1
|
Janoff EN, Shih MC, Donskey C, Belitskaya-Levy I, Brau N, Rodriguez-Barradas MC, Chan E, Zimmerman P, Miller EK, Vaughan LB, Daniel Markley J, Goldberg AM, Sriram P, Anzueto A, Uyeda L, Zehm L, Wills A, Hutchinson C, Jones L, Peterson D, Ringer RJ, Dumont L, Gleason T, Bonomo RA, Curtis JL, Brown ST. Impact of High-Titer Convalescent Plasma on Clinical and Virologic Outcomes Among Veterans Hospitalized With SARS-CoV-2 Infection: VA CoronavirUs Research and Efficacy Studies-1 (VA CURES-1). J Med Virol 2025; 97:e70349. [PMID: 40400480 DOI: 10.1002/jmv.70349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/26/2025] [Accepted: 03/27/2025] [Indexed: 05/23/2025]
Abstract
In the initial absence of proven therapies, empirical COVID-19 convalescent plasma (CCP) was rapidly introduced for individuals hospitalized for COVID-19. Seventy-five participants were randomized from November 2020 to June 2021 in a double-blind, multi-site, placebo-controlled, randomized trial (VA CURES-1) evaluating the impact of CCP vs. saline in Veterans hospitalized with COVID-19 with hypoxemia. The composite primary outcome was acute hypoxemic respiratory failure or all-cause death by Day 29. We analyzed clinical outcomes, nasal viral RNA, plasma cytokines and viral evolution over time. Among 40 participants receiving saline and 35 receiving CCP with high neutralizing titers (median 1:1420), the percent reaching the primary outcome was similar (10%), as were time to clinical recovery and to nasal viral clearance. By whole genome sequencing, viral molecular complexity evolved pre- to posttreatment more frequently in recipients of saline vs. CCP (4 of 7 (57.1%) vs. 1 of 4 (25%), respectively), based on numbers of mixed allele positions. Numbers of amino acid-changing, non-synonymous mutations in the spike protein were greater in saline vs. CCP recipients. Both outcomes suggested purifying selection (reduced overall viral infection complexity) following CCP. In conclusion, convalescent plasma showed no significant clinical impact but may influence SARS-CoV-2 complexity. Trial Registration: ClinicalTrials.gov Identifier: NCT04539275.
Collapse
Affiliation(s)
- Edward N Janoff
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Mei-Chiung Shih
- Department of Veterans Affairs, Cooperative Studies Program Coordinating Center, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Curtis Donskey
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Ilana Belitskaya-Levy
- Department of Veterans Affairs, Cooperative Studies Program Coordinating Center, Palo Alto, California, USA
| | - Norbert Brau
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Icahn School of Medicine at Mt. Sinai, New York, New York, USA
| | | | - Ernest Chan
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Peter Zimmerman
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Elliott K Miller
- Department of Veterans Affairs, Cooperative Studies Program Clinical Research Pharmacy Coordinating Center, Albuquerque, New Mexico, USA
| | - Leroy B Vaughan
- Central Virginia VA Healthcare System, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - J Daniel Markley
- Central Virginia VA Healthcare System, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Alexa M Goldberg
- Department of Veterans Affairs, Cooperative Studies Program Clinical Research Pharmacy Coordinating Center, Albuquerque, New Mexico, USA
| | - Peruvemba Sriram
- North Florida/South Georgia Veteran's Health System, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Antonio Anzueto
- South Texas Veterans Healthcare System, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Lauren Uyeda
- Department of Veterans Affairs, Cooperative Studies Program Coordinating Center, Palo Alto, California, USA
| | - Lisa Zehm
- Department of Veterans Affairs, Cooperative Studies Program Coordinating Center, Palo Alto, California, USA
| | - Ashlea Wills
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | | | - Lucas Jones
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Dianne Peterson
- VA CSP Albuquerque Central Biorepository, Albuquerque, New Mexico, USA
| | - Robert J Ringer
- VA CSP Albuquerque Central Biorepository, Albuquerque, New Mexico, USA
| | - Larry Dumont
- Vitalant Research Institute, Aurora, Colorado, USA
| | - Theresa Gleason
- Department of Veterans Affairs, Cooperative Studies Program Clinical Science ResearcPharmacy Coordinating Center, Washington, DC, USA
| | - Robert A Bonomo
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Jeffrey L Curtis
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sheldon T Brown
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Icahn School of Medicine at Mt. Sinai, New York, New York, USA
| |
Collapse
|
2
|
Tan SSX, Tan TT. Convalescent plasma: is there still a role in the treatment of COVID-19? Singapore Med J 2025:00077293-990000000-00190. [PMID: 40205748 DOI: 10.4103/singaporemedj.smj-2024-197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 04/11/2025]
|
3
|
Bihlmaier K, Willam C, Herbst L, Hackstein H, Schiffer M. Rapid clinical effects of convalescent plasma therapy in severe COVID-19 acute respiratory distress syndrome (ARDS). Intensive Care Med 2025; 51:793-795. [PMID: 40140097 PMCID: PMC12055878 DOI: 10.1007/s00134-025-07863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 03/28/2025]
Affiliation(s)
- Karl Bihlmaier
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Carsten Willam
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Larissa Herbst
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
4
|
Klassen SA, Senefeld JW. Evidence for the Efficacy of COVID-19 Convalescent Plasma. Curr Top Microbiol Immunol 2024. [PMID: 39192049 DOI: 10.1007/82_2024_280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
During the global health emergency caused by the coronavirus disease 2019 (COVID-19), evidence relating to the efficacy of convalescent plasma therapy-evidence critically needed for both public policy and clinical practice-came from multiple levels of the epistemic hierarchy. The challenges of conducting clinical research during a pandemic, combined with the biological complexities of convalescent plasma treatment, required the use of observational data to fully assess the impact of convalescent plasma therapy on COVID symptomatology, hospitalization rates, and mortality rates. Observational studies showing the mortality benefits of convalescent plasma emerged early during the COVID-19 pandemic from multiple continents and were substantiated by real-time pragmatic meta-analyses. Although many randomized clinical trials (RCTs) were initiated at the onset of the pandemic and were designed to provide high-quality evidence, the relative inflexibility in the design of clinical trials meant that findings generally lagged behind other forms of emerging information and ultimately provided inconsistent results on the efficacy of COVID-19 convalescent plasma. In the pandemic framework, it is necessary to emphasize more flexible analytic strategies in clinical trials, including secondary, subgroup, and exploratory analyses. We conclude that in totality, observational studies and clinical trials taken together provide strong evidence of a mortality benefit conferred by COVID-19 convalescent plasma, while acknowledging that some randomized clinical trials examined suboptimal uses of convalescent plasma.
Collapse
Affiliation(s)
- Stephen A Klassen
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Canada.
| | - Jonathon W Senefeld
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
5
|
Nierich A, Bihariesingh R, Bansie R. HemoClear: A Practical and Cost-Effective Alternative to Conventional Convalescent Plasma Retrieval Methods. Curr Top Microbiol Immunol 2024. [PMID: 39126485 DOI: 10.1007/82_2024_276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Convalescent plasma has increasingly been used to treat various viral infections and confer post-exposure prophylactic protection during the last decade and has demonstrated favorable clinical outcomes in patients infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) during the recent COVID-19 pandemic. The pandemic has highlighted the need for cost-effective, accessible, and easy-to-use alternatives to conventional blood plasmapheresis techniques, allowing hospitals to become more self-sufficient in harvesting and transfusing donor plasma into recipients in a single setting. To this end, the use of a membrane-based bedside plasmapheresis device (HemoClear) was evaluated in an open-label, non-randomized prospective trial in Suriname in 2021, demonstrating its practicality and efficacy in a low-to middle-income country. This paper will review the use of this method and its potential to expedite the process of obtaining convalescent plasma, especially during pandemics and in resource-constrained settings.
Collapse
Affiliation(s)
- Arno Nierich
- Department of Anesthesiology, Academic Hospital Paramaribo, Paramaribo, Suriname.
- Chief Medical Officer Hemoclear, Zwolle, The Netherlands.
| | - Rosita Bihariesingh
- Department of Anesthesiology & Intensive Care, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Rakesh Bansie
- Department of Anesthesiology & Internal Medicine, Academic Hospital Paramaribo, Paramaribo, Suriname
| |
Collapse
|
6
|
Sullivan DJ. Convalescent Plasma and Other Antibody Therapies for Infectious Diseases-Lessons Learned from COVID-19 and Future Prospects. Curr Top Microbiol Immunol 2024. [PMID: 39117846 DOI: 10.1007/82_2024_273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Antiviral passive antibody therapy includes convalescent plasma, hyperimmune globulin, and monoclonal antibodies. Passive antibodies have proven effective in reducing morbidity and mortality for SARS-CoV-2 and other infectious diseases when given early in the disease course with sufficiently high specific total and neutralizing antibody levels. Convalescent plasma can be delivered to patients before vaccination implementation or novel drug production. Carefully designed and executed randomized controlled trials near the pandemic outset are important for regulatory bodies, healthcare workers, guideline committees, the public, and the government. Unfortunately, many otherwise well-designed antibody-based clinical trials in COVID-19 were futile, either because they intervened too late in the disease or provided plasma with insufficient antibodies. The need for early treatment mandates outpatient clinical trials in parallel with inpatient trials. Early outpatient COVID-19 convalescent plasma transfusion with high antibody content within 9 days of symptom onset has proven effective in blunting disease progression and reducing hospitalization, thus reducing hospital overcrowding in a pandemic. Convalescent plasma offers the opportunity for hope by enabling community participation in outpatient curative therapy while monoclonal therapies, vaccines, and drugs are being developed. Maintaining the appropriate infrastructure for antibody infusion in both outpatient and inpatient facilities is critical for future pandemic readiness.
Collapse
Affiliation(s)
- David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St Rm W4606, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Krishnan SR, Sharma D, Nazeer Y, Bose M, Rajkumar T, Jayaraman G, Madaboosi N, Gromiha MM. rAbDesFlow: a novel workflow for computational recombinant antibody design for healthcare engineering. Antib Ther 2024; 7:256-265. [PMID: 39262441 PMCID: PMC11384895 DOI: 10.1093/abt/tbae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Indexed: 09/13/2024] Open
Abstract
Recombinant antibodies (rAbs) have emerged as a promising solution to tackle antigen specificity, enhancement of immunogenic potential and versatile functionalization to treat human diseases. The development of single chain variable fragments has helped accelerate treatment in cancers and viral infections, due to their favorable pharmacokinetics and human compatibility. However, designing rAbs is traditionally viewed as a genetic engineering problem, with phage display and cell free systems playing a major role in sequence selection for gene synthesis. The process of antibody engineering involves complex and time-consuming laboratory techniques, which demand substantial resources and expertise. The success rate of obtaining desired antibody candidates through experimental approaches can be modest, necessitating iterative cycles of selection and optimization. With ongoing advancements in technology, in silico design of diverse antibody libraries, screening and identification of potential candidates for in vitro validation can be accelerated. To meet this need, we have developed rAbDesFlow, a unified computational workflow for recombinant antibody engineering with open-source programs and tools for ease of implementation. The workflow encompasses five computational modules to perform antigen selection, antibody library generation, antigen and antibody structure modeling, antigen-antibody interaction modeling, structure analysis, and consensus ranking of potential antibody sequences for synthesis and experimental validation. The proposed workflow has been demonstrated through design of rAbs for the ovarian cancer antigen Mucin-16 (CA-125). This approach can serve as a blueprint for designing similar engineered molecules targeting other biomarkers, allowing for a simplified adaptation to different cancer types or disease-specific antigens.
Collapse
Affiliation(s)
- Sowmya Ramaswamy Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Divya Sharma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Yasin Nazeer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mayilvahanan Bose
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai 600020, India
| | - Thangarajan Rajkumar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- MedGenome, Bengaluru 560099, Karnataka, India
- Department of Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Kochi 682041, Kerala, India
| | - Guhan Jayaraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Narayanan Madaboosi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- School of Computing, National University of Singapore (NUS), Singapore 119077, Singapore
| |
Collapse
|
8
|
Grimes LP, Gerber JS. Neonatal and infant infection with SARS-CoV-2. Semin Perinatol 2024; 48:151922. [PMID: 38897825 DOI: 10.1016/j.semperi.2024.151922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Despite the substantial body of investigative work describing the Coronavirus Disease 2019 (COVID-19) pandemic, its impact on neonates and infants remains less well characterized. Here, we review the data on epidemiology of COVID-19 in this population. Widespread use of universal testing for SARS-CoV-2 among pregnant persons presenting for delivery complicates interpretation of the risks of perinatal exposure. While many neonates and infants with COVID-19 are well-appearing or have only mild signs of illness, factors such as preterm birth, low birth weight, and medical comorbidities increase the risk of severe infection. We highlight potential protective maternal factors, summarize treatment options and discuss vaccine development. Higher quality data are needed to better inform our understanding of COVID-19 in neonates and infants.
Collapse
Affiliation(s)
- Logan P Grimes
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeffrey S Gerber
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Gauiran DTV, Dumagay TE, Ang MAC, Dungog CC, Climacosa FMM, Maganito SC, Alfonso RN, Quero AKH, Lucero JAC, Cortez CFN, Evasan ALM, King RAN, Heralde FM, Bonifacio LB, Castillo GJ, Escasa IMS, Santos MCM, Malundo AFG, Mondragon AV, Salamat SEA, Veloso JD, Carnate JM, Tagayuna PY, Lim JA, Alejandria MM, Mirasol MAL. Convalescent Plasma as Adjunctive Therapy for Hospitalized Patients with COVID-19: The Co-CLARITY Trial. ACTA MEDICA PHILIPPINA 2024; 58:5-15. [PMID: 38966161 PMCID: PMC11219538 DOI: 10.47895/amp.vi0.4903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Background and Objective Convalescent plasma therapy (CPT) may reduce the risk of disease progression among patients with COVID-19. This study was undertaken to evaluate the efficacy and safety of CPT in preventing ICU admission among hospitalized COVID-19 patients. Methods In this open-label randomized controlled trial, we randomly assigned hospitalized adult patients with COVID-19 in a 1:1 ratio to receive convalescent plasma as an adjunct to standard of care or standard of care alone. The primary endpoint was ICU admission within first 28 days of enrolment. Primary safety endpoints include rapid deterioration of respiratory or clinical status within four hours of convalescent plasma transfusion and cumulative incidence of serious adverse events during the study period including transfusion-related acute lung injury (TRALI), transfusion-associated circulatory overload (TACO), severe allergic reactions, and transfusion-related infections. Results A total of 22 patients were assigned to receive convalescent plasma as an adjunct to standard of care and 22 to receive standard of care alone. The median time from onset of COVID-19 symptoms to study enrolment was eight days (IQR, 4 to 10). Two patients (9.1%) in the CPT group and one patient (4.5%) in the control group were admitted to the ICU. The primary outcome measure, ICU admission, was not different between the two groups (q-value >0.9). No patient who received convalescent plasma had rapid deterioration of respiratory/clinical status within four hours of transfusion and none developed TRALI, TACO, anaphylaxis, severe allergic reactions, or transfusion-related infections. There was also no significant difference in the secondary outcomes of 28-day mortality (two patients in the CPT group and none in the control group, q-value >0.90), dialysis-free days, vasopressor-free days, and ICU-free days. Conclusions Among hospitalized COVID-19 patients, no significant differences were observed in the need for ICU admission between patients given CPT as adjunct to standard of care and those who received standard of care alone. Interpretation is limited by early termination of the trial which may have been underpowered to detect a clinically important difference.
