1
|
Tian Y, Wu X, Zhang Z, Li Y, Hou M, Jiang R, Li D, Zhang Y, Guo Y, Li G, Liu X, Kang X, Tian Y, Li W, Li Y. gga-miR-6634-5p Affects the proliferation and steroid hormone secretion of chicken (Gallus Gallus) granulosa cells by targeting MMP16. Poult Sci 2025; 104:104624. [PMID: 39647359 PMCID: PMC11667030 DOI: 10.1016/j.psj.2024.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024] Open
Abstract
MiRNAs are typically reported to play a negative regulatory role in post-transcriptional expression of target genes and are widely involved in a variety of biological processes such as growth, metabolism and reproduction. However, research on the role of miRNAs in the ovulation process of chicken ovaries is still insufficient compared to that in mammals. Here, we investigated the regulatory mechanisms of gga-miR-6634-5p in the growth and steroid hormone secretion of chicken granulosa cells (GCs) by targeting MMP16. We found that gga-miR-6634-5p significantly down-regulated the mRNA levels of proliferation-related genes (CCND1, CDK1, and CDK6), decreased cell viability, the number of EdU-labelled positive cells, and the percentage of S-phase cells, as analysed by quantitative real time PCR (qRT-PCR), cell counting kit-8 (CCK-8), 5-ethynyl-2'deoxyuridine (EdU) and flow cytometry analyses (P < 0.01 or P < 0.05). qRT-PCR and enzyme-linked immunosorbent assay (ELISA) results demonstrated that gga-miR-6634-5p up-regulated the expression of steroid synthesis-related genes (CYP19A1, 3β-HSD, StAR and FSHR) (P < 0.01 or P < 0.05), as well as the secretion of estradiol (E2) and progesterone (P4) (P < 0.01 or P < 0.05). Furthermore, we found that MMP16 protein and gene expression can be down-regulated by gga-miR-6634-5p and demonstrated that MMP16 is a target gene of gga-miR-6634-5p by dual luciferase reporter assay (P < 0.05). In addition, we found that MMP16 stimulated the proliferation of GCs, significantly inhibited the expression of steroid synthesis related genes (CYP19A1, StAR, 3β-HSD and FSHR), and decreased the secretion of E2 and P4 (P < 0.01 or P < 0.05), which was consistent with the inhibitory effect of gga-miR-6634-5p. It was further found by functional enrichment analysis, qRT-PCR, western blot (WB) and ELISA that MMP16 may play a regulatory role in GCs proliferation as well as steroid hormone secretion through the mTOR signaling pathway and PPAR signaling pathway. Therefore, this study demonstrates that gga-miR-6634-5p modulates the proliferation of chicken GCs and the secretion of steroid hormones by targeting MMP16, which may contribute to a better understanding of the functional mechanisms of miRNAs in the ovarian development of laying hens.
Collapse
Affiliation(s)
- Yixiang Tian
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yijie Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Meng Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yuetao Li
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
2
|
Ye M, Yang J, Cai Z, Wu J, Xiong W, Hou L. The effect of cortisone on female zebrafish (Dania rerio): Reducing reproductive capacity and offspring survival rate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107132. [PMID: 39515241 DOI: 10.1016/j.aquatox.2024.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Cortisone is a naturally occurring corticosteroid hormone known for its wide range of anti-inflammatory and immunosuppressive effects, and it is commonly found in various aquatic environments. Previous reports have shown that cortisone can have significant negative impacts on fish; however, its specific effects on fish reproduction have not been thoroughly investigated. In this study, female adult zebrafish were exposed to 0.0 (control), 3.9, 40.2, and 377.9 ng/L of cortisone for 60 days, and multiple endpoints were evaluated. The results showed that as the concentration of cortisone increased, there was an increase in the percentage of perinuclear oocytes and a decrease in the proportion of late-stage oocytes, indicating a stagnation in oocyte development. Additionally, female zebrafish exposed to cortisone exhibited decreased attraction to males and reduced mating intimacy. Furthermore, exposure to cortisone resulted in changes in the development and behavior of zebrafish embryos. At cortisone concentrations of 3.9 and 40.2 ng/L, fewer eggs were laid and the survival rate of fertilized eggs decreased. These observed effects are associated with abnormal transcription levels of genes (Star, Cyp11a1, Cyp17, Cyp19a, Cyp11b, Hsd11β2, Hsd17β3) related to the HPG axis. These findings provided new insights into understanding potential environmental risks associated with corticosteroids.
Collapse
Affiliation(s)
- MeiXin Ye
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - JinLin Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - ZiPing Cai
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - JunHao Wu
- Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wenting Xiong
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| | - LiPing Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China; Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
3
|
Ma X, Han X, Zhang Q, Wang W, Tang H. Synergistic cooperation between the β-catenin and SF1 regulates progesterone synthesis in laying hen ovarian granulosa cells. Anim Biotechnol 2024; 35:2351975. [PMID: 38742598 DOI: 10.1080/10495398.2024.2351975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The development of ovarian follicles in poultry is a key factor affecting the performance of egg production. Ovarian follicle development is regulated via the Wnt/β-catenin signaling pathway, and β-catenin, encoded by CTNNB1, is a core component of this pathway. In this study, using ovary GCs from laying hens, we investigated the regulatory role of CTNNB1 in steroid synthesis. We found that CTNNB1 significantly regulates the expression of StAR and CYP11A1 (key genes related to progesterone synthesis) and the secretion of progesterone (P4). Furthermore, simultaneous overexpression of CTNNB1 and SF1 resulted in significantly higher levels of CYP11A1 and secretion of P4 than in cells overexpressing CTNNB1 or SF1 alone. We also found that in GCs overexpressing SF1, levels of CYP11A1 and secreted P4 were significantly greater than in controls. Silencing of CYP11A1 resulted in the inhibition of P4 secretion while overexpression of SF1 in CYP11A1-silenced cells restored P4 secretion to normal levels. Together, these results indicate that synergistic cooperation between the β-catenin and SF1 regulates progesterone synthesis in laying hen ovarian hierarchical granulosa cells to promote CYP11A1 expression.
Collapse
Affiliation(s)
- Xueying Ma
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai'an, Shandong, China
| | - Xu Han
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai'an, Shandong, China
| | - Qin Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai'an, Shandong, China
| | - Wenwen Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai'an, Shandong, China
| | - Hui Tang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai'an, Shandong, China
| |
Collapse
|
4
|
Gan Z, van der Stelt I, Li W, Hu L, Song J, Grefte S, van de Westerlo E, Zhang D, van Schothorst EM, Claahsen-van der Grinten HL, Teerds KJ, Adjobo-Hermans MJW, Keijer J, Koopman WJH. Mitochondrial Nicotinamide Nucleotide Transhydrogenase: Role in Energy Metabolism, Redox Homeostasis, and Cancer. Antioxid Redox Signal 2024; 41:927-956. [PMID: 39585234 DOI: 10.1089/ars.2024.0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Significance: Dimeric nicotinamide nucleotide transhydrogenase (NNT) is embedded in the mitochondrial inner membrane and couples the conversion of NADP+/NADH into NADPH/NAD+ to mitochondrial matrix proton influx. NNT was implied in various cancers, but its physiological role and regulation still remain incompletely understood. Recent Advances: NNT function was analyzed by studying: (1) NNT gene mutations in human (adrenal) glucocorticoid deficiency 4 (GCCD4), (2) Nnt gene mutation in C57BL/6J mice, and (3) the effect of NNT knockdown/overexpression in (cancer) cells. In these three models, altered NNT function induced both common and differential aberrations. Critical Issues: Information on NNT protein expression in GCCD4 patients is still scarce. Moreover, NNT expression levels are tissue-specific in humans and mice and the functional consequences of NNT deficiency strongly depend on experimental conditions. In addition, data from intact cells and isolated mitochondria are often unsuited for direct comparison. This prevents a proper understanding of NNT-linked (patho)physiology in GCCD4 patients, C57BL/6J mice, and cancer (cell) models, which complicates translational comparison. Future Directions: Development of mice with conditional NNT deletion, cell-reprogramming-based adrenal (organoid) models harboring specific NNT mutations, and/or NNT-specific chemical inhibitors/activators would be useful. Moreover, live-cell analysis of NNT substrate levels and mitochondrial/cellular functioning with fluorescent reporter molecules might provide novel insights into the conditions under which NNT is active and how this activity links to other metabolic and signaling pathways. This would also allow a better dissection of local signaling and/or compartment-specific (i.e., mitochondrial matrix, cytosol, nucleus) effects of NNT (dys)function in a cellular context. Antioxid. Redox Signal. 41, 927-956.
