1
|
Sun M, Gao J, Zhao Y, Ding P, Zhang W, Cai J. Enhancing lipase enzymatic performance with dynamic covalent dextran-based hydrogels. Int J Biol Macromol 2025; 305:141254. [PMID: 39978516 DOI: 10.1016/j.ijbiomac.2025.141254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/28/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
How to maintain high catalytic activity and stability in the process of biocatalysis is crucial, inspiring strategies to construct an appropriate immobilized hydrogel system. Inspired by biologically relevant interactions of natural polymers, we crafted a polysaccharide-based dynamic hydrogel through imine bonds among lipase, oxidized dextrans (ODex) and carboxymethylchitosan. The successful preparation of ODex and the in situ immobilization of lipase through a Schiff base reaction were verified by FT-IR, 1H NMR, XRD, and the hydroxylamine hydrochloride method. The resultant gel endows the lipase with improved storage stability, thermal stability, reusability, and a higher degree of triacylglycerol hydrolysis. Furthermore, the immobilized lipase in the gel exhibits superior activity under harsh conditions, including high temperatures, strong bases, and exposure to organic solvents. The polysaccharide-based dynamic hydrogel represents a promising platform for enzyme immobilization, offering versatile applications in industrial biocatalysis.
Collapse
Affiliation(s)
- Meng Sun
- College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Jie Gao
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yingying Zhao
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Peng Ding
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Wanying Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Junwen Cai
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
2
|
Kamal S, Roheen T, Rehman K, Bibi I, Akash MSH. Development of a robust enzyme cascade system: co-immobilization of laccase and versatile peroxidase on polyacrylamide hydrogel for enhanced BPA degradation. Biodegradation 2025; 36:34. [PMID: 40259074 DOI: 10.1007/s10532-025-10129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Abstract
Biodegradation using a synergically integrated system of laccase (E.C. 1.10.3.2) and versatile peroxidase (EC 1.11.1.16) co-immobilized on the polyacrylamide (PAM) hydrogel presents a promising solution for removing endocrine disrupting chemicals (EDCs) like bisphenol A (BPA) from wastewater. In this study, we developed a tailored biocatalyst consisting of a fungal laccase from Pleurotus ostreatus IBL-02 and versatile peroxidase, enzyme cascade co-immobilized covalently on a 7% (w/v) PAM hydrogel, offering high catalytic potential across various pH and temperature ranges. The PAM-VP/Lac structure was analyzed using scanning electron microscopy and Fourier-transform infrared spectrophotometry, revealing improved characteristics compared to free counterparts (FLac and FVP). The optimal pH for FLac, FVP, Lac/VP, and PAM-VP/Lac was 4, 5, 6, and 7, respectively. PAM-VP/Lac exhibited optimal activity at 50-60 °C, higher than FLac, FVP, and Lac-VP. PAM-VP/Lac showed superior operational stability, retaining 99.2% of its activity after eight cycles, with an immobilization efficiency of 78.62 ± 1.15% and activity recovery of 33.71 ± 0.2%. It also demonstrated enhanced thermal stability, with a two-fold increase in half-life at 50-70 °C. Thermodynamic analysis showed significant improvements in stability parameters for PAM-VP/Lac. This system achieved complete BPA degradation within two and a half hr, highlighting its potential for industrial-scale environmental remediation.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Taleeha Roheen
- Department of Biochemistry, University of Sargodha, Sargodha, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Ismat Bibi
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | |
Collapse
|
3
|
Patti S, Magrini Alunno I, Pedroni S, Riva S, Ferrandi EE, Monti D. Advances and Challenges in the Development of Immobilized Enzymes for Batch and Flow Biocatalyzed Processes. CHEMSUSCHEM 2025; 18:e202402007. [PMID: 39585729 PMCID: PMC11997919 DOI: 10.1002/cssc.202402007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/26/2024]
Abstract
The development of immobilized enzymes both for batch and continuous flow biocatalytic processes has gained significant traction in recent years, driven by the need for cost-effective and sustainable production methods in the fine chemicals and pharmaceutical industries. Enzyme immobilization not only enables the recycling of biocatalysts but also streamlines downstream processing, significantly reducing the cost and environmental impact of biotransformations. This review explores recent advancements in enzyme immobilization techniques, covering both carrier-free methods, entrapment strategies and support-based approaches. At this regard, the selection of suitable materials for enzyme immobilization is examined, highlighting the advantages and challenges associated with inorganic, natural, and synthetic organic carriers. Novel opportunities coming from innovative binding strategies, such as genetic fusion technologies, for the preparation of heterogeneous biocatalysts with enhanced activity and stability will be discussed as well. This review underscores the need for ongoing research to address current limitations and optimize immobilization strategies for industrial applications.
Collapse
Affiliation(s)
- Stefania Patti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
- Department of Pharmaceutical SciencesUniversity ofMilanVia Mangiagalli 2520133MilanoItaly
| | - Ilaria Magrini Alunno
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
| | - Sara Pedroni
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
| | - Erica Elisa Ferrandi
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
| |
Collapse
|
4
|
Jang WY, Kim YJ, Chang JH. Comparative Study of Enzymatic Lipolysis Using Nanofructosome-Coated CalB Lipase Encapsulated in Silica and Immobilized on Silica-Coated Magnetic Nanoparticles. ACS OMEGA 2025; 10:13319-13326. [PMID: 40224481 PMCID: PMC11983168 DOI: 10.1021/acsomega.4c11216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/14/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
This study evaluates the enzymatic lipolysis performance of nanofructosome-coated CalB lipase (CalB@NF) encapsulated in silica and immobilized on silica-coated magnetic nanoparticles (Si-MNP) for converting natural olive oil to oleic acid. The nanofructosome coating, composed of levan, a nanosized fructan polymer, was applied to enhance the heat and acid resistance of the CalB enzyme. To further improve functionality, CalB@NF was encapsulated in silica (CalB@NF@SiO2) or immobilized on Si-MNP using a chloropropylsilane linker. The silica-encapsulated CalB@NF (CalB@NF@SiO2) was synthesized via a sol-gel process, resulting in an average particle size of 304 nm, while the immobilized CalB@NF on Si-MNP exhibited a smaller average particle size of 58 nm. Quantitative determination of CalB in both formulations was conducted using the Bradford assay, yielding concentrations of 19.5 μg/mL for CalB@NF@SiO2 and 44.9 μg/mL for CalB@NF@Si-MNP. Enzymatic lipolysis was evaluated by measuring the production of oleic acid from natural olive oil. CalB@NF@Si-MNP achieved complete lipolysis within 3 h, whereas CalB@NF@SiO2 required 24 h to reach the same result. The lipolysis rates were 0.92 mmol/h for CalB@NF@Si-MNP and 0.21 mmol/h for CalB@NF@SiO2, indicating that CalB@NF@Si-MNP was 4.5 times faster. Regarding reusability, CalB@NF@SiO2 retained 20% more activity compared to CalB@NF@Si-MNP. While the reusability of CalB@NF@Si-MNP decreased to 76% after the first cycle, CalB@NF@SiO2 maintained nearly 100% reusability across multiple cycles. These results highlight the complementary strengths of the two formulations: CalB@NF@SiO2 offers controlled lipolysis rates, high stability, and excellent reusability, whereas CalB@NF@Si-MNP excels in rapid lipolysis. Both silica encapsulation and silica-coated magnetic nanoparticles demonstrate substantial potential for optimizing enzyme activity, stability, and reusability in diverse applications.
Collapse
Affiliation(s)
- Woo Young Jang
- Korea
Institute of Ceramic Engineering and Technology, Jinju 52851, Republic of Korea
- Department
of Materials Science & Engineering, Yonsei University, Seoul 03722, Republic
of Korea
| | - Yu Jeong Kim
- Korea
Institute of Ceramic Engineering and Technology, Jinju 52851, Republic of Korea
| | - Jeong Ho Chang
- Korea
Institute of Ceramic Engineering and Technology, Jinju 52851, Republic of Korea
| |
Collapse
|
5
|
Haranal S, Ranganath VA, Maity I. Urease-coupled systems and materials: design strategies, scope and applications. J Mater Chem B 2025; 13:4252-4278. [PMID: 40066476 DOI: 10.1039/d4tb02853h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Synthetic systems have co-opted urease, a crucial enzyme serving many biological functions, to recapitulate complex biological features. Therefore, the urease-urea feedback reaction network (FCRN) is reciprocated with soft materials to induce various animate-like features, including self-regulation, error correction, and decision-making capabilities, that are processed through a variety of non-linear functions. Although free-urease-based homogeneous systems are capable of adhering to many non-linear characteristics, they lack the ability to showcase the diffusion-controlled spatiotemporal phenomena. Therefore, it demands urease immobilization, whereby a compartmentalized reaction hub can facilitate the interplay of FCRN with reaction diffusion to regulate the system's operation, allowing various non-linear responses and spatiotemporal self-organization. Indeed, the beneficial framework of urease-based commercial systems in modern technology necessitates the accessibility, reusability, and long-term stability of urease. Consequently, several techniques for urease immobilization merit attention. This review highlights the diverse covalent and non-covalent approaches for urease immobilization on different substrates and illustrates several chemical reactions and non-covalent interactions as tools for creating targeted systems and soft materials to realize many on-demand functions. We also emphasize how the advancement of systems chemistry has propelled research in soft materials to comprehend system-level applications by demonstrating several emerging non-linear functions with potent applications in many directions, including sensing, soft robotics, regulation of material properties and many more.
Collapse
Affiliation(s)
- Shashikumar Haranal
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore-562112, Karnataka, India.
| | - Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore-562112, Karnataka, India.
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore-562112, Karnataka, India.
| |
Collapse
|
6
|
Cao H, Jiang J, Chen L, Gao L. Mimicomes: Mimicking Multienzyme System by Artificial Design. Adv Healthc Mater 2025; 14:e2402372. [PMID: 39380346 DOI: 10.1002/adhm.202402372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Enzymes are widely distributed in organelles of cells, which are capable of carrying out specific catalytic reactions. In general, several enzymes collaborate to facilitate complex reactions and engage in vital biochemical processes within cells, which are also called cascade systems. The cascade systems are highly efficient, and their dysfunction is associated with a multitude of endogenous diseases. The advent of nanotechnology makes it possible to mimic these cascade systems in nature and realize partial functions of natural biological processes both in vitro and in vivo. To emphasize the significance of artificial cascade systems, mimicomes is first proposed, a new concept that refers to the artificial cascade catalytic systems. Typically, mimicomes are able to mimic specific natural biochemical catalytic processes or facilitate the overall catalytic efficiency of cascade systems. Subsequently, the evolution and development of different types of mimicomes in recent decades are elucidated exhaustedly, from the natural enzyme-based mimicomes (immobilized enzyme and vesicle mimicomes) to the nanozyme-based mimicomes and enzyme-nanozyme hybrid mimicomes. In conclusion, the remaining challenges in the design of multifunctional mimicomes and their potential applications are summarized, offering insights into their future prospects.