Collapse
Affiliation(s)
- Deonne Thaddeus V. Gauiran
- Division of Hematology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Teresita E. Dumagay
- Division of Hematology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Mark Angelo C. Ang
- Department of Laboratories, Philippine General Hospital, University of the Philippines Manila
| | - Cecile C. Dungog
- Department of Laboratories, Philippine General Hospital, University of the Philippines Manila
| | - Fresthel Monica M. Climacosa
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila
| | - Sandy Chiong Maganito
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila
| | - Rachelle N. Alfonso
- Division of Hematology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Anne Kristine H. Quero
- Division of Hematology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Josephine Anne C. Lucero
- Division of Hematology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Carlo Francisco N. Cortez
- Division of Hematology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Agnes Lorrainne M. Evasan
- Division of Infectious Diseases, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Ruby Anne Natividad King
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila
| | - Francisco M. Heralde
- Molecular Diagnostics and Multi-omics Laboratory (MDML), Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila
| | - Lynn B. Bonifacio
- Division of Hematology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - German J. Castillo
- Division of Hematology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Ivy Mae S. Escasa
- Division of Hematology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Maria Clariza M. Santos
- Division of Hematology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Anna Flor G. Malundo
- Division of Infectious Diseases, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Alric V. Mondragon
- Division of Allergy and Immunology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Saubel Ezreal A. Salamat
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños
| | - Januario D. Veloso
- Division of Hematology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Jose M. Carnate
- Department of Pathology, College of Medicine, University of the Philippines Manila
| | - Pedrito Y. Tagayuna
- Department of Laboratories, Philippine General Hospital, University of the Philippines Manila
| | - Jodor A. Lim
- Division of Infectious Diseases, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Marissa M. Alejandria
- Division of Infectious Diseases, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Ma. Angelina L. Mirasol
- Division of Hematology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| |
Collapse
|
10
|
Gentile S, Sullivan LR, Brooks H, Simeunovic G. A Descriptive, Retrospective Analysis of COVID-19 Passive Antibody Therapy and Its Effects on Morbidity and Mortality in Patients Receiving B-Cell-Depleting Therapies. Diseases 2024; 12:33. [PMID: 38391780 PMCID: PMC10887790 DOI: 10.3390/diseases12020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Patients receiving B-cell-depleting therapies (BCDT) are at an increased risk for severe COVID-19. Passive antibody therapy (PAT), including COVID-19 convalescent plasma (CCP) and monoclonal antibodies (mAb), may be an effective treatment in this population. Real-world data on PAT effectiveness are limited. To evaluate response to PAT measured through 90-day all-cause morbidity and mortality, we performed a retrospective review of patients who contracted COVID-19 within a year from the last BCDT. From 64 included patients, the majority were Caucasians (95%), female (56%), vaccinated (67%), treated outpatients (64%), with multiple comorbidities. Examined BCDT were rituximab (55%), obinutuzumab (33%), ocrelizumab (11%) and ofatumumab (1%), used for underlying hematological malignancy (HEM) (40%), multiple sclerosis (34%), and rheumatoid arthritis (16%). Of seven deceased patients, three died from COVID-19. All three were elderly males with multiple comorbidities, treated inpatient for severe COVID-19. Four of 41 patients treated as outpatients were hospitalized for non-COVID-19-related reasons. All deceased and hospitalized patients had an underlying HEM. All but one were on rituximab. PAT may be an effective treatment for patients receiving BCDT, especially if given early for non-severe disease. Patients with underlying HEM may be at increased risk for severe disease compared with others receiving the same BCDT.
Collapse
Affiliation(s)
- Sonia Gentile
- Department of Internal Medicine and Pediatrics, Corewell Health, Grand Rapids, MI 49503, USA
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Liam R Sullivan
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Infectious Disease, Corewell Health, Grand Rapids, MI 49503, USA
| | - Heather Brooks
- Office of Research and Education, Corewell Health, Grand Rapids, MI 49503, USA
| | - Gordana Simeunovic
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Infectious Disease, Corewell Health, Grand Rapids, MI 49503, USA
| |
Collapse
|
11
|
Romera Martínez I, Avendaño-Solá C, Villegas Da Ros C, Bosch Llobet A, García Erce JA, González Fraile MI, Guerra Domínguez L, Vicuña Andrés I, Anguita Velasco J, González Rodríguez VP, Contreras E, Urcelay Uranga S, Pajares Herraiz ÁL, Jimenez-Marco T, Ojea Pérez AM, Arroyo Rodríguez JL, Pérez-Olmeda M, Ramos-Martínez A, Velasco-Iglesias A, Bueno Cabrera JL, Duarte RF. Factors related to the development of high antibody titres against SARS-CoV-2 in convalescent plasma donors from the ConPlas-19 trial. Vox Sang 2024; 119:27-33. [PMID: 37986640 DOI: 10.1111/vox.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND AND OBJECTIVES The efficacy of COVID-19 convalescent plasma (CP) associates with high titres of antibodies. ConPlas-19 clinical trial showed that CP reduces the risk of progression to severe COVID-19 at 28 days. Here, we aim to study ConPlas-19 donors and characteristics that associate with high anti-SARS-CoV-2 antibody levels. MATERIALS AND METHODS Four-hundred donors were enrolled in ConPlas-19. The presence and titres of anti-SARS-CoV-2 antibodies were evaluated by EUROIMMUN anti-SARS-CoV-2 S1 IgG ELISA. RESULTS A majority of 80.3% of ConPlas-19 donor candidates had positive EUROIMMUN test results (ratio ≥1.1), and of these, 51.4% had high antibody titres (ratio ≥3.5). Antibody levels decline over time, but nevertheless, out of 37 donors tested for an intended second CP donation, over 90% were still EUROIMMUN positive, and nearly 75% of those with high titres maintained high titres in the second sample. Donors with a greater probability of developing high titres of anti-SARS-CoV-2 antibodies include those older than 40 years of age (RR 2.06; 95% CI 1.24-3.42), with more than 7 days of COVID-19 symptoms (RR 1.89; 95% CI 1.05-3.43) and collected within 4 months from infection (RR 2.61; 95% CI 1.16-5.90). Male donors had a trend towards higher titres compared with women (RR 1.67; 95% CI 0.91-3.06). CONCLUSION SARS-CoV-2 CP candidate donors' age, duration of COVID-19 symptoms and time from infection to donation associate with the collection of CP with high antibody levels. Beyond COVID-19, these data are relevant to inform decisions to optimize the CP donor selection process in potential future outbreaks.
Collapse
Affiliation(s)
- Irene Romera Martínez
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Hospital Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Cristina Avendaño-Solá
- Department of Clinical Pharmacology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Hospital Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | | | | | - José Antonio García Erce
- Banco de Sangre y Tejidos de Navarra, Servicio Navarro de Salud, Osasunbidea, Pamplona, Spain
- Grupo Español de Rehabilitación Multimodal (GERM), Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
- PBM Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | | | - Luisa Guerra Domínguez
- Department of Hematology, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas, Spain
| | | | - Javier Anguita Velasco
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | | | | | | | | | | | - Mayte Pérez-Olmeda
- Laboratorio de Serología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Ramos-Martínez
- Infectious Diseases Unit, Department of Internal Medicine, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Ana Velasco-Iglesias
- Spanish Clinical Research Network (ISCIII), Instituto de Investigación Sanitaria Hospital Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - José Luis Bueno Cabrera
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Hospital Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Rafael F Duarte
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Hospital Puerta de Hierro-Segovia de Arana, Madrid, Spain
| |
Collapse
|
12
|
Siripongboonsitti T, Nontawong N, Tawinprai K, Suptawiwat O, Soonklang K, Poovorawan Y, Mahanonda N. Efficacy of combined COVID-19 convalescent plasma with oral RNA-dependent RNA polymerase inhibitor treatment versus neutralizing monoclonal antibody therapy in COVID-19 outpatients: a multi-center, non-inferiority, open-label randomized controlled trial (PlasMab). Microbiol Spectr 2023; 11:e0325723. [PMID: 37975699 PMCID: PMC10714803 DOI: 10.1128/spectrum.03257-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
This pivotal study reveals that high neutralizing titer COVID-19 convalescent plasma therapy (CPT) combined with favipiravir (FPV) is non-inferior to sotrovimab in preventing hospitalization and severe outcomes in outpatients with mild-to-moderate COVID-19 and high-risk comorbidities. It underscores the potential of CPT-FPV as a viable alternative to neutralizing monoclonal antibodies like sotrovimab, especially amid emerging variants with spike protein mutations. The study's unique approach, comparing a monoclonal antibody with CPT, demonstrates the efficacy of early intervention using high neutralizing antibody titer CPT, even in populations with a significant proportion of elderly patients. These findings are crucial, considering the alternative treatment challenges, especially in resource-limited countries, posed by the rapidly mutating SARS-CoV-2 virus and the need for adaptable therapeutic strategies.
Collapse
Affiliation(s)
- Taweegrit Siripongboonsitti
- Division of Infectious Diseases, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | - Kriangkrai Tawinprai
- Division of Infectious Diseases, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Ornpreya Suptawiwat
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kamonwan Soonklang
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn 60th Birthday Anniversary, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nithi Mahanonda
- Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
13
|
Escobedo-Sánchez PE, de la Cruz-Hernández I, Ramos-García M, Sánchez-Yedra I, García-Vázquez C, Guzmán-Priego CG, García-Vidrios MV, Olvera-Hernández V, Mendoza-García Y, Ble-Castillo JL. [Efficacy and safety of convalescent plasma administration in patients with COVID-19 infection]. Med Clin (Barc) 2023; 161:323-329. [PMID: 37423879 PMCID: PMC10277849 DOI: 10.1016/j.medcli.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION During the COVID-19 pandemic, several strategies were suggested for the management of the disease, including pharmacological and non-pharmacological treatments such as convalescent plasma (CP). The use of CP was suggested due to the beneficial results shown in treating other viral diseases. OBJECTIVE To determine the efficacy and safety of CP obtained from whole blood in patients with COVID-19. METHODS Pilot clinical trial in patients with COVID-19 from a general hospital. The subjects were separated into three groups that received the transfusion of 400ml of CP (n=23) or 400ml of standard plasma (SP) (n=19) and a non-transfused group (NT) (n=37). Patients also received the standard available medical treatment for COVID-19. Subjects were followed up daily from admission to day 21. RESULTS The CP did not improve the survival curve in moderate and severe variants of COVID-19, nor did it reduce the degree of severity of the disease evaluated with the COVID-19 WHO and SOFA clinical progression scale. No patient had a severe post-transfusion reaction to CP. CONCLUSIONS Treatment with CP does not reduce the mortality of patients even when its administration has a high degree of safety.
Collapse
Affiliation(s)
- Priscila Edith Escobedo-Sánchez
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México
| | - Ibis de la Cruz-Hernández
- Hospital General de Zona No. 46, Instituto Mexicano del Seguro Social (IMSS), Villahermosa, Tabasco, México
| | - Meztli Ramos-García
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México
| | - Iván Sánchez-Yedra
- Hospital General de Zona No. 46, Instituto Mexicano del Seguro Social (IMSS), Villahermosa, Tabasco, México
| | - Carlos García-Vázquez
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México
| | | | | | - Viridiana Olvera-Hernández
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México
| | - Yolanda Mendoza-García
- Hospital General de Zona No. 46, Instituto Mexicano del Seguro Social (IMSS), Villahermosa, Tabasco, México
| | - Jorge Luis Ble-Castillo
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México.
| |
Collapse
|
14
|
Senefeld JW, Gorman EK, Johnson PW, Moir ME, Klassen SA, Carter RE, Paneth NS, Sullivan DJ, Morkeberg OH, Wright RS, Fairweather D, Bruno KA, Shoham S, Bloch EM, Focosi D, Henderson JP, Juskewitch JE, Pirofski LA, Grossman BJ, Tobian AA, Franchini M, Ganesh R, Hurt RT, Kay NE, Parikh SA, Baker SE, Buchholtz ZA, Buras MR, Clayburn AJ, Dennis JJ, Diaz Soto JC, Herasevich V, Klompas AM, Kunze KL, Larson KF, Mills JR, Regimbal RJ, Ripoll JG, Sexton MA, Shepherd JR, Stubbs JR, Theel ES, van Buskirk CM, van Helmond N, Vogt MN, Whelan ER, Wiggins CC, Winters JL, Casadevall A, Joyner MJ. Rates Among Hospitalized Patients With COVID-19 Treated With Convalescent Plasma: A Systematic Review and Meta-Analysis. Mayo Clin Proc Innov Qual Outcomes 2023; 7:499-513. [PMID: 37859995 PMCID: PMC10582279 DOI: 10.1016/j.mayocpiqo.2023.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Objective To examine the association of COVID-19 convalescent plasma transfusion with mortality and the differences between subgroups in hospitalized patients with COVID-19. Patients and Methods On October 26, 2022, a systematic search was performed for clinical studies of COVID-19 convalescent plasma in the literature from January 1, 2020, to October 26, 2022. Randomized clinical trials and matched cohort studies investigating COVID-19 convalescent plasma transfusion compared with standard of care treatment or placebo among hospitalized patients with confirmed COVID-19 were included. The electronic search yielded 3841 unique records, of which 744 were considered for full-text screening. The selection process was performed independently by a panel of 5 reviewers. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data were extracted by 5 independent reviewers in duplicate and pooled using an inverse-variance random effects model. The prespecified end point was all-cause mortality during hospitalization. Results Thirty-nine randomized clinical trials enrolling 21,529 participants and 70 matched cohort studies enrolling 50,160 participants were included in the systematic review. Separate meta-analyses reported that transfusion of COVID-19 convalescent plasma was associated with a decrease in mortality compared with the control cohort for both randomized clinical trials (odds ratio [OR], 0.87; 95% CI, 0.76-1.00) and matched cohort studies (OR, 0.76; 95% CI, 0.66-0.88). The meta-analysis of subgroups revealed 2 important findings. First, treatment with convalescent plasma containing high antibody levels was associated with a decrease in mortality compared with convalescent plasma containing low antibody levels (OR, 0.85; 95% CI, 0.73 to 0.99). Second, earlier treatment with COVID-19 convalescent plasma was associated with a decrease in mortality compared with the later treatment cohort (OR, 0.63; 95% CI, 0.48 to 0.82). Conclusion During COVID-19 convalescent plasma use was associated with a 13% reduced risk of mortality, implying a mortality benefit for hospitalized patients with COVID-19, particularly those treated with convalescent plasma containing high antibody levels treated earlier in the disease course.
