1
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
2
|
Mogi M. Aldosterone breakthrough from a pharmacological perspective. Hypertens Res 2022; 45:967-975. [PMID: 35422512 DOI: 10.1038/s41440-022-00913-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/13/2023]
Abstract
Aldosterone (Aldo) breakthrough is a well-known phenomenon that occurs in patients with long-term renin-angiotensin aldosterone system (RAAS) blockade using inhibitors of renin or angiotensin converting enzyme or angiotensin II type 1 receptor blockers. The blockade of the mineralocorticoid receptor (MR), an Aldo binding receptor, is effective in managing patients with resistant hypertension, defined as uncontrollable blood pressure despite the concurrent use of three antihypertensive drugs. In other words, MR inhibitors are not used as first-line antihypertensive drugs in most guidelines for hypertension management. Aldo breakthrough puts hypertensive patients at higher risk of cardiovascular disease and worsens future outcomes. This review discusses Aldo secretion and the mechanism of Aldo breakthrough, dependent or independent of the RAAS, with consideration of the pharmacological aspects of this phenomenon, as well as hypothetical views.
Collapse
Affiliation(s)
- Masaki Mogi
- Department of Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, 791-0295, Japan.
| |
Collapse
|
3
|
Shalomov B, Handklo-Jamal R, Reddy HP, Theodor N, Bera AK, Dascal N. A revised mechanism of action of hyperaldosteronism-linked mutations in cytosolic domains of GIRK4 (KCNJ5). J Physiol 2021; 600:1419-1437. [PMID: 34957562 DOI: 10.1113/jp282690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Mutations in GIRK4 (KCNJ5) G-protein gated channels cause primary aldosteronism, a major cause of secondary hypertension. The primary mechanism is believed to be loss of K+ selectivity. R52H and E246K, aldosteronism-causing mutations in cytosolic N- and C- termini of GIRK4, were reported to cause loss of K+ selectivity. We show that R52H, E246K and G247R mutations render homotetrameric GIRK channels non-functional. In heterotetrameric context with GIRK1, these mutations impair membrane expression, interaction with Gβγ and open probability, but do not alter K+ selectivity or inward rectification. In human aldosterone-secreting cell line, a GIRK4 opener and overexpression of heterotetrameric GIRK1/4WT , but not over-expression of GIRK1/4 mutants, reduced aldosterone secretion. Aldosteronism-causing mutations in cytosolic domain of GIRK4 are loss-of-function mutations rather than gain-of-function, selectivity-loss mutations. Deciphering of exact biophysical mechanism that impairs the channel is crucial for setting the course of treatment. ABSTRACT G-protein gated, inwardly rectifying potassium channels (GIRK) mediate inhibitory transmission in brain and heart, and are present in adrenal cortex. GIRK4 (KCNJ5) subunits are abundant in the heart and adrenal cortex. Multiple mutations of KCNJ5 cause primary aldosteronism (PA). Mutations in the pore region of GIRK4 cause loss of K+ selectivity, Na+ influx, and depolarization of zona glomerulosa cells followed by hypersecretion of aldosterone. The concept of selectivity loss has been extended to mutations in cytosolic domains of GIRK4 channels, remote from the pore. We expressed aldosteronism-linked GIRK4R52H , GIRK4E246K , and GIRK4G247R mutants in Xenopus oocytes. Whole-cell currents of heterotetrameric GIRK1/4R52H and GIRK1/4E246K channels were greatly reduced compared to GIRK1/4WT . Nevertheless, all heterotetrameric mutants retained full K+ selectivity and inward rectification. When expressed as homotetramers, only GIRK4WT , but none of the mutants, produced whole-cell currents. Confocal imaging, single channel and Förster Resonance Energy Transfer (FRET) analyses showed: 1) reduction of membrane abundance of all mutated channels, especially as homotetramers, 2) impaired interaction with Gβγ subunits, and 3) reduced open probability of GIRK1/4R52H . VU0529331, a GIRK4 opener, activated homotetrameric GIRK4G247R channels, but not GIRK4R52H and GIRK4E246K . In human adrenocortical carcinoma cell line (HAC15), VU0529331 and over-expression of heterotetrameric GIRK1/4WT , but not over-expression of GIRK1/4 mutants, reduced aldosterone secretion. Our results suggest that, contrary to pore mutants of GIRK4, non-pore mutants R52H and E246K mutants are loss-of-function rather than gain-of-function/selectivity-loss mutants. Hence, GIRK4 openers may be a potential course of treatment for patients with cytosolic N- and C-terminal mutations. Abstract Figure: There are two mutations types in KCNJ5 (GIRK4) that can cause excessive secretion of aldosterone, leading to primary aldosteronism. Mutations of the first type render the channel non-selective to monovalent cations and often constitutively active, thus depolarizing the zona granulosa cells. This previously described mechanism underlies the disease-causing effects of mutations of amino acid residues located in the pore region (red color). Blockers of the channel may be useful as potential treatment to reduce aldosterone secretion. Here we show that mutations of the second type, located in the cytosolic domain remote from the pore, act by a different mechanism. They do not alter channel's ion selectivity or rectification but cause poor expression or poor activation by Gβγ, resulting in a reduction in cell's K+ conductance and depolarization. In this case, GIRK4 openers can potentially be useful to prevent the excessive aldosterone secretion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Boris Shalomov
- Department of Physiology and Pharmacology, School of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Reem Handklo-Jamal
- Department of Physiology and Pharmacology, School of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Haritha P Reddy
- Department of Physiology and Pharmacology, School of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Neta Theodor
- Department of Physiology and Pharmacology, School of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amal K Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Nathan Dascal
- Department of Physiology and Pharmacology, School of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
4
|
Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis. Physiol Rev 2020; 100:321-356. [PMID: 31793845 DOI: 10.1152/physrev.00044.2018] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Daily dietary potassium (K+) intake may be as large as the extracellular K+ pool. To avoid acute hyperkalemia, rapid removal of K+ from the extracellular space is essential. This is achieved by translocating K+ into cells and increasing urinary K+ excretion. Emerging data now indicate that the renal thiazide-sensitive NaCl cotransporter (NCC) is critically involved in this homeostatic kaliuretic response. This suggests that the early distal convoluted tubule (DCT) is a K+ sensor that can modify sodium (Na+) delivery to downstream segments to promote or limit K+ secretion. K+ sensing is mediated by the basolateral K+ channels Kir4.1/5.1, a capacity that the DCT likely shares with other nephron segments. Thus, next to K+-induced aldosterone secretion, K+ sensing by renal epithelial cells represents a second feedback mechanism to control K+ balance. NCC’s role in K+ homeostasis has both physiological and pathophysiological implications. During hypovolemia, NCC activation by the renin-angiotensin system stimulates Na+ reabsorption while preventing K+ secretion. Conversely, NCC inactivation by high dietary K+ intake maximizes kaliuresis and limits Na+ retention, despite high aldosterone levels. NCC activation by a low-K+ diet contributes to salt-sensitive hypertension. K+-induced natriuresis through NCC offers a novel explanation for the antihypertensive effects of a high-K+ diet. A possible role for K+ in chronic kidney disease is also emerging, as epidemiological data reveal associations between higher urinary K+ excretion and improved renal outcomes. This comprehensive review will embed these novel insights on NCC regulation into existing concepts of K+ homeostasis in health and disease.