Collapse
Affiliation(s)
- Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
7
|
Sood A, Das SS, Singhmar R, Sahoo S, Wahajuddin M, Naseem Z, Choi S, Kumar A, Han SS. An overview of additive manufacturing strategies of enzyme-immobilized nanomaterials with application incatalysis and biomedicine. Int J Biol Macromol 2025; 292:139174. [PMID: 39732251 DOI: 10.1016/j.ijbiomac.2024.139174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Meticulous and bespoke fabrication of structural materials with simple yet innovative outlines along with on-demand availability is the imperative aspiration for numerous fields. The alliance between nanotechnology and enzymes has led to the establishment of an inimitable and proficient class of materials. With the advancement in the field of additive manufacturing, the fabrication of some complex biological architects is achievable with similitude to the instinctive microenvironment of the biological tissue. Rendering these enzymes-linked nanomaterials through 3D printing for biosensing, catalytic, and biomedical applications is challenging due to the need for a precise controlled, regulated system with scaleup capability for commercialization. The current review highlights the importance of nanomaterials as a persuasive matrix for enzyme immobilization along with the key parameters that regulate the rate of immobilization and the activity of the concerned enzyme. Precise attention has been devoted to the different strategies for immobilizing enzymes in the nanomaterial's matrix. The present review offers a comprehensive discussion on the utility of 3D printing technology for enzyme-immobilized nanomaterials in biosensing, catalysis, and biomedical applications. The employment of 3D printing grants new developments and avenues in the vast field of enzyme- immobilized nanomaterials.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Sabya Sachi Das
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Ritu Singhmar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP Bradford, UK
| | - Zaiba Naseem
- Centre for Pharmaceutical Engineering Science, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP Bradford, UK
| | - Soonmo Choi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Anuj Kumar
- Renewable and Sustainable Energy Research Center, Technology Innovation Institute (TII), Masdar City, P.O. Box 9639, Abu Dhabi, United Arab Emirates; School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| |
Collapse
|
8
|
Ölçücü G, Jaeger K, Krauss U. Magnetizing Biotech-Advances in (In Vivo) Magnetic Enzyme Immobilization. Eng Life Sci 2025; 25:e70000. [PMID: 40083857 PMCID: PMC11904115 DOI: 10.1002/elsc.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/14/2024] [Accepted: 01/05/2025] [Indexed: 03/16/2025] Open
Abstract
Industrial biocatalysis, a multibillion dollar industry, relies on the selectivity and efficacy of enzymes for efficient chemical transformations. However, enzymes, evolutionary adapted to mild biological conditions, often struggle in industrial processes that require harsh reaction conditions, resulting in reduced stability and activity. Enzyme immobilization, which addresses challenges such as enzyme reuse and stability, has therefore become a vital strategy for improving enzyme use in industrial applications. Traditional immobilization techniques rely on the confinement or display of enzymes within/on organic or inorganic supports, while recent advances in synthetic biology have led to the development of solely biological in vivo immobilization methods that streamline enzyme production and immobilization. These methods offer added benefits in terms of sustainability and cost efficiency. In addition, the development and use of multifunctional materials, such as magnetic (nano)materials for enzyme immobilization, has enabled improved separation and purification processes. The combination of both "worlds," opens up new avenues in both (industrial) biocatalysis, fundamental science, and biomedicine. Therefore, in this review, we provide an overview of established and recently emerging methods for the generation of magnetic protein immobilizates, placing a special focus on in vivo immobilization solutions.
Collapse
Affiliation(s)
- Gizem Ölçücü
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Karl‐Erich Jaeger
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Ulrich Krauss
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| |
Collapse
|
9
|
Robescu MS, Bavaro T. A Comprehensive Guide to Enzyme Immobilization: All You Need to Know. Molecules 2025; 30:939. [PMID: 40005249 PMCID: PMC11857967 DOI: 10.3390/molecules30040939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Enzyme immobilization plays a critical role in enhancing the efficiency and sustainability of biocatalysis, addressing key challenges such as limited enzyme stability, short shelf life, and difficulties in recovery and recycling, which are pivotal for green chemistry and industrial applications. Classical approaches, including adsorption, entrapment, encapsulation, and covalent bonding, as well as advanced site-specific methods that integrate enzyme engineering and bio-orthogonal chemistry, were discussed. These techniques enable precise control over enzyme orientation and interaction with carriers, optimizing catalytic activity and reusability. Key findings highlight the impact of immobilization on improving enzyme performance under various operational conditions and its role in reducing process costs through enhanced stability and recyclability. The review presents numerous practical applications of immobilized enzymes, including their use in the pharmaceutical industry for drug synthesis, in the food sector for dairy processing, and in environmental biotechnology for wastewater treatment and dye degradation. Despite the significant advantages, challenges such as activity loss due to conformational changes and mass transfer limitations remain, necessitating tailored immobilization protocols for specific applications. The integration of immobilization with modern biotechnological advancements, such as site-directed mutagenesis and recombinant DNA technology, offers a promising pathway for developing robust, efficient, and sustainable biocatalytic systems. This comprehensive guide aims to support researchers and industries in selecting and optimizing immobilization techniques for diverse applications in pharmaceuticals, food processing, and fine chemicals.
Collapse
Affiliation(s)
- Marina Simona Robescu
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| |
Collapse
|
10
|
Ni X, Feng T, Zhang Y, Lin Z, Kong F, Zhang X, Lu Q, Zhao Y, Zou B. Application Progress of Immobilized Enzymes in the Catalytic Synthesis of 1,3-Dioleoyl-2-palmitoyltriglyceride Structured Lipids. Foods 2025; 14:475. [PMID: 39942068 PMCID: PMC11816798 DOI: 10.3390/foods14030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
In recent years, the preparation of OPO (1,3-dioleoyl-2-palmitoyltriglyceride)-structured lipids through immobilized lipase catalysis has emerged as a research hotspot in the fields of food and biomedical sciences. OPO structured lipids, renowned for their unique molecular structure and biological functions, find wide applications in infant formula milk powder, functional foods, and nutritional supplements. Lipase-catalyzed reactions, known for their efficiency, high selectivity, and mild conditions, are ideal for the synthesis of OPO structured lipids. Immobilized lipases not only address the issues of poor stability and difficult recovery of free enzymes but also enhance catalytic efficiency and reaction controllability. This review summarizes the latest advancements in the synthesis of OPO structured lipids using immobilized lipases, focusing on immobilization methods, enhancements in enzyme activity and stability, the optimization of reaction conditions, and improvements in product purity and yield. Furthermore, it delves into the reaction mechanisms of enzymatic synthesis of OPO structured lipids, process optimization strategies, and the challenges and broad prospects faced during industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.N.); (T.F.); (Y.Z.); (Z.L.); (F.K.); (X.Z.); (Q.L.); (Y.Z.)
| |
Collapse
|
11
|
Pinho V, Neves-Petersen MT, Machado R, Castro Gomes A. Light Assisted Covalent Immobilization of Proteins for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406561. [PMID: 39887935 DOI: 10.1002/smll.202406561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/24/2025] [Indexed: 02/01/2025]
Abstract
The covalent immobilization of proteins attracts considerable interest in the biomedical field due to its potential applications in biosensors, recombinant protein purification, and the development of personalized therapeutic carriers. In response to the demand for more cost-effective, time-efficient, and simpler protocols, photo-immobilization emerges as a technique that circumvents the limitations of conventional methods. This approach offers enhanced precision at the nanoscale level and facilitates device reusability, thereby aligning with current sustainability concerns. Photo-immobilization is versatile, as it can be applied to both 2D and 3D substrates. While some methods involve complex protocols using genetically engineered photosensitive linkers, more straightforward techniques rely on amino acid bonds, such as disulfide bonds, for covalent protein bonding. Photo-immobilization can be achieved with both ultraviolet (UV) and visible light. This systematic review examines literature from Scopus, PubMed, and Web of Science, offering insights into relevant studies and considerations for covalent protein immobilization, and presents photochemical approaches applicable to major protein types.
Collapse
Affiliation(s)
- Vanessa Pinho
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | | | - Raúl Machado
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
12
|
Singh B, Jana AK, Jana MM. Bioconversion of mustard oil cake for production of lipase, optimization and direct immobilization from solid-state fermentation extract. Prep Biochem Biotechnol 2025:1-14. [PMID: 39873630 DOI: 10.1080/10826068.2025.2453729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Fungal lipases are the leading industrial biocatalyst due to their broad applications, but high cost limits their commercial usage. The low-cost agri-residues substrates can reduce the cost of lipase production. However, the compatibility of agri-residue with fungal species, recovery process of lipase and stability of the enzyme are crucial steps. The aim of the present work was optimization of lipase production from a suitable combination of fungal culture with a locally available vegetable oilseed cake (mustard/groundnut/almond/cottonseed) in solid-state fermentation process and its direct immobilization. The enzyme produced using selected combination of Rhizopus oryzae and mustard oilseed cake was optimized by Plackett-Burman design, one-factor-at-a-time and central composite design (CCD). The highest enzyme activity of 25.08 U/gds was obtained by CCD at urea 2.11% w/w, inoculum size 1.18% v/w, and moisture content 69.99% w/w. The crude enzyme from the extract was immobilized on functionalized magnetic nanoparticles with the results of protein loading 68.88 ± 3.54 µg/mg of MNPs and activity recovery of 60.33 ± 3.03%. This study can be helpful to explore the suitability of locally available agri-residue for production of lipase and utilization of enzyme in different industrial applications.
Collapse
Affiliation(s)
- Bhim Singh
- Department of Biotechnology, Dr. B R Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab, India
| | - Asim Kumar Jana
- Department of Biotechnology, Dr. B R Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab, India
| | - Mithu Maiti Jana
- Department of Physical Science, Sant Baba Bagh Singh University, Jalandhar, Punjab, India
| |
Collapse
|
13
|
Hsieh CY, Huang YH, Yu YT, Chang KW, Chen YJ, Hsieh LS. Enhanced Stability of Lactobacillus paracasei Aspartate Ammonia-Lyase via Electrospinning for Enzyme Immobilization. Polymers (Basel) 2025; 17:270. [PMID: 39940473 PMCID: PMC11820169 DOI: 10.3390/polym17030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigates the immobilization of Lactobacillus paracasei AAL (LpAAL) protein onto polyvinyl alcohol/nylon 6/chitosan nanofiber membranes using dextran polyaldehyde as a biodegradable cross-linker. Immobilization enhanced the enzyme's stability, shifting its optimal reaction conditions from 40 °C to 45 °C and pH from 8.0 to 8.5. While immobilization slightly reduced its catalytic efficiency, it significantly improved enzyme stability and reusability. The immobilized enzyme retained 85% of its initial activity after 7 days of storage at room temperature, compared to 55% for the free enzyme. Reusability tests demonstrated that immobilized LpAAL protein maintained approximately 50% of its activity after six consecutive reaction cycles, highlighting its robustness over repeated use. These results underscore the advantages of nanofiber-based immobilization in enhancing enzyme stability and utility for industrial applications, offering a practical approach to overcoming the limitations associated with free enzyme systems.