Collapse
Affiliation(s)
- Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Patrick W. Johnson
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - M. Erin Moir
- Department of Kinesiology, University of Wisconsin-Madison, Madison
| | - Stephen A. Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Rickey E. Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - Nigel S. Paneth
- Department of Epidemiology and Biostatistics and Department of Pediatrics and Human Development, Michigan State University, East Lansing
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, ML
| | - Olaf H. Morkeberg
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - R. Scott Wright
- Human Research Protection Program, Mayo Clinic, Rochester, MN
| | | | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
- Division of Cardiovascular Medicine, University of Florida, Gainesville
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Evan M. Bloch
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, ML
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Italy
| | - Jeffrey P. Henderson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO
| | | | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Brenda J. Grossman
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO
| | - Aaron A.R. Tobian
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, ML
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Ravindra Ganesh
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Ryan T. Hurt
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Zachary A. Buchholtz
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew R. Buras
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ
| | - Andrew J. Clayburn
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Joshua J. Dennis
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Juan C. Diaz Soto
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Vitaly Herasevich
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Allan M. Klompas
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Katie L. Kunze
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ
| | | | - John R. Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Riley J. Regimbal
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Juan G. Ripoll
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew A. Sexton
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - John R.A. Shepherd
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - James R. Stubbs
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Noud van Helmond
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew N.P. Vogt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Jeffrey L. Winters
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, ML
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
15
|
Janoff EN, Brown ST, Belitskaya-Levy I, Curtis JL, Bonomo RA, Miller EK, Goldberg AM, Zehm L, Wills A, Hutchinson C, Dumont LJ, Gleason T, Shih MC, ADD Caitlin MS in CCTC website. Design of VA CoronavirUs Research and Efficacy Studies-1 (VA CURES-1): A double-blind, randomized placebo-controlled trial of COVID-19 convalescent plasma in hospitalized patients with early respiratory compromise. Contemp Clin Trials Commun 2023; 35:101190. [PMID: 37560085 PMCID: PMC10407261 DOI: 10.1016/j.conctc.2023.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Effective therapeutics for severe acute respiratory syndrome CoronaVirus-2 (SARS-CoV-2) infection are evolving. Under Emergency Use Authorization, COVID-19 convalescent plasma (CCP) was widely used in individuals hospitalized for COVID-19, but few randomized controlled trials supported its efficacy to limit respiratory failure or death. METHODS VA CoronavirUs Research and Efficacy Studies-1 (VA CURES-1) was a double-blind, multi-site, placebo-controlled, randomized clinical trial evaluating the efficacy and safety of CCP with conventional therapy in hospitalized Veterans with SARS-CoV-2 infection and early respiratory compromise (requirement for oxygen). Participants (planned sample size 702) were randomized 1:1 to receive CCP with high titer neutralizing activity or 0.9% saline, stratified by site and age (≥65 versus <65 years old). Participants were followed daily during initial hospitalization and at Days 15, 22 and 28. OUTCOMES The composite primary outcome was acute hypoxemic respiratory failure or all-cause death by Day 28. Secondary outcomes by day 28 included time-to-recovery, clinical severity, mortality, rehospitalization for COVID-19, and adverse events. Serial respiratory and blood samples were collected for safety, virologic and immunologic analyses and future studies. Key variables in predicting the success of CURES-1 were: (1) enrollment early in the course of severe infection; (2) use of plasma with high neutralizing activity; (3) reliance on unambiguous, clinically meaningful outcomes. CURES-1 was terminated for futility due to perceived inability to enroll in the lull between the Alpha and Delta waves of the SARS CoV-2 epidemic. CONCLUSIONS VA CURES-1 was a large multi-site trial designed to provide conclusive information about the efficacy of CCP in well-characterized patients at risk for progression of COVID-19. It utilized a rigorous study design with relevant initial timing, quality of product and outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04539275.
Collapse
Affiliation(s)
- Edward N. Janoff
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Sheldon T. Brown
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Ilana Belitskaya-Levy
- Department of Veterans Affairs, Cooperative Studies Program Coordinating Center, Palo Alto, CA, USA
| | - Jeffrey L. Curtis
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert A. Bonomo
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Case VA CARES, Case Western Reserve University School of Medicine, USA
| | - Elliott K. Miller
- Department of Veterans Affairs, Cooperative Studies Program Clinical Research Pharmacy Coordinating Center, Albuquerque, NM, USA
| | - Alexa M. Goldberg
- Department of Veterans Affairs, Cooperative Studies Program Clinical Research Pharmacy Coordinating Center, Albuquerque, NM, USA
| | - Lisa Zehm
- Department of Veterans Affairs, Cooperative Studies Program Coordinating Center, Palo Alto, CA, USA
| | - Ashlea Wills
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | | | - Larry J. Dumont
- University of Colorado Denver School of Medicine, Aurora, CO, USA
- Vitalant Research Institute, Denver, CO, USA
| | - Theresa Gleason
- Department of Veterans Affairs, Clinical Science Research and Development Service, Washington, DC, USA
| | - Mei-Chiung Shih
- Department of Veterans Affairs, Cooperative Studies Program Coordinating Center, Palo Alto, CA, USA
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - ADD Caitlin MS in CCTC website
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- University of Colorado Denver School of Medicine, Aurora, CO, USA
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Veterans Affairs, Cooperative Studies Program Coordinating Center, Palo Alto, CA, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
- University of Michigan Medical School, Ann Arbor, MI, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Case VA CARES, Case Western Reserve University School of Medicine, USA
- Department of Veterans Affairs, Cooperative Studies Program Clinical Research Pharmacy Coordinating Center, Albuquerque, NM, USA
- Vitalant Research Institute, Denver, CO, USA
- Department of Veterans Affairs, Clinical Science Research and Development Service, Washington, DC, USA
- Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
16
|
Chen S, Zhang C, Chen D, Dong L, Chang T, Tang ZH. Advances in attractive therapeutic approach for macrophage activation syndrome in COVID-19. Front Immunol 2023; 14:1200289. [PMID: 37483597 PMCID: PMC10358730 DOI: 10.3389/fimmu.2023.1200289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Nowadays, people have relaxed their vigilance against COVID-19 due to its declining infection numbers and attenuated virulence. However, COVID-19 still needs to be concern due to its emerging variants, the relaxation of restrictions as well as breakthrough infections. During the period of the COVID-19 infection, the imbalanced and hyper-responsive immune system plays a critical role in its pathogenesis. Macrophage Activation Syndrome (MAS) is a fatal complication of immune system disease, which is caused by the excessive activation and proliferation of macrophages and cytotoxic T cells (CTL). COVID-19-related hyperinflammation shares common clinical features with the above MAS symptoms, such as hypercytokinemia, hyperferritinemia, and coagulopathy. In MAS, immune exhaustion or defective anti-viral responses leads to the inadequate cytolytic capacity of CTL which contributes to prolonged interaction between CTL, APCs and macrophages. It is possible that the same process also occurred in COVID-19 patients, and further led to a cytokine storm confined to the lungs. It is associated with the poor prognosis of severe patients such as multiple organ failure and even death. The main difference of cytokine storm is that in COVID-19 pneumonia is mainly the specific damage of the lung, while in MAS is easy to develop into a systemic. The attractive therapeutic approach to prevent MAS in COVID-19 mainly includes antiviral, antibiotics, convalescent plasma (CP) therapy and hemadsorption, extensive immunosuppressive agents, and cytokine-targeted therapies. Here, we discuss the role of the therapeutic approaches mentioned above in the two diseases. And we found that the treatment effect of the same therapeutic approach is different.
Collapse
Affiliation(s)
- Shunyao Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Zhang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deng Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Dong
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Teding Chang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Hui Tang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Joyner MJ, Wiggins CC, Baker SE, Klassen SA, Senefeld JW. Exercise and Experiments of Nature. Compr Physiol 2023; 13:4879-4907. [PMID: 37358508 PMCID: PMC10853940 DOI: 10.1002/cphy.c220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
In this article, we highlight the contributions of passive experiments that address important exercise-related questions in integrative physiology and medicine. Passive experiments differ from active experiments in that passive experiments involve limited or no active intervention to generate observations and test hypotheses. Experiments of nature and natural experiments are two types of passive experiments. Experiments of nature include research participants with rare genetic or acquired conditions that facilitate exploration of specific physiological mechanisms. In this way, experiments of nature are parallel to classical "knockout" animal models among human research participants. Natural experiments are gleaned from data sets that allow population-based questions to be addressed. An advantage of both types of passive experiments is that more extreme and/or prolonged exposures to physiological and behavioral stimuli are possible in humans. In this article, we discuss a number of key passive experiments that have generated foundational medical knowledge or mechanistic physiological insights related to exercise. Both natural experiments and experiments of nature will be essential to generate and test hypotheses about the limits of human adaptability to stressors like exercise. © 2023 American Physiological Society. Compr Physiol 13:4879-4907, 2023.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Chad C Wiggins
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah E Baker
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen A Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Jonathon W Senefeld
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Seitz R, Gürtler L, Vahlensieck U, Hilger A, Schramm W. Too Early to Abandon Convalescent Plasma for Supportive Treatment of COVID-19. Transfus Med Hemother 2023; 50:0. [PMID: 38306192 PMCID: PMC10826597 DOI: 10.1159/000530097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/06/2023] [Indexed: 02/04/2024] Open
Abstract
The authors of a systematic review and meta-analysis conclude that the benefit of convalescent plasma (CP) in the treatment of COVID-19 is limited. Among other systematic reviews, only one found an indication of benefit of CP. However, a meta-analysis needs a focused and meaningful clinical question and should include studies which are designed to test a reasonable hypothesis. Clinical trials to support the licensing of medicines should aim to define as exactly as possible the investigational drug and target disease. In the case of COVID-19, trial details (e.g., duration, stage and severity of disease, and antibody content and dose of CP) are quite heterogeneous. The so far available evidence suggests that the hypothesis should be sharpened as to treat COVID -19 patients at risk for developing severe disease as early enough with a sufficiently high dose of specific antibodies. It has been demonstrated that such an approach is feasible, and the lack of an independent reproduction by further trials with a really comparable design can probably not be compensated by compiling all available, heterogenous trials, even with the best methodology of a systematic review and meta-analysis. Though the COVID-19 pandemic appears to be fading, we should not neglect the search for effective prevention and treatments, given the still high death toll of COVID-19. Monoclonal antibodies were found effective in the early phase of the pandemic; however, due to new variants of SARS-COV2 undermining their efficacy they are no longer recommended by the current NIH guidelines. CP can provide a spectrum of polyclonal antibodies in close timely and regional connection to the particular prevalent virus variant. It would be extremely valuable to obtain a solid scientific foundation for the principle of target specific and temporarily adapted passive immunization, which could be a fast and flexible instrument also in future outbreaks of novel pathogens.
Collapse
Affiliation(s)
- Rainer Seitz
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Lutz Gürtler
- Max von Pettenkofer Institut, Ludwig-Maximilians University (LMU), Munich, Germany
| | - Ute Vahlensieck
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Anneliese Hilger
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Wolfgang Schramm
- Ludwig-Maximilians University (LMU) and Rudolf Marx Stiftung, Munich, Germany
| |
Collapse
|
19
|
Kumar NR, Karanam VC, Kumar S, Kumar SD. Convalescent Plasma Therapy in Late-State, Severe COVID-19 Infection. South Med J 2023; 116:427-433. [PMID: 37137479 PMCID: PMC10143395 DOI: 10.14423/smj.0000000000001546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
OBJECTIVES Current evidence favors plasma to be effective against coronavirus disease 2019 (COVID-19) in critically ill patients in the early stages of infection. We investigated the safety and efficacy of convalescent plasma in specifically late-stage (designated as after 2 weeks of hospital admission) severe COVID-19 infection. We also conducted a literature review on the late-stage use of plasma in COVID-19. METHODS This case series examined eight COVID-19 patients admitted to the intensive care unit (ICU) who met criteria for severe or life-threatening complications. Each patient received one dose (200 mL) of plasma. Clinical information was gathered in intervals of 1 day pretransfusion and 1 hour, 3 days, and 7 days posttransfusion. The primary outcome was effectiveness of plasma transfusion, measured by clinical improvement, laboratory parameters, and all-cause mortality. RESULTS Eight ICU patients received plasma late in the course of COVID-19 infection, on average at 16.13 days postadmission. On the day before transfusion, the averaged initial Sequential Organ Failure Assessment (SOFA) score, PaO2:FiO2 ratio, Glasgow Coma Scale (GCS), and lymphocyte count were 6.5, 228.03, 8.63, and 1.19, respectively. Three days after plasma treatment, the group averages for the SOFA score (4.86), PaO2:FiO2 ratio (302.73), GCS (9.29), and lymphocyte count (1.75) improved. Although the mean GCS improved to 10.14 by posttransfusion day 7, the other means marginally worsened with an SOFA score of 5.43, a PaO2:FiO2 ratio of 280.44, and a lymphocyte count of 1.71. Clinical improvement was noted in six patients who were discharged from the ICU. CONCLUSIONS This case series provides evidence that convalescent plasma may be safe and effective in late-stage, severe COVID-19 infection. Results showed clinical improvement posttransfusion as well as decreased all-cause mortality in comparison to pretransfusion predicted mortality. Randomized controlled trials are needed to conclusively determine benefits, dosage, and timing of treatment.