Collapse
Affiliation(s)
- Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Catherina A. Cuevas
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A. Fenton
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Meyer DJ, Gatto C, Artigas P. Na/K Pump Mutations Associated with Primary Hyperaldosteronism Cause Loss of Function. Biochemistry 2019; 58:1774-1785. [PMID: 30811176 DOI: 10.1021/acs.biochem.9b00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Primary hyperaldosteronism (Conn's syndrome), a common cause of secondary hypertension, is frequently produced by unilateral aldosterone-producing adenomas that carry mutations in ion-transporting genes, including ATP1A1, encoding the Na/K pump's α1 subunit. Whether Na/K pump mutant-mediated inward currents are required to depolarize the cell and increase aldosterone production remains unclear, as such currents were observed in four out of five mutants described so far. Here, we use electrophysiology and uptake of the K+ congener 86Rb+, to characterize the effects of eight additional Na/K pump mutations in transmembrane segments TM1 (delM102-L103, delL103-L104, and delM102-I106), TM4 (delI322-I325 and I327S), and TM9 (delF956-E961, delF959-E961, and delE960-L964), expressed in Xenopus oocytes. All deletion mutants induced abnormal inward currents of different amplitudes at physiological voltages, while I327S lacked such currents. A detailed functional characterization revealed that I327S significantly reduces intracellular Na+ affinity without altering affinity for external K+. 86Rb+-uptake experiments show that I327S dramatically impairs function under physiological concentrations of Na+ and K+. Since Na/K pumps in the adrenal cortex may be formed by association of α1 with β3 instead of β1 subunits, we evaluated whether G99R (another mutant without inward currents when associated with β1) would show inward currents when associated with β3. We found that the kinetic characteristics of either mutant or wild-type α1β3 pumps expressed in Xenopus oocytes to be indistinguishable from those of α1β1 pumps. The observed functional consequences of each hyperaldosteronism mutant point to the loss of Na/K pump function as the common feature of all mutants, which is sufficient to induce hyperaldosteronism.
Collapse
Affiliation(s)
- Dylan J Meyer
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research , Texas Tech University Health Sciences Center , Lubbock , Texas 79430 , United States
| | - Craig Gatto
- School of Biological Sciences , Illinois State University , Normal , Illinois 61790 , United States
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research , Texas Tech University Health Sciences Center , Lubbock , Texas 79430 , United States
| |
Collapse
|
6
|
Aragao-Santiago L, Gomez-Sanchez CE, Mulatero P, Spyroglou A, Reincke M, Williams TA. Mouse Models of Primary Aldosteronism: From Physiology to Pathophysiology. Endocrinology 2017; 158:4129-4138. [PMID: 29069360 PMCID: PMC5711388 DOI: 10.1210/en.2017-00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/16/2017] [Indexed: 01/08/2023]
Abstract
Primary aldosteronism (PA) is a common form of endocrine hypertension that is characterized by the excessive production of aldosterone relative to suppressed plasma renin levels. PA is usually caused by either a unilateral aldosterone-producing adenoma or bilateral adrenal hyperplasia. Somatic mutations have been identified in several genes that encode ion pumps and channels that may explain the aldosterone excess in over half of aldosterone-producing adenomas, whereas the pathophysiology of bilateral adrenal hyperplasia is largely unknown. A number of mouse models of hyperaldosteronism have been described that recreate some features of the human disorder, although none replicate the genetic basis of human PA. Animal models that reproduce the genotype-phenotype associations of human PA are required to establish the functional mechanisms that underlie the endocrine autonomy and deregulated cell growth of the affected adrenal and for preclinical studies of novel therapeutics. Herein, we discuss the differences in adrenal physiology across species and describe the genetically modified mouse models of PA that have been developed to date.
Collapse
Affiliation(s)
- Leticia Aragao-Santiago
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
| | - Celso E Gomez-Sanchez
- Endocrinology Division, G.V. (Sonny) Montgomery Veterans Affairs Medical Center and University of Mississippi Medical Center
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy
| | - Ariadni Spyroglou
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy
| |
Collapse
|
7
|
Meyer DJ, Gatto C, Artigas P. On the effect of hyperaldosteronism-inducing mutations in Na/K pumps. J Gen Physiol 2017; 149:1009-1028. [PMID: 29030398 PMCID: PMC5677107 DOI: 10.1085/jgp.201711827] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 11/29/2022] Open
Abstract
Mutated Na/K pumps in adrenal adenomas are thought to cause hyperaldosteronism via a gain-of-function effect involving a depolarizing inward current. The findings of Meyer et al. suggest instead that the common mechanism by which Na/K pump mutants lead to hyperaldosteronism is a loss-of-function. Primary aldosteronism, a condition in which too much aldosterone is produced and that leads to hypertension, is often initiated by an aldosterone-producing adenoma within the zona glomerulosa of the adrenal cortex. Somatic mutations of ATP1A1, encoding the Na/K pump α1 subunit, have been found in these adenomas. It has been proposed that a passive inward current transported by several of these mutant pumps is a "gain-of-function" activity that produces membrane depolarization and concomitant increases in aldosterone production. Here, we investigate whether the inward current through mutant Na/K pumps is large enough to induce depolarization of the cells that harbor them. We first investigate inward currents induced by these mutations in Xenopus Na/K pumps expressed in Xenopus oocytes and find that these inward currents are similar in amplitude to wild-type outward Na/K pump currents. Subsequently, we perform a detailed functional evaluation of the human Na/K pump mutants L104R, delF100-L104, V332G, and EETA963S expressed in Xenopus oocytes. By combining two-electrode voltage clamp with [3H]ouabain binding, we measure the turnover rate of these inward currents and compare it to the turnover rate for outward current through wild-type pumps. We find that the turnover rate of the inward current through two of these mutants (EETA963S and L104R) is too small to induce significant cell depolarization. Electrophysiological characterization of another hyperaldosteronism-inducing mutation, G99R, reveals the absence of inward currents under many different conditions, including in the presence of the regulator FXYD1 as well as with mammalian ionic concentrations and body temperatures. Instead, we observe robust outward currents, but with significantly reduced affinities for intracellular Na+ and extracellular K+. Collectively, our results point to loss-of-function as the common mechanism for the hyperaldosteronism induced by these Na/K pump mutants.
Collapse
Affiliation(s)
- Dylan J Meyer
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX.,School of Biological Sciences, Illinois State University, Normal, IL
| | - Craig Gatto
- School of Biological Sciences, Illinois State University, Normal, IL
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
8
|
Fujihara CK, Kowala MC, Breyer MD, Sena CR, Rodrigues MV, Arias SCA, Fanelli C, Malheiros DM, Jadhav PK, Montrose-Rafizadeh C, Krieger JE, Zatz R. A Novel Aldosterone Antagonist Limits Renal Injury in 5/6 Nephrectomy. Sci Rep 2017; 7:7899. [PMID: 28801620 PMCID: PMC5554220 DOI: 10.1038/s41598-017-08383-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/12/2017] [Indexed: 01/13/2023] Open
Abstract
Aldosterone antagonists slow the progression of chronic kidney disease (CKD), but their use is limited by hyperkalemia, especially when associated with RAS inhibitors. We examined the renoprotective effects of Ly, a novel non-steroidal mineralocorticoid receptor (MR) blocker, through two experimental protocols: In Protocol 1, male Munich-Wistar rats underwent 5/6 renal ablation (Nx), being divided into: Nx+V, receiving vehicle, Nx+Eple, given eplerenone, 150 mg/kg/day, and Nx+Ly, given Ly, 20 mg/kg/day. A group of untreated sham-operated rats was also studied. Ly markedly raised plasma renin activity (PRA) and aldosterone, and exerted more effective anti-albuminuric and renoprotective action than eplerenone. In Protocol 2, Nx rats remained untreated until Day 60, when they were divided into: Nx+V receiving vehicle; Nx+L treated with losartan, 50 mg/kg/day; Nx+L+Eple, given losartan and eplerenone, and Nx+L+Ly, given losartan and Ly. Treatments lasted for 90 days. As an add-on to losartan, Ly normalized blood pressure and albuminuria, and prevented CKD progression more effectively than eplerenone. This effect was associated with strong stimulation of PRA and aldosterone. Despite exhibiting higher affinity for the MR than either eplerenone or spironolactone, Ly caused no hyperkalemia. Ly may become a novel asset in the effort to detain the progression of CKD.