Collapse
Affiliation(s)
- Zhuohui Gan
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Inge van der Stelt
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Weiwei Li
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Liangyu Hu
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jingyi Song
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Els van de Westerlo
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Deli Zhang
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Katja J Teerds
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Werner J H Koopman
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Guo X, Ying S, Xiao H, An H, Guo R, Dai Z, Wu W. miR-21/SMAD2 Is Involved in the Decrease in Progesterone Synthesis Caused by Lipopolysaccharide Exposure in Follicular Granulosa Cells of Laying Goose. Metabolites 2024; 14:362. [PMID: 39057685 PMCID: PMC11278936 DOI: 10.3390/metabo14070362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 07/28/2024] Open
Abstract
Lipopolysaccharide (LPS) is one of the important pathogenic substances of E. coli and Salmonella, which causes injury to the reproductive system. Ovarian dysfunction due to Gram-negative bacterial infections is a major cause of reduced reproductive performance in geese. However, the specific molecular mechanisms of LPS-induced impairment of sex steroid hormone synthesis have not been determined. The regulatory mechanism of miRNA has been proposed in many physiological and pathogenic mechanisms. Therefore, the role of miRNA in breeding geese exposed to LPS during the peak laying period was investigated. In this study, twenty Yangzhou geese at peak laying period were injected with LPS for 0 h, 24 h, and 36 h. The follicular granulosa layer was taken for RNA-seq and analyzed for differentially expressed miRNAs. It was observed that LPS changed the appearance of hierarchical follicles. miRNA sequencing analysis was applied, and miR-21 and SMAD2 (SMAD family member 2) were selected from 51 differentially expressed miRNAs through bioinformatics prediction. The results showed that miR-21 down-regulated SMAD2 expression and progesterone (P4) production in LPS-treated goose granulosa cells (GCs). It also determined that overexpression of miR-21 or silence of SMAD2 suppressed the sex steroid biosynthesis pathway by decreasing STAR and CYP11A1 expression. Down-regulation of miR-21 exacerbates the LPS-induced decline in P4 synthesis and vice versa. The findings indicated that miR-21 was involved in LPS regulation of P4 synthesis in goose granulosa cells by down-regulating SMAD2. This study provides theoretical support for the prevention of LPS-induced ovarian dysfunction in geese.
Collapse
Affiliation(s)
- Xinyi Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (S.Y.); (H.X.); (H.A.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.G.); (Z.D.)
| | - Shijia Ying
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (S.Y.); (H.X.); (H.A.)
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.G.); (Z.D.)
| | - Huiping Xiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (S.Y.); (H.X.); (H.A.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao An
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (S.Y.); (H.X.); (H.A.)
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.G.); (Z.D.)
| | - Rihong Guo
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.G.); (Z.D.)
| | - Zichun Dai
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.G.); (Z.D.)
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (S.Y.); (H.X.); (H.A.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
6
|
El-Kossi DMMH, Ibrahim SS, Hassanin KMA, Hamad N, Rashed NA, Abdel-Wahab A. Ameliorative Effects of Zinc Oxide, in Either Conventional or Nanoformulation, Against Bisphenol A Toxicity on Reproductive Performance, Oxidative Status, Gene Expression and Histopathology in Adult Male Rats. Biol Trace Elem Res 2024; 202:2143-2157. [PMID: 37682394 PMCID: PMC10954980 DOI: 10.1007/s12011-023-03830-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Bisphenol A (BPA) is a widely used endocrine disruptor that represents a significant risk to male reproductive function. Zinc (Zn) is vital for appropriate development of testes and to guarantee optimal testicular function and spermatogenesis. Our goal was to investigate if zinc oxide (ZnO), either in conventional or nanoformulation, could safeguard adult male rats' reproductive performance against the damaging effects of BPA. Signaling expression of CYP11A1 and Nrf-2 in the testis, testicular oxidant-antioxidant status, Bax/Bcl-2 apoptotic ratio, and histological examination of various reproductive organs were all evaluated. Twenty-eight adult male albino rats were divided randomly into 4 groups (7 animals each) including the control, BPA, conventional zinc oxide (cZnO) + BPA, and zinc oxide nanoparticles (ZnO-NPs) + BPA groups. The study was extended for 2 successive months. Our findings revealed strong negative effects of BPA on sperm cell characteristics such as sperm motility, viability, concentration and abnormalities. Additionally, BPA reduced serum levels of testosterone, triiodothyronine (T3), and thyroxine (T4). Also, it evoked marked oxidative stress in the testes; elevating malondialdehyde (MDA) and reducing total antioxidant capacity (TAC). BPA significantly downregulated testicular mRNA relative expression levels of CYP11A1 and Nrf-2, compared to control. Testicular apoptosis was also prompted by increasing Bax/ Bcl-2 ratio in testicular tissue. Histopathological findings in the testes, epididymis, prostate gland, and seminal vesicle confirmed the detrimental effects of BPA. Interestingly, cZnO and ZnO-NPs significantly alleviated all negative effects of BPA, but ZnO-NPs performed better. In conclusion, our findings point to ZnO, specifically ZnO-NPs, as a viable treatment for BPA-induced testicular dysfunction.
Collapse
Affiliation(s)
- Dina M M H El-Kossi
- Physiology Department, Faculty of Veterinary Medicine, Minia University, El-Minia, 61519, Egypt
| | - Shawky S Ibrahim
- Physiology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Kamel M A Hassanin
- Biochemistry Department, Faculty of Veterinary Medicine, Minia University, El-Minia, 61519, Egypt
| | - Nashwa Hamad
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71515, Egypt
| | - Noha A Rashed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Ahmed Abdel-Wahab
- Physiology Department, Faculty of Veterinary Medicine, Minia University, El-Minia, 61519, Egypt.
| |
Collapse
|
7
|
Zhao C, Wang S, Liu Y, Chu P, Han B, Ning X, Wang T, Yin S. Acute cold stress leads to zebrafish ovarian dysfunction by regulating miRNA and mRNA. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101139. [PMID: 37683358 DOI: 10.1016/j.cbd.2023.101139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Temperature is a critical factor that regulates the reproduction processes in teleost. However, the gonadal response mechanism to cold stress in fish remains largely unknown. In the present study, female zebrafish were exposed to different extents of low temperatures at 18 °C and 10 °C for 48 h. The ovarian histology was remarkably damaged after cold stress exposure. Integrated analysis of miRNA-mRNA was used to investigate the ovarian response to acute cold stress. A large number of mRNAs and miRNAs were altered by cold stress, which are involved in extensive biological processes. It is indicated that the signal transduction of MAPK and Calcium signaling pathway is highly engaged in zebrafish ovary to adapt to cold stress. The immune system was dysregulated by cold stress while the ovarian autophagy was activated. Remarkably increased gene number related to reproductive functions was identified in the cold stress at 10 °C compared to the control. The cold stress-induced dysregulated reproductive genes include star, hsd3b1, hsd17b1, inha, insl3, amh, nanos1 and foxl2. Combined with the dysregulated insulin, IGF and progesterone signaling, it is suggested that cold stress affects ovarian function in multiple aspects, including oocyte meiosis, folliculogenesis, final maturation and ovarian maintenance. On the other hand, the ovarian miRNA-mRNA regulatory network response to cold stress was also constructed. Overall, our result revealed the ovarian response to cold stress in zebrafish and provided insight into the fish adaptation mechanism to acute temperature change.
Collapse
Affiliation(s)
- Cheng Zhao
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Sijin Wang
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Yuxi Liu
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Peng Chu
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Bing Han
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Xianhui Ning
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Tao Wang
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China.
| | - Shaowu Yin
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China.
| |
Collapse
|
8
|
Zhao C, Yan J, Zhang Y, Zhang G, Wang T, Zhang K, Yin S. Effect of long-term hypoxia on the reproductive systems of female and male yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Physiol B Biochem Mol Biol 2023; 267:110864. [PMID: 37187433 DOI: 10.1016/j.cbpb.2023.110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
This study investigated the effects of different levels of hypoxia on the reproductive system of yellow catfish. Yellow catfish (Pelteobagrus fulvidraco) were exposed to three dissolved oxygen concentration levels: normoxia (6.5 ± 0.2 mg/L), moderate hypoxia (MH, 3.8 ± 0.3 mg/L) and severe hypoxia (SH, 1.9 ± 0.2 mg/L) for 30 days. The gonadosomatic index of males, not females, significantly decreased in the SH group. In the SH group, for the females, the ratio of vitellogenic follicles significantly decreased, whereas the number of atretic follicles significantly increased. In male fish, a significantly reduced number of spermatozoa was observed in both the MH and SH groups. Elevated apoptosis levels in the testes and ovaries were observed only in the SH group. Serum 17β-estradiol and vitellogenin levels in females and testosterone levels in males significantly decreased in the SH group. The concentration of 11-ketotestosterone in males significantly decreased in both the MH and SH groups. In female fish, dysregulated expression of the hypothalamic-pituitary-gonadal (HPG) axis, steroidogenesis genes, and hepatic genes related to vitellogenesis were observed only in the SH group. However, in male fish, moderate hypoxia altered the expression of HPG genes, including gnrh1, lhcgr, and amh. Moreover, the MH group significantly altered the expression of steroidogenesis genes like star, 17β-hsd, and cyp17a1. The results of this study suggest that severe hypoxia can cause reproductive defects in female and male yellow catfish. Moreover, the reproductive system of male yellow catfish is more sensitive to moderate hypoxia than that of female catfish. Our findings contribute to our understanding of the response of the teleost reproductive system to long-term hypoxia.