Collapse
Affiliation(s)
- Neil R Kumar
- From Internal Medicine, University of Miami/Jackson Memorial Hospital, Miami, Florida
| | - Veena C Karanam
- the University of Miami Miller School of Medicine, Miami, Florida
| | - Shari Kumar
- Columbia University College of Dental Medicine, New York, New York
| | - Sunil D Kumar
- the Pulmonary/Critical Care, Broward Health Medical Center, Ft Lauderdale, Florida
| |
Collapse
|
20
|
Liu STH, Mirceta M, Lin G, Anderson DM, Broomes T, Jen A, Abid A, Reich D, Hall C, Aberg JA. Safety, Tolerability, and Pharmacokinetics of Anti-SARS-CoV-2 Immunoglobulin Intravenous (Human) Investigational Product (COVID-HIGIV) in Healthy Adults: a Randomized, Controlled, Double-Blinded, Phase 1 Study. Antimicrob Agents Chemother 2023; 67:e0151422. [PMID: 36852998 PMCID: PMC10019156 DOI: 10.1128/aac.01514-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Anti-SARS-CoV-2 immunoglobulin (human) investigational product (COVID-HIGIV) is a purified immunoglobulin preparation containing SARS-CoV-2 polyclonal antibodies. This single-center clinical trial aimed to characterize the safety and pharmacokinetics of COVID-HIGIV in healthy, adult volunteers. Participants were enrolled to receive one of three doses of COVID-HIGIV (100, 200, 400 mg/kg) or placebo in a 2:2:2:1 randomization scheme. Between 24 December 2020 and 27 July 2021, 28 participants met eligibility and were randomized with 27 of these 28 (96.4%) being administered either COVID-HIGIV (n = 23) or placebo (n = 4). Only one SAE was observed, and it occurred in the placebo group. A total of 18 out of 27 participants (66.7%) reported 50 adverse events (AEs) overall. All COVID-HIGIV-related adverse events were mild or moderate in severity and transient. The most frequent AEs (>5% of participants) reported in the safety population were headache (n = 6, 22.2%), chills (n = 3, 11.1%), increased bilirubin (n = 2, 7.4%), muscle spasms (n = 2, 7.4%), seasonal allergies (n = 2, 7.4%), pyrexia (n = 2, 7.4%), and oropharyngeal pain (n = 2, 7.4%). Using the SARS-CoV-2 binding IgG immunoassay (n = 22, specific for pharmacokinetics), the geometric means of Cmax (AU/mL) for the three COVID-HIGIV dose levels (low to high) were 7.69, 17.02, and 33.27 AU/mL; the average values of Tmax were 7.09, 7.93, and 5.36 h, respectively. The half-life of COVID-HIGIV per dose level was 24 d (583 h), 31 d (753 h), and 26 d (619 h) for the 100 mg/kg, 200 mg/kg, and 400 mg/kg groups, respectively. The safety and pharmacokinetics of COVID-HIGIV support its development as a single-dose regimen for postexposure prophylaxis or treatment of COVID-19.
Collapse
Affiliation(s)
- Sean T. H. Liu
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mila Mirceta
- Emergent BioSolutions Canada, Inc., Winnipeg, Manitoba, Canada
| | - Grace Lin
- Emergent BioSolutions Canada, Inc., Winnipeg, Manitoba, Canada
| | | | - Tarashon Broomes
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alina Jen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ashley Abid
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David Reich
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christine Hall
- Emergent BioSolutions Canada, Inc., Winnipeg, Manitoba, Canada
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Rana R, Kant R, Kumra T, Gupta S, Rana DS, Ganguly NK. An update on SARS-CoV-2 immunization and future directions. Front Pharmacol 2023; 14:1125305. [PMID: 36969857 PMCID: PMC10033701 DOI: 10.3389/fphar.2023.1125305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
Millions of people have died as a result of SARS-CoV-2, which was first discovered in China and has since spread globally. Patients with SARS-CoV-2 infection may show a range of symptoms, including fever, coughing, and shortness of breath, or they may show no symptoms at all. To treat COVID-19 symptoms and avoid serious infections, many medications and vaccinations have been employed. However, to entirely eradicate COVID-19 from the world, next-generation vaccine research is required because of the devastating consequences it is having for humanity and every nation's economy. Scientists are working hard to eradicate this dangerous virus across the world. SARS-CoV-2 has also undergone significant mutation, leading to distinct viral types such as the alpha, beta, gamma, delta, and omicron variants. This has sparked discussion about the effectiveness of current vaccines for the newly formed variants. A proper comparison of these vaccinations is required to compare their efficacy as the number of people immunized against SARS-CoV-2 globally increases. Population-level statistics evaluating the capacity of these vaccines to reduce infection are therefore being developed. In this paper, we analyze the many vaccines on the market in terms of their production process, price, dosage needed, and efficacy. This article also discusses the challenges of achieving herd immunity, the likelihood of reinfection, and the importance of convalescent plasma therapy in reducing infection.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Ravi Kant
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Tanya Kumra
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Sneha Gupta
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | | | | |
Collapse
|
22
|
Treating COVID-19: Targeting the Host Response, Not the Virus. Life (Basel) 2023; 13:life13030712. [PMID: 36983871 PMCID: PMC10054780 DOI: 10.3390/life13030712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 03/09/2023] Open
Abstract
In low- and middle-income countries (LMICs), inexpensive generic drugs like statins, ACE inhibitors, and ARBs, especially if used in combination, might be the only practical way to save the lives of patients with severe COVID-19. These drugs will already be available in all countries on the first pandemic day. Because they target the host response to infection instead of the virus, they could be used to save lives during any pandemic. Observational studies show that inpatient statin treatment reduces 28–30-day mortality but randomized controlled trials have failed to show this benefit. Combination treatment has been tested for antivirals and dexamethasone but, with the exception of one observational study in Belgium, not for inexpensive generic drugs. Future pandemic research must include testing combination generic drug treatments that could be used in LMICs.
Collapse
|
23
|
Abstract
BACKGROUND Convalescent plasma has been used for a long time for the treatment of various infectious diseases. The principle is to collect antibody-containing plasma from recovered patients and to transfuse the plasma to infectious patients thereby modifying their immune system. This approach was also used in the SARS-CoV-2 pandemic when no specific drugs were available for the treatment of the disease. DESIGN AND METHODS This short narrative review reports on relevant studies of collection and transfusion of Covid-19 convalescent plasma (CCP) from 2020 until August 2022. Clinical patients' outcome parameters such as need for ventilation, length of hospital stay and mortality were analysed. RESULTS Heterogenous patient groups were studied resulting in difficult comparability of the studies. High titer of transfused neutralizing antibodies, early onset of CCP treatment and moderate disease activity were identified as key parameters for effective treatment. Special subgroups of patients were identified to benefit from CCP treatment. No relevant side effects were observed during and after collection and transfusion of CCP. CONCLUSIONS Transfusion of CCP plasma is an option for the treatment of special subgroups of patients suffering from SARS-CoV-2 infection. CCP can be easily used in low-to-middle income countries where no specific drugs are available for treatment of the disease. Further clinical trials are necessary to define the role of CCP in the treatment of SARS-CoV-2 disease.
Collapse
|
24
|
Hakim SM, Chikhouni GMA, Ammar MA, Amer AM. Effect of convalescent plasma transfusion on outcomes of coronavirus disease 2019: a meta-analysis with trial sequential analysis. J Anesth 2023; 37:451-464. [PMID: 36811668 PMCID: PMC9944423 DOI: 10.1007/s00540-023-03171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
The aim of this review was to update evidence for benefit of convalescent plasma transfusion (CPT) in patients with coronavirus disease 2019 (COVID-19). Databases were searched for randomized controlled trials (RCT) comparing CPT plus standard treatment versus standard treatment only in adults with COVID-19. Primary outcome measures were mortality and need for invasive mechanical ventilation (IMV). Twenty-Six RCT involving 19,816 patients were included in meta-analysis for mortality. Quantitative synthesis showed no statistically significant benefit of adding CPT to standard treatment (RR = 0.97, 95% CI = 0.92 to 1.02) with unimportant heterogeneity (Q(25) = 26.48, p = .38, I2 = 0.00%). Trim-and-fill-adjusted effect size was unimportantly changed and level of evidence was graded as high. Trial sequential analysis (TSA) indicated information size was adequate and CPT was futile. Seventeen trials involving 16,083 patients were included in meta-analysis for need of IMV. There was no statistically significant effect of CPT (RR = 1.02, 95% CI = 0.95 to 1.10) with unimportant heterogeneity (Q(16) = 9.43, p = .89, I2 = 3.30%). Trim-and-fill-adjusted effect size was trivially changed and level of evidence was graded as high. TSA showed information size was adequate and indicated futility of CPT. It is concluded with high level of certainty that CPT added to standard treatment of COVID-19 is not associated with reduced mortality or need of IMV compared with standard treatment alone. In view of these findings, further trials on efficacy of CPT in COVID-19 patients are probably not needed.
Collapse
Affiliation(s)
- Sameh M Hakim
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, 15 Gamal Noah Street, Almaza, Heliopolis, Cairo, 11341, Egypt.
| | - Ghosoun M A Chikhouni
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, 15 Gamal Noah Street, Almaza, Heliopolis, Cairo, 11341, Egypt
| | - Mona A Ammar
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, 15 Gamal Noah Street, Almaza, Heliopolis, Cairo, 11341, Egypt
| | - Akram M Amer
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, 15 Gamal Noah Street, Almaza, Heliopolis, Cairo, 11341, Egypt
| |
Collapse
|
25
|
Kandula UR, Tuji TS, Gudeta DB, Bulbula KL, Mohammad AA, Wari KD, Abbas A. Effectiveness of COVID-19 Convalescent Plasma (CCP) During the Pandemic Era: A Literature Review. J Blood Med 2023; 14:159-187. [PMID: 36855559 PMCID: PMC9968437 DOI: 10.2147/jbm.s397722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Worldwide pandemic with coronavirus disease-2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). As November 2, 2022, World Health Organization (WHO) received 628,035,553 reported incidents on COVID-19, with 6,572,800 mortalities and, with a total 12,850,970,971 vaccine doses have been delivered as of October 31, 2022. The infection can cause mild or self-limiting symptoms of pulmonary and severe infections or death may be caused by SARS-CoV-2 infection. Simultaneously, antivirals, corticosteroids, immunological treatments, antibiotics, and anticoagulants have been proposed as potential medicines to cure COVID-19 affected patients. Among these initial treatments, COVID-19 convalescent plasma (CCP), which was retrieved from COVID-19 recovered patients to be used as passive immune therapy, in which antibodies from cured patients were given to infected patients to prevent illness. Such treatment has yielded the best results in earlier with preventative or early stages of illness. Convalescent plasma (CP) is the first treatment available when infectious disease initially appears, although few randomized controlled trials (RCTs) were conducted to evaluate its effectiveness. The historical record suggests with potential benefit for other respiratory infections, as coronaviruses like Severe Acute Respiratory Syndrome-CoV-I (SARS-CoV-I) and Middle Eastern Respiratory Syndrome (MERS), though the analysis of such research is constrained by some non-randomized experiments (NREs). Rigorous studies on CP are made more demanding by the following with the immediacy of the epidemics, CP use may restrict the ability to utilize it for clinical testing, non-homogenous nature of product, highly decentralized manufacturing process; constraints with capacity to measure biologic function, ultimate availability of substitute therapies, as antivirals, purified immune globulins, or monoclonal antibodies. Though, it is still not clear how effectively CCP works among hospitalized COVID-19 patients. The current review tries to focus on its efficiency and usage in clinical scenarios and identifying existing benefits of implementation during pandemic or how it may assist with future pandemic preventions.
Collapse
Affiliation(s)
- Usha Rani Kandula
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Techane Sisay Tuji
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | | | - Kassech Leta Bulbula
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | | | - Ketema Diriba Wari
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Ahmad Abbas
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
26
|
Alshamrani AA, Assiri AM, Almohammed OA. Comprehensive evaluation of six interventions for hospitalized patients with COVID-19: A propensity score matching study. Saudi Pharm J 2023; 31:517-525. [PMID: 36819112 PMCID: PMC9930407 DOI: 10.1016/j.jsps.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Purpose The purpose of this study was to evaluate the effectiveness of either hydroxychloroquine, triple combination therapy (TCT), favipiravir, dexamethasone, remdesivir, or COVID-19 convalescent plasma (CCP) in comparison with standard-of-care for hospitalized patients with COVID-19 using real-world data from Saudi Arabia. Patients and methods A secondary database analysis was conducted using the Saudi Ministry of Health database for patients with COVID-19. Adult (≥ 18 years) hospitalized patients with COVID-19 between March 2020 and January 2021 were included in the analysis. A propensity score matching technique was used to establish comparable groups for each therapeutic approach. Lastly, an independent t-test and chi-square test were used to compare the matching groups in the aspects of the duration of hospitalization, length of stay (LOS) in intensive care units (ICU), in-hospital mortality, and composite poor outcome. Multilevel logistic regression model was used to assess the association between the severity stage of COVID-19 and the outcomes while using the medication or intervention used as a grouping variable in the model. Results The mean duration of hospitalization was significantly longer for patients who received TCT, favipiravir, dexamethasone, or CCP compared to patients who did not receive these therapies, with a mean difference ranging between 2.2 and 4.9 days for dexamethasone and CCP, respectively. Furthermore, the use of favipiravir or CCP was associated with a longer stay in ICU. Remdesivir was the only agent associated with in-hospital mortality benefit. A higher risk of mortality and poorer composite outcome were associated with the use of favipiravir or dexamethasone. However, the logistic regression model reveled that the difference between the two matched cohorts was due to the severity stage not the medication. Additionally, the use of hydroxychloroquine, TCT, or CCP had no impact on the incidence of in-hospital mortality or composite poor outcomes. Conclusion Remdesivir was the only agent associated with in-hospital mortality benefit. The observed worsened treatment outcomes associated with the use of dexamethasone or FPV shall be attributed to the severity stage rather than the medication use. In light of these varied results, additional studies are needed to continue evaluating the actual benefits of these therapies.