Collapse
Affiliation(s)
| | - M C Kowala
- Lilly Research Laboratories, Indianapolis, IN, USA
| | - M D Breyer
- Lilly Research Laboratories, Indianapolis, IN, USA
| | - Claudia R Sena
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | - Camilla Fanelli
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - P K Jadhav
- Lilly Research Laboratories, Indianapolis, IN, USA
| | | | - Jose E Krieger
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Dutta RK, Söderkvist P, Gimm O. Genetics of primary hyperaldosteronism. Endocr Relat Cancer 2016; 23:R437-54. [PMID: 27485459 DOI: 10.1530/erc-16-0055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/01/2016] [Indexed: 01/19/2023]
Abstract
Hypertension is a common medical condition and affects approximately 20% of the population in developed countries. Primary aldosteronism is the most common form of secondary hypertension and affects 8-13% of patients with hypertension. The two most common causes of primary aldosteronism are aldosterone-producing adenoma and bilateral adrenal hyperplasia. Familial hyperaldosteronism types I, II and III are the known genetic syndromes, in which both adrenal glands produce excessive amounts of aldosterone. However, only a minority of patients with primary aldosteronism have one of these syndromes. Several novel susceptibility genes have been found to be mutated in aldosterone-producing adenomas: KCNJ5, ATP1A1, ATP2B3, CTNNB1, CACNA1D, CACNA1H and ARMC5 This review describes the genes currently known to be responsible for primary aldosteronism, discusses the origin of aldosterone-producing adenomas and considers the future clinical implications based on these novel insights.
Collapse
Affiliation(s)
- Ravi Kumar Dutta
- Department of Clinical and Experimental MedicineMedical Faculty, Linköping University, Linköping, Sweden
| | - Peter Söderkvist
- Department of Clinical and Experimental MedicineMedical Faculty, Linköping University, Linköping, Sweden
| | - Oliver Gimm
- Department of SurgeryCounty Council of Östergötland, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Spät A, Hunyady L, Szanda G. Signaling Interactions in the Adrenal Cortex. Front Endocrinol (Lausanne) 2016; 7:17. [PMID: 26973596 PMCID: PMC4770035 DOI: 10.3389/fendo.2016.00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022] Open
Abstract
The major physiological stimuli of aldosterone secretion are angiotensin II (AII) and extracellular K(+), whereas cortisol production is primarily regulated by corticotropin (ACTH) in fasciculata cells. AII triggers Ca(2+) release from internal stores that is followed by store-operated and voltage-dependent Ca(2+) entry, whereas K(+)-evoked depolarization activates voltage-dependent Ca(2+) channels. ACTH acts primarily through the formation of cAMP and subsequent protein phosphorylation by protein kinase A. Both Ca(2+) and cAMP facilitate the transfer of cholesterol to mitochondrial inner membrane. The cytosolic Ca(2+) signal is transferred into the mitochondrial matrix and enhances pyridine nucleotide reduction. Increased formation of NADH results in increased ATP production, whereas that of NADPH supports steroid production. In reality, the control of adrenocortical function is a lot more sophisticated with second messengers crosstalking and mutually modifying each other's pathways. Cytosolic Ca(2+) and cGMP are both capable of modifying cAMP metabolism, while cAMP may enhance Ca(2+) release and voltage-activated Ca(2+) channel activity. Besides, mitochondrial Ca(2+) signal brings about cAMP formation within the organelle and this further enhances aldosterone production. Maintained aldosterone and cortisol secretion are optimized by the concurrent actions of Ca(2+) and cAMP, as exemplified by the apparent synergism of Ca(2+) influx (inducing cAMP formation) and Ca(2+) release during response to AII. Thus, cross-actions of parallel signal transducing pathways are not mere intracellular curiosities but rather substantial phenomena, which fine-tune the biological response. Our review focuses on these functionally relevant interactions between the Ca(2+) and the cyclic nucleotide signal transducing pathways hitherto described in the adrenal cortex.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
- *Correspondence: András Spät,
| | - László Hunyady
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergő Szanda
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
| |
Collapse
|
11
|
Abstract
Until recently, significant advances in our understanding of the mechanisms of blood pressure regulation arose from studies of monogenic forms of hypertension and hypotension, which identified rare variants that primarily alter renal salt handling. Genome-wide association and exome sequencing studies over the past 6 years have resulted in an unparalleled burst of discovery in the genetics of blood pressure regulation and hypertension. More importantly, genome-wide association studies, while expanding the list of common genetic variants associated with blood pressure and hypertension, are also uncovering novel pathways of blood pressure regulation that augur a new era of novel drug development, repurposing, and stratification in the management of hypertension. In this review, we describe the current state of the art of the genetic and molecular basis of blood pressure and hypertension.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- From the Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences University of Glasgow, Glasgow, United Kingdom (S.P., A.F.D.); and Queen Mary University of London, Barts and The London School of Medicine, Clinical Pharmacology, London, United Kingdom (M.C.)
| | - Mark Caulfield
- From the Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences University of Glasgow, Glasgow, United Kingdom (S.P., A.F.D.); and Queen Mary University of London, Barts and The London School of Medicine, Clinical Pharmacology, London, United Kingdom (M.C.)
| | - Anna F Dominiczak
- From the Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences University of Glasgow, Glasgow, United Kingdom (S.P., A.F.D.); and Queen Mary University of London, Barts and The London School of Medicine, Clinical Pharmacology, London, United Kingdom (M.C.).
| |
Collapse
|
12
|
Nanba K, Chen A, Nishimoto K, Rainey WE. Role of Ca(2+)/calmodulin-dependent protein kinase kinase in adrenal aldosterone production. Endocrinology 2015; 156:1750-6. [PMID: 25679868 PMCID: PMC4398758 DOI: 10.1210/en.2014-1782] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is considerable evidence supporting the role of calcium signaling in adrenal regulation of both aldosterone synthase (CYP11B2) and aldosterone production. However, there have been no studies that investigated the role played by the Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) in adrenal cells. In this study we investigated the role of CaMKK in adrenal cell aldosterone production. To determine the role of CaMKK, we used a selective CaMKK inhibitor (STO-609) in the HAC15 human adrenal cell line. Cells were treated with angiotensin II (Ang II) or K+ and evaluated for the expression of steroidogenic acute regulatory protein and CYP11B2 (mRNA/protein) as well as aldosterone production. We also transduced HAC15 cells with lentiviral short hairpin RNAs of CaMKK1 and CaMKK2 to determine which CaMKK plays a more important role in adrenal cell regulation of the calcium signaling cascade. The CaMKK inhibitor, STO-609, decreased aldosterone production in cells treated with Ang II or K+ in a dose-dependent manner. STO-609 (20 μM) also inhibited steroidogenic acute regulatory protein and CYP11B2 mRNA/protein induction. CaMKK2 knockdown cells showed significant reduction of CYP11B2 mRNA induction and aldosterone production in cells treated with Ang II, although there was no obvious effect in CaMKK1 knockdown cells. In immunohistochemical analysis, CaMKK2 protein was highly expressed in human adrenal zona glomerulosa with lower expression in the zona fasciculata. In conclusion, the present study suggests that CaMKK2 plays a pivotal role in the calcium signaling cascade regulating adrenal aldosterone production.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | | | | | | |
Collapse
|
13
|
Abstract
Aldosterone is a steroid hormone synthesized in and secreted from the outer layer of the adrenal cortex, the zona glomerulosa. Aldosterone is responsible for regulating sodium homeostasis, thereby helping to control blood volume and blood pressure. Insufficient aldosterone secretion can lead to hypotension and circulatory shock, particularly in infancy. On the other hand, excessive aldosterone levels, or those too high for sodium status, can cause hypertension and exacerbate the effects of high blood pressure on multiple organs, contributing to renal disease, stroke, visual loss, and congestive heart failure. Aldosterone is also thought to directly induce end-organ damage, including in the kidneys and heart. Because of the significance of aldosterone to the physiology and pathophysiology of the cardiovascular system, it is important to understand the regulation of its biosynthesis and secretion from the adrenal cortex. Herein, the mechanisms regulating aldosterone production in zona glomerulosa cells are discussed, with a particular emphasis on signaling pathways involved in the secretory response to the main controllers of aldosterone production, the renin-angiotensin II system, serum potassium levels and adrenocorticotrophic hormone. The signaling pathways involved include phospholipase C-mediated phosphoinositide hydrolysis, inositol 1,4,5-trisphosphate, cytosolic calcium levels, calcium influx pathways, calcium/calmodulin-dependent protein kinases, diacylglycerol, protein kinases C and D, 12-hydroxyeicostetraenoic acid, phospholipase D, mitogen-activated protein kinase pathways, tyrosine kinases, adenylate cyclase, and cAMP-dependent protein kinase. A complete understanding of the signaling events regulating aldosterone biosynthesis may allow the identification of novel targets for therapeutic interventions in hypertension, primary aldosteronism, congestive heart failure, renal disease, and other cardiovascular disorders.