Collapse
Affiliation(s)
- Cheng Zhao
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Jie Yan
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yufei Zhang
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Guosong Zhang
- School of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Tao Wang
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Kai Zhang
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China.
| | - Shaowu Yin
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China.
| |
Collapse
|
9
|
Zhang S, Mu L, Wang H, Xu X, Jia L, Niu S, Wang Y, Wang P, Li L, Chai J, Li Z, Zhang Y, Zhang H. Quantitative proteomic analysis uncovers protein-expression profiles during gonadotropin-dependent folliculogenesis in mice†. Biol Reprod 2023; 108:479-491. [PMID: 36477298 DOI: 10.1093/biolre/ioac217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/14/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Ovarian follicle is the basic functional unit of female reproduction, and is composed of oocyte and surrounding granulosa cells. In mammals, folliculogenesis strictly rely on gonadotropin regulations to determine the ovulation and the quality of eggs. However, the dynamic changes of protein-expressing profiles in follicles at different developmental stages remain largely unknown. By performing mass-spectrometry-based quantitative proteomic analysis of mouse follicles, we provide a proteomic database (~3000 proteins) that covers three key stages of gonadotropin-dependent folliculogenesis. By combining bioinformatics analysis with in situ expression validation, we showed that our proteomic data well reflected physiological changes during folliculogenesis, which provided potential to predict unknown regulators of folliculogenesis. Additionally, by using the oocyte structural protein zona pellucida protein 2 as the internal control, we showed the possibility of our database to predict the expression dynamics of oocyte-expressing proteins during folliculogenesis. Taken together, we provide a high-coverage proteomic database to study protein-expression dynamics during gonadotropin-dependent folliculogenesis in mammals.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lu Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haoran Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueqiang Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Longzhong Jia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shudong Niu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yibo Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Peike Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lingyu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junyi Chai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
La Y, Ma X, Bao P, Chu M, Yan P, Liang C, Guo X. Genome-Wide Landscape of mRNAs, lncRNAs, and circRNAs during Testicular Development of Yak. Int J Mol Sci 2023; 24:ijms24054420. [PMID: 36901865 PMCID: PMC10002557 DOI: 10.3390/ijms24054420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Testicular development is a tightly regulated process in mammals. Understanding the molecular mechanisms of yak testicular development will benefit the yak breeding industry. However, the roles of different RNAs, such as mRNA, lncRNA, and circRNA in the testicular development of yak, are still largely unclear. In this study, transcriptome analyses were performed on the expression profiles of mRNAs, lncRNAs, and circRNAs in testis tissues of Ashidan yak at different developmental stages, including 6-months-old (M6), 18-months-old (M18), and 30-months-old (M30). A total of 30, 23, and 277 common differentially expressed (DE) mRNAs, lncRNAs, and circRNAs were identified in M6, M18, and M30, respectively. Furthermore, functional enrichment analysis showed that the common DE mRNAs during the entire developmental process were mainly involved in gonadal mesoderm development, cell differentiation, and spermatogenesis processes. Additionally, co-expression network analysis identified the potential lncRNAs related to spermatogenesis, e.g., TCONS_00087394 and TCONS_00012202. Our study provides new information about changes in RNA expression during yak testicular development, which greatly improves our understanding of the molecular mechanisms regulating testicular development in yaks.
Collapse
Affiliation(s)
- Yongfu La
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Correspondence: (C.L.); (X.G.); Tel.: +86-093-1211-5257 (X.G.)
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Correspondence: (C.L.); (X.G.); Tel.: +86-093-1211-5257 (X.G.)
| |
Collapse
|
11
|
Seminal extracellular vesicles subsets modulate gene expression in cumulus cells of porcine in vitro matured oocytes. Sci Rep 2022; 12:19096. [PMID: 36351965 PMCID: PMC9646759 DOI: 10.1038/s41598-022-22004-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
Seminal plasma (SP), a fluid composed mainly by secretions from accessory sex glands, contains a heterogenous population of extracellular vesicles (EVs), involved in several reproductive physiological processes. Seminal plasma has been found to modulate ovary function, in terms of hormone secretion and immune regulation. This study evaluated the potential effect of SP-EV-subsets on the modulation of cumulus-oocyte-complex (COCs) physiology during in vitro maturation (IVM). Two SP-EV-subsets, small-EVs (S-EVs) and large-EVs (L-EVs), were isolated from pig SP by size-exclusion-chromatography. Next, COCs were IVM in the absence (control) or presence of each SP-EV-subset to evaluate their uptake by COCs (PKH67-EVs labelling) and their effect on oocyte and cumulus cells (CCs) (gene expression, and progesterone and estradiol-17β levels). S-EVs and L-EVs were able to bind CCs but not oocytes. Supplementation with L-EVs induced changes (P ≤ 0.05) in the transcript levels of oocyte maturation- (HAS2) and steroidogenesis-related genes (CYP11A1 and HSD3B1) in CCs. No effect on nuclear oocyte maturation and progesterone and estradiol-17β levels was observed when COCs were IVM with any of the two SP-EV-subsets. In conclusion, while SP-EV-subsets can be integrated by CCs during IVM, they do not affect oocyte maturation and only L-EVs are able to modulate CCs function, mainly modifying the expression of steroidogenesis-related genes.
Collapse
|
12
|
Wu X, Zhang N, Li J, Zhang Z, Guo Y, Li D, Zhang Y, Gong Y, Jiang R, Li H, Li G, Liu X, Kang X, Tian Y. gga-miR-449b-5p Regulates Steroid Hormone Synthesis in Laying Hen Ovarian Granulosa Cells by Targeting the IGF2BP3 Gene. Animals (Basel) 2022; 12:2710. [PMID: 36230451 PMCID: PMC9559480 DOI: 10.3390/ani12192710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
MiRNAs have been found to be involved in the regulation of ovarian function as important post-transcriptional regulators, including regulators of follicular development, steroidogenesis, cell atresia, and even the development of ovarian cancer. In this study, we evaluated the regulatory role of gga-miR-449b-5p in follicular growth and steroid synthesis in ovarian granulosa cells (GCs) of laying hens through qRT-PCR, ELISAs, western blotting and dual-luciferase reporter assays, which have been described in our previous study. We demonstrated that gga-miR-449b-5p was widely expressed in granulosa and theca layers of the different-sized follicles, especially in the granulosa layer. The gga-miR-449b-5p had no significant effect on the proliferation of GCs, but could significantly regulate the expression of key steroidogenesis-related genes (StAR and CYP19A1) (p < 0.01) and the secretion of P4 and E2 (p < 0.01 and p < 0.05). Further research showed that gga-miR-449b-5p could target IGF2BP3 and downregulate the mRNA and protein expression of IGF2BP3 (p < 0.05). Therefore, this study suggests that gga-miR-449b-5p is a potent regulator of the synthesis of steroid hormones in GCs by targeting the expression of IGF2BP3 and may contribute to a better understanding of the role of functional miRNAs in laying hen ovarian development.
Collapse
Affiliation(s)
- Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Na Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Jing Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
13
|
Feng Y, Lian X, Guo K, Zhang G, Huang X. A comprehensive analysis of metabolomics and transcriptomics to reveal major metabolic pathways and potential biomarkers of human preeclampsia placenta. Front Genet 2022; 13:1010657. [PMID: 36263435 PMCID: PMC9574103 DOI: 10.3389/fgene.2022.1010657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The etiology of preeclampsia (PE) remains unclear. With the utilization of metabolomics, dysregulated production of several metabolic components in human plasma, such as lipids, amino acids, androgens and estrogens, was found to be important in the pathogenesis of PE. Transcriptomics adds more in-depth information, and the integration of transcriptomics and metabolomics may yield further insight into PE pathogenesis than either one alone.Objectives: We investigated the placental metabolomics and transcriptomics of PE patients to identify affected metabolic pathways and potential biological targets for exploring the disease pathogenesis.Methods: Integrated transcriptomics and metabolomics were used to analyze five paired human placentas from patients with severe PE and normal pregnancies. This was followed by further validation of our findings in a publicly available dataset of 173 PE vs. 157 control placentas. In addition, weighted gene coexpression network construction was performed to assess the correlation between genetic alterations and diseases.Results: We identified 66 and 41 differentially altered metabolites in negative and positive ion modes, respectively, in the PE group compared to the control group, and found 2,560 differentially expressed genes. Several pathways were aberrantly altered in the PE placenta at both the metabolic and transcriptional levels, including steroid hormone biosynthesis, the cAMP signaling pathway, neuroactive ligand–receptor interactions, taste transduction and prion diseases. Additionally, we found 11 differential metabolites and 11 differentially expressed genes involved in the steroid hormone biosynthesis pathway, indicating impaired metabolism of steroid hormones in the PE placenta. Furthermore, we found that CYP11A1, HSD3B2, and HSD17B6 are highly correlated with diseases.Conclusion: Our findings provide a profile of the dysregulated steroid hormone biosynthesis in PE placenta, we observed a dysregulated cortisol-to-cortisone ratio, testosterone accumulation, decreased testosterone downstream metabolites, impaired production of estrone and estriol, and aberrant hydroxylation and methylation of estradiol. Disorders of placental steroid hormone metabolism might be a consequence or a compensatory change in pathological placentation in PE, which underscores the need to investigate the physiology of steroid hormone metabolites in the etiology of PE.
