag NPs) hold tremendous promise in nano-bioscience, with applications spanning engineering, science, and industry. This study delves into their fabrication process, crystallographic characteristics, and nanostructures. Employing green banana peel extract (GBPE), Ag NPs were synthesized. Various analytical techniques, such as UV-Vis absorption spectrophotometry (UV), X-ray diffraction (XRD), Gas chromatography-mass spectrometry (GC-MS), Field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM) elucidate their attributes. UV-visible analysis reveals a 413 nm absorption band due to surface plasmon resonance. The Ag NPs exhibit a face-centered cubic structure with an average crystallite size of 45.87 nm. Lattice parameters and dislocation density are also determined. When tested against harmful bacteria, such as E. coli and S. epidermidis, advanced microscopy reveals a median size of particles of 55.12 nm and demonstrates their antibacterial characteristics. These environmentally benign Ag NPs also improve the efficiency of bio-electrochemical cells (BECs), opening the door to large-scale manufacturing at a reasonable cost and broadening the range of possible uses.
Collapse
Affiliation(s)
- Md Ohiduzzaman
- Department of Physics, Jagannath University, Dhaka, 1100, Bangladesh
- Department of Physics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M.N.I. Khan
- Materials Science Division, Atomic Energy Centre, Dhaka, Bangladesh
| | - K.A. Khan
- Department of Physics, Jagannath University, Dhaka, 1100, Bangladesh
- Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University, Jamalpur, Bangladesh
| | - Bithi Paul
- Department of Physics, American International University-Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
5
|
Ohiduzzaman M, Khan M, Khan K, Paul B. Biosynthesis of silver nanoparticles by banana pulp extract: Characterizations, antibacterial activity, and bioelectricity generation. Heliyon 2024; 10:e25520. [PMID: 38327438 PMCID: PMC10848009 DOI: 10.1016/j.heliyon.2024.e25520] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Here, green banana pulp extract (PE) has been used as a bio-reducing agent for the reduction of silver ions to silver nanoparticles (AgNPs). Bio-synthesized AgNPs were characterized by using UV, XRD, FEEM, TEM, and FTIR analysis. The face-centered cubic structures of AgNPs were formed with an average crystallite size of 31.26 nm and an average particle size of 42.97 nm. In this report, the electrical activities of green synthesized AgNPs have been evaluated along with the antibacterial activities. The antibacterial activities of AgNPs were evaluated against two pathogenic bacteria: Escherichia coli (gram-negative) and Staphylococcus epidermidis (gram-positive). AgNPs were added to the electrochemical cell and results demonstrated the improvement of power of the electrochemical cell. Green synthesized AgNPs showed excellent antibacterial activities against both gram-positive and negative bacteria and most importantly the NPs played an important role as an effective catalyst to enhance the electrical performance of bio-electrochemical cells. These significant findings may help in the advancement of nanotechnology in biomedical applications as well as in the creation of cheap and eco-friendly power generation devices.
Collapse
Affiliation(s)
- Md Ohiduzzaman
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
- Department of Physics, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - M.N.I. Khan
- Materials Science Division, Atomic Energy Centre, Dhaka, Bangladesh
| | - K.A. Khan
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
- Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University, Jamalpur, Bangladesh
| | - Bithi Paul
- Department of Physics, American International University-Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
6
|
Ohiduzzaman M, Khan MNI, Khan KA, Paul B. Green synthesis of silver nanoparticles by using Allium sativum extract and evaluation of their electrical activities in bio-electrochemical cell. NANOTECHNOLOGY 2023; 35:095707. [PMID: 38029451 DOI: 10.1088/1361-6528/ad10e4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
An electrical application of green synthesized silver nanoparticles (Ag NPs) by developing a unique bio-electrochemical cell (BEC) has been addressed in the report. Here, garlic extract (GE) has been used as a reducing agent to synthesize Ag NPs, and as a bio-electrolyte solution of BEC. Ag NPs successfully formed into face-centered cubic structures with average crystallite and particle sizes of 8.49 nm and 20.85 nm, respectively, according to characterization techniques such as the UV-vis spectrophotometer, XRD, FTIR, and FESEM. A broad absorption peak at 410 nm in the UV-visible spectra indicated that GE played a vital role as a reducing agent in the transformation of Ag+ions to Ag NPs. After that four types of BEC were developed by varying the concentration of GE, CuSO4. 5H2O, and Ag NPs electrolyte solution. The open circuit voltage and short circuit current of all cells were examined with the time duration. Moreover, different external loads (1 Ω, 2 Ω, 5 Ω, and 6 Ω) were used to investigate the load voltage and load current of BEC. The results demonstrated that the use of Ag NPs on BEC played a significant role in increasing the electrical performance of BEC. The use of GE-mediated Ag NPs integrated the power, capacity, voltage efficiency, and energy efficiency of BEC by decreasing the internal resistance and voltage regulation. These noteworthy results can take a frontier forward to the development of nanotechnology for renewable and low-cost power production applications.