Collapse
Affiliation(s)
- Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| |
Collapse
|
14
|
Martinez-Arguelles DB, Campioli E, Lienhart C, Fan J, Culty M, Zirkin BR, Papadopoulos V. In utero exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate induces long-term changes in gene expression in the adult male adrenal gland. Endocrinology 2014; 155:1667-78. [PMID: 24564399 DOI: 10.1210/en.2013-1921] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The plasticizer di-(2-ethylhexyl) phthalate (DEHP) is used to add flexibility to polyvinylchloride polymers and as a component of numerous consumer and medical products. DEHP and its metabolites have been detected in amniotic fluid and umbilical cord blood, suggesting fetal exposure. In the present study, we used an in utero exposure model in which pregnant rat dams were exposed to 1- to 300-mg DEHP/kg·d from gestational day 14 until birth. We previously reported that this window of exposure to environmentally relevant doses of DEHP resulted in reduced levels of serum testosterone and aldosterone in adult male offspring and that the effects on aldosterone were sustained in elderly rats and resulted in decreased blood pressure. Here, we characterized the long-term effects of in utero DEHP exposure by performing global gene expression analysis of prepubertal (postnatal d 21) and adult (postnatal d 60) adrenal glands. We found that the peroxisome proliferator-activated receptor and lipid metabolism pathways were affected by DEHP exposure. Expression of 2 other DEHP targets, hormone-sensitive lipase and phosphoenolpyruvate carboxykinase 1 (Pck1), correlated with reduced aldosterone levels and may account for the inhibitory effect of DEHP on adrenal steroid formation. The angiotensin II and potassium pathways were up-regulated in response to DEHP. In addition, the potassium intermediate/small conductance calcium-activated channel Kcnn2 and 2-pore-domain potassium channel Knck5 were identified as DEHP targets. Based on this gene expression analysis, we measured fatty acid-binding protein 4 and phosphoenolpyruvate carboxykinase 1 in sera from control and DEHP-exposed rats and identified both proteins as putative serum biomarkers of in utero DEHP exposure. These results shed light on molecular targets that mediate DEHP long-term effects and, in doing so, provide means by which to assess past DEHP exposure.
Collapse
Affiliation(s)
- D B Martinez-Arguelles
- Research Institute of the McGill University Health Centre (M.C.); Departments of Medicine (D.B.M.-A., E.C., C.L., J.F., M.C., V.P.), Pharmacology and Therapeutics (D.B.M.-A., E.C., C.L., J.F., M.C., V.P.), and Biochemistry (V.P.), McGill University, Montreal, Québec, Canada H3G 1A4; and Department of Biochemistry and Molecular Biology (B.R.Z.), Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | | | | | | | | | | | | |
Collapse
|
15
|
McManus F, Alvarez-Madrazo S, Connell JM. Progress in the identification of responsible genes and molecular mechanisms in primary aldosteronism. Expert Rev Endocrinol Metab 2014; 9:163-174. [PMID: 30743758 DOI: 10.1586/17446651.2014.883276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aldosterone, the mineralocorticoid hormone, plays an important role in blood regulation. Autonomous secretion of aldosterone is known as primary aldosteronism (PA), the most common cause of secondary hypertension. PA comprises a group of heterogenous disorders which makes their classification and management challenging. With the advent of the genomic era several germline and somatic mutations have been identified that are involved in the pathogenesis of primary aldosteronism. This article will review our current knowledge of the genetic mechanisms of familial hyperaldosterism, somatic mutations in genes encoding electrolyte channels and other potential genetic mechanisms implicated in the dysregulation of aldosterone production from in vitro and animal models. There is potential for novel targeted therapies and diagnosis for subsets of patient. The challenges to achieve them are highlighted in this review.
Collapse
Affiliation(s)
- Frances McManus
- a Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Samantha Alvarez-Madrazo
- a Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - John M Connell
- b Medical Research Institute, College of Medicine, Dentistry and Nursing, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
16
|
Williams TA, Monticone S, Schack VR, Stindl J, Burrello J, Buffolo F, Annaratone L, Castellano I, Beuschlein F, Reincke M, Lucatello B, Ronconi V, Fallo F, Bernini G, Maccario M, Giacchetti G, Veglio F, Warth R, Vilsen B, Mulatero P. Somatic
ATP1A1
,
ATP2B3
, and
KCNJ5
Mutations in Aldosterone-Producing Adenomas. Hypertension 2014; 63:188-95. [DOI: 10.1161/hypertensionaha.113.01733] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aldosterone-producing adenomas (APAs) cause a sporadic form of primary aldosteronism and somatic mutations in the
KCNJ5
gene, which encodes the G-protein–activated inward rectifier K
+
channel 4, GIRK4, account for ≈40% of APAs. Additional somatic APA mutations were identified recently in 2 other genes,
ATP1A1
and
ATP2B3
, encoding Na
+
/K
+
-ATPase 1 and Ca
2+
-ATPase 3, respectively, at a combined prevalence of 6.8%. We have screened 112 APAs for mutations in known hotspots for genetic alterations associated with primary aldosteronism. Somatic mutations in
ATP1A1
,
ATP2B3
, and
KCNJ5
were present in 6.3%, 0.9%, and 39.3% of APAs, respectively, and included 2 novel mutations (Na
+
/K
+
-ATPase p.Gly99Arg and GIRK4 p.Trp126Arg).
CYP11B2
gene expression was higher in APAs harboring
ATP1A1
and
ATP2B3
mutations compared with those without these or
KCNJ5
mutations. Overexpression of Na
+
/K
+
-ATPase p.Gly99Arg and GIRK4 p.Trp126Arg in HAC15 adrenal cells resulted in upregulation of
CYP11B2
gene expression and its transcriptional regulator
NR4A2.
Structural modeling of the Na
+
/K
+
-ATPase showed that the Gly99Arg substitution most likely interferes with the gateway to the ion binding pocket. In vitro functional assays demonstrated that Gly99Arg displays severely impaired ATPase activity, a reduced apparent affinity for Na
+
activation of phosphorylation and K
+
inhibition of phosphorylation that indicate decreased Na
+
and K
+
binding, respectively. Moreover, whole cell patch-clamp studies established that overexpression of Na
+
/K
+
-ATPase Gly99Arg causes membrane voltage depolarization. In conclusion, somatic mutations are common in APAs that result in an increase in
CYP11B2
gene expression and may account for the dysregulated aldosterone production in a subset of patients with sporadic primary aldosteronism.