Collapse
Affiliation(s)
- Chun-Yen Hsieh
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei City 111, Taiwan;
| | - Yi-Hao Huang
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung 407, Taiwan; (Y.-H.H.); (Y.-T.Y.); (K.-W.C.)
| | - Yu-Ting Yu
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung 407, Taiwan; (Y.-H.H.); (Y.-T.Y.); (K.-W.C.)
| | - Kai-Wei Chang
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung 407, Taiwan; (Y.-H.H.); (Y.-T.Y.); (K.-W.C.)
| | - Yung-Ju Chen
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung 407, Taiwan; (Y.-H.H.); (Y.-T.Y.); (K.-W.C.)
| | - Lu-Sheng Hsieh
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung 407, Taiwan; (Y.-H.H.); (Y.-T.Y.); (K.-W.C.)
| |
Collapse
|
14
|
Khan MU, Farid A, Liu S, Zhen L, Alahmad K, Chen Z, Kong L. Innovative approaches for enzyme immobilization in milk processing: advancements and industrial applications. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 39841104 DOI: 10.1080/10408398.2025.2450528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The dairy industry is progressively integrating advanced enzyme technologies to optimize processing efficiency and elevate product quality. Among these technologies, enzyme immobilization has emerged as a pivotal innovation, offering considerable benefits in terms of enzyme reusability, stability, and overall process sustainability. This review paper explores the latest improvements in enzyme immobilization techniques and their industrial applications within milk processing. It examines various immobilization strategies, including adsorption, affinity binding, ionic and covalent binding, entrapment, encapsulation, and cross-linking, highlighting their effectiveness in improving the performance of key enzymes such as lactases, lipases, proteases and transglutaminases. The paper also delves into the economic and ecological benefits of enzyme immobilization, emphasizing its role in reducing production costs and environmental impact while maintaining or enhancing the quality of dairy products. By analyzing current trends and technological developments, this review provides a comprehensive overview of how innovative enzyme immobilization approaches are transforming milk processing. It concludes with a discussion on future research directions and potential industrial applications, underscoring the importance of continued innovation in this field to meet the increasing demands of the global dairy market.
Collapse
Affiliation(s)
- Mati Ullah Khan
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P.R. China
| | - Anum Farid
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P.R. China
| | - Shuang Liu
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P.R. China
| | - Limin Zhen
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Hohhot, P.R. China
| | - Kamal Alahmad
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P.R. China
| | - Zhiwei Chen
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P.R. China
- Shandong Provincial Innovation Center for Dairy Technology, Zibo, P.R. China
- Shandong Engineering Research Center for Food Rapid Analysis Technology, Zibo, P.R. China
| | - Ling Kong
- Shandong Provincial Innovation Center for Dairy Technology, Zibo, P.R. China
- Shandong Engineering Research Center for Food Rapid Analysis Technology, Zibo, P.R. China
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, P.R. China
| |
Collapse
|
15
|
do Nascimento NN, Cejudo-Sanches J, Tardioli PW, Guisan JM, Vieira AMS. Optimizing Thermal Stability: Evaluating the Impact of Heterofunctional Hydrophobic Supports on Immobilized Flaxseed Lipase. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05175-z. [PMID: 39821502 DOI: 10.1007/s12010-024-05175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
Lipases have catalytic capacity in various processes such as hydrolysis. Those derived from plant sources, such as linseed, offer an economical alternative. The immobilization process facilitates the recovery and reuse of lipase, providing advantages such as resistance to high temperatures and difficulties in recovering and reusing free lipases, which makes product separation difficult. This study presents the immobilization of lipases extracted from flax seeds on octylfunctional hydrophobic supports. Additionally, the thermal stability of the derived products was evaluated in comparison with freely soluble lipase. The lipase exhibited a strong affinity for the evaluated heterofunctional hydrophobic supports, with DVS-activated octylagarose emerging as the most efficient method for immobilization, thus increasing catalytic activity upon resuspension. Furthermore, the octylagarose derivative demonstrated a notable increase in thermal stability. The main results of the study include that the soluble enzyme showed greater activity after 24 h, regardless of the temperature evaluated. The benzamide extract showed greater thermal stability, and all supports evaluated showed greater activity than the soluble enzyme after immobilization. Notably, lipase immobilized on octyl glyoxyl agarose showed the highest activity, demonstrated stability for 840 h at 60 °C, and had a half-life of 1242 h. Furthermore, the lipase immobilized in octyl glyoxyl agarose showed a stabilization factor approximately nine times greater than the free enzyme. These results suggest that immobilization, probably achieved through interfacial activation and multipoint covalent bonds, prevented the release of the enzyme into the medium with increasing temperature. This study thus highlights the significant potential of immobilizing flaxseed-derived lipase.
Collapse
Affiliation(s)
- Nicole Novelli do Nascimento
- Centre of Agrarian Sciences, Postgraduate Program in Food Science, State University of Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | | | - Paulo Waldir Tardioli
- Department of Chemical Engineering, Postgraduate Program in Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
| | - José Manuel Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, (ICP, CSIC), Madrid, Spain
| | | |
Collapse
|
16
|
Miwa T, Yumoto A, Tada S, Kim SW, Minagawa N, Matsuda T, Ohtake K, Shimizu Y, Sakamoto K, Aigaki T, Ito Y, Uzawa T. In Vitro Selection of Collagen-Binding Vascular Endothelial Growth Factor Containing Genetically Encoded Mussel-Inspired Adhesive Amino Acids. Chemistry 2025:e202404178. [PMID: 39789869 DOI: 10.1002/chem.202404178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Protein immobilization technology is important in medical and industrial applications. We previously reported all-in-one in vitro selection, wherein a collagen-binding vascular endothelial growth factor (CB-VEGF) was identified from a fusion library of random and VEGF sequences. However, its interaction chemistry is mainly limited to the interaction established by the 20 canonical amino acids. Herein, we incorporated an adhesive non-natural amino acid found in marine mussels, L-3,4-dihydroxyphenylalanine (DOPA), into the library for all-in-one in vitro selection. After selection, we identified DOPA-containing CB-VEGF. CB-VEGF binds to collagen with an apparent dissociation constant of 2 nM; naïve VEGF does not bind to collagen. The collagen-binding peptide domain of CB-VEGF (CB-peptide) exhibited stronger binding to collagen than a mutant peptide (substitution from DOPA to tyrosine), indicating the importance of DOPA to collagen binding. The collagen-binding affinity of CB-VEGF is 10-fold higher than that of CB-peptide, suggesting that the collagen-binding ability of CB-VEGF is not due to the additive function of CB-peptide to VEGF, but is synergistic. Furthermore, increased cell growth was observed on CB-VEGF-treated collagen surfaces, not VEGF-treated collagen surfaces. Thus, integrating all-in-one in vitro selection and DOPA incorporation shows promise in generating adhesive proteins on solid supports.
Collapse
Affiliation(s)
- Takuya Miwa
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Graduate School of Life Science, Tokyo Metropolitan University, Minami Osawa, Hachioji, Japan
- Present address: Department of Clinical Pharmacology, Graduate School of Medicine, Showa University, Shinagawa, Tokyo, 142-8555, Japan
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Chuo, Tokyo, 103-8324, Japan
| | - Akiko Yumoto
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Seiichi Tada
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shin-Woong Kim
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Noriko Minagawa
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takayoshi Matsuda
- Expanded Genetic Code System Research Team, RIKEN Systems and Structural Biology Center, Yokohama, Japan
| | - Kazumasa Ohtake
- Expanded Genetic Code System Research Team, RIKEN Systems and Structural Biology Center, Yokohama, Japan
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Present address: Department of Electrical Engineering and Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, 565-0874, Japan
| | - Kensaku Sakamoto
- Expanded Genetic Code System Research Team, RIKEN Systems and Structural Biology Center, Yokohama, Japan
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Toshiro Aigaki
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Graduate School of Life Science, Tokyo Metropolitan University, Minami Osawa, Hachioji, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Graduate School of Life Science, Tokyo Metropolitan University, Minami Osawa, Hachioji, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takanori Uzawa
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
17
|
Mohammed Ameen SS, Bedair A, Hamed M, R Mansour F, Omer KM. Recent Advances in Metal-Organic Frameworks as Oxidase Mimics: A Comprehensive Review on Rational Design and Modification for Enhanced Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:110-129. [PMID: 39772422 DOI: 10.1021/acsami.4c17397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Metal-organic frameworks (MOFs) have emerged as innovative nanozyme mimics, particularly in the area of oxidase catalysis, outperforming traditional MOF-based peroxidase and other nanomaterial-based oxidase systems. This review explores the various advantages that MOFs offer in terms of catalytic activity, low-cost, stability, and structural versatility. With a primary focus on their application in biochemical sensing, MOF-based oxidases have demonstrated remarkable utility, prompting a thorough exploration of their design and modification strategies. Moreover, the review aims to provide a comprehensive analysis of the strategies employed in the rational design and modification of MOF structures to optimize key parameters such as sensitivity, selectivity, and stability in the context of biochemical sensors. Through an exhaustive examination of recent research and developments, this article seeks to offer insights into the nuanced interplay between MOF structures and their catalytic performance, shedding light on the mechanisms that underpin their effectiveness as nanozyme mimics. Finally, this review addresses challenges and opportunities associated with MOF-based oxidase mimics, aiming to drive further advancements in MOF structure design and the development of highly effective biochemical sensors for diverse applications.
Collapse
Affiliation(s)
- Sameera Sh Mohammed Ameen
- Department of Chemistry, College of Science, University of Zakho, 46002 Zakho, Kurdistan Region, Iraq
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt
| | - Mahmoud Hamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo 44971, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan St., 46002 Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
18
|
Pannerchelvan S, Muhamad FN, Wasoh H, Mohamed MS, Wong FWF, Mohamad R, Halim M. Improvement of ɣ-Aminobutyric Acid Production and Cell Viability of Lactiplantibacillus plantarum B7 via Whole-Cell Immobilisation in Repeated Batch Fermentation System. Probiotics Antimicrob Proteins 2024; 16:1907-1924. [PMID: 38085437 DOI: 10.1007/s12602-023-10200-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 11/19/2024]
Abstract
Whole-cell immobilisation technology involving ℽ-aminobutyric acid GABA biosynthesis using lactic acid bacteria (LAB) has been extensively studied owing to its numerous benefits over free-living bacteria, including enhanced productivity, improved cell viability, ability to prevent cell lysis and protect cells against bacteriophages and other stressful conditions. Therefore, a novel LAB biocatalyst was developed using various fruit and fruit waste, immobilising a potential probiotic strain, Lactiplantibacillus plantarum B7, via an adsorption method to improve GABA and cell viability. Apple and watermelon rind have been known to be the ideal natural supports for L. plantarum B7 owing to higher GABA and lactic acid production and improved cell viability among the other natural supports tested and selected to be used in repeated batch fermentation (RBF) to improve GABA production and cell viability. In general, immobilisation of L. plantarum B7 on natural support has better GABA and lactic acid production with improved cell viability via RBF compared to free cells. Watermelon rind-supported cells and apple-supported cells could produce nine and eight successful GABA cycles, respectively, within RBF, whereas free cells could only produce up to four cycles. When using watermelon rind-supported cells and apple-supported cells in RBF, the GABA titer may be raised by up to 6.7 (218.480 ± 0.280 g/L) and 6 (195.439 ± 0.042 g/L) times, respectively, in comparison to GABA synthesis by free cells in single batch fermentation (32.65 ± 0.029 g/L). Additionally, natural support immobilised L. plantarum B7 could retain half of its cell viability even after the 12th cycle of RBF, while no cell was observed in control.