Collapse
Affiliation(s)
- Yan Feng
- Fetal Care Center, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinlei Lian
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Kaimin Guo
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guanglan Zhang
- Fetal Care Center, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xuan Huang
- Fetal Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xuan Huang,
| |
Collapse
|
14
|
Wang Y, Ye D, Zhang F, Zhang R, Zhu J, Wang H, He M, Sun Y. Cyp11a2 Is Essential for Oocyte Development and Spermatogonial Stem Cell Differentiation in Zebrafish. Endocrinology 2022; 163:6473198. [PMID: 34932120 DOI: 10.1210/endocr/bqab258] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 11/19/2022]
Abstract
Cytochrome P45011A1, encoded by Cyp11a1, converts cholesterol to pregnenolone (P5), the first and rate-limiting step in steroidogenesis. In zebrafish, cyp11a1 is maternally expressed and cyp11a2 is considered the ortholog of Cyp11a1 in mammals. A recent study has shown that depletion of cyp11a2 resulted in steroidogenic deficiencies and the mutants developed into males with feminized secondary sexual characteristics. Here, we independently generated cyp11a2 mutants in zebrafish and showed that the mutants can develop into males and females in the juvenile stage, but finally into infertile males with defective mating behavior in the adult stage. In the developing ovaries, the cyp11a2 mutation led to stage I oocyte apoptosis and final sex reversal, which could be partially rescued by treatment with P5 but not estradiol. In the developing testes, depletion of cyp11a2 resulted in dysfunction of Sertoli cells and lack of functional Leydig cells. Spermatogonial stem cells (SSCs) in the mutant testes underwent active self-renewal but no differentiation, resulting in a high abundance of SSCs in the testis, as revealed by immunofluorescence staining with Nanos2 antibody. The high abundance and differentiation competence of SSCs in the mutant testes were verified by a novel testicular cell transplantation method developed in this study, by transplanting mutant testicular cells into germline-depleted wild-type (WT) fish. The transplanted mutant SSCs efficiently differentiated into functional spermatids in WT hosts. Overall, our study demonstrates the functional importance of cyp11a2 in early oogenesis and differentiation of SSCs.
Collapse
Affiliation(s)
- Yaqing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fenghua Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwen Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Wei Q, Li J, He H, Cao Y, Li D, Amevor FK, Zhang Y, Wang J, Yu C, Yang C, Du H, Jiang X, Zhu Q, Yin H. miR-23b-3p inhibits chicken granulosa cell proliferation and steroid hormone synthesis via targeting GDF9. Theriogenology 2022; 177:84-93. [PMID: 34687940 DOI: 10.1016/j.theriogenology.2021.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/13/2023]
Abstract
MicroRNAs (miRNAs) are ∼22 nt RNAs that direct post-transcriptional repression of mRNA targets in diverse eukaryotic lineages. Granulosa cells (GCs) are the earliest differentiated follicular somatic cells. From the initiation of primordial follicles, their differentiation and growth are closely related to the development of follicles. The research on follicular development mostly focused on the granular layer, as well as the hormone synthesis induced by granulosa cell differentiation before and after follicular selection. In this study, we evaluated the effects of miR-23b-3p on chicken granulosa cells, including granulosa cell proliferation and steroid hormone synthesis. Elevated expression of miR-23b-3p significantly inhibited granulosa cell proliferation and steroid hormone synthesis, but did not affect apoptosis. Furthermore, it was observed that the forecast growth differentiation factor 9 (GDF9) is a target gene of miR-23b-3p and miR-23b-3p can down-regulate expression of GDF9. Overall, this study demonstrated that miR-23b-3p can regulate the proliferation and steroid hormone synthesis of chicken granulosa cells by inhibiting the expression of GDF9.
Collapse
Affiliation(s)
- Qinyao Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Juan Li
- Institute of Animal Science, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Haorong He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuchen Cao
- Institute of Animal Science, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Dongmei Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jianping Wang
- Key Laboratory for Animal Disease Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chunlin Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Huarui Du
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Xiaosong Jiang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
16
|
Pan T, Jiang C, Cheng J, Xie J, Liu X, Xu W, He G. Autism-Like Behavior in the Offspring of CYP11A1-Overexpressing Pregnant Rats. Front Neurosci 2021; 15:774439. [PMID: 35002603 PMCID: PMC8733305 DOI: 10.3389/fnins.2021.774439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorders (ASD) represent a complex group of neurodevelopmental disorders that are characterized by impaired social behavior and communication as well as repetitive behavior and restricted interests. Prenatal exposure to high levels of testosterone and preeclampsia are thought to be risk factors of ASD. We had previously reported that overexpression of the mitochondrial cholesterol side-chain cleavage enzyme (CYP11A1) could lead to both preeclampsia-like symptoms and increased testosterone levels in pregnant rats. In this study, we investigated the association between high CYP11A1 levels in pregnant rats and autism-like behavior in their offspring. Timed-pregnant Sprague-Dawley (SD) rats were injected with CYP11A1 gene-carrying adenoviruses on gestational day 8.5, and their offspring were then compared with those from timed-pregnant control SD rats. Compared with their control counterparts, the offspring of the CYP11A1-ovexpressing dams displayed more symptoms of anxiety and spent less time in social interactions and more time in self-grooming and rearing, all indicators of autism-like behavior. Sequencing of the transcriptome in primary microglia from the offspring of CYP11A1-overexpressing dams revealed that immune pathways were highly activated, and the gamma-aminobutyric acid type A (GABAA) receptor genes were among the top differentially expressed genes. Using primary microglia cultures generated from neonatal rats, tumor necrosis factor-alpha expression was found to be elevated in the cells transfected with CYP11A1-carrying adenoviruses. Additionally, the offspring of CYP11A1-overexpressing dams displayed dysregulated GABAA receptor expression. Taken together, these results suggest that abnormal CYP11A1 gene expression in pregnant rats could lead to microglial immune activation and dysregulated GABAA receptor expression in their offspring and thereby anxiety and autism-related behavior. Our study suggests that the pathways regulated by CYP11A1 could be promising preventative and therapeutic targets for ASD.
Collapse
Affiliation(s)
- Tianying Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Jiang
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Juan Cheng
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Third People’s Hospital of Chengdu, Chengdu, China
| | - Jiang Xie
- Third People’s Hospital of Chengdu, Chengdu, China
| | - Xinghui Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guolin He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Zhou L, Li M, Wang D. Role of sex steroids in fish sex determination and differentiation as revealed by gene editing. Gen Comp Endocrinol 2021; 313:113893. [PMID: 34454946 DOI: 10.1016/j.ygcen.2021.113893] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
The involvement of sex steroids in sex determination and differentiation is relatively conserved among non-mammalian vertebrates, especially in fish. Thanks to the advances in genome sequencing and genome editing, significant progresses have been made in the understanding of steroidogenic pathway and hormonal regulation of sex determination and differentiation in fish. It seems that loss of function study of single gene challenges the traditional views that estrogen is required for ovarian differentiation and androgen is needed for testicular development, but it is not so in essence. Steroidogenic enzymes can be classified into two categories based on expression and enzyme activities in fish. One type, encoded by star2, cyp17a1 and cyp19a1a, is involved in estrogen production and exclusively expressed in the gonads. Mutation of these genes results in the up-regulation of male pathway genes and sex reversal from genetic female to male. The other type, encoded by the duplicated paralogs of the above genes, including star1, cyp11a1, cyp17a2 and cyp19a1b, as well as cyp11c1 gene, is dominantly expressed both in gonads and extra-gonadal tissues. Mutation of these genes alters the steroids (androgen, DHP and cortisol) production and spermatogenesis, fertility, secondary sexual characteristics and sexual behavior, but usually does not affect the sex differentiation. For the estrogen receptors (esr1, esr2a and esr2b), single mutation failed to, but double and triple mutation leads to sex reversal from female to male, indicating that at least Esr2a and Esr2b are required to mediate the role of estrogen in sex determination proved by gene editing experiments. Taken together, results from gene editing enrich our understanding of steroid synthesis pathways and further confirm the critical role of estrogen in female sex determination by antagonizing the male pathway in fish.
Collapse
Affiliation(s)
- Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
18
|
Chen C, Ahmad MJ, Ye T, Du C, Zhang X, Liang A, Yang L. Cathepsin B Regulates Mice Granulosa Cells' Apoptosis and Proliferation In Vitro. Int J Mol Sci 2021; 22:ijms222111827. [PMID: 34769258 PMCID: PMC8584394 DOI: 10.3390/ijms222111827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Cathepsin B (CTSB), a lysosomal cysteine protease’s high expression and activity, has been reported to cause poor-quality embryos in porcine and bovine. Nevertheless, CTSB functions in mice granulosa cells remain to explore. To discuss the CTSB functional role in follicular dynamics, we studied apoptosis, proliferation, cell cycle progression, and related signaling pathways in primary mouse granulosa cells transfected with small interference RNA specific to CTSB (siCTSB) for 48 h. Further, mRNA and protein expression of cell proliferation regulators (Myc and cyclin D2), apoptosis regulators (caspase 3, caspase 8, TNF-α, and Bcl2), steroidogenesis-related genes (FSHR and CYP11A1), and autophagy markers (LC3-I and ATG5) were investigated. In addition, the effect of CTSB on steroidogenesis and autophagy was also examined. Flow cytometry analysis assay displayed that silencing of CTSB decreased the early and total apoptosis rate by downregulating TNF-α, caspase 8, and caspase 3, and upregulating Bcl2. By regulating Myc and cyclin D2 expression and activating the p-Akt and p-ERK pathways, CTSB knockdown increased GC proliferation and number. A significant decline in estradiol and progesterone concentrations was observed parallel to a significant decrease in autophagy-related markers LC3-I and ATG5 compared to the control group. Herein, we demonstrated that CTSB serves as a proapoptotic agent and plays a critical role in folliculogenesis in female mice by mediating apoptosis, autophagy, proliferation, and steroidogenesis. Hence, CTSB could be a potential prognostic agent for female infertility.