Collapse
Affiliation(s)
- Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M Assiri
- Health Volunteering Center, Ministry of Health, Riyadh, Saudi Arabia
| | - Omar A Almohammed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Pharmacoeconomics Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Pirofski LA. COVID-19 convalescent plasma therapy through the lens of the third year of the pandemic. Clin Microbiol Infect 2023; 29:130-132. [PMID: 36343900 PMCID: PMC9633635 DOI: 10.1016/j.cmi.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Liise-anne Pirofski
- Corresponding author. Division of Infectious Diseases, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Room 610. Bronx, New York 10461-1900
| |
Collapse
|
28
|
Knowlson C, Byrne A, Wilkinson J, Whitmore C, Torgerson D. The evidence base for emergency use authorizations for COVID-19 treatments: A rapid review. Health Sci Rep 2023; 6:e1051. [PMID: 36644312 PMCID: PMC9831114 DOI: 10.1002/hsr2.1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Background and Aims During the COVID-19 pandemic, US Food and Drug Administration (FDA) permitted emergency use authorizations (EUAs) for vaccines/treatments with promising data. Eight treatments were issued EUAs by May 31, 2021; one of these was approved (Remdesivir for certain populations) and two were revoked (chloroquine phosphate/hydroxychloroquine and bamlanivimab) by September 30, 2021. The aim of this study is to find out what evidence the EUAs were based on and how many studies were published while they remained active (up to September 30, 2021). Methods A review of published clinical studies for the 6 months before each EUA was issued, and the time after (until September 30, 2021, or until revoked). PubMed and the identified systematic reviews were the sources for identifying published literature. Results The number of clinical studies published pre-EUA varied from a single case study (for chloroquine phosphate/hydroxychloroquine) to numerous studies of multiple types (for convalescent plasma). Four treatments had a single randomized controlled trial (RCT) as evidence (bamlanivimab monotherapy, REGN-COV, bamlanivimab + etesevimab, sotrovimab) and two also had other study types (remdesivir and baricitinib). The number of clinical studies published post-EUA (for those active on September 30, 2021) was widely varied. Eighteen RCTs were published for Convalescent plasma, while Remdesivir had eight. Baricitinib, REGN-COV, and bamlanivimab + etesevimab all had one, but none were published for sotrovimab. Conclusion The number of trials for treatments with EUAs was limited in all cases before the EUA was issued, and in most cases for those with EUAs ongoing at the end of September 2021. The presence of EUAs may discourage participation in relevant clinical trials, which delays the widespread implementation of evidenced-based therapies. Large, robust RCTs should be completed, such as the RECOVERY trial in the United Kingdom, to quickly find the answers desperately required during a pandemic.
Collapse
Affiliation(s)
- Catherine Knowlson
- Department of Health Sciences, York Trials UnitUniversity of YorkYorkUnited Kingdom
| | - Ailish Byrne
- Department of Health Sciences, York Trials UnitUniversity of YorkYorkUnited Kingdom
| | - Jacqueline Wilkinson
- Department of Health Sciences, York Trials UnitUniversity of YorkYorkUnited Kingdom
| | - Claire Whitmore
- Department of Health Sciences, York Trials UnitUniversity of YorkYorkUnited Kingdom
| | - David Torgerson
- Department of Health Sciences, York Trials UnitUniversity of YorkYorkUnited Kingdom
| |
Collapse
|
29
|
Cognasse F, Hamzeh-Cognasse H, Rosa M, Corseaux D, Bonneaudeau B, Pierre C, Huet J, Arthaud CA, Eyraud MA, Prier A, Duchez AC, Ebermeyer T, Heestermans M, Audoux-Caire E, Philippot Q, Le Voyer T, Hequet O, Fillet AM, Chavarin P, Legrand D, Richard P, Pirenne F, Gallian P, Casanova JL, Susen S, Morel P, Lacombe K, Bastard P, Tiberghien P. Inflammatory markers and auto-Abs to type I IFNs in COVID-19 convalescent plasma cohort study. EBioMedicine 2022; 87:104414. [PMID: 36535107 PMCID: PMC9758484 DOI: 10.1016/j.ebiom.2022.104414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND COVID-19 convalescent plasma (CCP) contains neutralising anti-SARS-CoV-2 antibodies that may be useful as COVID-19 passive immunotherapy in patients at risk of developing severe disease. Such plasma from convalescent patients may also have additional immune-modulatory properties when transfused to COVID-19 patients. METHODS CCP (n = 766) was compared to non-convalescent control plasma (n = 166) for soluble inflammatory markers, ex-vivo inflammatory bioactivity on endothelial cells, neutralising auto-Abs to type I IFNs and reported adverse events in the recipients. FINDINGS CCP exhibited a statistically significant increase in IL-6 and TNF-alpha levels (0.531 ± 0.04 vs 0.271 ± 0.04; (95% confidence interval [CI], 0.07371-0.4446; p = 0.0061) and 0.900 ± 0.07 vs 0.283 ± 0.07 pg/mL; (95% [CI], 0.3097-0.9202; p = 0.0000829) and lower IL-10 (0.731 ± 0.07 vs 1.22 ± 0.19 pg/mL; (95% [CI], -0.8180 to -0.1633; p = 0.0034) levels than control plasma. Neutralising auto-Abs against type I IFNs were detected in 14/766 (1.8%) CCPs and were not associated with reported adverse events when transfused. Inflammatory markers and bioactivity in CCP with or without auto-Abs, or in CCP whether or not linked to adverse events in transfused patients, did not differ to a statistically significant extent. INTERPRETATION Overall, CCP exhibited moderately increased inflammatory markers compared to the control plasma with no discernible differences in ex-vivo bioactivity. Auto-Abs to type I IFNs detected in a small fraction of CCP were not associated with reported adverse events or differences in inflammatory markers. Additional studies, including careful clinical evaluation of patients treated with CCP, are required in order to further define the clinical relevance of these findings. FUNDING French National Blood Service-EFS, the Association "Les Amis de Rémi" Savigneux, France, the "Fondation pour la Recherche Médicale (Medical Research Foundation)-REACTing 2020".
Collapse
Affiliation(s)
- Fabrice Cognasse
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France,Corresponding author. Etablissement Français du Sang Auvergne-Rhône-Alpes, INSERM U1059, Campus Santé Innovation - 10 rue de la Marandière, 42270, Saint-Priest-en-Jarez, France.
| | - Hind Hamzeh-Cognasse
- Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Mickael Rosa
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1011- EGID, F-59000 Lille, France,Centre National de la Recherche Scientifique (National Scientific Research Centre), Surgical Critical Care, Department of Anaesthesiology and Critical Care, U1019 - Unité Mixte de Recherche 9017 (Mixed Research Unit 9017) – Lille Centre for Infection and Immunity, France
| | - Delphine Corseaux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1011- EGID, F-59000 Lille, France,Centre National de la Recherche Scientifique (National Scientific Research Centre), Surgical Critical Care, Department of Anaesthesiology and Critical Care, U1019 - Unité Mixte de Recherche 9017 (Mixed Research Unit 9017) – Lille Centre for Infection and Immunity, France
| | | | - Chloe Pierre
- Etablissement Français du Sang, La Plaine, St Denis, France
| | - Julie Huet
- Etablissement Français du Sang, La Plaine, St Denis, France
| | - Charles Antoine Arthaud
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Marie Ange Eyraud
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Amélie Prier
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Anne Claire Duchez
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Theo Ebermeyer
- Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Marco Heestermans
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Estelle Audoux-Caire
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,University of Paris, Imagine Institute, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,University of Paris, Imagine Institute, Paris, France
| | - Olivier Hequet
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | | | - Patricia Chavarin
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Dominique Legrand
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | | | - France Pirenne
- Univ Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale (Mondor Biomedical Research Institute) (IMRB), Creteil, France & Laboratory of Excellence GR-Ex, Paris, France
| | - Pierre Gallian
- Etablissement Français du Sang, La Plaine, St Denis, France,UMR “Unité des Virus Emergents” (Emerging Virus Unit), Aix-Marseille University - IRD 190 - INSERM 1207 - IRBA - EFS - IHU Méditerranée Infection, Marseille, France
| | - Jean Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,University of Paris, Imagine Institute, Paris, France,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA,Howard Hughes Medical Institute, New York, NY, USA
| | - Sophie Susen
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1011- EGID, F-59000 Lille, France,Centre National de la Recherche Scientifique (National Scientific Research Centre), Surgical Critical Care, Department of Anaesthesiology and Critical Care, U1019 - Unité Mixte de Recherche 9017 (Mixed Research Unit 9017) – Lille Centre for Infection and Immunity, France
| | - Pascal Morel
- Etablissement Français du Sang, La Plaine, St Denis, France
| | - Karine Lacombe
- Sorbonne University, Inserm IPLESP, Infectious Diseases Department, Saint-Antoine Hospital, APHP (University Hospital Trust), Paris, France
| | - Paul Bastard
- Etablissement Français du Sang, La Plaine, St Denis, France,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine, St Denis, France,UMR RIGHT U1098, INSERM, Etablissement Français du Sang, University of Franche-Comté, Besançon, France
| |
Collapse
|
30
|
Ripoll JG, Gorman EK, Juskewitch JE, Razonable RR, Ganesh R, Hurt RT, Theel ES, Stubbs JR, Winters JL, Parikh SA, Kay NE, Joyner MJ, Senefeld JW. Vaccine-boosted convalescent plasma therapy for patients with immunosuppression and COVID-19. Blood Adv 2022; 6:5951-5955. [PMID: 36156121 PMCID: PMC9519378 DOI: 10.1182/bloodadvances.2022008932] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Neil E. Kay
- Division of Hematology
- Department of Immunology
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| |
Collapse
|
31
|
Lanza F, Monaco F, Ciceri F, Cairoli R, Sacchi MV, Guidetti A, Marchetti M, Massaia M, Arcaini L, Krampera M, Mohamed S, Gherlinzoni F, Mecucci C, Gentile M, Romano I, Venditti A, Ruggeri M, Ferrero D, Coviello E, Fabbri E, Corradini P, Passamonti F. Lack of efficacy of convalescent plasma in COVID-19 patients with concomitant hematological malignancies: An Italian retrospective study. Hematol Oncol 2022; 40:857-863. [PMID: 35932208 PMCID: PMC9538413 DOI: 10.1002/hon.3060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 12/13/2022]
Abstract
A multicenter retrospective study was designed to assess clinical outcome of COVID-19 in patients with hematological malignancies (HM) following treatment with anti-SARS-CoV-2 convalescent plasma (CP) or standard of care therapy. To this aim, a propensity score matching was used to assess the role of non-randomized administration of CP in this high-risk cohort of patients from the Italian Hematology Alliance on COVID-19 (ITA-HEMA-COV) project, now including 2049 untreated control patients. We investigated 30- and 90-day mortality, rate of admission to intensive care unit, proportion of patients requiring mechanical ventilatory support, hospitalization time, and SARS-CoV-2 clearance in 79 CP recipients and compared results with 158 propensity score-matched controls. Results indicated a lack of efficacy of CP in the study group compared with the untreated group, thus confirming the negative results obtained from randomized studies in immunocompetent individuals with COVID-19. In conclusion, this retrospective analysis did not meet the primary and secondary end points in any category of immunocompromized patients affected by HM.
Collapse
Affiliation(s)
| | | | - Fabio Ciceri
- IRCCS Ospedale San RaffaeleUniversity Vita‐Salute San RaffaeleMilanoItaly
| | | | - Maria Vittoria Sacchi
- Hematology Unit, SCDU Ematologia ‐ Az Ospedaliera Santi Antonio e Biagio e Cesare ArrigoAlessandriaItaly
| | | | - Monia Marchetti
- Hematology Unit, SCDU Ematologia ‐ Az Ospedaliera Santi Antonio e Biagio e Cesare ArrigoAlessandriaItaly
| | | | - Luca Arcaini
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo and Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | | | - Sara Mohamed
- Hematology UnitAzienda Sanitaria Universitaria Giuliano IsontinaTriesteItaly
| | | | | | | | | | - Adriano Venditti
- Hematology, Department of Biomedicine and PreventionUniversity Tor VergataRomaItaly
| | | | | | | | | | | | | |
Collapse
|
32
|
Yates JL, Palat DS, Subik MK, Lee WT, McDonough KA, Conuel E. Pharmacokinetics of convalescent plasma therapy in a COVID-19 patient with X-linked Agammaglobulinemia. CLINICAL IMMUNOLOGY COMMUNICATIONS 2022; 2:57-61. [PMID: 38620871 PMCID: PMC8907110 DOI: 10.1016/j.clicom.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
Abstract
Convalescent plasma (CP) has been the first line of defense against numerous infectious diseases throughout history. The COVID-19 pandemic created a need for a quick, easily accessible, and effective treatment for severe disease and CP was able to meet that immediate need. The utility of CP warrants a better understanding of the pharmacokinetics of CP treatment. Here we present the case of a COVID-19 patient with a genetic deficiency in antibody production who received CP as a part of the treatment regimen. In depth serological analysis revealed a surprising lack of SARS-CoV-2 specific antibodies and reduced serum IgG following CP infusion. Our study highlights plasma dilution and accelerated antibody clearance as potential mechanisms for the variable efficacy of CP therapy.