Collapse
Affiliation(s)
- Sangkaran Pannerchelvan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Faris Nulhaqim Muhamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Helmi Wasoh
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Mohd Shamzi Mohamed
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Fadzlie Wong Faizal Wong
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Murni Halim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| |
Collapse
|
19
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Recent insight into the advances and prospects of microbial lipases and their potential applications in industry. Int Microbiol 2024; 27:1597-1631. [PMID: 38489100 DOI: 10.1007/s10123-024-00498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Enzymes play a crucial role in various industrial sectors. These biocatalysts not only ensure sustainability and safety but also enhance process efficiency through their unique specificity. Lipases possess versatility as biocatalysts and find utilization in diverse bioconversion reactions. Presently, microbial lipases are gaining significant focus owing to the rapid progress in enzyme technology and their widespread implementation in multiple industrial procedures. This updated review presents new knowledge about various origins of microbial lipases, such as fungi, bacteria, and yeast. It highlights both the traditional and modern purification methods, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, the aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF), moreover, delves into the diverse applications of microbial lipases across several industries, such as food, vitamin esters, textile, detergent, biodiesel, and bioremediation. Furthermore, the present research unveils the obstacles encountered in employing lipase, the patterns observed in lipase engineering, and the application of CRISPR/Cas genome editing technology for altering the genes responsible for lipase production. Additionally, the immobilization of microorganisms' lipases onto various carriers also contributes to enhancing the effectiveness and efficiencies of lipases in terms of their catalytic activities. This is achieved by boosting their resilience to heat and ionic conditions (such as inorganic solvents, high-level pH, and temperature). The process also facilitates the ease of recycling them and enables a more concentrated deposition of the enzyme onto the supporting material. Consequently, these characteristics have demonstrated their suitability for application as biocatalysts in diverse industries.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
20
|
Bello MN, Sabri S, Mohd Yahaya N, Mohd Shariff F, Mohamad Ali MS. Catalytically active inclusion bodies as a potential tool for biotechnology. Biotechnol Appl Biochem 2024; 71:1235-1242. [PMID: 38863240 DOI: 10.1002/bab.2624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
The initial assumption that viewed inclusion bodies as a hindrance to the efficient production of protein is no longer held due to the emergence of catalytically active inclusion bodies (CatIBs). Recent studies revealed their potential to be used in free form or immobilized as biocatalysts. The curiosity to acquire suitable catalysts has remained the measure of concern for researchers and industrialists. Numerous processes and production in various sectors of food industries, petroleum, pharmaceutical, cosmetics, and many others are still searching for a robust catalyst with outstanding features such as recyclability, resistance to pH, as well as temperature. CatIBs are forms of inclusion bodies that possess catalytic activity, which can improve catalysis efficiency, stability, and recyclability. One of the advantages of CatIBs is their potential to be used as catalysts for numerous bioprocesses when generated by an enzyme. These aggregates can efficiently be used as a replacement for traditional enzyme immobilization. This review tends to focus on the possibility of its application in various processes. The novelty of this review is that it considered the production of CatIBs both from artificial and natural perspectives, as well as how to improve it. Inclusion bodies' immobilization may provide an efficient alternative in the area of biocatalysis, and hence it will improve industrial sectors and substantially provide a means of achieving excellent performance in the near future.
Collapse
Affiliation(s)
- Muhammad Nura Bello
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Biochemistry, Faculty of Science, Sokoto State University, Sokoto, Nigeria
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Normi Mohd Yahaya
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
21
|
Zieniuk B, Małajowicz J, Jasińska K, Wierzchowska K, Uğur Ş, Fabiszewska A. Agri-Food and Food Waste Lignocellulosic Materials for Lipase Immobilization as a Sustainable Source of Enzyme Support-A Comparative Study. Foods 2024; 13:3759. [PMID: 39682831 DOI: 10.3390/foods13233759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Enzyme immobilization is a crucial method in biotechnology and organic chemistry that significantly improves the stability, reusability, and overall effectiveness of enzymes across various applications. Lipases are one of the most frequently applied enzymes in food. The current study investigated the potential of utilizing selected agri-food and waste materials-buckwheat husks, pea hulls, loofah sponges, and yerba mate waste-as carriers for the immobilization of Sustine® 121 lipase and Yarrowia lipolytica yeast biomass as whole-cell biocatalyst and lipase sources. Various lignocellulosic materials were pretreated through extraction processes, including Soxhlet extraction with hexane and ethanol, as well as alkaline and acid treatments for loofah sponges. The immobilization process involved adsorbing lipases or yeast cells onto the carriers and then evaluating their hydrolytic and synthetic activities. Preparations' activities evaluation revealed that alkaline-pretreated loofah sponge yielded the highest hydrolytic activity (0.022 U/mg), while yerba mate leaves under brewing conditions demonstrated superior synthetic activity (0.51 U/mg). The findings underscore the potential of lignocellulosic materials from the agri-food industry as effective supports for enzyme immobilization, emphasizing the importance of material selection and pretreatment methods in optimizing enzymatic performance through giving an example of circular economy application in food processing and waste management.
Collapse
Affiliation(s)
- Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Jolanta Małajowicz
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Karina Jasińska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Katarzyna Wierzchowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Şuheda Uğur
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| |
Collapse
|
22
|
Chawla N, Gupta L, Kumar S. Bioremediation technologies for remediation of dyes from wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1229. [PMID: 39570539 DOI: 10.1007/s10661-024-13410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The colored dyes are extensively applied in diverse industrial setups such as textiles, paper, leather, and cosmetics. The unutilized dyes are released in the waste and pose a serious menace to the environment, ecological balance, and human health. Because of their chemical nature, they are extremely resistant to common methods of treatment and often persist in the aquatic environment. A sustainable and eco-friendly approach for treating dye-contaminated wastewater is "bioremediation." This manuscript aims to discuss the exclusive role of diversified microorganisms and plants, immobilized microbial cells/enzymes, microbial consortia, nanomaterials, and combination approaches in the bioremediation of dyes. It also provides a comprehensive understanding of different bio-remedial technologies used to remove dyes from wastewater. In addition, the underlying mechanisms affecting the efficacy of bio-remedial technologies, the latest breakthroughs, challenges, and potential solutions in scaling up, and prospects in this area are also explored. We also detail the noteworthiness of genetic engineering in different bioremediation technologies to solve the issues associated with dye contamination in wastewater and its removal from the environment.
Collapse
Affiliation(s)
- Niti Chawla
- Department of Biotechnology, Chaudhary Bansi Lal University, Prem Nagar, Bhiwani, 127031, Haryana, India
| | - Lalita Gupta
- Department of Zoology, Chaudhary Bansi Lal University, Prem Nagar, Bhiwani, 127031, Haryana, India
| | - Sanjeev Kumar
- Department of Biotechnology, Chaudhary Bansi Lal University, Prem Nagar, Bhiwani, 127031, Haryana, India.
| |
Collapse
|
23
|
Hu W, Zhang X, Shen Y, Meng X, Wu Y, Tong P, Li X, Chen H, Gao J. Quantifying allergenic proteins using antibody-based methods or liquid chromatography-mass spectrometry/mass spectrometry: A review about the influence of food matrix, extraction, and sample preparation. Compr Rev Food Sci Food Saf 2024; 23:e70029. [PMID: 39379311 DOI: 10.1111/1541-4337.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Accurate quantification of allergens in food is crucial for ensuring consumer safety. Pretreatment steps directly affect accuracy and efficiency of allergen quantification. We systematically reviewed the latest advances in pretreatment steps for antibody-based methods and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) protein quantification methods in food. For antibody-based methods, the effects induced by food matrix like decreased allergen solubility, epitope masking, and nonspecific binding are of the upmost importance. To mitigate interference from the matrix, effective and proper extraction can be used to obtain the target allergens with a high protein concentration and necessary epitope exposure. Removal of interfering substances, extraction systems (buffers and additives), assistive technologies, and commercial kits were discussed. About LC-MS/MS quantification, the preparation of the target peptides is the crucial step that significantly affects the efficiency and results obtained from the MS detector. The advantages and limitations of each method for pre-purification, enzymatic digestion, and peptide desalting were compared. Additionally, the application characteristics of microfluidic-based pretreatment devices were illustrated to improve the convenience and efficiency of quantification. A promising research direction is the targeted development of pretreatment methods for complex food matrices, such as lipid-based and carbohydrate-based matrices.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yunpeng Shen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xuanyi Meng
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yong Wu
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Jinyan Gao
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| |
Collapse
|
24
|
Wang W, Huang WC, He Y, Zhang Y, Mao X. Chitosan-Based Charge-Controllable Supramolecular Carrier for Universal Immobilization of Enzymes with Different Isoelectric Points. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23458-23464. [PMID: 39400208 DOI: 10.1021/acs.jafc.4c07748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Electrostatic adsorption is an enzyme immobilization method that effectively maintains enzyme activity and exhibits considerable binding efficiency. However, enzymes carry different charges at their respective reaction pH levels, which prevents the use of the same carrier to immobilize enzymes with different charges. In this study, we employed a template-mediated polysaccharide-enzyme coupling self-assembly strategy to develop a charge-controllable supramolecular immobilization carrier by regulating the charge properties of carboxymethyl chitosan, enabling the universal immobilization of enzymes with different charge levels across a range of reaction pH values. By using silica nanoparticles of certain sizes as templates, the size of the carrier can be precisely controlled and the hollow network structure formed after removing the template can effectively reduce mass transfer resistance. Trypsin and papain are used as model enzymes, and the experimental results show that the supramolecular self-assembly immobilization strategy does not disrupt the secondary structure of the enzyme molecules. After 2 h of reaction, the enzyme activities of immobilized papain and immobilized trypsin are 13.2% and 7.7% higher than those of the free enzymes, respectively. After 10 consecutive reactions, the enzyme activities of immobilized papain and immobilized trypsin retained 56.3% and 64.3% of their initial values, respectively.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Wen-Can Huang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Yaling He
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Yan Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| |
Collapse
|
25
|
Jeong SW, Yeo HJ, Ha NI, Kim KJ, Seo KS, Jin SW, Koh YW, Jeong HG, Park CH, Im SB. Metabolite Profiles and Biological Activities of Different Phenotypes of Beech Mushrooms ( Hypsizygus marmoreus). Foods 2024; 13:3325. [PMID: 39456387 PMCID: PMC11508092 DOI: 10.3390/foods13203325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Beech mushrooms (Hypsizygus marmoreus) are edible mushrooms commercially used in South Korea. They can be classified into white and brown according to their pigmentation. This study analyzed the metabolites and biological activities of these mushrooms. Specifically, 42 metabolites (37 volatiles, two phenolics, and three carbohydrates) were quantified in white beech mushrooms, and 47 (42 volatiles, two phenolics, and three carbohydrates) were detected in brown mushrooms. The major volatiles detected were hexanal, pentanal, 1-hexanol, and 1-pentanol. Brown mushrooms contained higher levels of hexanal (64%) than white mushrooms (35%), whereas white mushrooms had higher levels of pentanal (11%) and 1-pentanol (3%). Most volatiles were more abundant in white mushrooms than in brown mushrooms. Furthermore, brown beech mushrooms had a higher phenolic content than white mushrooms. Biological assays revealed that both types of mushroom demonstrated anti-microbial activities against bacterial and yeast pathogens and weak DPPH scavenging activity. The extracts from both mushrooms (50 μg/mL) also exhibited strong anti-inflammatory properties. Brown mushroom extracts showed higher antioxidant, anti-microbial, and anti-inflammatory properties than white mushroom extracts. This study reported that the differences in phenotype, taste, and odor were consistent with the metabolite differences between white and brown beech mushrooms, which have high nutritional and biofunctional values.