Collapse
Affiliation(s)
- Chao Chen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (M.J.A.); (T.Y.); (C.D.); (X.Z.); (A.L.)
| | - Muhammad Jamil Ahmad
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (M.J.A.); (T.Y.); (C.D.); (X.Z.); (A.L.)
| | - Tingzhu Ye
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (M.J.A.); (T.Y.); (C.D.); (X.Z.); (A.L.)
| | - Chao Du
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (M.J.A.); (T.Y.); (C.D.); (X.Z.); (A.L.)
| | - Xinxin Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (M.J.A.); (T.Y.); (C.D.); (X.Z.); (A.L.)
| | - Aixin Liang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (M.J.A.); (T.Y.); (C.D.); (X.Z.); (A.L.)
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (M.J.A.); (T.Y.); (C.D.); (X.Z.); (A.L.)
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, China
- Correspondence: ; Tel.: +86-027-8728-1813
| |
Collapse
|
19
|
Cao J, Chen Y, Xia X, Qu H, Ao Y, Wang H. Intergenerational genetic programming mechanism and sex differences of the adrenal corticosterone synthesis dysfunction in offspring induced by prenatal ethanol exposure. Toxicol Lett 2021; 351:78-88. [PMID: 34454011 DOI: 10.1016/j.toxlet.2021.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
We previously found that prenatal ethanol exposure (PEE) induced adrenal dysplasia in offspring, which was related to intrauterine maternal glucocorticoid overexposure. This study investigated the intergenerational genetic effect and sex differences of PEE-induced changes in the synthetic function of adrenal corticosterone in offspring, and to clarify the intrauterine origin programming mechanism. Wistar pregnant rats were gavaged with ethanol (4 g/kg bw/d) from gestation day (GD) 9-20, and F1 generation was born naturally. The F1 generation female rats in the PEE group were mated with normal male rats to produce F2 generation. Serum and adrenal glands of fetal rats and F1/F2 adult rats were collected at GD20 and postnatal week 28. PEE increased the serum corticosterone level, while diminishing the expression of adrenal steroid synthases of fetal rats. Moreover, PEE enhanced the mRNA expression of GR and HDAC1, but inhibited the mRNA expression of SF1 and reduced the H3K9ac level of P450scc in the fetal adrenal gland. In PEE adult offspring of F1 and F2 generation the serum corticosterone level, the H3K9ac level of P450scc and its expression were decreased in males but were increased in females. In NCI-H295R cells, cortisol reduced the production of endogenous cortisol, down-regulated SF1, and up-regulated HDAC1 expression by activating GR, and decreased H3K9ac level and expression of P450scc. In conclusion, PEE could induce adrenal dysplasia in offspring with sex differences and intergenerational genetic effects, and the adrenal insufficiency in male offspring was related to the induction of low functional genetic programming of P450scc by intrauterine high corticosterone through the GR/SF1/HDAC1 pathway.
Collapse
Affiliation(s)
- Jiangang Cao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yawen Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xuan Xia
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Qu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ying Ao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
20
|
Bacila I, Cunliffe VT, Krone NP. Interrenal development and function in zebrafish. Mol Cell Endocrinol 2021; 535:111372. [PMID: 34175410 DOI: 10.1016/j.mce.2021.111372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
In this article we aim to provide an overview of the zebrafish interrenal development and function, as well as a review of its contribution to basic and translational research. A search of the PubMed database identified 41 relevant papers published over the last 20 years. Based on the common themes identified, we discuss the organogenesis of the interrenal gland and its functional development and we review what is known about the genes involved in zebrafish steroidogenesis. We also outline the consequences of specific defects in steroid biosynthesis, as revealed by evidence from genetically engineered zebrafish models, including cyp11a2, cyp21a2, hsd3b1, cyp11c1 and fdx1b deficiency. Finally, we summarise the impact of different chemicals and environmental factors on steroidogenesis. Our review highlights the utility of zebrafish as a research model for exploring important areas of basic science and human disease, especially in the current context of rapid technological progress in the field of Molecular Biology.
Collapse
Affiliation(s)
- Irina Bacila
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom; The Bateson Centre, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Vincent T Cunliffe
- The Bateson Centre, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom; Department of Biomedical Science, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Nils P Krone
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom; The Bateson Centre, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom; Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
21
|
Tenugu S, Pranoty A, Mamta SK, Senthilkumaran B. Development and organisation of gonadal steroidogenesis in bony fishes - A review. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Li Q, Guo S, Yang C, Liu X, Chen X, He J, Tong C, Ding Y, Peng C, Geng Y, Mu X, Liu T, Li F, Wang Y, Gao R. High-fat diet-induced obesity primes fatty acid β-oxidation impairment and consequent ovarian dysfunction during early pregnancy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:887. [PMID: 34164521 PMCID: PMC8184480 DOI: 10.21037/atm-21-2027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Obesity is associated with many adverse effects on female fertility. Obese women have a higher likelihood of developing ovulatory dysfunction due to dysregulation of the hypothalamic-pituitary-ovarian axis. However, the effect of obesity on ovarian function during early pregnancy needs to be further assessed. Methods C57BL6/J mice were given a high-fat diet (HFD) for 12 weeks to induce obesity. An in vitro high-fat model was established by treating the human ovarian granulosa cell line KGN with oleic acid and palmitic acid. Ovarian morphology of obese mice in early pregnancy was assessed by hematoxylin and eosin staining and ovarian function was assessed by enzyme-linked immunosorbent assay, western blotting, and immunohistochemistry. Oil Red O staining and transmission electron microscopy were used to detect fatty acid accumulation. Specific markers relating to the ovarian functional mechanism were assessed by real-time PCR, western blotting, lactate detection, adenosine triphosphate (ATP) detection, biochemical analyses, and enzyme-linked immunosorbent assay. Results The results of this study showed that during early pregnancy, the number of corpus lutea, serum estradiol and progesterone levels, and the expression of the steroid biosynthesis-related protein CYP19A1 (aromatase), CYP11A1 (cholesterol side chain cleavage enzyme), and StAR (steroidogenic acute regulatory protein), were significantly increased in HFD mice. Mice fed an HFD also showed a significant increase in ovarian lipid accumulation on day 7 of pregnancy. Genes involved in fatty acid synthesis (Acsl4 and Elovl5), and fatty acid uptake and transport (Slc27a4), together with the β-oxidation rate-limiting enzyme Cpt1a, were significantly upregulated in HFD mice. Specifically, there was abnormal elevation of ATP and aberrant expression of tricarboxylic acid cycle (TCA)- and electron transport chain (ETC)-related genes in the ovaries of pregnant HFD mice. KGN cells treated with etomoxir targeting β-oxidation of fatty acid showed decreased TCA cycle and ETC related gene expression. The elevation of ATP and estradiol and progesterone levels was reversed. Conclusions During early pregnancy, HFD-induced obesity increases fatty acid β-oxidation, which in turn increases TCA cycle and ETC related gene expression, leading to increased ATP production and ovarian dysfunction.
Collapse
Affiliation(s)
- Qingying Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Sujuan Guo
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chengshun Yang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xinyi Mu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Taihang Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Yuan B, Yang J, Dubeau L, Hu Y, Li R. A Phosphotyrosine Switch in Estrogen Receptor β Is Required for Mouse Ovarian Function. Front Cell Dev Biol 2021; 9:649087. [PMID: 33898441 PMCID: PMC8063698 DOI: 10.3389/fcell.2021.649087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
The two homologous estrogen receptors ERα and ERβ exert distinct effects on their cognate tissues. Previous work from our laboratory identified an ERβ-specific phosphotyrosine residue that regulates ERβ transcriptional activity and antitumor function in breast cancer cells. To determine the physiological role of the ERβ phosphotyrosine residue in normal tissue development and function, we investigated a mutant mouse model (Y55F) whereby this particular tyrosine residue in endogenous mouse ERβ is mutated to phenylalanine. While grossly indistinguishable from their wild-type littermates, mutant female mice displayed reduced fertility, decreased ovarian follicular cell proliferation, and lower progesterone levels. Moreover, mutant ERβ from female mice during superovulation is defective in activating promoters of its target genes in ovarian tissues. Thus, our findings provide compelling genetic and molecular evidence for a role of isotype-specific ERβ phosphorylation in mouse ovarian development and function.