Collapse
Affiliation(s)
- Md Ohiduzzaman
- Department of Physics, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
| | - M N I Khan
- Materials Science Division, Atomic Energy Centre, Dhaka, Bangladesh
| | - K A Khan
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
- Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University, Jamalpur, Bangladesh
| | - Bithi Paul
- Department of Physics, American International University-Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
7
|
Nandini B, Krishna L, Jogigowda SC, Nagaraja G, Hadimani S, Ali D, Sasaki K, Jogaiah S. Significance of Bryophyllum pinnatum (Lam.) for green synthesis of anti-bacterial copper and selenium nanoparticles and their influence on soil microflora. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Karimi F, Elhouda Tiri RN, Aygun A, Gulbagca F, Özdemir S, Gonca S, Gur T, Sen F. One-step synthesized biogenic nanoparticles using Linum usitatissimum: Application of sun-light photocatalytic, biological activity and electrochemical H 2O 2 sensor. ENVIRONMENTAL RESEARCH 2023; 218:114757. [PMID: 36511326 DOI: 10.1016/j.envres.2022.114757] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/29/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to synthesize Ag NPs as a green catalyst for photocatalytic activity and to examine their biological activities. It was determined that they have high activity in catalytic and biological activities. The green synthesis which is an environmentally friendly and inexpensive method was used to synthesize Ag-NPs using Linum usitatissimum as a reducing agent. Transmission electron microscopy (TEM), infrared to Fourier transform infrared (FTIR) spectroscopy, UV-Visible (UV-Vis) spectroscopy, and X-ray diffraction (XRD) were used to characterize the Ag NPs. In UV-Vis examination, Ag-NPs had intense peaks in the 435 nm region. The antibacterial activity of Ag NPs was investigated, and Ag NPs showed a high lethal effect against S. aureus, E. coli, B. subtilis, and MRSA. In addition, Ag NPs were tested for anticancer activity against the HT-29 colon cancer cell line, MDA-MB-231 breast cancer cell line, healthy cell line L929-Murine Fibroblast cell Lines, and MIA PaCa-2 human pancreatic cancer cell line at various concentrations (1-160 μg/mL) and showed a high anticancerogenic properties against MDA-MB-231 cells. Ag NPs showed the ability of DNA cleavage activity. Also, the antioxidant activity of Ag NPs against DPPH was found to be 80% approximately. Furthermore, the photocatalytic activity of Ag NPs against methylene blue (MB) was determined to be 67.13% at the 180th min. In addition, it was observed that biogenic Ag NPs have high electrocatalytic activity for hydrogen peroxide (H2O2) detection. In the sensor based on Ag NPs, linearity from 1 μM to 5 μM was observed with a detection limit (LOD) of 1.323 μM for H2O2. According to these results, we conclude that the biogenic Ag NPs synthesized using Linum usitatissimum extract can be developed as an efficient biological agent as an antibacterial and anticancer also can be used as a photocatalyst for industrial wastewater treatment to prevent wastewater pollution.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye
| | - Aysenur Aygun
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye
| | - Fulya Gulbagca
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Yenisehir, Mersin, Turkıye
| | - Serpil Gonca
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Yenisehir, Mersin, Turkıye
| | - Tugba Gur
- Vocational School of Health Services, Van Yuzuncu Yil University, Van, Turkıye
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye.
| |
Collapse
|
9
|
Hu D, Gao T, Kong X, Ma N, Fu J, Meng L, Duan X, Hu CY, Chen W, Feng Z, Latif S. Ginger (Zingiber officinale) extract mediated green synthesis of silver nanoparticles and evaluation of their antioxidant activity and potential catalytic reduction activities with Direct Blue 15 or Direct Orange 26. PLoS One 2022; 17:e0271408. [PMID: 36006900 PMCID: PMC9409512 DOI: 10.1371/journal.pone.0271408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
The green synthesis of silver nanoparticles (AgNPs) using a water extract of Ginger (Zingiber officinale) root by microwave irradiation and its antibacterial activities have been reported. However, AgNPs prepared from different parts of ginger root water or ethanol extract by ultrasound synthesis and their antioxidant activity and whether the biogenic could be used to catalyze the reduction of hazardous dye are unknown. This study concentrated on the facile green synthesis of AgNPs prepared from different parts (unpeeled ginger, peeled ginger, and ginger peel) of ginger root water or ethanol extract by the ultrasound-assisted method. We studied their antioxidant activity and catalytic degradation of hazardous dye Direct Orange 26 (DO26) and Direct Blue 15 (DB15). The surface plasmon resonance (SPR) peak of AgNPs was at 428-443 nm. The biogenic AgNPs were approximately 2 nm in size with a regular spherical shape identified from TEM analysis. The ethanol extracts of dried unpeeled ginger and peeled ginger, fresh peeled ginger and ginger peel. The Z. officinale AgNPs synthesized by dried unpeeled ginger ethanol extract showed the best antioxidant activity. Their scavenging activities were significantly better than BHT (p <0.05). The different parts of ginger extracts showed no catalytic degradation activities of DB15 and DO26. Still, the synthesized Z. officinale AgNPs exhibited good catalytic degradation activities, while their ability to catalytic degradation to DB15 was better than DO26. In the additive ratio of 3 mL DB15, 0.1 mL NaBH4 and 0.1 mL AgNPs, the degradation rates of DB15 (or DO26) at 15 min, 30 min and 60 min were only 1.8% (0.9%), 2.8% (1.4%) and 3.5% (1.6%) in the absence of AgNPs. When adding Z. officinale AgNPs prepared from dried ginger peel ethanol extract or fresh ginger peel water extract, the degradation rates of DB15 sharply increased to 97% and 93% after 30 min, respectively. In conclusion, ginger extract has good antioxidant properties. Z. officinale AgNPs biosynthesis from ginger extract exhibit excellent catalytic degradation activities, especially for the ginger peel extract. They have application value in the treatment of textile effluents and provide a new idea and method for the comprehensive development and utilization of ginger resources.
Collapse
Affiliation(s)
- Daihua Hu
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong, Shaanxi, China
| | - Tingting Gao
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Xingang Kong
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, Shaanxi, China
| | - Na Ma
- School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Jinhong Fu
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Lina Meng
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Xiaolong Duan
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Ching Yuan Hu
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Wang Chen
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Zili Feng
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Salman Latif
- Department of Chemistry, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| |
Collapse
|