Collapse
Affiliation(s)
- Sang-Wook Jeong
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Hyeon Ji Yeo
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Neul-I Ha
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Kyung-Je Kim
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Kyoung-Sun Seo
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Seong Woo Jin
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Young-Woo Koh
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Hee Gyeong Jeong
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Chang Ha Park
- Department of Smart Agriculture Management, Songho University, 210, Namsan-ro, Hoengseong-eup, Hoengseong-gun 24000, Republic of Korea
| | - Seung-Bin Im
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| |
Collapse
|
26
|
Kanzaki Y, Minami R, Ota K, Adachi J, Hori Y, Ohtani R, Le Ouay B, Ohba M. Enhancing Performances of Enzyme/Metal-Organic Polyhedra Composites by Mixed-Protein Co-Immobilization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54423-54434. [PMID: 39315760 DOI: 10.1021/acsami.4c10146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Protein immobilization using water-soluble ionic metal-organic polyhedra (MOPs) acting as porous spacers has recently been demonstrated as a potent strategy for the preparation of biocatalysts. In this article, we describe a mixed-protein approach to achieve biocomposites with adjustable enzyme contents and excellent immobilization efficiencies, in a systematic and well-controlled manner. Self-assembly of either cationic or anionic MOPs with bovine serum albumin or egg white lysozyme combined with enzymes (alkaline phosphatase, laccase or cytochrome c) led to solid-state catalysts with a high retention of enzyme activity. Furthermore, for all these systems, the dilution of enzymes within the solid-state composite led to noticeably improved catalytic performances, with both higher specific activity and affinity for substrate.
Collapse
Affiliation(s)
- Yuri Kanzaki
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryosuke Minami
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Koshiro Ota
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Junya Adachi
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuichiro Hori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Benjamin Le Ouay
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
27
|
Wang X, Xu M, Ren X, Li M, Wang C, Yang F, Li X. High-Level Expression and Biochemical Characterization of a Maltotetraose Amylase in Pichia pastoris X-33 for Maltotetraose Production. Appl Biochem Biotechnol 2024; 196:6745-6758. [PMID: 38407782 DOI: 10.1007/s12010-024-04871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Maltotetraose amylase, which catalyzes the hydrolysis of amylaceous polysaccharides into maltooligosaccharides with maltotetraose as the main product, is extensively used in the food industry. However, the lack of efficient expression system for maltotetraose amylase has hampered its production and application. In this study, high-level production of a maltotetraose amylase mutant (referred to as Pp-Mta∆CBM) from Pseudomonas saccharophila was achieved in Pichia pastoris X-33. First, the gene of maltotetraose amylase with the carbohydrate-binding module (CBM) removed was codon-optimized and cloned into the pPICZαA vector, followed by transformation into P. pastoris X-33 for expression. Using the promoter PAOX1 and signal peptide α-factor, high-level production of Pp-Mta∆CBM with minimal extracellular impurity proteins was achieved, resulting in an extracellular activity of 367.9 U/mL after 7 days of cultivation in shake flasks. Next, the expressed Pp-Mta∆CBM was purified and characterized. This recombinant enzyme was glycosylated and has maximum activity at 55 ℃ and pH 7.0. Its Km for soluble starch was 4.1 g/L, and its kcat was 3237.6 s-1. Finally, the Pp-Mta∆CBM was found to produce a maximum maltotetraose yield of 57.1% in the presence of 200 g/L of substrate. The findings presented in this study demonstrate the efficient production of Pp-Mta∆CBM in P. pastoris, providing a new expression system for maltotetraose amylase and laying the foundation for its scale-up production and industrial application.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Ming Xu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiaopeng Ren
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Mingyu Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Conggang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xianzhen Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
28
|
Sheldon RA. Waste Valorization in a Sustainable Bio-Based Economy: The Road to Carbon Neutrality. Chemistry 2024; 30:e202402207. [PMID: 39240026 DOI: 10.1002/chem.202402207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 09/07/2024]
Abstract
The development of sustainable chemistry underlying the quest to minimize and/or valorize waste in the carbon-neutral manufacture of chemicals is followed over the last four to five decades. Both chemo- and biocatalysis have played an indispensable role in this odyssey. in particular developments in protein engineering, metagenomics and bioinformatics over the preceding three decades have played a crucial supporting role in facilitating the widespread application of both whole cell and cell-free biocatalysis. The pressing need, driven by climate change mitigation, for a drastic reduction in greenhouse gas (GHG) emissions, has precipitated an energy transition based on decarbonization of energy and defossilization of organic chemicals production. The latter involves waste biomass and/or waste CO2 as the feedstock and green electricity generated using solar, wind, hydroelectric or nuclear energy. The use of waste polysaccharides as feedstocks will underpin a renaissance in carbohydrate chemistry with pentoses and hexoses as base chemicals and bio-based solvents and polymers as environmentally friendly downstream products. The widespread availability of inexpensive electricity and solar energy has led to increasing attention for electro(bio)catalysis and photo(bio)catalysis which in turn is leading to myriad innovations in these fields.
Collapse
Affiliation(s)
- Roger A Sheldon
- Department of Biotechnology, Delft University of Technology, Netherlands
- Department of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
29
|
Cha S, Chen Y, Du W, Wu J, Wang R, Jiang T, Yang X, Lian C, Liu H, Gong M. Interfacial Anion-Induced Dispersion of Active Species for Efficient Electrochemical Baeyer-Villiger Oxidation. JACS AU 2024; 4:3629-3640. [PMID: 39328754 PMCID: PMC11423321 DOI: 10.1021/jacsau.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/28/2024]
Abstract
Degradable polymers are an effective solution for white plastic pollution. Polycaprolactone is a type of degradable plastic with desirable mechanical and biocompatible properties, and its monomer, ε-caprolactone (ε-CL), is often synthesized by Baeyer-Villiger (B-V) oxidation that demands peroxyacids with low safety and low atom-efficiency. Herein, we devised an electrochemical B-V oxidation system simply driven by H2O2 for the efficient production of ε-CL. This system involves two steps with the direct oxidation of H2O2 into •OOH radicals at the electrode surface and the indirect oxidation of cyclohexanone by the generated reactive oxygen species. The modulation of the interfacial ionic environment by amphipathic sulfonimide anions [e.g., bis(trifluoromethane)sulfonimide (TFSI-)] is highly critical. It enables the efficient B-V oxidation into ε-caprolactone with ∼100% selectivity and 68.4% yield at a potential of 1.28 V vs RHE, much lower than the potentials applied for electrochemical B-V oxidation systems using water as the O sources. On hydrophilic electrodes with the action of sulfonimide anions, hydrophilic H2O2 can be enriched within the double layer for direct oxidation while hydrophobic cyclohexanone can be simultaneously accumulated for rapidly reacting with the reactive oxygen species. This work not only enriches the electrified method of the ancient B-V oxidation by using only H2O2 toward monomer production of biodegradable plastics but also emphasizes the critical role of the interfacial ionic environment for electrosynthesis systems that may extend the scope of activity optimization.
Collapse
Affiliation(s)
- Shuangshuang Cha
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Yuxin Chen
- State
Key Laboratory of Chemical Engineering, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, Shanghai 200237, China
| | - Wei Du
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Jianxiang Wu
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials (iChEM), Fudan University, Shanghai 200438, China
- College
of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ran Wang
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Tao Jiang
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Xuejing Yang
- National
Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Lian
- State
Key Laboratory of Chemical Engineering, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, Shanghai 200237, China
| | - Honglai Liu
- State
Key Laboratory of Chemical Engineering, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, Shanghai 200237, China
| | - Ming Gong
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials (iChEM), Fudan University, Shanghai 200438, China
| |
Collapse
|
30
|
Halder M, Chawla V, Singh Y. Ceria nanoparticles immobilized with self-assembling peptide for biocatalytic applications. NANOSCALE 2024; 16:16887-16899. [PMID: 39175360 DOI: 10.1039/d4nr02672a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Peptide-based artificial enzymes exhibit structure and catalytic mechanisms comparable to natural enzymes but they suffer from limited reusability due to their existence in homogenous solutions. Immobilization of self-assembling peptides on the surface of nanoparticles can be used to overcome limitations associated with artificial enzymes. A high, local density of peptides can be obtained on nanoparticles to exert cooperative or synergistic effects, resulting in an accelerated rate of reaction, distinct catalytic properties, and excellent biocompatibility. In this work, we have immobilized a branched, self-assembled, and nanofibrous catalytic peptide, (C12-SHD)2KK(Alloc)-NH2, onto thiolated ceria nanoparticles to generate a heterogeneous catalyst with an enhanced number of catalytic sites. This artificial enzyme mimics the activities of esterase, phosphatase, and haloperoxidase enzymes and the catalytic efficiency remains nearly unaltered when reused. The enzyme-mimicking property is investigated for pesticide detection, bone regeneration, and antibiofouling applications. Overall, this work presents a facile approach to develop a multifunctional heterogeneous biocatalyst that addresses the challenges associated with unstable peptide-based homogeneous catalysts and, thus, shows a strong potential for industrial applications.