Collapse
Affiliation(s)
- Tracy Ann Williams
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Silvia Monticone
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Vivien R. Schack
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Julia Stindl
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Jacopo Burrello
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Fabrizio Buffolo
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Laura Annaratone
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Isabella Castellano
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Felix Beuschlein
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Martin Reincke
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Barbara Lucatello
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Vanessa Ronconi
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Francesco Fallo
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Giampaolo Bernini
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Mauro Maccario
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Gilberta Giacchetti
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Franco Veglio
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Richard Warth
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Bente Vilsen
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| | - Paolo Mulatero
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., J.B., F. Buffolo, F.V., P.M.), Division of Pathology (L.A., I.C.), and Division of Endocrinology, Diabetes, and Metabolism (B.L., M.M.), Department of Medical Sciences, University of Torino, Torino, Italy; Department of Biomedicine, Aarhus University, Aarhus, Denmark (V.R.S., B.V.); Medical Cell Biology, University of Regensburg, Regensburg, Germany (J.S., R.W.); Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians
| |
Collapse
|
17
|
Ip JCY, Pang TCY, Pon CK, Zhao JT, Sywak MS, Gill AJ, Soon PS, Sidhu SB. Mutations in KCNJ5 determines presentation and likelihood of cure in primary hyperaldosteronism. ANZ J Surg 2013; 85:279-83. [PMID: 24274318 DOI: 10.1111/ans.12470] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2013] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Primary hyperaldosteronism (PA) is a common cause of secondary hypertension. Two recurrent mutations (G151R and L168R) in the potassium channel gene KCNJ5 have been identified that affect the Kir3.4 potassium channel found in the cells of the zona glomerulosa of the adrenal gland. The aim of this study was to determine the prevalence of KCNJ5 mutations in an Australian cohort of patients and to correlate these findings with clinical outcome data, in order to describe the clinical impact on patients who harbour this mutation. METHODS Direct Sanger sequencing for KCNJ5 on DNA from adrenal tumour tissue of 83 patients with PA in a cohort study was undertaken and mutation status correlated with clinical outcome data. RESULTS Seventy-one of 83 patients (86%) had adrenocortical adenomas and 12 patients (14%) had bilateral adrenal hyperplasia. A total of 34 (41%) patients were found to have heterozygous somatic mutations in KCNJ5, G151R and L168R. No germ line mutations were identified. Patients with mutations were predominately female (68% versus 49%) and significantly younger at presentation (48 versus 55 years). When correlated with clinical data, our results demonstrated that patients with KCNJ5 mutations were more likely to be cured following surgery without the requirement for ongoing medications. CONCLUSIONS Our findings in a large Australian cohort show that patients with mutations in KCNJ5 present earlier with the signs and symptoms of PA benefit from surgical intervention. Moreover, our results highlight the importance of a thorough workup and management plan for younger patients who present with hypertension.
Collapse
Affiliation(s)
- Julian C Y Ip
- Cancer Genetics, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, New South Wales, Australia; Faculty of Medicine, Northern Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
New insights into aldosterone-producing adenomas and hereditary aldosteronism. Curr Opin Nephrol Hypertens 2013; 22:141-7. [DOI: 10.1097/mnh.0b013e32835cecf8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Mulatero P, Monticone S, Rainey WE, Veglio F, Williams TA. Role of KCNJ5 in familial and sporadic primary aldosteronism. Nat Rev Endocrinol 2013; 9:104-12. [PMID: 23229280 DOI: 10.1038/nrendo.2012.230] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Primary aldosteronism is characterised by the dysregulation of aldosterone production and comprises both sporadic forms, caused by an aldosterone-producing adenoma or bilateral adrenal hyperplasia, and familial forms (familial hyperaldosteronism types I, II and III). The two principal physiological regulators of aldosterone synthesis are angiotensin II and serum K(+), which reverse the high resting K(+) conductance and hyperpolarized membrane potential of adrenal glomerulosa cells. The resulting membrane depolarization causes the opening of voltage-gated Ca(2+) channels and an increase in intracellular Ca(2+) that stimulates aldosterone biosynthesis. Point mutations in the KCNJ5 gene, which encodes the G-protein-activated inward rectifier K(+) channel 4 (GIRK4), have been implicated in the pathogenesis of both sporadic and familial forms of primary aldosteronism. These mutations interfere with the selectivity filter of GIRK4 causing Na(+) entry, cell depolarization and Ca(2+) channel opening, resulting in constitutive aldosterone production. Seven families with familial hyperaldosteronism caused by KCNJ5 germline mutations have so far been described, and multicentre studies have reported KCNJ5 mutations in approximately 40% of sporadic aldosterone-producing adenomas. Herein, we review the role of GIRK4 in adrenal pathophysiology and provide an overview of the clinical and biochemical phenotypes resulting from KCNJ5 mutations in patients with sporadic and familial primary aldosteronism.
Collapse
Affiliation(s)
- Paolo Mulatero
- University of Torino, Department of Medical Sciences, Division of Internal Medicine and Hypertension, Italy. paolo.mulatero@ unito.it
| | | | | | | | | |
Collapse
|
20
|
Penton D, Bandulik S, Schweda F, Haubs S, Tauber P, Reichold M, Cong LD, El Wakil A, Budde T, Lesage F, Lalli E, Zennaro MC, Warth R, Barhanin J. Task3 potassium channel gene invalidation causes low renin and salt-sensitive arterial hypertension. Endocrinology 2012; 153:4740-4748. [PMID: 22878402 DOI: 10.1210/en.2012-1527] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Task1 and Task3 potassium channels (Task: tandem of P domains in a weak inward rectifying K(+) channel-related acid-sensitive K(+) channel) are believed to control the membrane voltage of aldosterone-producing adrenal glomerulosa cells. This study aimed at understanding the role of Task3 for the control of aldosterone secretion. The adrenal phenotype of Task3(-/-) mice was investigated using electrophysiology, adrenal slices, and blood pressure measurements. Primary adrenocortical cells of Task3(-/-) mice were strongly depolarized compared with wild-type (-52 vs. -79 mV), and in fresh adrenal slices Ca(2+) signaling of Task3(-/-) glomerulosa cells was abnormal. In living Task3(-/-) mice, the regulation of aldosterone secretion showed specific deficits: Under low Na(+) and high K(+) diets, protocols known to increase aldosterone, and under standard diet, Task3 inactivation was compensated and aldosterone was normal. However, high Na(+) and low K(+) diets, two protocols known to lower aldosterone, failed to lower aldosterone in Task3(-/-) mice. The physiological regulation of aldosterone was disturbed: aldosterone-renin ratio, an indicator of autonomous aldosterone secretion, was 3-fold elevated at standard and high Na(+) diets. Isolated adrenal glands of Task3(-/-) produced 2-fold more aldosterone. As a consequence, Task3(-/-) mice showed salt-sensitive arterial hypertension (plus 10 mm Hg). In conclusion, Task3 plays an important role in the adaptation of aldosterone secretion to dietary salt intake.
Collapse
Affiliation(s)
- David Penton
- University of Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Charmandari E, Sertedaki A, Kino T, Merakou C, Hoffman DA, Hatch MM, Hurt DE, Lin L, Xekouki P, Stratakis CA, Chrousos GP. A novel point mutation in the KCNJ5 gene causing primary hyperaldosteronism and early-onset autosomal dominant hypertension. J Clin Endocrinol Metab 2012; 97:E1532-9. [PMID: 22628607 PMCID: PMC3410272 DOI: 10.1210/jc.2012-1334] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Aldosterone production in the adrenal zona glomerulosa is mainly regulated by angiotensin II, [K(+)], and ACTH. Genetic deletion of subunits of K(+)-selective leak (KCNK) channels TWIK-related acid sensitive K(+)-1 and/or TWIK-related acid sensitive K(+)-3 in mice results in primary hyperaldosteronism, whereas mutations in the KCNJ5 (potassium inwardly rectifying channel, subfamily J, member 5) gene are implicated in primary hyperaldosteronism and, in certain cases, in autonomous glomerulosa cell proliferation in humans. OBJECTIVE The objective of the study was to investigate the role of KCNK3, KCNK5, KCNK9, and KCNJ5 genes in a family with primary hyperaldosteronism and early-onset hypertension. PATIENTS AND METHODS Two patients, a mother and a daughter, presented with severe primary hyperaldosteronism, bilateral massive adrenal hyperplasia, and early-onset hypertension refractory to medical treatment. Genomic DNA was isolated and the exons of the entire coding regions of the above genes were amplified and sequenced. Electrophysiological studies were performed to determine the effect of identified mutation(s) on the membrane reversal potentials. RESULTS Sequencing of the KCNJ5 gene revealed a single, heterozygous guanine to thymine (G → T) substitution at nucleotide position 470 (n.G470T), resulting in isoleucine (I) to serine (S) substitution at amino acid 157 (p.I157S). This mutation results in loss of ion selectivity, cell membrane depolarization, increased Ca(2+) entry in adrenal glomerulosa cells, and increased aldosterone synthesis. Sequencing of the KCNK3, KCNK5, and KCNK9 genes revealed no mutations in our patients. CONCLUSIONS These findings explain the pathogenesis in a subset of patients with severe hypertension and implicate loss of K(+) channel selectivity in constitutive aldosterone production.