Collapse
Affiliation(s)
- Jennifer L Yates
- Albany Medical Center, Transfusion Medicine, Albany, NY, United States
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY, United States
| | - David S Palat
- Division of Surgical Critical Care, Albany Medical Center, Albany, NY, United States
- Division of Pulmonary Critical Care, St. Peters Health Partners, Albany, NY, United States
| | - M Kristina Subik
- Albany Medical Center, Transfusion Medicine, Albany, NY, United States
| | - William T Lee
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY, United States
- Biomedical Sciences, The School of Public Health, The University at Albany, Albany, NY, United States
| | - Kathleen A McDonough
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY, United States
- Biomedical Sciences, The School of Public Health, The University at Albany, Albany, NY, United States
| | - Edward Conuel
- Division of Pulmonary Critical Care, St. Peters Health Partners, Albany, NY, United States
| |
Collapse
|
33
|
Gül F, Gonen ZB, Jones OY, Taşlı NP, Zararsız G, Ünal E, Özdarendeli A, Şahin F, Eken A, Yılmaz S, Karakukçu M, Kırbaş OK, Gökdemir NS, Bozkurt BT, Özkul Y, Oktay BD, Uygut MA, Cinel I, Çetin M. A pilot study for treatment of severe COVID-19 pneumonia by aerosolized formulation of convalescent human immune plasma exosomes (ChipEXO™). Front Immunol 2022; 13:963309. [PMID: 36439138 PMCID: PMC9682905 DOI: 10.3389/fimmu.2022.963309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/20/2022] [Indexed: 07/22/2023] Open
Abstract
This is a single-center prospective, open-label, single arm interventional study to test the safety and efficacy of recently described ChipEXO™ for severe COVID-19 pneumonia. The ChipEXO™ is a natural product derived from convalescent human immune plasma of patients recovered from moderate COVID-19 infection. In September 2021, 13 patients with pending respiratory failure were treated with ChipEXO™ adapted for aerosolized formulation delivered via jet nebulizer. Patients received 1-5x1010 nano vesicle/5 mL in distilled water twice daily for five days as an add-on to ongoing conventional COVID-19 treatment. The primary endpoint was patient safety and survival over a 28-day follow-up. The secondary endpoint was longitudinal assessment of clinical parameters following ChipEXO™ to evaluate treatment response and gain insights into the pharmacodynamics. ChipEXO™ was tolerated well without any allergic reaction or acute toxicity. The survival rate was 84.6% and 11 out of 13 recovered without any sequel to lungs or other organs. ChipEXO™ treatment was effective immediately as shown in arterial blood gas analyses before and two hours after exosome inhalation. During the 5 days of treatment, there was a sustainable and gradual improvement on oxygenation parameters: i.e. respiratory rate (RR) [20.8% (P < 0.05)], oxygen saturation (SpO2) [6,7% (P < 0.05)] and partial pressure of oxygen to the fraction of inspired oxygen (PaO2/FiO2) [127.9% (P < 0.05)] that correlated with steep decrease in the disease activity scores and inflammatory markers, i.e. the sequential organ failure assessment (SOFA) score (75%, p < 0.05), C-reactive protein (46% p < 0.05), ferritin (58% p = 0.53), D-dimer (28% p=0.46). In conclusion, aerosolized ChipEXO™ showed promising safety and efficacy for life-threatening COVID-19 pneumonia. Further studies on larger patient populations are required to confirm our findings and understand the pathophysiology of improvement toward a new therapeutic agent for the treatment of severe COVID-19 pneumonia.
Collapse
Affiliation(s)
- Fethi Gül
- Department of Anesthesiology and Reanimation, Division of Critical Care Medicine, School of Medicine, Marmara University, Istanbul, Türkiye
| | | | - Olcay Y. Jones
- Division of Rheumatology, Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Neslihan Pakize Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbul, Türkiye
| | - Gökmen Zararsız
- Department of Biostatistics, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Ekrem Ünal
- Department of Pediatrics, Division of Pediatric Hematology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Aykut Özdarendeli
- Faculty of Medicine, Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Türkiye
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbul, Türkiye
| | - Ahmet Eken
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Türkiye
| | - Semih Yılmaz
- Institute of Health Sciences, Department of Medical Biochemistry, Erciyes University, Kayseri, Türkiye
| | - Musa Karakukçu
- Department of Pediatrics, Division of Pediatric Hematology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbul, Türkiye
| | - Nur Seda Gökdemir
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye
| | - Batuhan Turhan Bozkurt
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbul, Türkiye
| | - Yusuf Özkul
- Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Burçin Doruk Oktay
- Department of Anesthesiology and Reanimation, Division of Critical Care Medicine, School of Medicine, Marmara University, İstanbul, Türkiye
| | - Muhammet Ali Uygut
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Türkiye
| | - Ismail Cinel
- Department of Anesthesiology and Reanimation, Division of Critical Care Medicine, School of Medicine, Marmara University, İstanbul, Türkiye
| | - Mustafa Çetin
- Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
34
|
Gül F, Gonen ZB, Jones OY, Taşlı NP, Zararsız G, Ünal E, Özdarendeli A, Şahin F, Eken A, Yılmaz S, Karakukçu M, Kırbaş OK, Gökdemir NS, Bozkurt BT, Özkul Y, Oktay BD, Uygut MA, Cinel I, Çetin M. A pilot study for treatment of severe COVID-19 pneumonia by aerosolized formulation of convalescent human immune plasma exosomes (ChipEXO™). Front Immunol 2022. [DOI: https://doi.org/10.3389/fimmu.2022.963309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This is a single-center prospective, open-label, single arm interventional study to test the safety and efficacy of recently described ChipEXO™ for severe COVID-19 pneumonia. The ChipEXO™ is a natural product derived from convalescent human immune plasma of patients recovered from moderate COVID-19 infection. In September 2021, 13 patients with pending respiratory failure were treated with ChipEXO™ adapted for aerosolized formulation delivered via jet nebulizer. Patients received 1-5x1010 nano vesicle/5 mL in distilled water twice daily for five days as an add-on to ongoing conventional COVID-19 treatment. The primary endpoint was patient safety and survival over a 28-day follow-up. The secondary endpoint was longitudinal assessment of clinical parameters following ChipEXO™ to evaluate treatment response and gain insights into the pharmacodynamics. ChipEXO™ was tolerated well without any allergic reaction or acute toxicity. The survival rate was 84.6% and 11 out of 13 recovered without any sequel to lungs or other organs. ChipEXO™ treatment was effective immediately as shown in arterial blood gas analyses before and two hours after exosome inhalation. During the 5 days of treatment, there was a sustainable and gradual improvement on oxygenation parameters: i.e. respiratory rate (RR) [20.8% (P < 0.05)], oxygen saturation (SpO2) [6,7% (P < 0.05)] and partial pressure of oxygen to the fraction of inspired oxygen (PaO2/FiO2) [127.9% (P < 0.05)] that correlated with steep decrease in the disease activity scores and inflammatory markers, i.e. the sequential organ failure assessment (SOFA) score (75%, p < 0.05), C-reactive protein (46% p < 0.05), ferritin (58% p = 0.53), D-dimer (28% p=0.46). In conclusion, aerosolized ChipEXO™ showed promising safety and efficacy for life-threatening COVID-19 pneumonia. Further studies on larger patient populations are required to confirm our findings and understand the pathophysiology of improvement toward a new therapeutic agent for the treatment of severe COVID-19 pneumonia.
Collapse
|
35
|
Gül F, Gonen ZB, Jones OY, Taşlı NP, Zararsız G, Ünal E, Özdarendeli A, Şahin F, Eken A, Yılmaz S, Karakukçu M, Kırbaş OK, Gökdemir NS, Bozkurt BT, Özkul Y, Oktay BD, Uygut MA, Cinel I, Çetin M. A pilot study for treatment of severe COVID-19 pneumonia by aerosolized formulation of convalescent human immune plasma exosomes (ChipEXO™). Front Immunol 2022. [DOI: https:/doi.org/10.3389/fimmu.2022.963309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This is a single-center prospective, open-label, single arm interventional study to test the safety and efficacy of recently described ChipEXO™ for severe COVID-19 pneumonia. The ChipEXO™ is a natural product derived from convalescent human immune plasma of patients recovered from moderate COVID-19 infection. In September 2021, 13 patients with pending respiratory failure were treated with ChipEXO™ adapted for aerosolized formulation delivered via jet nebulizer. Patients received 1-5x1010 nano vesicle/5 mL in distilled water twice daily for five days as an add-on to ongoing conventional COVID-19 treatment. The primary endpoint was patient safety and survival over a 28-day follow-up. The secondary endpoint was longitudinal assessment of clinical parameters following ChipEXO™ to evaluate treatment response and gain insights into the pharmacodynamics. ChipEXO™ was tolerated well without any allergic reaction or acute toxicity. The survival rate was 84.6% and 11 out of 13 recovered without any sequel to lungs or other organs. ChipEXO™ treatment was effective immediately as shown in arterial blood gas analyses before and two hours after exosome inhalation. During the 5 days of treatment, there was a sustainable and gradual improvement on oxygenation parameters: i.e. respiratory rate (RR) [20.8% (P < 0.05)], oxygen saturation (SpO2) [6,7% (P < 0.05)] and partial pressure of oxygen to the fraction of inspired oxygen (PaO2/FiO2) [127.9% (P < 0.05)] that correlated with steep decrease in the disease activity scores and inflammatory markers, i.e. the sequential organ failure assessment (SOFA) score (75%, p < 0.05), C-reactive protein (46% p < 0.05), ferritin (58% p = 0.53), D-dimer (28% p=0.46). In conclusion, aerosolized ChipEXO™ showed promising safety and efficacy for life-threatening COVID-19 pneumonia. Further studies on larger patient populations are required to confirm our findings and understand the pathophysiology of improvement toward a new therapeutic agent for the treatment of severe COVID-19 pneumonia.
Collapse
|
36
|
Grabenstein JD. Essential services: Quantifying the contributions of America's pharmacists in COVID-19 clinical interventions. J Am Pharm Assoc (2003) 2022; 62:1929-1945.e1. [PMID: 36202712 PMCID: PMC9387064 DOI: 10.1016/j.japh.2022.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND As the COVID-19 pandemic spread across the United States, America's pharmacists and their teammates expanded their clinical services to help their communities from every practice setting: community and ambulatory care, inpatient, long-term care, academia, public health, and many others. OBJECTIVES The objective of the study is to begin to quantify contributions of U.S. pharmacists in providing clinical interventions that mitigate and control the pandemic. These interventions span the gamut of diagnosis, prevention, treatment, and support, intervening patient by patient with vaccines, diagnostic tests, convalescent plasma, monoclonal antibodies, antiviral medications, and supportive therapies. METHODS Review of published literature, relevant web pages, and queries to national and state professional pharmacy associations and government agencies. RESULTS From February 2020 through September 2022, pharmacists and their teammates conducted >42 million COVID-19 tests, provided >270 million vaccinations (including 8.1 million COVID-19 vaccinations for long-term care residents) within community pharmacy programs alone, and provided >50 million influenza and other vaccinations per year. Pharmacists plausibly accounted for >50% of COVID-19 vaccinations in the United States. Pharmacists prescribed, dispensed, and administered an uncounted number of antibody products and antiviral medications, including care for 5.4 million inpatients and innumerable outpatients. Using conservative estimates, pandemic interventions by pharmacists and teammates averted >1 million deaths, >8 million hospitalizations, and $450 billion in health care costs. CONCLUSIONS Pharmacists and their teammates contributed to America's health and recovery during the COVID-19 pandemic by providing >350 million clinical interventions to >150 million people in the form of testing, parenteral antibodies, vaccinations, antiviral therapies, and inpatient care. The number of lives touched and people cared for by pharmacists continues to rise.
Collapse
|
37
|
SARS-CoV-2 IgG Levels Allow Predicting the Optimal Time Span of Convalescent Plasma Donor Suitability. Diagnostics (Basel) 2022; 12:diagnostics12112567. [DOI: 10.3390/diagnostics12112567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
Convalescent plasma (CP) has been in use for the treatment of numerous infectious diseases for more than a century, recently also for coronavirus disease 2019 (COVID-19). A major challenge for this treatment is identifying suitable donors with sufficient levels of functional antibodies and to determine the optimal time span for CP donation. In this retrospective study, we analyzed 189 CP donations of 66 donors regarding anti-SARS-CoV-2 anti-S IgG antibody levels. We found a significant correlation between the semi-quantitative SARS-CoV-2 IgG ratio values and in vitro antibody functionality. A time-to-event analysis allowed us to predict the optimal time span of COVID-19 CP donor suitability. We found that high IgG ratio values, which significantly correlate with high in vitro antibody functionality, were suitable for CP donation for a median of 134 days after the first CP donation. Donors with lower IgG ratios were suitable for a median of 53 days. Our data support plasma collection centers to determine optimal points in time for CP donation by means of widely used semi-quantitative laboratory IgG ratio values.
Collapse
|
38
|
Jha A, Barker D, Lew J, Manoharan V, van Kessel J, Haupt R, Toth D, Frieman M, Falzarano D, Kodihalli S. Efficacy of COVID-HIGIV in animal models of SARS-CoV-2 infection. Sci Rep 2022; 12:16956. [PMID: 36216961 PMCID: PMC9549041 DOI: 10.1038/s41598-022-21223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/23/2022] [Indexed: 12/29/2022] Open
Abstract
In late 2019 the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus emerged in China and quickly spread into a worldwide pandemic. It has caused millions of hospitalizations and deaths, despite the use of COVID-19 vaccines. Convalescent plasma and monoclonal antibodies emerged as major therapeutic options for treatment of COVID-19. We have developed an anti-SARS-CoV-2 immunoglobulin intravenous (Human) (COVID-HIGIV), a potential improvement from using convalescent plasma. In this report the efficacy of COVID-HIGIV was evaluated in hamster and mouse models of SARS-CoV-2 infection. COVID-HIGIV treatment in both mice and hamsters significantly reduced the viral load in the lungs. Among COVID-HIGIV treated animals, infection-related body weight loss was reduced and the animals regained their baseline body weight faster than the PBS controls. In hamsters, COVID-HIGIV treatment reduced infection-associated lung pathology including lung inflammation, and pneumocyte hypertrophy in the lungs. These results support ongoing trials for outpatient treatment with COVID-HIGIV for safety and efficacy evaluation (NCT04910269, NCT04546581).