Collapse
Affiliation(s)
- Moumita Halder
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Vatan Chawla
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| |
Collapse
|
31
|
Jeon HW, Lee JS, Lee CH, Kim D, Lee HS, Hwang ET. Hyperactivation of crosslinked lipases in elastic hydroxyapatite microgel and their properties. J Biol Eng 2024; 18:46. [PMID: 39223667 PMCID: PMC11370140 DOI: 10.1186/s13036-024-00440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Effective enzyme stabilization through immobilization is essential for the functional usage of enzymatic reactions. We propose a new method for synthesizing elastic hydroxyapatite microgel (E-HAp-M) materials and immobilizing lipase using this mesoporous mineral via the ship-in-a-bottle-neck strategy. The physicochemical parameters of E-HAp-M were thoroughly studied, revealing that E-HAp-M provides efficient space for enzyme immobilization. As a model enzyme, lipase (LP) was entrapped and then cross-linked enzyme structure, preventing leaching from mesopores, resulting in highly active and stable LP/E-HAp-M composites. By comparing LP activity under different temperature and pH conditions, it was observed that the cross-linked LP exhibited improved thermal stability and pH resistance compared to the free enzyme. In addition, they demonstrated a 156% increase in catalytic activity compared with free LP in hydrolysis reactions at room temperature. The immobilized LP maintained 45% of its initial activity after 10 cycles of recycling and remained stable for over 160 days. This report presents the first demonstration of a stabilized cross-linked LP in E-HAp-M, suggesting its potential application in enzyme-catalyzed processes within biocatalysis technology.
Collapse
Affiliation(s)
- Hyo Won Jeon
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Jun Seop Lee
- Center for Convergence Bioceramic Materials, Korea, Institute of Ceramic Engineering & Technology, Cheongju-Si, Chungcheongbuk-Do, Republic of Korea
| | - Chan Hee Lee
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Dain Kim
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Hye Sun Lee
- Center for Convergence Bioceramic Materials, Korea, Institute of Ceramic Engineering & Technology, Cheongju-Si, Chungcheongbuk-Do, Republic of Korea.
| | - Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea.
| |
Collapse
|
32
|
Danait-Nabar S, Singhal RS. Immobilization of l-asparaginase on genipin cross-linked chitosan beads shows better acrylamide diminution in cassava chips: Process optimization and characterization. J Food Sci 2024; 89:6031-6050. [PMID: 39098813 DOI: 10.1111/1750-3841.17274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Glutaraldehyde is the conventionally used cross-linker for the activation and cross-linking of support matrices used in enzyme immobilization. However, the toxic nature of glutaraldehyde makes it unsafe for food applications, propelling the need for nontoxic cross-linkers. Genipin reacts with the primary and secondary amines generating a dark-blue colored pigment and is an attractive alternative to glutaraldehyde as a cross-linker for enzyme immobilization. Apart from its excellent cross-linking properties, genipin possesses added advantages over glutaraldehyde such as proven health benefits, biocompatibility, and biodegradability. The present study explores the application of chitosan beads cross-linked with the natural and nontoxic agent, genipin, for immobilizing l-asparaginase, aimed at its subsequent use in mitigating acrylamide formation in food products. The immobilized l-asparaginase exhibited improved functionalities such as stability, reusability, and reduction in acrylamide formation in deep-fried cassava chips. One of the limitations observed during application in the food process was the mechanical fragility of the chitosan beads during speedy stirring. This can be overcome by increasing the concentration and time of contact of the coagulant bath during the formation of chitosan beads. The drying of the enzyme-bound chitosan beads will also lead to shrinkage and prevent breakage during stirring. This study conclusively demonstrated the applicability of immobilizing l-asparaginase on genipin cross-linked chitosan beads in food-related processes.
Collapse
Affiliation(s)
- Saaylee Danait-Nabar
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
33
|
Li Q, Lu S, Wu X, Wang L, Wang Z, Zhao L. Application of hydrophobic eutectic solvent in efficient biotransformation of total flavonoids of Herba Epimedii. J Biotechnol 2024; 391:106-116. [PMID: 38871028 DOI: 10.1016/j.jbiotec.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Icaritin, a hydrolysate from total flavonoids of Epimedii (TFE), which has better anti-hepatoma activity than its glycosylated form. In this work, immobilized enzymes 4LP-Tpebgl3@Na-Y and DtRha@ES-107 were used to hydrolyze TFE to prepare icaritin. Five different hydrophobic deep eutectic solvents (HDES) were prepared and the most ideal HDES was successfully selected, which was composed of dodecyl alcohol and thymol with the molar ratio of 2:1. The relative enzyme activity of 4LP-Tpebgl3@Na-Y and DtRha@ES-107 was about 102.4 % and 112.5 %, respectively. In addition, the thermal and binding stability of 4LP-Tpebgl3@Na-Y and DtRha@ES-107 in HDES was not affected negatively. In the biphasic system composed of 50 % (v/v) HDES and Na2HPO4-citric acid buffer (50 mM, pH 5.5), 4LP-Tpebgl3@Na-Y (1.0 U/mL) and TFE (1 g/L) were reacted at 80 °C for 1 h, and then reacted with DtRha@ES-107 (20 U/mL) at 80 °C for 2 h. Finally, TFE was completely converted to 301.8 mg/L icaritin (0.82 mM). After 10 cycles, 4LP-Tpebgl3@Na-Y/DtRha@ES-107 still maintained 84.1 % original activity. In this study, we developed an efficient methodology for icaritin preparation through the integration of enzymatic catalysis and adsorption separation, presenting a viable approach for large-scale, cost-effective production of icaritin.
Collapse
Affiliation(s)
- Qi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Shan Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Xianyao Wu
- Jinling High School Hexi Campus International Department, Nanjing 210019, China
| | - Lei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., 58 Haichang South Road, Lianyungang 222001, China.
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China.
| |
Collapse
|
34
|
Weber AC, da Silva BE, Cordeiro SG, Henn GS, Costa B, Dos Santos JSH, Corbellini VA, Ethur EM, Hoehne L. Immobilization of Horseradish Peroxidase on Ca Alginate-Starch Hybrid Support: Biocatalytic Properties and Application in Biodegradation of Phenol Red Dye. Appl Biochem Biotechnol 2024; 196:4759-4792. [PMID: 37950796 DOI: 10.1007/s12010-023-04772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
In this study, horseradish peroxidase was extracted, purified, and immobilized on a calcium alginate-starch hybrid support by covalent bonding and entrapment. The immobilized HRP was used for the biodegradation of phenol red dye. A 3.74-fold purification was observed after precipitation with ammonium sulfate and dialysis. An immobilization yield of 88.33%, efficiency of 56.89%, and activity recovery of 50.26% were found. The optimum pH and temperature values for immobilized and free HRP were 5.0 and 50 °C and 6.5 and 60 °C, respectively. The immobilized HRP showed better thermal stability than its free form, resulting in a considerable increase in half-life time (t1/2) and deactivation energy (Ed). The immobilized HRP maintained 93.71% of its initial activity after 45 days of storage at 4 °C. Regarding the biodegradation of phenol red, immobilized HRP resulted in 63.57% degradation after 90 min. After 10 cycles of reuse, the immobilized HRP was able to maintain 43.06% of its initial biodegradative capacity and 42.36% of its enzymatic activity. At the end of 15 application cycles, a biodegradation rate of 8.34% was observed. In conclusion, the results demonstrate that the immobilized HRP is a promising option for use as an industrial biocatalyst in various biotechnological applications.
Collapse
Affiliation(s)
- Ani Caroline Weber
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Bruno Eduardo da Silva
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Sabrina Grando Cordeiro
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Guilherme Schwingel Henn
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Bruna Costa
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Jéssica Samara Herek Dos Santos
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | | | - Eduardo Miranda Ethur
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Lucélia Hoehne
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil.
| |
Collapse
|
35
|
Cruz IDA, Cruz-Magalhães V, Loguercio LL, Dos Santos LBPR, Uetanabaro APT, Costa AMD. A systematic study on the characteristics and applications of laccases produced by fungi: insights on their potential for biotechnologies. Prep Biochem Biotechnol 2024; 54:896-909. [PMID: 38170449 DOI: 10.1080/10826068.2023.2297697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Laccases are polyphenol oxidase enzymes and form the enzyme complex known for their role in wood decomposition and lignin degradation. The present study aimed to systematically review the state-of-the-art trends in scientific publications on laccase enzymes of the last 10 years. The main aspects checked included the laccase-producing fungal genera, the conditions of fungal growth and laccase production, the methods of immobilization, and potential applications of laccase. After applying the systematic search method 177 articles were selected to compound the final database. Although various fungi produce laccase, most studies were Trametes and Pleurotus genera. The submerged fermentation (SmF) has been the most used, however, the use of solid-state fermentation (SSF) appeared as a promising technique to produce laccase when using agro-industrial residues as substrates. Studies on laccase immobilization showed the covalent bonding and entrapment methods were the most used, showing greater efficiency of immobilization and a high number of enzyme reuses. The main use of the laccase was in bioremediation, especially in the discoloration of dyes from the textile industry and the degradation of pharmaceutical waste. Implications and consequences of all these findings in biotechnology and environment, as well as the trends and gaps of laccase research were discussed.
Collapse
Affiliation(s)
- Ian David Araújo Cruz
- Departamento de Ciências Biológicas, UESC - Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Leandro Lopes Loguercio
- Departamento de Ciências Biológicas, UESC - Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | | | - Andréa Miura da Costa
- Departamento de Ciências Biológicas, UESC - Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| |
Collapse
|
36
|
Birch-Price Z, Hardy FJ, Lister TM, Kohn AR, Green AP. Noncanonical Amino Acids in Biocatalysis. Chem Rev 2024; 124:8740-8786. [PMID: 38959423 PMCID: PMC11273360 DOI: 10.1021/acs.chemrev.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Collapse
Affiliation(s)
| | | | | | | | - Anthony P. Green
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
37
|
Xie P, Lan J, Zhou J, Hu Z, Cui J, Qu G, Yuan B, Sun Z. Co-immobilization of amine dehydrogenase and glucose dehydrogenase for the biosynthesis of (S)-2-aminobutan-1-ol in continuous flow. BIORESOUR BIOPROCESS 2024; 11:70. [PMID: 39023666 PMCID: PMC11258105 DOI: 10.1186/s40643-024-00786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
Reductive amination by amine dehydrogenases is a green and sustainable process that produces only water as the by-product. In this study, a continuous flow process was designed utilizing a packed bed reactor filled with co-immobilized amine dehydrogenase wh84 and glucose dehydrogenase for the highly efficient biocatalytic synthesis of chiral amino alcohols. The immobilized amine dehydrogenase wh84 exhibited better thermo-, pH and solvent stability with high activity recovery. (S)-2-aminobutan-1-ol was produced in up to 99% conversion and 99% ee in the continuous flow processes, and the space-time yields were up to 124.5 g L-1 d-1. The continuous reactions were also extended to 48 h affording up to 91.8% average conversions. This study showcased the important potential to sustainable production of chiral amino alcohols in continuous flow processes.
Collapse
Affiliation(s)
- Pengcheng Xie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Jin Lan
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Jingshuan Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Zhun Hu
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an Shaanxi, 710049, China
| | - Jiandong Cui
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China.