Collapse
Affiliation(s)
- Evangelia Charmandari
- Division of Endocrinology, First Department of Pediatrics, University of Athens Medical School, Aghia Sophia Children's Hospital, Athens 11527, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Spät A, Fülöp L, Szanda G. The role of mitochondrial Ca(2+) and NAD(P)H in the control of aldosterone secretion. Cell Calcium 2012; 52:64-72. [PMID: 22364774 DOI: 10.1016/j.ceca.2012.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 01/03/2023]
Abstract
The mineralocorticoid hormone aldosterone is synthesized in the zona glomerulosa of the adrenal cortex. Glomerulosa cells respond to the physiological stimuli, elevated extracellular [K(+)] and angiotensin II, with an intracellular Ca(2+) signal. Cytosolic Ca(2+) facilitates the transport of the steroid-precursor cholesterol to mitochondria and, after a few hours, it also induces the transcription of aldosterone synthase. Therefore, the cytosolic Ca(2+) signal is regarded as the most important short and long-term mediator of aldosterone secretion. However, cytosolic Ca(2+) is also taken up by mitochondria and, in turn, the mitochondrial Ca(2+) response activates mitochondrial dehydrogenases resulting in stimulation of respiration and increase in reduced pyridine nucleotides. Since both cholesterol side-chain cleavage and all of the hydroxylation steps of steroid synthesis require NADPH as a cofactor, the importance of cytosolic Ca(2+) - mitochondrial Ca(2+) coupling and of appropriate NADPH supply in respect to hormone production can be assumed. However, the importance of the mitochondrial factors has been neglected so far. Here, after summarizing earlier findings we provide new results obtained through modifying mitochondrial Ca(2+) uptake by knocking down p38 MAPK or OPA1 and overexpressing S100G, supporting the notion that mitochondrial Ca(2+) and reduced pyridine nucleotides are facilitating factors for both basal and stimulated steroid production.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Faculty of Medicine, Semmelweis University, Hungary.
| | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW This review summarizes recent studies of hypertension associated with a defect in renal K excretion due to genetic deletions of various components of the large, Ca-activated K channel (BK), and describes new evidence and theories regarding K secretory roles of BK in intercalated cells. RECENT FINDINGS Isolated perfused tubule methods have revealed the importance of BK in flow-induced K secretion. Subsequently, mice with genetically deleted BK subunits revealed the complexities of BK-mediated K secretion. Deletion of BKα results in extreme aldosteronism, hypertension, and an absence of flow-induced K secretion. Deletion of the BKβ1 ancillary subunit results in decreased handling of a K load, increased plasma K, mild aldosteronism and hypertension that is exacerbated by a high K diet. Deletion of BKβ4 (β4KO) leads to insufficient K handling, high plasma K, fluid retention, but with milder hypertension. Fluid retention in β4KO may be the result of insufficient flow-induced secretion of adenosine triphosphate (ATP), which normally inhibits epithelial Na channels (ENaCs). SUMMARY Classical physiological analysis of electrolyte handling in knockout mice has enlightened our understanding of the mechanism of handling K loads by renal K channels. Studies have focused on the different roles of BK-α/β1 and BK-α/β4 in the kidney. BKβ1 hypertension may be a 'three-hit' hypertension, involving a K secretory defect, elevated production of aldosterone, and increased vascular tone. The disorders observed in BK knockout mice have shed new insights on the importance of proper renal K handling for maintaining volume balance and blood pressure.
Collapse
|
24
|
Choi M, Scholl UI, Yue P, Björklund P, Zhao B, Nelson-Williams C, Ji W, Cho Y, Patel A, Men CJ, Lolis E, Wisgerhof MV, Geller DS, Mane S, Hellman P, Westin G, Åkerström G, Wang W, Carling T, Lifton RP. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 2011; 331:768-72. [PMID: 21311022 PMCID: PMC3371087 DOI: 10.1126/science.1198785] [Citation(s) in RCA: 697] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endocrine tumors such as aldosterone-producing adrenal adenomas (APAs), a cause of severe hypertension, feature constitutive hormone production and unrestrained cell proliferation; the mechanisms linking these events are unknown. We identify two recurrent somatic mutations in and near the selectivity filter of the potassium (K(+)) channel KCNJ5 that are present in 8 of 22 human APAs studied. Both produce increased sodium (Na(+)) conductance and cell depolarization, which in adrenal glomerulosa cells produces calcium (Ca(2+)) entry, the signal for aldosterone production and cell proliferation. Similarly, we identify an inherited KCNJ5 mutation that produces increased Na(+) conductance in a Mendelian form of severe aldosteronism and massive bilateral adrenal hyperplasia. These findings explain pathogenesis in a subset of patients with severe hypertension and implicate loss of K(+) channel selectivity in constitutive cell proliferation and hormone production.
Collapse
Affiliation(s)
- Murim Choi
- Departments of Genetics and Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ute I. Scholl
- Departments of Genetics and Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Peng Yue
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Peyman Björklund
- Department of Surgery, Yale Endocrine Neoplasia Laboratory and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Bixiao Zhao
- Departments of Genetics and Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carol Nelson-Williams
- Departments of Genetics and Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Weizhen Ji
- Departments of Genetics and Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yoonsang Cho
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Aniruddh Patel
- Departments of Genetics and Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Clara J. Men
- Departments of Genetics and Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Elias Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Max V. Wisgerhof
- Division of Endocrinology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - David S. Geller
- Section of Nephrology, Yale University School of Medicine, and Department of Medicine, Veterans Affairs Medical Center, West Haven, CT 06516, USA
| | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Gunnar Westin
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Göran Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Wenhui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Tobias Carling
- Department of Surgery, Yale Endocrine Neoplasia Laboratory and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard P. Lifton
- Departments of Genetics and Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
25
|
Huang HL, Chiang MF, Lin CW, Pu HF. Lipopolysaccharide directly stimulates aldosterone production via toll-like receptor 2 and toll-like receptor 4 related PI3K/Akt pathway in rat adrenal zona glomerulosa cells. J Cell Biochem 2010; 111:872-80. [DOI: 10.1002/jcb.22774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Buckler KJ. Two-pore domain k(+) channels and their role in chemoreception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:15-30. [PMID: 20204721 DOI: 10.1007/978-1-60761-500-2_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A number of tandem P-domain K(+)- channels (K(2)P) generate background K(+)-currents similar to those found in enteroreceptors that sense a diverse range of physiological stimuli including blood pH, carbon dioxide, oxygen, potassium and glucose. This review presents an overview of the properties of both cloned K(2)P tandem-P-domain K-channels and the endogenous chemosensitive background K-currents found in central chemoreceptors, peripheral chemoreceptors, the adrenal gland and the hypothalamus. Although the identity of many of these endogenous channels has yet to be confirmed they show striking similarities to a number of K(2)P channels especially those of the TASK subgroup. Moreover these channels seem often (albeit not exclusively) to be involved in pH and nutrient/metabolic sensing.