Collapse
Affiliation(s)
- Aruni Jha
- Research and Development, Emergent BioSolutions, Winnipeg, MB, Canada
| | - Douglas Barker
- Research and Development, Emergent BioSolutions, Winnipeg, MB, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Vinoth Manoharan
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Jill van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Robert Haupt
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Derek Toth
- Research and Development, Emergent BioSolutions, Winnipeg, MB, Canada
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shantha Kodihalli
- Research and Development, Emergent BioSolutions, Winnipeg, MB, Canada.
| |
Collapse
|
39
|
Grubovic Rastvorceva RM, Useini S, Stevanovic M, Demiri I, Petkovic E, Franchini M, Focosi D. Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients-An Open-Label Phase II Clinical Trial. Life (Basel) 2022; 12:1565. [PMID: 36295001 PMCID: PMC9605182 DOI: 10.3390/life12101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
Background: COVID-19 convalescent plasma (CCP) is an important antiviral option for selected patients with COVID-19. Materials and Methods: In this open-label, phase 2, clinical trial conducted from 30 April 2020 till 10 May 2021 in the Republic of North Macedonia, we evaluated the efficacy and safety of CCP in hospitalized patients. Treatment was with a single unit of CCP having an anti-RBD IgG concentration higher than 5 AU/mL. Results: There were 189 patients that completed the study, of which 65 (34.4%) had WHO 8-point clinical progression scale score of 3 (requiring hospital care but not oxygen support), 65 (34.4%) had a score of 4 (hospitalized and requiring supplemental oxygen by mask or nasal prongs), and 59 (31.2%) had a score of 5 (hospitalized and requiring supplemental oxygen by non-invasive ventilation or high-flow oxygen). Mean age was 57 years (range 22−94), 78.5% were males, 80.4% had elevated body mass index, and 70.9% had comorbidity. Following CCP transfusion, we observed clinical improvement with increase rates in oxygenation-free days of 32.3% and 58.5% at 24 h and seven days after CCP transfusion, a decline in WHO scores, and reduced progression to severe disease (only one patient was admitted to ICU after CCP transfusion). Mortality in the entire cohort was 11.6% (22/189). We recorded 0% mortality in WHO score 3 (0/65) and in patients that received CCP transfusion in the first seven days of disease, 4.6% mortality in WHO score 4 (3/65), and 30.5% mortality in WHO score 5 (18/59). Mortality correlated with WHO score (Chi-square 19.3, p < 0.001) and with stay in the ICU (Chi-square 55.526, p ≤ 0.001). No severe adverse events were reported. Conclusions: This study showed that early administration of CCP to patients with moderate disease was a safe and potentially effective treatment for hospitalized COVID-19 patients. The trial was registered at clinicaltrials.gov (NCT04397523).
Collapse
Affiliation(s)
- Rada M. Grubovic Rastvorceva
- Institute for Transfusion Medicine of RNM, 1000 Skopje, North Macedonia
- Faculty of Medical Sciences, University Goce Delcev, 2000 Stip, North Macedonia
| | - Sedula Useini
- Institute for Transfusion Medicine of RNM, 1000 Skopje, North Macedonia
| | - Milena Stevanovic
- University Clinic for Infectious Diseases, 1000 Skopje, North Macedonia
| | - Ilir Demiri
- University Clinic for Infectious Diseases, 1000 Skopje, North Macedonia
| | - Elena Petkovic
- Institute for Transfusion Medicine of RNM, 1000 Skopje, North Macedonia
| | | | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
40
|
Zare Marzouni H, Rahbar M, Seddighi N, Nabizadeh M, Meidaninikjeh S, Sabouni N. Antibody Therapy for COVID-19: Categories, Pros, and Cons. Viral Immunol 2022; 35:517-528. [PMID: 36201297 DOI: 10.1089/vim.2021.0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a life-threatening respiratory disease triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has been considered a pandemic viral infection since December 2019. The investigation of the effective prophylaxis or therapeutic strategies for emergency management of the current condition has become a priority for medical research centers and pharmaceutical companies. This article provides a comprehensive review of antibody therapy and its different categories with their advantages and disadvantages for COVID-19 over the last few years of the current pandemic. Antibodies can be generated by active immunization, including natural infection with a pathogen and vaccination, or by the passive immunization method such as convalescent plasma therapy (CPT) and antibody synthesis in laboratories. Each of these ways has its characteristics. Arming the immune system with antibodies is the main aim of antiviral therapeutic procedures toward SARS-CoV-2. Collecting and discussing various aspects of available data in this field can give researchers a better perspective for the production of antibody-based products or selection of the most appropriate approach of antibody therapies to improve different cases of COVID-19. Moreover, it can help them control similar viral pandemics that may happen in the future appropriately.
Collapse
Affiliation(s)
- Hadi Zare Marzouni
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Marjan Rahbar
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nazanin Seddighi
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Nabizadeh
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Cancer Biomedical Center (CBC) Research Institute, Tehran, Iran
| | - Nasim Sabouni
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Razumikhin M, Smolyanova T, Nikolaeva A, Orlova E, Ivanov A, Belyakova O, Vyaznikova T, Selezneva N, Perevozchikov A, Sokolova A, Zubkova N, Efimova I, Dolzhikova I, Logunov D, Sakanjan E. Development and characterization of anti-SARS-CoV-2 intravenous immunoglobulin from COVID-19 convalescent plasma. Immunotherapy 2022; 14:1133-1147. [PMID: 35892311 PMCID: PMC9328115 DOI: 10.2217/imt-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background: The authors describe the developmental process of intravenous anti-COVID-19 hyperimmune immunoglobulin from anti-SARS-CoV-2 neutralizing antibody-containing plasma. Furthermore, the authors investigated its safety and protective activity in animal models. Materials & methods: The manufacturing process included standard ethanol fractionation, chromatographic purification steps and virus removal or inactivation. Results: The authors produced pure and safe immunoglobulin for intravenous administration, with 98.1 ± 6.5 mg/ml protein content, of which 97.6 ± 0.7% was IgG. The concentration factor of SARS-CoV-2 neutralizing antibodies was 9.4 ± 1.4-times. Safety studies in animals showed no signs of acute/chronic toxicity or allergenic or thrombogenic properties. Intravenous anti-COVID-19 hyperimmune immunoglobulin protected immunosuppressed hamsters against SARS-Cov-2. Conclusion: The obtained results can allow the start of clinical trials to study the safety and efficacy in healthy adults.
Collapse
Affiliation(s)
| | | | | | | | | | - Olga Belyakova
- JSC NPO Microgen, 10, 2-nd Volkonsky, Moscow, 127473, Russia
| | | | | | | | - Alina Sokolova
- JSC NPO Microgen, 10, 2-nd Volkonsky, Moscow, 127473, Russia
| | | | - Irina Efimova
- JSC NPO Microgen, 10, 2-nd Volkonsky, Moscow, 127473, Russia
| | - Inna Dolzhikova
- Federal State Budget Institution “National Research Centre for Epidemiology & Microbiology named after Honorary Academician N F Gamaleya” of The Ministry of Health of The Russian Federation, 18 Gamaleya Str., Moscow, 123098, Russia
| | - Denis Logunov
- Federal State Budget Institution “National Research Centre for Epidemiology & Microbiology named after Honorary Academician N F Gamaleya” of The Ministry of Health of The Russian Federation, 18 Gamaleya Str., Moscow, 123098, Russia
| | - Elena Sakanjan
- JSC NPO Microgen, 10, 2-nd Volkonsky, Moscow, 127473, Russia
| |
Collapse
|
42
|
Aryana IGPS, Daniella D, Paulus IB, Rini SS, Setiati S. Convalescent Plasma in Older Adults with COVID-19: A Systematic Review and Meta-Analysis. Ann Geriatr Med Res 2022; 26:208-214. [PMID: 35915954 PMCID: PMC9535370 DOI: 10.4235/agmr.22.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Background Among all patients infected with coronavirus disease 2019 (COVID-19), the older adult population was the most affected, with 80%–90% of fatalities occurring in this group. The effectiveness of convalescent plasma (CP) in older adults is considerably more restricted than that in adults, resulting in a demand for data on the efficacy of therapeutic CP in older adults. This meta-analysis of updated literature examined the effect of CP in older adults with COVID-19. Methods Relevant literature was identified from studies indexed in the Cochrane, PubMed, and Google Scholar databases between December 2019 and April 2022. The primary outcome was all-cause mortality. Risk estimates were pooled using a random-effects model. The risk of bias was assessed by regression-based Egger test using the relative risk (RR) and upper and lower confidence intervals (CIs) of the three included studies. Results Among 377 studies identified, three full-text studies that included 1,038 patients met the inclusion criteria. The results of our meta-analysis showed that CP administration lowered the mortality risk in older adults with COVID-19 (RR=0.47; 95% CI, 0.26–0.86; p=0.01; I2=0%, p<0.81). CP therapy was more useful if delivered early in the course of the disease (within 72 hours of onset) and in less severe stages of the disease. Mortality tended to be lower in the high-titer group.Conclusions: CP treatment was significantly associated with a lower risk of mortality in older adults with COVID-19 than in patients not administered CP. The timing of CP administration is critical since earlier treatment after disease onset was associated with a better prognosis.
Collapse
Affiliation(s)
- I Gusti Putu Suka Aryana
- Division of Geriatrics, Department of Internal Medicine, Faculty of Medicine, Udayana University, Bali, Denpasar, Indonesia
| | - Dian Daniella
- Department of Internal Medicine, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
- Corresponding Author: Dian Daniella, MD Department of Internal Medicine, Faculty of Medicine, Udayana University, Denpasar, Bali 80361, Indonesia
| | | | - Sandra Surya Rini
- Department of Internal Medicine, North Lombok Regional Hospital, West Nusa Tenggara, Indonesia
| | - Siti Setiati
- Division of Geriatrics, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
43
|
Focosi D, Franchini M, Pirofski LA, Burnouf T, Paneth N, Joyner MJ, Casadevall A. COVID-19 Convalescent Plasma and Clinical Trials: Understanding Conflicting Outcomes. Clin Microbiol Rev 2022; 35:e0020021. [PMID: 35262370 PMCID: PMC9491201 DOI: 10.1128/cmr.00200-21] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Convalescent plasma (CP) recurs as a frontline treatment in epidemics because it is available as soon as there are survivors. The COVID-19 pandemic represented the first large-scale opportunity to shed light on the mechanisms of action, safety, and efficacy of CP using modern evidence-based medicine approaches. Studies ranging from observational case series to randomized controlled trials (RCTs) have reported highly variable efficacy results for COVID-19 CP (CCP), resulting in uncertainty. We analyzed variables associated with efficacy, such as clinical settings, disease severity, CCP SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) antibody levels and function, dose, timing of administration (variously defined as time from onset of symptoms, molecular diagnosis, diagnosis of pneumonia, or hospitalization, or by serostatus), outcomes (defined as hospitalization, requirement for ventilation, clinical improvement, or mortality), CCP provenance and time for collection, and criteria for efficacy. The conflicting trial results, along with both recent WHO guidelines discouraging CCP usage and the recent expansion of the FDA emergency use authorization (EUA) to include outpatient use of CCP, create confusion for both clinicians and patients about the appropriate use of CCP. A review of 30 available RCTs demonstrated that signals of efficacy (including reductions in mortality) were more likely if the CCP neutralizing titer was >160 and the time to randomization was less than 9 days. The emergence of the Omicron variant also reminds us of the benefits of polyclonal antibody therapies, especially as a bridge to the development and availability of more specific therapies.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York, USA
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Nigel Paneth
- Department of Epidemiology & Biostatistics and Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Joyner MJ, Carter RE, Fairweather D, Wright RS. Convalescent plasma and COVID-19: Time for a second-second look? Transfus Med 2022; 33:16-20. [PMID: 36089562 PMCID: PMC9538409 DOI: 10.1111/tme.12915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
In this short narrative, we highlight some of our experiences leading the US Convalescent Plasma Program at the beginning of the pandemic in the spring and summer of 2020. This includes a brief summary of how the program emerged and high-level lessons we learned. We also share our impressions about why convalescent plasma was used at scale in the United States, early in the pandemic and share ideas that might inform the use of convalescent plasma in future outbreaks of novel infectious diseases.
Collapse
Affiliation(s)
- Michael J. Joyner
- Department of Anesthesiology & Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Rickey E. Carter
- Department of Quantitative Health Sciences, Division of Clinical Trials & BiostatisticsMayo ClinicJacksonvilleFloridaUSA
| | | | - R. Scott Wright
- Department of Cardiovascular DiseasesMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
45
|
Daniell H, Nair SK, Shi Y, Wang P, Montone KT, Shaw PA, Choi GH, Ghani D, Weaver J, Rader DJ, Margulies KB, Collman RG, Laudanski K, Bar KJ. Decrease in Angiotensin-Converting Enzyme activity but not concentration in plasma/lungs in COVID-19 patients offers clues for diagnosis/treatment. Mol Ther Methods Clin Dev 2022; 26:266-278. [PMID: 35818571 PMCID: PMC9258412 DOI: 10.1016/j.omtm.2022.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/03/2022] [Indexed: 12/12/2022]
Abstract
Although several therapeutics are used to treat coronavirus disease 2019 (COVID-19) patients, there is still no definitive metabolic marker to evaluate disease severity and recovery or a quantitative test to end quarantine. Because severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infects human cells via the angiotensin-converting-enzyme 2 (ACE2) receptor and COVID-19 is associated with renin-angiotensin system dysregulation, we evaluated soluble ACE2 (sACE2) activity in the plasma/saliva of 80 hospitalized COVID-19 patients and 27 non-COVID-19 volunteers, and levels of ACE2/Ang (1-7) in plasma or membrane (mACE2) in lung autopsy samples. sACE2 activity was markedly reduced (p < 0.0001) in COVID-19 plasma (n = 59) compared with controls (n = 27). Nadir sACE2 activity in early hospitalization was restored during disease recovery, irrespective of patient age, demographic variations, or comorbidity; in convalescent plasma-administered patients (n = 45), restoration was statistically higher than matched controls (n = 22, p = 0.0021). ACE2 activity was also substantially reduced in the saliva of COVID-19 patients compared with controls (p = 0.0065). There is a strong inverse correlation between sACE2 concentration and sACE2 activity and Ang (1-7) levels in participant plasmas. However, there were no difference in membrane ACE2 levels in lungs of autopsy tissues of COVID-19 (n = 800) versus other conditions (n = 300). These clinical observations suggest sACE2 activity as a potential biomarker and therapeutic target for COVID-19.