Collapse
Affiliation(s)
- Bin Yuan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Jing Yang
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Louis Dubeau
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Yanfen Hu
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Rong Li
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
24
|
Zhang J, Yang M, Luan P, Jia W, Liu Q, Ma Z, Dang J, Lu H, Ma Q, Wang Y, Mu C, Huo Z. Associations Between Cytochrome P450 (CYP) Gene Single-Nucleotide Polymorphisms and Second-to-Fourth Digit Ratio in Chinese University Students. Med Sci Monit 2021; 27:e930591. [PMID: 33723203 PMCID: PMC7980499 DOI: 10.12659/msm.930591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cytochrome P450 (CYP) genes are necessary for the production or metabolism of fetal sex hormones during pregnancy. The second-to-fourth digit ratio (2D: 4D) is formed in the early stage of human fetal development and considered an indicator reflecting prenatal sex steroids levels. We explored the association between 2D: 4D and single-nucleotide polymorphisms (SNPs) of CYP. MATERIAL AND METHODS Correlation analysis between 2D: 4D and 8 SNPs, rs2687133 (CPY3A7), rs7173655 (CYP11A1), rs1004467, rs17115149, and rs2486758 (CYP17A1), and rs4646, rs2255192, rs4275794 (CYP19A1), was performed using data from 426 female and 412 male Chinese university students. SNP genotyping was conducted using PCR. Digit lengths were photographed and measured by image processing software. RESULTS rs2486758 (CYP17A1) correlated with left hand 2D: 4D in men (P=0.026), and rs1004467 (CYP17A1) correlated with right hand 2D: 4D in men (P=0.008) and the whole population (P=0.032). In men, allele G rs1004467 decreased right hand 2D: 4D, while allele C of rs2486758 increased left hand 2D: 4D. In women, left hand 2D: 4D was higher in genotypes with allele A of SNP rs4646 (CYP19A1) under the dominant genetic model; female DR-L was higher in genotypes with allele T of rs17115149 (CYP11A1). SNPs rs2687133 (CYP3A7) and rs1004467 (CYP17A1) were significantly correlated with right hand 2D: 4D (P=0.0107). CONCLUSIONS SNPs rs1004467 and rs2486758 of CYP17A1 are significant in the relationship between 2D: 4D and CYP gene polymorphisms under different conditions. SNP interactions between CYP genes probably impact 2D: 4D. The correlation between 2D: 4D and some sex hormone-related diseases may be due to the effect of CYP variants on the 2 phenotypes.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Mengyi Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Pengfei Luan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Wei Jia
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Qiujun Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Zhanbing Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Jie Dang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Hong Lu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Qian Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Yanfeng Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Chunlan Mu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Zhenghao Huo
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- Department of Biology, Gansu Medical College, Pingliang, Gansu, P.R. China
| |
Collapse
|
25
|
Wang X, Wen H, Li Y, Lyu L, Song M, Zhang Y, Li J, Yao Y, Li J, Qi X. Characterization of CYP11A1 and its potential role in sex asynchronous gonadal development of viviparous black rockfish Sebastes schlegelii (Sebastidae). Gen Comp Endocrinol 2021; 302:113689. [PMID: 33301756 DOI: 10.1016/j.ygcen.2020.113689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Mitochondrial cytochrome P450 side-chain cleavage (P450scc), encoded by the cyp11a1 gene, initiates the first step of steroid biosynthesis. In this study, a 1554-bp open reading frame (ORF) of black rockfish (Sebastes schlegelii) cyp11a1 was cloned. The cyp11a1 gene is located on chromosome 5 and has 9 exons. The ORF encodes a putative precursor protein of 517 amino acids, and the predicted cleavable mitochondrial targeting peptide is located at amino acids 1-39. P450scc shares homology with other teleosts and tetrapods, which have relatively conserved binding regions with heme, cholesterol and adrenodoxin. Tissue distribution analysis revealed that the highest expression levels of cyp11a1 were detected in mature gonads and head kidney but that low levels were detected in gestational/regressed ovaries, regressed testes and other tissues. Immunostaining of P450scc was observed in testicular Leydig cells, ovarian theca cells, interrenal glands of head kidney, pituitary and multiple regions of brain. Particularly, two kinds of fish-specific P450scc-positive cells, including coronet cells of brain saccus vasculosus and hypophyseal somatolactin cells, were identified in black rockfish. Our results provide novel evidence for the potential role played by P450scc in reproduction behavior by mediating steroidogenesis in viviparous teleost.
Collapse
Affiliation(s)
- Xiaojie Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Likang Lyu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Min Song
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Ying Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jianshuang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yijia Yao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jifang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
26
|
Holota H, Thirouard L, Monrose M, Garcia M, De Haze A, Saru JP, Caira F, Beaudoin C, Volle DH. FXRα modulates leydig cell endocrine function in mouse. Mol Cell Endocrinol 2020; 518:110995. [PMID: 32827571 DOI: 10.1016/j.mce.2020.110995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 01/14/2023]
Abstract
The hypothalamic-pituitary axis exert a major control over endocrine and exocrine testicular functions. The hypothalamic-pituitary axis corresponds to a cascade with the Gonadotropin Releasing Hormone secreted by the hypothalamus, which stimulates the synthesis and the release of Luteinizing Hormone (LH) and Follicle Stimulating Hormone by the gonadotropic cells of the anterior pituitary. The LH signaling pathway controls the steroidogenic activity of the Leydig cells via the activation of the luteinizing hormone/choriogonadotropin receptor. In order to avoid a runaway system, sex steroids exert a negative feedback within hypothalamus and pituitary. Testicular steroidogenesis is locally controlled within Leydig cells. The present work reviews some local regulations of steroidogenesis within the Leydig cells focusing mainly on the roles of the Farnesoid-X-Receptor-alpha and its interactions with several orphan members of the nuclear receptor superfamily. Further studies are required to reinforce our knowledge of the regulation of testicular endocrine function, which is necessary to ensure a better understanding of fertility disorders and then proposed an adequate treatment of the diseases.
Collapse
Affiliation(s)
- Hélène Holota
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Laura Thirouard
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Mélusine Monrose
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Manon Garcia
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Angélique De Haze
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Jean-Paul Saru
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Françoise Caira
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - David H Volle
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
27
|
Masamrekh RA, Filippova TA, Haurychenka YI, Sherbakov KA, Veselovsky AV, Shumyantseva VV, Kuzikov AV. The interactions of a number of steroid-metabolizing cytochromes P450 with abiraterone D4A metabolite: spectral analysis and molecular docking. Steroids 2020; 162:108693. [PMID: 32645328 DOI: 10.1016/j.steroids.2020.108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
The interactions of pharmacologically active 3-keto-Δ4-metabolite of anticancer drug abiraterone (D4A) with steroid-metabolizing cytochromes P450 (CYP51A1, CYP11A1, CYP19A1) was studied by absorption spectroscopy and molecular docking. Both abiraterone and D4A induce type I spectral changes of CYP51A1, one of the enzymes of cholesterol biosynthesis. We have revealed that D4A did not induce spectral changes of CYP11A1, the key enzyme of pregnenolone biosynthesis, unlike abiraterone (type II ligand of CYP11A1). On the contrary, D4A interacts with the active site of CYP19A1, the key enzyme of estrogen biosynthesis, inducing type II spectral changes, while abiraterone does not. Spectral analysis allowed us to calculate spectral dissociation constant (KS) for each complex of cytochrome P450 with respective ligands. The data were supported by molecular docking. The obtained results broaden understanding of interactions of D4A with some of the key steroid-metabolizing cytochromes P450 and allow one to predict possible disproportions of steroid metabolism.
Collapse
Affiliation(s)
- Rami A Masamrekh
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Tatiana A Filippova
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Yaraslau I Haurychenka
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia
| | - Kirill A Sherbakov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Alexander V Veselovsky
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Victoria V Shumyantseva
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Alexey V Kuzikov
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia.
| |
Collapse
|
28
|
Monrose M, Thirouard L, Garcia M, Holota H, De Haze A, Caira F, Beaudoin C, Volle DH. New perspectives on PPAR, VDR and FXRα as new actors in testicular pathophysiology. Mol Aspects Med 2020; 78:100886. [PMID: 32878696 DOI: 10.1016/j.mam.2020.100886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
Abstract
The incidence of reproductive disorders is constantly increasing and affects 15% of couples, with male's abnormalities diagnosed in almost half of the cases. The male gonads exert two major functions of the testis with the productions of gametes (exocrine function) and of sexual hormones (endocrine function). In the last decades, next to steroid receptors such as estrogen and androgen receptors, the involvement of other members of the nuclear receptor superfamily have been described such as Steroidogenic factor-1 (SF-1), Nerve growth factor IB (NGFIB), Liver-X-Receptorα (LXRα) and Dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX-1). The purpose of this review is to highlight the emerging roles of some members of the nuclear receptor superfamily among which the vitamin-D Receptor (VDR), Peroxisome Proliferator-Activated Receptor (PPAR), Farnesoid-X-Receptor-α (FXRα). We discuss how these receptors could participate to explain male fertility disorders; and their potential to be use as biomarkers or therapeutic targets for management of fertility disorders.
Collapse
Affiliation(s)
- M Monrose
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - L Thirouard
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - M Garcia
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - H Holota
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - A De Haze
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - F Caira
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - C Beaudoin
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - D H Volle
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
29
|
Rajakumar A, Senthilkumaran B. Steroidogenesis and its regulation in teleost-a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:803-818. [PMID: 31940121 DOI: 10.1007/s10695-019-00752-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Steroid hormones modulate several important biological processes like metabolism, stress response, and reproduction. Steroidogenesis drives reproductive function wherein development and differentiation of undifferentiated gonads into testis or ovary, and their growth and maturation, are regulated. Steroidogenesis occurs in gonadal and non-gonadal tissues like head kidney, liver, intestine, and adipose tissue in teleosts. This process is regulated differently through multi-level modulation of promoter motif transcription factor regulation of steroidogenic enzyme genes to ultimately control enzyme activity and turnover. In view of this, understanding teleostean steroidogenesis provides major inputs for technological innovation of pisciculture. Unlike higher vertebrates, steroidal intermediates and shift in steroidogenesis is critical for gamete maturation in teleosts, more essentially oogenesis. Considering these characteristics, this review highlights the promoter regulation of steroidogenic enzyme genes by several transcription factors that are involved in teleostean steroidogenesis. It also addresses different methodologies involved in promoter regulation studies together with glucocorticoids and androgen relationship with reference to teleosts.