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China.
| |
Collapse
|
38
|
Lara-Fiallos M, Ayala Chamorro YT, Espín-Valladares R, DelaVega-Quintero JC, Olmedo-Galarza V, Nuñez-Pérez J, Pais-Chanfrau JM, Martínez AP. Immobilised Inulinase from Aspergillus niger for Fructose Syrup Production: An Optimisation Model. Foods 2024; 13:1984. [PMID: 38998492 PMCID: PMC11241185 DOI: 10.3390/foods13131984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 07/14/2024] Open
Abstract
Fructose is a carbohydrate with essential applications in the food industry, mainly due to its high sweetness and low cost. The present investigation focused on optimising fructose production from commercial inulin using the enzymatic immobilisation method and applying the response surface methodology in a 12-run central composite design. The independent variables evaluated were the pH (-) and temperature (°C). The substrate consisted of a commercial inulin solution at a concentration of 1 g/L, while the catalyst consisted of the enzyme inulinase from Aspergillus niger (EC 232-802-3), immobilised in 2% m/v sodium alginate. A stirred vessel reactor was used for 90 min at 120 rpm, and quantification of reducing sugars was determined using DNS colorimetric and UV-Vis spectrophotometric methods at a 540 nm wavelength. After applying the response surface methodology, it was determined that the catalytic activity using the immobilisation method allows for a maximum total productivity of 16.4 mg/h under pH and temperature of 3.9 and 37 °C, respectively, with an efficiency of 96.4%. The immobilised enzymes' reusability and stability compared to free enzymes were evaluated, obtaining activity up to the fifth reuse cycle and showing significant advantages over the free catalyst.
Collapse
Affiliation(s)
- Marco Lara-Fiallos
- School of Agroindustry, Universidad Técnica del Norte, Ibarra 100150, Ecuador
| | | | | | | | | | - Jimmy Nuñez-Pérez
- School of Agroindustry, Universidad Técnica del Norte, Ibarra 100150, Ecuador
| | | | | |
Collapse
|
39
|
Flaibam B, da Silva MF, de Mélo AHF, Carvalho PH, Galland F, Pacheco MTB, Goldbeck R. Non-animal protein hydrolysates from agro-industrial wastes: A prospect of alternative inputs for cultured meat. Food Chem 2024; 443:138515. [PMID: 38277934 DOI: 10.1016/j.foodchem.2024.138515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
In light of the growing demand for alternative protein sources, laboratory-grown meat has been proposed as a potential solution to the challenges posed by conventional meat production. Cultured meat does not require animal slaughter and uses sustainable production methods, contributing to animal welfare, human health, and environmental sustainability. However, some challenges still need to be addressed in cultured meat production, such as the use of fetal bovine serum for medium supplementation. This ingredient has limited availability, increases production costs, and raises ethical concerns. This review explores the potential of non-animal protein hydrolysates derived from agro-industrial wastes as substitutes for critical components of fetal bovine serum in cultured meat production. Despite the lack of standardization of hydrolysate composition, the potential benefits of this alternative protein source may outweigh its disadvantages. Future research holds promise for increasing the accessibility of cultured meat.
Collapse
Affiliation(s)
- Bárbara Flaibam
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Marcos F da Silva
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Allan H Félix de Mélo
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Priscila Hoffmann Carvalho
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Fabiana Galland
- Institute of Food Technology (ITAL), Avenida Brasil, 2880, PO Box 139, Campinas, SP 13070-178, Brazil
| | | | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil.
| |
Collapse
|
40
|
Michaud M, Nonglaton G, Anxionnaz-Minvielle Z. Wall-Immobilized Biocatalyst vs. Packed Bed in Miniaturized Continuous Reactors: Performances and Scale-Up. Chembiochem 2024; 25:e202400086. [PMID: 38618870 DOI: 10.1002/cbic.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Sustainable biocatalysis syntheses have gained considerable popularity over the years. However, further optimizations - notably to reduce costs - are required if the methods are to be successfully deployed in a range of areas. As part of this drive, various enzyme immobilization strategies have been studied, alongside process intensification from batch to continuous production. The flow bioreactor portfolio mainly ranges between packed bed reactors and wall-immobilized enzyme miniaturized reactors. Because of their simplicity, packed bed reactors are the most frequently encountered at lab-scale. However, at industrial scale, the growing pressure drop induced by the increase in equipment size hampers their implementation for some applications. Wall-immobilized miniaturized reactors require less pumping power, but a new problem arises due to their reduced enzyme-loading capacity. This review starts with a presentation of the current technology portfolio and a reminder of the metrics to be applied with flow bioreactors. Then, a benchmarking of the most recent relevant works is presented. The scale-up perspectives of the various options are presented in detail, highlighting key features of industrial requirements. One of the main objectives of this review is to clarify the strategies on which future study should center to maximize the performance of wall-immobilized enzyme reactors.
Collapse
Affiliation(s)
- Maïté Michaud
- Univ. Grenoble Alpes, CEA, LITEN, DTCH, Laboratoire Composants et Systèmes Thermiques (LCST), F-38000, Grenoble, France
| | - Guillaume Nonglaton
- Univ. Grenoble Alpes, CEA, LETI, DTIS, Plateforme de Recherche Intégration, fonctionnalisation de Surfaces et Microfabrication (PRISM), F-38000, Grenoble, France
| | - Zoé Anxionnaz-Minvielle
- Univ. Grenoble Alpes, CEA, LITEN, DTCH, Laboratoire Composants et Systèmes Thermiques (LCST), F-38000, Grenoble, France
| |
Collapse
|
41
|
Papatola F, Slimani S, Peddis D, Pellis A. Biocatalyst immobilization on magnetic nano-architectures for potential applications in condensation reactions. Microb Biotechnol 2024; 17:e14481. [PMID: 38850268 PMCID: PMC11162105 DOI: 10.1111/1751-7915.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
In this review article, a perspective on the immobilization of various hydrolytic enzymes onto magnetic nanoparticles for synthetic organic chemistry applications is presented. After a first part giving short overview on nanomagnetism and highlighting advantages and disadvantages of immobilizing enzymes on magnetic nanoparticles (MNPs), the most important hydrolytic enzymes and their applications were summarized. A section reviewing the immobilization techniques with a particular focus on supporting enzymes on MNPs introduces the reader to the final chapter describing synthetic organic chemistry applications of small molecules (flavour esters) and polymers (polyesters and polyamides). Finally, the conclusion and perspective section gives the author's personal view on further research discussing the new idea of a synergistic rational design of the magnetic and biocatalytic component to produce novel magnetic nano-architectures.
Collapse
Affiliation(s)
- F. Papatola
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
| | - S. Slimani
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
- CNRIstituto di Struttura Della Materia, nM2‐LabMonterotondo Scalo (Roma)Italy
| | - D. Peddis
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
- CNRIstituto di Struttura Della Materia, nM2‐LabMonterotondo Scalo (Roma)Italy
| | - A. Pellis
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
| |
Collapse
|
42
|
Makrydaki E, Donini R, Krueger A, Royle K, Moya Ramirez I, Kuntz DA, Rose DR, Haslam SM, Polizzi KM, Kontoravdi C. Immobilized enzyme cascade for targeted glycosylation. Nat Chem Biol 2024; 20:732-741. [PMID: 38321209 PMCID: PMC11142912 DOI: 10.1038/s41589-023-01539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Abstract
Glycosylation is a critical post-translational protein modification that affects folding, half-life and functionality. Glycosylation is a non-templated and heterogeneous process because of the promiscuity of the enzymes involved. We describe a platform for sequential glycosylation reactions for tailored sugar structures (SUGAR-TARGET) that allows bespoke, controlled N-linked glycosylation in vitro enabled by immobilized enzymes produced with a one-step immobilization/purification method. We reconstruct a reaction cascade mimicking a glycosylation pathway where promiscuity naturally exists to humanize a range of proteins derived from different cellular systems, yielding near-homogeneous glycoforms. Immobilized β-1,4-galactosyltransferase is used to enhance the galactosylation profile of three IgGs, yielding 80.2-96.3% terminal galactosylation. Enzyme recycling is demonstrated for a reaction time greater than 80 h. The platform is easy to implement, modular and reusable and can therefore produce homogeneous glycan structures derived from various hosts for functional and clinical evaluation.
Collapse
Affiliation(s)
- Elli Makrydaki
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Roberto Donini
- Department of Life Sciences, Imperial College London, London, UK
| | - Anja Krueger
- Department of Life Sciences, Imperial College London, London, UK
| | - Kate Royle
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Ignacio Moya Ramirez
- Department of Chemical Engineering, Imperial College London, London, UK
- Departamento de Ingeniería Química, Universidad de Granada, Granada, Spain
| | - Douglas A Kuntz
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David R Rose
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK.
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
43
|
Tang X, Ravikumar Y, Zhang G, Yun J, Zhao M, Qi X. D-allose, a typical rare sugar: properties, applications, and biosynthetic advances and challenges. Crit Rev Food Sci Nutr 2024:1-28. [PMID: 38764407 DOI: 10.1080/10408398.2024.2350617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
D-allose, a C-3 epimer of D-glucose and an aldose-ketose isomer of D-allulose, exhibits 80% of sucrose's sweetness while being remarkably low in calories and nontoxic, making it an appealing sucrose substitute. Its diverse physiological functions, particularly potent anticancer and antitumor effects, render it a promising candidate for clinical treatment, garnering sustained attention. However, its limited availability in natural sources and the challenges associated with chemical synthesis necessitate exploring biosynthetic strategies to enhance production. This overview encapsulates recent advancements in D-allose's physicochemical properties, physiological functions, applications, and biosynthesis. It also briefly discusses the crucial role of understanding aldoketose isomerase structure and optimizing its performance in D-allose synthesis. Furthermore, it delves into the challenges and future perspectives in D-allose bioproduction. Early efforts focused on identifying and characterizing enzymes responsible for D-allose production, followed by detailed crystal structure analysis to improve performance through molecular modification. Strategies such as enzyme immobilization and implementing multi-enzyme cascade reactions, utilizing more cost-effective feedstocks, were explored. Despite progress, challenges remain, including the lack of efficient high-throughput screening methods for enzyme modification, the need for food-grade expression systems, the establishment of ordered substrate channels in multi-enzyme cascade reactions, and the development of downstream separation and purification processes.