Collapse
Affiliation(s)
- Keith J Buckler
- Department of Physiology Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
27
|
Ansurudeen I, Willenberg HS, Kopprasch S, Krug AW, Ehrhart-Bornstein M, Bornstein SR. Endothelial factors mediate aldosterone release via PKA-independent pathways. Mol Cell Endocrinol 2009; 300:66-70. [PMID: 19073232 DOI: 10.1016/j.mce.2008.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 11/06/2008] [Accepted: 11/16/2008] [Indexed: 12/15/2022]
Abstract
Aldosterone synthesis is primarily regulated by angiotensin II and potassium ions. In addition, endothelial cell-secreted factors have been shown to regulate mineralocorticoid release. We analyzed the pathways that mediate endothelial cell-factor-induced aldosterone release from adrenocortical cells, NCI-H295R using endothelial cell-conditioned medium (ECM). The cAMP antagonist Rp-cAMP caused a 44% decrease in the ECM-induced aldosterone release but inhibition of cAMP-dependent PKA had no effect on aldosterone release. Interestingly, inhibition of cAMP-regulated guanine nucleotide exchange factor Epac with brefeldin-A decreased the ECM-induced aldosterone release by 45%. Similarly, inhibition of p38 MAP-kinase; PI-3-kinase and PKB significantly reduced the ECM-induced aldosterone release whereas inhibition of ERK1/2 and PKC did not decrease aldosterone release. These results provide evidence for the existence of a cAMP-dependent but PKA-independent pathway in mediating the ECM-induced aldosterone release and the significant influence of more than one signaling mechanism.
Collapse
Affiliation(s)
- Ishrath Ansurudeen
- Department of Medicine III, Carl Gustav Carus Medical School, University of Technology, Fetscherstrasse 74, 01307 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Odermatt A, Atanasov AG. Mineralocorticoid receptors: emerging complexity and functional diversity. Steroids 2009; 74:163-71. [PMID: 19022273 DOI: 10.1016/j.steroids.2008.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/18/2008] [Accepted: 10/20/2008] [Indexed: 12/29/2022]
Abstract
Mineralocorticoid receptor (MR) activation in renal epithelial cells in response to the binding of aldosterone has long been implicated in the maintenance of body salt and fluid homeostasis and blood pressure control. 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) is believed to confer specificity on aldosterone to activate MR by inactivating 11beta-hydroxyglucocorticoids (corticosterone, cortisol) that are 100-1000 times more abundant in plasma than aldosterone and that can also bind and activate MR. Increasing evidence, however, challenges such a simple view of MR activation as well as its interaction with glucocorticoids and 11beta-HSDs. In non-epithelial tissues including brain, cardiomyocytes and macrophages, 11beta-hydroxyglucocorticoids seem to act as MR antagonists, and redox changes and signaling events may play pivotal roles for receptor activation in these tissues. This review addresses the emerging new view of the complex mechanisms underlying MR specificity of action, with a diversity of physiological roles and functions in different mineralocorticoid-responsive tissues.
Collapse
Affiliation(s)
- Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
29
|
Connell JMC, MacKenzie SM, Freel EM, Fraser R, Davies E. A lifetime of aldosterone excess: long-term consequences of altered regulation of aldosterone production for cardiovascular function. Endocr Rev 2008; 29:133-54. [PMID: 18292466 DOI: 10.1210/er.2007-0030] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Up to 15% of patients with essential hypertension have inappropriate regulation of aldosterone; although only a minority have distinct adrenal tumors, recent evidence shows that mineralocorticoid receptor activation contributes to the age-related blood pressure rise and illustrates the importance of aldosterone in determining cardiovascular risk. Aldosterone also has a major role in progression and outcome of ischemic heart disease. These data highlight the need to understand better the regulation of aldosterone synthesis and its action. Aldosterone effects are mediated mainly through classical nuclear receptors that alter gene transcription. In classic epithelial target tissues, signaling mechanisms are relatively well defined. However, aldosterone has major effects in nonepithelial tissues that include increased synthesis of proinflammatory molecules and reactive oxygen species; it remains unclear how these effects are controlled and how receptor specificity is maintained. Variation in aldosterone production reflects interaction of genetic and environmental factors. Although the environmental factors are well understood, the genetic control of aldosterone synthesis is still the subject of debate. Aldosterone synthase (encoded by the CYP11B2 gene) controls conversion of deoxycorticosterone to aldosterone. Polymorphic variation in CYP11B2 is associated with increased risk of hypertension, but the molecular mechanism that accounts for this is not known. Altered 11beta-hydroxylase efficiency (conversion of deoxycortisol to cortisol) as a consequence of variation in the neighboring gene (CYP11B1) may be important in contributing to altered control of aldosterone synthesis, so that the risk of hypertension may reflect a digenic effect, a concept that is discussed further. There is evidence that a long-term increase in aldosterone production from early life is determined by an interaction of genetic and environmental factors, leading to the eventual phenotypes of aldosterone-associated hypertension and cardiovascular damage in middle age and beyond. The importance of aldosterone has generated interest in its therapeutic modulation. Disadvantages associated with spironolactone (altered libido, gynecomastia) have led to a search for alternative mineralocorticoid receptor antagonists. Of these, eplerenone has been shown to reduce cardiovascular risk after myocardial infarction. The benefits and disadvantages of this therapeutic approach are discussed.
Collapse
Affiliation(s)
- John M C Connell
- Division of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, United Kingdom.
| | | | | | | | | |
Collapse
|
30
|
Brizuela L, Rábano M, Gangoiti P, Narbona N, Macarulla JM, Trueba M, Gómez-Muñoz A. Sphingosine-1-phosphate stimulates aldosterone secretion through a mechanism involving the PI3K/PKB and MEK/ERK 1/2 pathways. J Lipid Res 2007; 48:2264-74. [PMID: 17609523 DOI: 10.1194/jlr.m700291-jlr200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We reported recently that sphingosine-1-phosphate (S1P) is a novel regulator of aldosterone secretion in zona glomerulosa cells of adrenal glands and that phospholipase D (PLD) is implicated in this process. We now show that S1P causes the phosphorylation of protein kinase B (PKB) and extracellularly regulated kinases 1/2 (ERK 1/2), which is an indication of their activation, in these cells. These effects are probably mediated through the interaction of S1P with the Gi protein-coupled receptors S1P1/3, as pretreatment with pertussis toxin or with the S1P1/3 antagonist VPC 23019 completely abolished the phosphorylation of these kinases. Inhibitors of phosphatidylinositol 3-kinase (PI3K) or mitogen-activated protein kinase kinase (MEK) blocked S1P-stimulated aldosterone secretion. This inhibition was only partial when the cells were incubated independently with inhibitors of each pathway. However, aldosterone output was completely blocked when the cells were pretreated with LY 294002 and PD 98059 simultaneously. These inhibitors also blocked PLD activation, which indicates that this enzyme is downstream of PI3K and MEK in this system. We propose a working model for S1P in which stimulation of the PI3K/PKB and MEK/ERK pathways leads to the stimulation of PLD and aldosterone secretion.
Collapse
Affiliation(s)
- Leyre Brizuela
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, 48080, Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Buckler KJ. TASK-like potassium channels and oxygen sensing in the carotid body. Respir Physiol Neurobiol 2007; 157:55-64. [PMID: 17416212 DOI: 10.1016/j.resp.2007.02.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/17/2022]
Abstract
Chemosensing by type-1 cells of the carotid body involves a series of events which culminate in the calcium-dependent secretion of neurotransmitter substances which then excite afferent nerves. This response is mediated via membrane depolarisation and voltage-gated calcium entry. Studies utilising isolated cells indicates that the membrane depolarisation in response to hypoxia, and acidosis, appears to be primarily mediated via the inhibition of a background K(+)-current. The pharmacological and biophysical characteristics of these channels suggest that they are probably closely related to the TASK subfamily of tandem-P-domain K(+)-channels. Indeed they show greatest similarity to TASK-1 and -3. In addition to being sensitive to hypoxia and acidosis, the background K(+)-channels of the type-1 cell are also remarkably sensitive to inhibition of mitochondrial energy metabolism. Metabolic poisons are known potent stimulants of the carotid body and cause membrane depolarisation of type-1 cells. In the presence of metabolic inhibitors hypoxic sensitivity is lost suggesting that oxygen sensing may itself be mediated via depression of mitochondrial energy production. Thus these TASK-like background channels play a central role in mediating the chemotransduction of several different stimuli within the type-1 cell. The mechanisms by which metabolic/oxygen sensitivity might be conferred upon these channels are briefly discussed.