Collapse
Affiliation(s)
- Anbazhagan Rajakumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, Telangana, 500046, India
- Present Address: Section on Molecular Endocrinology, National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892,, USA
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
30
|
Holota H, Thirouard L, Garcia M, Monrose M, de Haze A, Saru JP, Caira F, Beaudoin C, Volle DH. Fxralpha gene is a target gene of hCG signaling pathway and represses hCG induced steroidogenesis. J Steroid Biochem Mol Biol 2019; 194:105460. [PMID: 31470110 DOI: 10.1016/j.jsbmb.2019.105460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
The bile acid receptor Farnesoid-X-Receptor alpha (FXRα), a member of the nuclear receptor superfamily, is well known for its roles in the enterohepatic tract. In addition, FXRα regulates testicular physiology through the control of both endocrine and exocrine functions. The endocrine function of the Leydig cells is mainly controlled by the hypothalamo-pituitary axis viaLH/chorionic gonadotropin (CG). If FXRα was demonstrated to control the expression of the Lhcgr gene, encoding the LH receptor; the impact of the LH/CG signaling on the Fxrα expression has not been defined so far. Here, we demonstrate that hCG increases the Fxrα gene expression through the protein kinase-A signaling pathway. Fxrα is then involved in a negative feedback of steroid synthesis. These data improve our knowledge of the local control of the testicular steroidogenesis with the identification of the link between the hypothalamo-pituitary axis and the FXRα signaling pathway.
Collapse
Affiliation(s)
- Hélène Holota
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Laura Thirouard
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Manon Garcia
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Mélusine Monrose
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Angélique de Haze
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Jean-Paul Saru
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Françoise Caira
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Claude Beaudoin
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France.
| | - David H Volle
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France.
| |
Collapse
|
31
|
Basiru A, Akorede GJ, Soetan K, Olayemi FO. Adverse reproductive effects of ethanolic root extract of Waltheria indica in male Wistar rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2019; 16:/j/jcim.ahead-of-print/jcim-2018-0178/jcim-2018-0178.xml. [PMID: 31433783 DOI: 10.1515/jcim-2018-0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 01/17/2019] [Indexed: 11/15/2022]
Abstract
Background Numerous uses of Waltheria indica plant such as antitrypanosomal, antibacterial and antimalarial effects have been reported. It has however been reported that most plants with antibacterial and antiprotozoal effects have adverse effect on male reproduction. Hence, we evaluated the effect of Waltheria indica root on male reproductive parameters. Methods Twenty adult male Wistar rats were randomly divided into four groups (n=5); A-D. Group A served as control group while groups B, C and D were administered with 200, 400 and 800 mg/Kg body weight of crude ethanolic extract of Waltheria indica root. After 28 days of administration, the rats were sacrificed and sperm parameters, sperm morphology, serum reproductive hormones and lipids were determined. Results There was a significant reduction in sperm count and motility as well as significant increase in percentage abnormal sperm cell (p<0.001) at the 400 and 800 mg/kg BW. The serum levels of testosterone was also significantly reduced while total cholesterol increased significantly (p<0.05) at the highest dose. Conclusion Waltheria indica root has adverse effect on male reproduction through reduction in sperm parameters and male reproductive hormones.
Collapse
Affiliation(s)
- Afisu Basiru
- Department of Veterinary Physiology and Biochemistry, University of Ilorin, Ilorin, Kwara, Nigeria
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | | | - Kehinde Soetan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Funsho O Olayemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| |
Collapse
|
32
|
Sèdes L, Thirouard L, Maqdasy S, Garcia M, Caira F, Lobaccaro JMA, Beaudoin C, Volle DH. Cholesterol: A Gatekeeper of Male Fertility? Front Endocrinol (Lausanne) 2018; 9:369. [PMID: 30072948 PMCID: PMC6060264 DOI: 10.3389/fendo.2018.00369] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cholesterol is essential for mammalian cell functions and integrity. It is an important structural component maintaining the permeability and fluidity of the cell membrane. The balance between synthesis and catabolism of cholesterol should be tightly regulated to ensure normal cellular processes. Male reproductive function has been demonstrated to be dependent on cholesterol homeostasis. Here we review data highlighting the impacts of cholesterol homeostasis on male fertility and the molecular mechanisms implicated through the signaling pathways of some nuclear receptors.
Collapse
|
33
|
Lan HC, Wu KY, Lin IW, Yang ZJ, Chang AA, Hu MC. Bisphenol A disrupts steroidogenesis and induces a sex hormone imbalance through c-Jun phosphorylation in Leydig cells. CHEMOSPHERE 2017; 185:237-246. [PMID: 28697429 DOI: 10.1016/j.chemosphere.2017.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/11/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine disrupting chemical (EDC) that is used to manufacture plastic consumer products. It is well known that exposure to BPA can induce defects in gonad development and negatively influences reproductive function in both males and females. In this study, we assessed the effects of BPA on hormone production in Leydig cells, which secrete hormones in the testes and support male fertility. We examined two steroidogenic enzymes, CYP11A1 and CYP19 that involved in sex hormone synthesis in mouse MA-10 Leydig cells. We found that BPA activated CYP gene in both mRNA and protein levels then resulted in alteration of the normal sex hormone ratio. Furthermore, we found that BPA induced c-Jun phosphorylation and contributed to CYP gene expression. Similar results were observed in an animal study. In conclusion, BPA disrupts the hormone environment in testis via steroidogenic gene activation through the JNK/c-Jun signaling pathway.
Collapse
Affiliation(s)
- Hsin-Chieh Lan
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| | - Kai-Yu Wu
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - I-Wen Lin
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Zhi-Jie Yang
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Ai-An Chang
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Meng-Chun Hu
- Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
34
|
Pan T, He G, Chen M, Bao C, Chen Y, Liu G, Zhou M, Li S, Xu W, Liu X. Abnormal CYP11A1 gene expression induces excessive autophagy, contributing to the pathogenesis of preeclampsia. Oncotarget 2017; 8:89824-89836. [PMID: 29163791 PMCID: PMC5685712 DOI: 10.18632/oncotarget.21158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022] Open
Abstract
Objective In this study, we investigated the exact mechanism by which excessive CYP11A1 expression impairs the placentation process and whether this causes preeclampsia (PE) in an in vivo model. Setting and Design In order to study CYP11A1 overexpression, BeWo cells were transfected with CYP11A1. Pregnenolone, progesterone, and testosterone levels were measured by enzyme linked immunosorbent assays, and levels of autophagy markers were quantified by western blotting and immunofluorescence. Trophoblastic cell invasion was assessed using transwell assays; BeWo cells were treated with testosterone and an androgen receptor (AR) inhibitor (flutamide) to elucidate the invasion mechanism. An adenovirus overexpression rat model was established to investigate CYP11A1 overexpression in vivo and the phenotype was examined. Furthermore, human placenta samples (n = 24) were used to determine whether PE patient placentas showed altered CYP11A1 and autophagy marker expression. Results BeWo cells overexpressing CYP11A1 had significantly increased levels of pregnenolone, progesterone, and testosterone. Additionally, the expression levels of autophagy markers in CYP11A1-overexpressing BeWo cells were significantly increased. Trophoblast invasion was significantly reduced in CYP11A1-overexpressing cells as well as in cells treated with high testosterone. This reduction could be significantly rescued when cells were pretreated with flutamide. Overexpression of CYP11A1 in rat pregnancies led to PE-like symptoms and an over-activation of the AR-mediated pathway in the placenta. Elevated expression of CYP11A1 and autophagy markers could also be detected in PE placenta samples. Conclusions These results suggest that abnormally high expression of CYP11A1 induces trophoblast autophagy and inhibits trophoblastic invasion, which is associated with the etiology of PE.
Collapse
Affiliation(s)
- Tianying Pan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Guolin He
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Chenyi Bao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Chen
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Guangyu Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Mi Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Shuying Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xinghui Liu
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
35
|
Sèdes L, Martinot E, Baptissart M, Baron S, Caira F, Beaudoin C, Volle DH. Bile acids and male fertility: From mouse to human? Mol Aspects Med 2017; 56:101-109. [DOI: 10.1016/j.mam.2017.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023]
|
36
|
van den Driesche S, Macdonald J, Anderson RA, Johnston ZC, Chetty T, Smith LB, Mckinnell C, Dean A, Homer NZ, Jorgensen A, Camacho-Moll ME, Sharpe RM, Mitchell RT. Prolonged exposure to acetaminophen reduces testosterone production by the human fetal testis in a xenograft model. Sci Transl Med 2016; 7:288ra80. [PMID: 25995226 DOI: 10.1126/scitranslmed.aaa4097] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most common male reproductive disorders are linked to lower testosterone exposure in fetal life, although the factors responsible for suppressing fetal testosterone remain largely unknown. Protracted use of acetaminophen during pregnancy is associated with increased risk of cryptorchidism in sons, but effects on fetal testosterone production have not been demonstrated. We used a validated xenograft model to expose human fetal testes to clinically relevant doses and regimens of acetaminophen. Exposure to a therapeutic dose of acetaminophen for 7 days significantly reduced plasma testosterone (45% reduction; P = 0.025) and seminal vesicle weight (a biomarker of androgen exposure; 18% reduction; P = 0.005) in castrate host mice bearing human fetal testis xenografts, whereas acetaminophen exposure for just 1 day did not alter either parameter. Plasma acetaminophen concentrations (at 1 hour after the final dose) in exposed host mice were substantially below those reported in humans after a therapeutic oral dose. Subsequent in utero exposure studies in rats indicated that the acetaminophen-induced reduction in testosterone likely results from reduced expression of key steroidogenic enzymes (Cyp11a1, Cyp17a1). Our results suggest that protracted use of acetaminophen (1 week) may suppress fetal testosterone production, which could have adverse consequences. Further studies are required to establish the dose-response and treatment-duration relationships to delineate the maximum dose and treatment period without this adverse effect.