Collapse
Affiliation(s)
- Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
44
|
Hasanoğlu Özkan E, Kurnaz Yetim N, Koç MM. Preparation and characterization of AChE immobilized magnetic bio-nanocomposites (Fe 3O 4@Cht/Au) for pesticide detection. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:368-377. [PMID: 38764244 DOI: 10.1080/03601234.2024.2351779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Free enzymes cause difficulties in many applications due to their insufficient stability, loss of activity in a short time, and most importantly, although they are costly, they are used only once in reactions, lose their effect and cannot be recovered from the environment. Magnetic nanoparticles coated with biocompatible polymeric material are potential candidates for promising enzyme carriers due to their multifunctional pore surfaces, easy removal from the environment provided by the magnetization, ability to main stability under various harsh conditions. This study prepared a biosensor candidate based on the inhibiting acetylcholinesterase enzyme by organophosphate pesticides from chitosan-coated magnetic nanoparticles doped with gold. Transmission electron microscopy, scanning electron microscopy, X-ray diffraction diffractometry, and Fourier transform infrared spectroscopy analysis confirmed the structure of synthesized nanocomposites. Magnetic characteristics of the nanocomposites were assessed using VSM. Bio-nanocomposite (Fe3O4@Cht/Au/AChE) was used to determine environmental pollutants qualitatively. Remediation of organophosphate-containing wastewater is an essential issue for environmental sustainability. In this work, Dichlorvos and Chlorpyrifos were selected as organic pollutants to assess the enzymatic activity of immobilized Fe3O4@Cht/Au/AChE. Optimum conditions for AChE enzyme were immobilized nanostructures (Fe3O4@Cht/Au/AChE) were determined. The optimum pH for the immobilized enzyme was found to be 8, and the optimum temperature was found to be 60 °C. Retained immobilized enzyme activity is found to be around 50% for the 20th reuse. In the presence of 150 µL pesticide, retained immobilized enzyme activity is found to be around 25%. Method validation was performed for pesticides. When using immobilized AChE, the LOD (limit of detection)-LOQ (limit of quantitation) values for Dichlorovos and Chlorpyrifos was obtained in the range of 0.0087-0.029 nM and 0.0014-0.0046 nM, respectively. The relative standard deviation (RSD%) values, which are indicators of precision, were found to be below 2%.
Collapse
Affiliation(s)
| | - Nurdan Kurnaz Yetim
- Department of Chemistry, Faculty of Arts and Sciences, Kırklareli University, Kırklareli, Türkiye
| | - Mümin Mehmet Koç
- School of Medical Service, Kırklareli University, Kırklareli, Türkiye
- Department of Physics, Faculty of Arts and Sciences, Kırklareli University, Kırklareli, Türkiye
| |
Collapse
|
45
|
Diamanti E, López-Gallego F. Single-Particle and Single-Molecule Characterization of Immobilized Enzymes: A Multiscale Path toward Optimizing Heterogeneous Biocatalysts. Angew Chem Int Ed Engl 2024; 63:e202319248. [PMID: 38476019 DOI: 10.1002/anie.202319248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Heterogeneous biocatalysis is highly relevant in biotechnology as it offers several benefits and practical uses. To leverage the full potential of heterogeneous biocatalysts, the establishment of well-crafted protocols, and a deeper comprehension of enzyme immobilization on solid substrates are essential. These endeavors seek to optimize immobilized biocatalysts, ensuring maximal enzyme performance within confined spaces. For this aim, multidimensional characterization of heterogeneous biocatalysts is required. In this context, spectroscopic and microscopic methodologies conducted at different space and temporal scales can inform about the intraparticle enzyme kinetics, the enzyme spatial distribution, and the mass transport issues. In this Minireview, we identify enzyme immobilization, enzyme catalysis, and enzyme inactivation as the three main processes for which advanced characterization tools unveil fundamental information. Recent advances in operando characterization of immobilized enzymes at the single-particle (SP) and single-molecule (SM) levels inform about their functional properties, unlocking the full potential of heterogeneous biocatalysis toward biotechnological applications.
Collapse
Affiliation(s)
- Eleftheria Diamanti
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-, Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, 20014, Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-, Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, 20014, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain
| |
Collapse
|
46
|
Santos MPF, de Souza Junior EC, Villadóniga C, Vallés D, Castro-Sowinski S, Bonomo RCF, Veloso CM. Proteases: Importance, Immobilization Protocols, Potential of Activated Carbon as Support, and the Importance of Modifying Supports for Immobilization. BIOTECH 2024; 13:13. [PMID: 38804295 PMCID: PMC11130871 DOI: 10.3390/biotech13020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Although enzymes have been used for thousands of years, their application in industrial processes has gained importance since the 20th century due to technological and scientific advances in several areas, including biochemistry [...].
Collapse
Affiliation(s)
- Mateus Pereira Flores Santos
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos (PPGBBM), Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus 45662-900, Bahia, Brazil;
| | - Evaldo Cardozo de Souza Junior
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| | - Carolina Villadóniga
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Diego Vallés
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Susana Castro-Sowinski
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Renata Cristina Ferreira Bonomo
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| | - Cristiane Martins Veloso
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| |
Collapse
|
47
|
Yamaguchi H, Miyazaki M. Bioremediation of Hazardous Pollutants Using Enzyme-Immobilized Reactors. Molecules 2024; 29:2021. [PMID: 38731512 PMCID: PMC11085290 DOI: 10.3390/molecules29092021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Bioremediation uses the degradation abilities of microorganisms and other organisms to remove harmful pollutants that pollute the natural environment, helping return it to a natural state that is free of harmful substances. Organism-derived enzymes can degrade and eliminate a variety of pollutants and transform them into non-toxic forms; as such, they are expected to be used in bioremediation. However, since enzymes are proteins, the low operational stability and catalytic efficiency of free enzyme-based degradation systems need improvement. Enzyme immobilization methods are often used to overcome these challenges. Several enzyme immobilization methods have been applied to improve operational stability and reduce remediation costs. Herein, we review recent advancements in immobilized enzymes for bioremediation and summarize the methods for preparing immobilized enzymes for use as catalysts and in pollutant degradation systems. Additionally, the advantages, limitations, and future perspectives of immobilized enzymes in bioremediation are discussed.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Department of Food and Life Science, School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan
| | - Masaya Miyazaki
- HaKaL Inc., Kurume Research Park, 1488-4 Aikawa, Kurume, Fukuoka 839-0864, Japan;
| |
Collapse
|
48
|
Gil-Garcia M, Benítez-Mateos AI, Papp M, Stoffel F, Morelli C, Normak K, Makasewicz K, Faltova L, Paradisi F, Arosio P. Local environment in biomolecular condensates modulates enzymatic activity across length scales. Nat Commun 2024; 15:3322. [PMID: 38637545 PMCID: PMC11026464 DOI: 10.1038/s41467-024-47435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
The mechanisms that underlie the regulation of enzymatic reactions by biomolecular condensates and how they scale with compartment size remain poorly understood. Here we use intrinsically disordered domains as building blocks to generate programmable enzymatic condensates of NADH-oxidase (NOX) with different sizes spanning from nanometers to microns. These disordered domains, derived from three distinct RNA-binding proteins, each possessing different net charge, result in the formation of condensates characterized by a comparable high local concentration of the enzyme yet within distinct environments. We show that only condensates with the highest recruitment of substrate and cofactor exhibit an increase in enzymatic activity. Notably, we observe an enhancement in enzymatic rate across a wide range of condensate sizes, from nanometers to microns, indicating that emergent properties of condensates can arise within assemblies as small as nanometers. Furthermore, we show a larger rate enhancement in smaller condensates. Our findings demonstrate the ability of condensates to modulate enzymatic reactions by creating distinct effective solvent environments compared to the surrounding solution, with implications for the design of protein-based heterogeneous biocatalysts.
Collapse
Affiliation(s)
- Marcos Gil-Garcia
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Ana I Benítez-Mateos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Marcell Papp
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Florence Stoffel
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Chiara Morelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Karl Normak
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Katarzyna Makasewicz
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Lenka Faltova
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
49
|
Sánchez-Morán H, Kaar JL, Schwartz DK. Combinatorial High-Throughput Screening of Complex Polymeric Enzyme Immobilization Supports. J Am Chem Soc 2024; 146:9112-9123. [PMID: 38500441 DOI: 10.1021/jacs.3c14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Recent advances have demonstrated the promise of complex multicomponent polymeric supports to enable supra-biological enzyme performance. However, the discovery of such supports has been limited by time-consuming, low-throughput synthesis and screening. Here, we describe a novel combinatorial and high-throughput platform that enables rapid screening of complex and heterogeneous copolymer brushes as enzyme immobilization supports, named combinatorial high-throughput enzyme support screening (CHESS). Using a 384-well plate format, we synthesized arrays of three-component polymer brushes in the microwells using photoactivated surface-initiated polymerization and immobilized enzymes in situ. The utility of CHESS to identify optimal immobilization supports under thermally and chemically denaturing conditions was demonstrated usingBacillus subtilisLipase A (LipA). The identification of supports with optimal compositions was validated by immobilizing LipA on polymer-brush-modified biocatalyst particles. We further demonstrated that CHESS could be used to predict the optimal composition of polymer brushes a priori for the previously unexplored enzyme, alkaline phosphatase (AlkP). Our findings demonstrate that CHESS represents a predictable and reliable platform for dramatically accelerating the search of chemical compositions for immobilization supports and further facilitates the discovery of biocompatible and stabilizing materials.
Collapse
Affiliation(s)
- Héctor Sánchez-Morán
- Department of Chemical and Biological Engineering, University of Colorado, Campus Box 596, Boulder, Colorado 80309, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Campus Box 596, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Campus Box 596, Boulder, Colorado 80309, United States
| |
Collapse
|
50
|
Singh B, Soni SK, Vaish S, Mathur P, Garg N. Immobilization of microbial multienzyme preparation on calcium alginate beads as well as lyophilization with mosambi peel matrix improved its shelf-life and stability. Folia Microbiol (Praha) 2024; 69:383-393. [PMID: 37498405 DOI: 10.1007/s12223-023-01079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The purpose of the current study was to evaluate the functional activity and storage viability (at 4 °C and 35 °C) of an immobilized as well as lyophilized multienzyme, viz., pectinase, cellulase, and amylase (PCA) that was produced by Bacillus subtilis NG105 under solid state fermentation (SSF) at 35 ℃ for 10 days using mosambi peel as a substrate. After SSF, the culture media was divided into two aliquots. From the first aliquot, the produced ME was extracted, precipitated, and further immobilized on calcium alginate beads (MEICA). In order to immobilize on mosambi peel matrix, the second aliquot was mixed with acetone and subsequently lyophilized (MELMP). Thus, ready MEICA and MELMP extracted 87.5 and 91.5% juice from mango pulp, respectively. In the reusability study, after 5 cycles, MEICA exhibited 23.8%, 24.4%, and 36.5% PCA activity, respectively. The PCA activity of MEICA and MELMP was examined after 60 days of storage at 4 ℃. The result revealed that the PCA for MEICA declined from 100 to 66%, 58.2%, and 64.5%, respectively, while for MELMP, it dropped from 100 to 84.2%, 82.1%, and 69.7%, respectively. Further, after 60 days of storage, the reduction of total protein content (TPC) in free multienzyme (FME), MEICA, and MELMP was 92.2%, 91.5%, and 36.3% observed, respectively. In the localization study, the maximum levels of multienzyme activity were found in cell exudates. This study demonstrated that immobilizing of multienzyme through lyophilization on waste substrates like mosambi peel boosted its stability and shelf-life along with greatly reducing the cost of products.
Collapse
Affiliation(s)
- Balvindra Singh
- Division of Post Harvest Management, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 227105, India
| | - Sumit K Soni
- Crop Improvement and Biotechnology Division, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India.
| | - Supriya Vaish
- Division of Post Harvest Management, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India
| | - Priti Mathur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 227105, India
| | - Neelima Garg
- Division of Post Harvest Management, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India.
| |
Collapse
|