Collapse
Affiliation(s)
- Keith J Buckler
- Department of Physiology Anatomy and Genetics, Sherrington Building, Parks Road, Oxford, UK.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Evidence from clinical trials suggests that refractory hypertension is increasingly common. The underlying mechanisms are largely unknown but recent data have implicated increased aldosterone activity as an important mediator of resistance to routinely used antihypertensive agents. RECENT FINDINGS Epidemiological studies have suggested a significant rise in the prevalence of primary aldosteronism among patients with hypertension. This reflects the increasing use of an aldosterone-to-renin ratio as a screening tool. Recent reports have demonstrated that relative aldosterone excess is common in individuals with refractory hypertension, and that the use of aldosterone antagonists leads to better blood pressure control in such patients. SUMMARY These data highlight the potential role of aldosterone in the pathogenesis of hypertension. The syndrome of primary aldosteronism, however, encompasses a wide spectrum of disorders that will require better definition. Similarly, although aldosterone blockade is apparently beneficial in individuals with refractory hypertension, this evidence is not currently based on robust randomized, double-blind trial.
Collapse
Affiliation(s)
- Moffat J Nyirenda
- Endocrinology Unit, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | | |
Collapse
|
33
|
Gautam SH, Otsuguro KI, Ito S, Saito T, Habara Y. T-type Ca2+ channels mediate propagation of odor-induced Ca2+ transients in rat olfactory receptor neurons. Neuroscience 2006; 144:702-13. [PMID: 17110049 DOI: 10.1016/j.neuroscience.2006.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 10/07/2006] [Accepted: 10/09/2006] [Indexed: 11/26/2022]
Abstract
Propagation of odor-induced Ca(2+) transients from the cilia/knob to the soma in mammalian olfactory receptor neurons (ORNs) is thought to be mediated exclusively by high-voltage-activated Ca(2+) channels. However, using confocal Ca(2+) imaging and immunocytochemistry we identified functional T-type Ca(2+) channels in rat ORNs. Here we show that T-type Ca(2+) channels in ORNs also mediate propagation of odor-induced Ca(2+) transients from the knob to the soma. In the presence of the selective inhibitor of T-type Ca(2+) channels mibefradil (10-15 microM) or Ni(2+) (100 microM), odor- and forskolin/3-isobutyl-1-methyl-xanthine (IBMX)-induced Ca(2+) transients in the soma and dendrite were either strongly inhibited or abolished. The percentage of inhibition of the Ca(2+) transients in the knob, however, was 40-50% less than that in the soma. Ca(2+) transients induced by 30 mM K(+) were partially inhibited by mibefradil, but without a significant difference in the extent of inhibition between the knob and soma. Furthermore, an increase of as little as 2.5 mM in the extracellular K(+) concentration (7.5 mM K(+)) was found to induce Ca(2+) transients in ORNs, and such responses were completely inhibited by mibefradil or Ni(2+). Total replacement of extracellular Na(+) with N-methyl-d-glutamate inhibited none of the odor-, forskolin/IBMX- or 7.5 mM K(+)-induced Ca(2+) transients. Positive immunoreactivity to the Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 subunits of the T-type Ca(2+) channel was observed throughout the soma, dendrite and knob. These data suggest that involvement of T-type Ca(2+) channels in the propagation of odor-induced Ca(2+) transients in ORNs may contribute to signal transduction and odor sensitivity.
Collapse
Affiliation(s)
- S H Gautam
- Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
34
|
Gautam SH, Otsuguro KI, Ito S, Saito T, Habara Y. T-type Ca2+ channels contribute to IBMX/forskolin- and K(+)-induced Ca(2+) transients in porcine olfactory receptor neurons. Neurosci Res 2006; 57:129-39. [PMID: 17074407 DOI: 10.1016/j.neures.2006.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 09/15/2006] [Accepted: 09/25/2006] [Indexed: 01/08/2023]
Abstract
T-type Ca(2+) channels are low-voltage-activated Ca(2+) channels that control Ca(2+) entry in excitable cells during small depolarization above resting potentials. Using Ca(2+) imaging with a laser scanning confocal microscope we investigated the involvement of T-type Ca(2+) channels in IBMX/forskolin- and sparingly elevated extracellular K(+)-induced Ca(2+) transients in freshly isolated porcine olfactory receptor neurons (ORNs). In the presence of mibefradil (10microM) or Ni(2+) (100microM), the selective T-type Ca(2+) channel inhibitors, IBMX/forskolin-induced Ca(2+) transients in the soma were either strongly (>60%) inhibited or abolished completely. However, the Ca(2+) transients in the knob were only partially (<60%) inhibited. Ca(2+) transients induced by 30mM K(+) were also partially ( approximately 60%) inhibited at both the knob and soma. Furthermore, ORNs responded to as little as a 2.5mM increase in the extracellular K(+) concentration (7.5mM K(+)), and such responses were completely inhibited by mibefradil or Ni(2+). These results reveal functional expression of T-type Ca(2+) channels in porcine ORNs, and suggest a role for these channels in the spread Ca(2+) transients from the knob to the soma during activation of the cAMP cascade following odorant binding to G-protein-coupled receptors on the cilia/knob of ORNs.
Collapse
Affiliation(s)
- Shree Hari Gautam
- Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|
35
|
Yao J, Davies LA, Howard JD, Adney SK, Welsby PJ, Howell N, Carey RM, Colbran RJ, Barrett PQ. Molecular basis for the modulation of native T-type Ca2+ channels in vivo by Ca2+/calmodulin-dependent protein kinase II. J Clin Invest 2006; 116:2403-12. [PMID: 16917542 PMCID: PMC1550277 DOI: 10.1172/jci27918] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 06/20/2006] [Indexed: 11/17/2022] Open
Abstract
Ang II receptor activation increases cytosolic Ca2+ levels to enhance the synthesis and secretion of aldosterone, a recently identified early pathogenic stimulus that adversely influences cardiovascular homeostasis. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a downstream effector of the Ang II-elicited signaling cascade that serves as a key intracellular Ca2+ sensor to feedback-regulate Ca2+ entry through voltage-gated Ca2+ channels. However, the molecular mechanism(s) by which CaMKII regulates these important physiological targets to increase Ca2+ entry remain unresolved. We show here that CaMKII forms a signaling complex with alpha1H T-type Ca2+ channels, directly interacting with the intracellular loop connecting domains II and III of the channel pore (II-III loop). Activation of the kinase mediated the phosphorylation of Ser1198 in the II-III loop and the positive feedback regulation of channel gating both in intact cells in situ and in cells of the native adrenal zona glomerulosa stimulated by Ang II in vivo. These data define the molecular basis for the in vivo modulation of native T-type Ca2+ channels by CaMKII and suggest that the disruption of this signaling complex in the zona glomerulosa may provide a new therapeutic approach to limit aldosterone production and cardiovascular disease progression.
Collapse
Affiliation(s)
- Junlan Yao
- Department of Pharmacology and
Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lucinda A. Davies
- Department of Pharmacology and
Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jason D. Howard
- Department of Pharmacology and
Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Scott K. Adney
- Department of Pharmacology and
Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Philip J. Welsby
- Department of Pharmacology and
Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Nancy Howell
- Department of Pharmacology and
Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Robert M. Carey
- Department of Pharmacology and
Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roger J. Colbran
- Department of Pharmacology and
Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Paula Q. Barrett
- Department of Pharmacology and
Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|