Collapse
Affiliation(s)
- Henry Daniell
- W. D. Miller Professor & Director of Translational Research, Vice Chair, Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, 547 Levy Building, Philadelphia, PA 19104-6030, USA
| | - Smruti K. Nair
- W. D. Miller Professor & Director of Translational Research, Vice Chair, Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, 547 Levy Building, Philadelphia, PA 19104-6030, USA
| | - Yao Shi
- W. D. Miller Professor & Director of Translational Research, Vice Chair, Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, 547 Levy Building, Philadelphia, PA 19104-6030, USA
| | - Ping Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen T. Montone
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pamela A. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Kaiser Permanente Washington Health Research Group, Seattle, WA, USA
| | - Grace H. Choi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danyal Ghani
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - JoEllen Weaver
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Rader
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth B. Margulies
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronald G. Collman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Krzysztof Laudanski
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katharine J. Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
46
|
Brosig AM, Ossner T, Pamler I, Friedinger S, Bica A, Mohrez M, Tlili I, Mueller V, Becke C, Haehnel V, Baeuerlein V, Stemmer B, Burkhardt R, Offner R. Multistep screening and selection of COVID-19 convalescent plasma donors at the early stage of the SARS-CoV-2 pandemic: A retrospective analysis. Health Sci Rep 2022; 5:e815. [PMID: 36172300 PMCID: PMC9470013 DOI: 10.1002/hsr2.815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Aims The COVID-19 pandemic reached Bavaria in February 2020. Almost simultaneously, Chinese physicians published reports on the first successful treatments with plasma from COVID-19 convalescent donors. With these silver linings on the horizon, we decided to establish the manufacturing of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody-containing plasma from COVID-19 convalescent donors at our site. Here we describe our donor selection process, built from the ground up, which enabled us to cope with the immense resonance after our social media call for donors. Methods As a first step, we created a specific questionnaire for telephone interviews applied by trained students to filter the wave of callers interested in plasma donation. Afterward, the medical staff evaluated the hotline questionnaires and chose eligible donors to be invited for on-site donor evaluation. Data documentation was performed with MS Excel, and statistical analyses were calculated with GraphPad Prism 8. A quantitative in-house ELISA was used to detect anti-SARS-CoV-2 antibodies and determine specific titers. Results Out of 1465 calls from potential plasma donors, we could register 420 persons with a completed questionnaire. Evaluation of questionnaires identified 222 of 420 persons as eligible for donation, and 55 were directly asked for on-site donor qualification. Subsequently, as anti-SARS-CoV-2 antibody titers ≥1:800 were required, we invited 89 of 222 potential donors for an antibody screening. This procedure resulted in another 28 potential donors for an on-site evaluation. Finally, 12 donors qualified with a titer of 1:400 and 24 with ≥1:800. Conclusion Identifying suitable COVID-19 convalescent plasma donors was expected to be highly time-consuming. Implementing a screening procedure with our hotline questionnaire helped us streamline the donor selection process and reduce the workload for the staff. We propose combining the described selection process with the later introduced on-site antibody screening as an effective strategy.
Collapse
Affiliation(s)
- Andreas M. Brosig
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Thomas Ossner
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Irene Pamler
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Susanne Friedinger
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Adelina‐Florina Bica
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Morad Mohrez
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Ikram Tlili
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Viktoria Mueller
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Christine Becke
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Viola Haehnel
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Veronika Baeuerlein
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Barbara Stemmer
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Robert Offner
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion MedicineUniversity Hospital RegensburgRegensburgGermany
| |
Collapse
|
47
|
Qiao S, Zhang S, Ge J, Wang X. The spike glycoprotein of highly pathogenic human coronaviruses: structural insights for understanding infection, evolution and inhibition. FEBS Open Bio 2022; 12:1602-1622. [PMID: 35689514 PMCID: PMC9433818 DOI: 10.1002/2211-5463.13454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/29/2022] Open
Abstract
Highly pathogenic human coronaviruses (CoV) including SARS-CoV, MERS-CoV and SARS-CoV-2 have emerged over the past two decades, resulting in infectious disease outbreaks that have greatly affected public health. The CoV surface spike (S) glycoprotein mediates receptor binding and membrane fusion for cell entry, playing critical roles in CoV infection and evolution. The S glycoprotein is also the major target molecule for prophylactic and therapeutic interventions, including neutralizing antibodies and vaccines. In this review, we summarize key studies that have revealed the structural basis of S-mediated cell entry of SARS-CoV, MERS-CoV and SARS-CoV-2. Additionally, we discuss the evolution of the S glycoprotein to realize cross-species transmission from the viewpoint of structural biology. Lastly, we describe the recent progress in developing antibodies, nanobodies and peptide inhibitors that target the SARS-CoV-2 S glycoprotein for therapeutic purposes.
Collapse
Affiliation(s)
- Shuyuan Qiao
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life SciencesTsinghua UniversityBeijingChina
| | - Shuyuan Zhang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life SciencesTsinghua UniversityBeijingChina
| | - Jiwan Ge
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life SciencesTsinghua UniversityBeijingChina
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
48
|
Raad I, Hachem R, Masayuki N, Datoguia T, Dagher H, Jiang Y, Subbiah V, Siddiqui B, Bayle A, Somer R, Cruz AF, Gorak E, Bhinder A, Mori N, Hamerschlak N, Shelanski S, Dragivich T, Kiat YEV, Fakhreddine S, Hanna PA, Chemaly RF, Mulanovich V, Adachi J, Borjan J, Khawaja F, Granwehr B, John T, Guevara EY, Torres H, Ammakkanavar NR, Yibirin M, Reyes-Gibby CC, Pande M, Ali N, Rojo RD, Ali SM, Deeba RE, Chaftari P, Matsuo T, Ishikawa K, Hasegawa R, Aguado-Noya R, García-García Á, Puchol CT, Lee DG, Slavin M, Teh B, Arias CA, Data-Driven Determinants for COVID-19 Oncology Discovery Effort (D3CODE) Team, Kontoyiannis DP, Malek AE, Chaftari AM. International Multicenter Study Comparing Cancer to Non-Cancer Patients with COVID-19: Impact of Risk Factors and Treatment Modalities on Survivorship. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.08.25.22279181. [PMID: 36097568 PMCID: PMC9465833 DOI: 10.1101/2022.08.25.22279181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background In this international multicenter study we aimed to determine the independent risk factors associated with increased 30-day mortality and the impact of novel treatment modalities in a large group of cancer and non-cancer patients with COVID-19 from multiple countries. Methods We retrospectively collected de-identified data on a cohort of cancer and non-cancer patients diagnosed with COVID-19 between January and November 2020, from 16 international centers. Results We analyzed 3966 COVID-19 confirmed patients, 1115 cancer and 2851 non-cancer patients. Cancer patients were more likely to be pancytopenic, and have a smoking history, pulmonary disorders, hypertension, diabetes mellitus, and corticosteroid use in the preceding two weeks (p≤0.01). In addition, they were more likely to present with higher inflammatory biomarkers (D-dimer, ferritin and procalcitonin), but were less likely to present with clinical symptoms (p≤0.01). By multivariable logistic regression analysis, cancer was an independent risk factor for 30-day mortality (OR 1.46; 95% CI 1.03 to 2.07; p=0.035). Older age (≥65 years) was the strongest predictor of 30-day mortality in all patients (OR 4.55; 95% CI 3.34 to6.20; p< 0.0001). Remdesivir was the only therapeutic agent independently associated with decreased 30-day mortality (OR 0.58; CI 0.39-0.88; p=0.009). Among patients on low-flow oxygen at admission, patients who received remdesivir had a lower 30-day mortality rate than those who did not (5.9% vs 17.6%; p=0.03). Conclusions Cancer is an independent risk factor for increased 30-day all-cause mortality from COVID-19. Remdesivir, particularly in patients receiving low-flow oxygen, can reduce 30-day all-cause mortality. Condensed Abstract In this large multicenter worldwide study of 4015 patients with COVID-19 that included 1115 patients with cancer, we found that cancer is an independent risk factor for increased 30-day all-cause mortality. Remdesivir is a promising treatment modality to reduce 30-day all-cause mortality.
Collapse
|
49
|
Weisser M, Khanna N, Hedstueck A, Tschudin Sutter S, Roesch S, Stehle G, Sava M, Deigendesch N, Battegay M, Infanti L, Holbro A, Bassetti S, Pargger H, Hirsch HH, Leuzinger K, Kaiser L, Vu D, Baur K, Massaro N, Busch MP, Simmons G, Stone M, Felgner PL, de Assis RR, Khan S, Tsai C, Robinson PV, Seftel D, Irsch J, Bagri A, Buser AS, Corash L. Characterization of Pathogen Inactivated
COVID
‐19 Convalescent Plasma and Responses in Transfused Patients. Transfusion 2022; 62:1997-2011. [PMID: 36054476 PMCID: PMC9538076 DOI: 10.1111/trf.17083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 12/15/2022]
Abstract
Background Efficacy of donated COVID‐19 convalescent plasma (dCCP) is uncertain and may depend on antibody titers, neutralizing capacity, timing of administration, and patient characteristics. Study Design and Methods In a single‐center hypothesis‐generating prospective case–control study with 1:2 matched dCCP recipients to controls according to disease severity at day 1, hospitalized adults with COVID‐19 pneumonia received 2 × 200 ml pathogen‐reduced treated dCCP from 2 different donors. We evaluated severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) antibodies in COVID‐19 convalescent plasma donors and recipients using multiple antibody assays including a Coronavirus antigen microarray (COVAM), and binding and neutralizing antibody assays. Outcomes were dCCP characteristics, antibody responses, 28‐day mortality, and dCCP ‐related adverse events in recipients. Results Eleven of 13 dCCPs (85%) contained neutralizing antibodies (nAb). PRT did not affect dCCP antibody activity. Fifteen CCP recipients and 30 controls (median age 64 and 65 years, respectively) were enrolled. dCCP recipients received 2 dCCPs from 2 different donors after a median of one hospital day and 11 days after symptom onset. One dCCP recipient (6.7%) and 6 controls (20%) died (p = 0.233). We observed no dCCP‐related adverse events. Transfusion of unselected dCCP led to heterogeneous SARS CoV‐2 antibody responses. COVAM clustered dCCPs in 4 distinct groups and showed endogenous immune responses to SARS‐CoV‐2 antigens over 14–21 days post dCCP in all except 4 immunosuppressed recipients. Discussion PRT did not impact dCCP anti‐virus neutralizing activity. Transfusion of unselected dCCP did not impact survival and had no adverse effects. Variable dCCP antibodies and post‐transfusion antibody responses indicate the need for controlled trials using well‐characterized dCCP with informative assays.
Collapse
Affiliation(s)
- Maja Weisser
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
- Department of Clinical Research University Hospital Basel Basel Switzerland
| | - Nina Khanna
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
- Department of Clinical Research University Hospital Basel Basel Switzerland
| | - Anemone Hedstueck
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
| | - Sarah Tschudin Sutter
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
- Department of Clinical Research University Hospital Basel Basel Switzerland
| | - Sandra Roesch
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
| | - Gregor Stehle
- Regional Blood Transfusion Service, Swiss Red Cross, Basel Basel Switzerland
| | - Mihaela Sava
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
| | | | - Manuel Battegay
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
- Department of Clinical Research University Hospital Basel Basel Switzerland
| | - Laura Infanti
- Regional Blood Transfusion Service, Swiss Red Cross, Basel Basel Switzerland
| | - Andreas Holbro
- Regional Blood Transfusion Service, Swiss Red Cross, Basel Basel Switzerland
| | - Stefano Bassetti
- Department of Clinical Research University Hospital Basel Basel Switzerland
- Department of Internal Medicine University Hospital Basel Basel Switzerland
| | - Hans Pargger
- Department of Clinical Research University Hospital Basel Basel Switzerland
- Department of Intensive Care University Hospital Basel Basel Switzerland
| | - Hans H. Hirsch
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
- Department of Clinical Research University Hospital Basel Basel Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine University of Basel Basel Switzerland
| | - Karoline Leuzinger
- Transplantation & Clinical Virology, Department of Biomedicine University of Basel Basel Switzerland
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland; Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals & Faculty of Medicine University of Geneva Geneva Switzerland
| | - Diem‐Lan Vu
- Division of Infectious Diseases Geneva University Hospitals Geneva Switzerland
| | - Katharina Baur
- Regional Blood Transfusion Service, Swiss Red Cross, Basel Basel Switzerland
| | - Nadine Massaro
- Regional Blood Transfusion Service, Swiss Red Cross, Basel Basel Switzerland
| | - Michael Paul Busch
- Department of Laboratory Medicine University of California, San Francisco San Francisco CA USA
- Vitalant Research Institute San Francisco CA
| | - Graham Simmons
- Department of Laboratory Medicine University of California, San Francisco San Francisco CA USA
- Vitalant Research Institute San Francisco CA
| | - Mars Stone
- Department of Laboratory Medicine University of California, San Francisco San Francisco CA USA
- Vitalant Research Institute San Francisco CA
| | - Philip L. Felgner
- Department of Physiology and Biophysics, Vaccine Research and Development Laboratory University of California, Irvine Irvine CA USA
| | - Rafael R. de Assis
- Department of Physiology and Biophysics, Vaccine Research and Development Laboratory University of California, Irvine Irvine CA USA
| | - Saahir Khan
- Division of Infectious Diseases, Department of Medicine, Keck School of Medicine University of Southern California Los Angeles CA USA
| | | | | | | | | | | | - Andreas S. Buser
- Department of Clinical Research University Hospital Basel Basel Switzerland
- Regional Blood Transfusion Service, Swiss Red Cross, Basel Basel Switzerland
| | | |
Collapse
|
50
|
Chen C, Saville JW, Marti MM, Schäfer A, Cheng MH, Mannar D, Zhu X, Berezuk AM, Banerjee A, Sobolewski MD, Kim A, Treat BR, Da Silva Castanha PM, Enick N, McCormick KD, Liu X, Adams C, Hines MG, Sun Z, Chen W, Jacobs JL, Barratt-Boyes SM, Mellors JW, Baric RS, Bahar I, Dimitrov DS, Subramaniam S, Martinez DR, Li W. Potent and broad neutralization of SARS-CoV-2 variants of concern (VOCs) including omicron sub-lineages BA.1 and BA.2 by biparatopic human VH domains. iScience 2022; 25:104798. [PMID: 35875685 PMCID: PMC9296231 DOI: 10.1016/j.isci.2022.104798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/08/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics with high neutralization breadth. Here, we characterized a human VH domain, F6, which we generated by sequentially panning large phage-displayed VH libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized VH domain, resulted in a construct (F6-ab8-Fc) that broadly and potently neutralized VOCs including Omicron. Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 variants including Omicron and highlight a vulnerable epitope within the spike that may be exploited to achieve broad protection against circulating variants.
Collapse
Affiliation(s)
- Chuan Chen
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - James W. Saville
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michelle M. Marti
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dhiraj Mannar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xing Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alison M. Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Anupam Banerjee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michele D. Sobolewski
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrew Kim
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Benjamin R. Treat
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Nathan Enick
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kevin D. McCormick
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xianglei Liu
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Cynthia Adams
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Margaret Grace Hines
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Zehua Sun
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | | | - Jana L. Jacobs
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - John W. Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Abound Bio, Pittsburgh, PA, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dimiter S. Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
- Abound Bio, Pittsburgh, PA, USA
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Gandeeva Therapeutics, Inc., Vancouver, BC, Canada
| | - David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| |
Collapse
|