Collapse
Affiliation(s)
- Sander van den Driesche
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Joni Macdonald
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Zoe C Johnston
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Tarini Chetty
- Edinburgh Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh, EH9 1LF, Scotland, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Chris Mckinnell
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Afshan Dean
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Natalie Z Homer
- Edinburgh CRF Mass Spectrometry Core, Centre for Cardiovascular Science, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Anne Jorgensen
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK.,University Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Maria-Elena Camacho-Moll
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK.,Edinburgh Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh, EH9 1LF, Scotland, UK
| |
Collapse
|
37
|
Vega A, Martinot E, Baptissart M, De Haze A, Saru JP, Baron S, Caira F, Schoonjans K, Lobaccaro JMA, Volle DH. Identification of the link between the hypothalamo-pituitary axis and the testicular orphan nuclear receptor NR0B2 in adult male mice. Endocrinology 2015; 156:660-9. [PMID: 25426871 DOI: 10.1210/en.2014-1418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The small heterodimer partner (SHP, nuclear receptor subfamily 0, group B, member 2; NR0B2) is an atypical nuclear receptor known mainly for its role in bile acid homeostasis in the enterohepatic tract. We previously showed that NR0B2 controls testicular functions such as testosterone synthesis. Moreover, NR0B2 mediates the deleterious testicular effects of estrogenic endocrine disruptors leading to infertility. The endocrine homeostasis is essential for health, because it controls many physiological functions. This is supported by a large number of studies demonstrating that alterations of steroid activity lead to several kinds of diseases such as obesity and infertility. Within the testis, the functions of the Leydig cells are mainly controlled by the hypothalamo-pituitary axis via LH/chorionic gonadotropin (CG). Here, we show that LH/CG represses Nr0b2 expression through the protein kinase A-AMP protein kinase pathway. Moreover, using a transgenic mouse model invalidated for Nr0b2, we point out that NR0B2 mediates the repression of testosterone synthesis and subsequent germ cell apoptosis induced by exposure to anti-GnRH compound. Together, our data demonstrate a new link between hypothalamo-pituitary axis and NR0B2 in testicular androgen metabolism, making NR0B2 a major actor of testicular physiology in case of alteration of LH/CG levels.
Collapse
Affiliation(s)
- Aurélie Vega
- Inserm Unit 1103 (A.V., E.M., M.B., A.D.H., J.-P.S., S.B., F.C., J.-M.A.L., D.H.V.), Génétique Reproduction et Développement (GReD), Boîte Postale 80026; Clermont Université (A.V., E.M., M.B., A.D.H., J.-P.S., S.B., F.C., J.-M.A.L., D.H.V.), Université Blaise Pascal, GReD; and Centre National de la Recherche Scientifique (A.V., E.M., M.B., A.D.H., J.-P.S., S.B., F.C., J.-M.A.L., D.H.V.), Unité Mixte de recherche 6293, GReD, F-63170 Aubière Cedex, France; Centre de Recherche en Nutrition Humaine d'Auvergne (A.V., E.M., M.B., A.D.H., J.-P.S., S.B., F.C., J.-M.A.L., D.H.V.), F-63000 Clermont-Ferrand Cedex, France; and Institute of Bioengineering (K.S.), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rajakumar A, Senthilkumaran B. Expression analysis of cyp11a1 during gonadal development, recrudescence and after hCG induction and sex steroid analog treatment in the catfish, Clarias batrachus. Comp Biochem Physiol B Biochem Mol Biol 2014; 176:42-7. [DOI: 10.1016/j.cbpb.2014.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/15/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
|
39
|
Bahamonde PA, Tetreault GR, McMaster ME, Servos MR, Martyniuk CJ, Munkittrick KR. Molecular signatures in rainbow darter (Etheostoma caeruleum) inhabiting an urbanized river reach receiving wastewater effluents. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 148:211-220. [PMID: 24513783 DOI: 10.1016/j.aquatox.2014.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
Rainbow darter (Etheostoma caeruleum) is a small benthic fish species found in North America that are abundant and distributed throughout the Grand River watershed, ON, Canada. Rainbow darter exhibit intersex in males at sites adjacent to municipal wastewater effluents (MWWE). In October 2010, female and male rainbow darter were collected at 3 sites (1 upstream reference and 2 downstream exposed sites) in the Grand River near the cities of Kitchener and Waterloo. The primary objectives of this research were (1) to characterize the responses of whole organism endpoints (i.e. condition factor (K), liversomatic (LSI) and gonadosomatic index (GSI), histopathology) to MWWEs and (2) to identify transcripts showing altered steady state abundance with exposure to MWWE in fish inhabiting municipal wastewater effluent-exposed areas. Genes measured in this study included vitellogenin, Sry-box containing protein 9 (sox9), forkhead box L2 (foxl2), doublesex and mab-3 related transcription factor 1 (dmrt1), cytochrome P450, family 11, subfamily A, polypeptide 1 (cyp11a) as well as estrogen (esr1, esrb) and androgen (ar) receptors. There were no changes in condition factor; however, there was a significant increase in LSI and a decrease in GSI in fish inhabiting downstream environments when compared with fish collected from the reference site. Males had a high incidence (∼ 70%) of intersex in downstream sites; characterized by the presence of oocytes within the testis. In the gonad, there were sex specific differences for genes related to sexual differentiation; dmrt1 was only expressed in males whereas foxl2 and sox9 were highly expressed in females compared to males. Expression levels of ar and esr1 were higher in females than males. Conversely, esrb was not differentially expressed between sexes or among sites. There were no differences detected for the genes investigated within sex among sites. This study is the first to report on gene expression changes in the rainbow darter, with emphasis on the differences in transcript abundance between sexes and how these changes relate to exposures to MWWEs. Molecular approaches are being investigated for their potential application to field ecotoxicology, and molecular bioassays for relevant, sentinel species in environmental monitoring programs are required to better understand the impact of anthropogenic impacts on species at risk in river systems.
Collapse
Affiliation(s)
- P A Bahamonde
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB, Canada E2L 4L5.
| | - G R Tetreault
- Emerging Methods Branch, Aquatic Contaminant Research Division, Water Science and Technology Directorate, Environment Canada, Burlington, ON, Canada L7R 4A6; University of Waterloo, Department of Biology, Waterloo, ON, Canada N2L 3G1
| | - M E McMaster
- Emerging Methods Branch, Aquatic Contaminant Research Division, Water Science and Technology Directorate, Environment Canada, Burlington, ON, Canada L7R 4A6
| | - M R Servos
- University of Waterloo, Department of Biology, Waterloo, ON, Canada N2L 3G1
| | - C J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB, Canada E2L 4L5
| | - K R Munkittrick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB, Canada E2L 4L5
| |
Collapse
|
40
|
Parikh M, Patel K, Soni S, Gandhi T. Liver X Receptor: A Cardinal Target for Atherosclerosis and Beyond. J Atheroscler Thromb 2014. [DOI: 10.5551/jat.19778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
41
|
Chien Y, Cheng WC, Wu MR, Jiang ST, Shen CKJ, Chung BC. Misregulated Progesterone Secretion and Impaired Pregnancy in Cyp11a1 Transgenic Mice1. Biol Reprod 2013; 89:91. [DOI: 10.1095/biolreprod.113.110833] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
42
|
Parajes S, Griffin A, Taylor AE, Rose IT, Miguel-Escalada I, Hadzhiev Y, Arlt W, Shackleton C, Müller F, Krone N. Redefining the initiation and maintenance of zebrafish interrenal steroidogenesis by characterizing the key enzyme cyp11a2. Endocrinology 2013; 154:2702-11. [PMID: 23671259 DOI: 10.1210/en.2013-1145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Zebrafish are emerging as a model to study steroid hormone action and associated disease. However, steroidogenesis in zebrafish is not well characterized. Mammalian P450 side-chain cleavage enzyme (CYP11A1) catalyzes the first step of steroidogenesis, the conversion of cholesterol to pregnenolone. Previous studies describe an essential role for zebrafish Cyp11a1 during early development. Cyp11a1 has been suggested to be the functional equivalent of mammalian CYP11A1 in the zebrafish interrenal gland (equivalent to the mammalian adrenal), gonad, and brain. However, reported cyp11a1 expression is inconsistent in zebrafish larvae, after active cortisol synthesis commences. Recently a duplicated cyp11a gene, cyp11a2, has been described, which shares an 85% identity with cyp11a1. We aimed to elucidate the specific role of the two cyp11a paralogs. cyp11a1 was expressed from 0 to 48 hours post-fertilization (hpf), whereas cyp11a2 expression started after the development of the interrenal primordium (32 hpf) and was the only paralog in larvae. cyp11a2 is expressed in adult steroidogenic tissues, such as the interrenal, gonads, and brain. In contrast, cyp11a1 was mainly restricted to the gonads. Antisense morpholino knockdown studies confirmed abnormal gastrulation in cyp11a1 morphants. cyp11a2 morphants showed impaired steroidogenesis and a phenotype indicative of metabolic abnormalities. The phenotype was rescued by pregnenolone replacement in cyp11a2 morphants. Thus, we conclude that cyp11a1 is required for early development, whereas cyp11a2 is essential for the initiation and maintenance of zebrafish interrenal steroidogenesis. Importantly, this study highlights the need for a comprehensive characterization of steroidogenesis in zebrafish prior to its implementation as a model organism in translational research of adrenal disease.
Collapse
Affiliation(s)
- Silvia Parajes
- Centre for Endocrinology, Diabetes, and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
In recent years, many genes that participate in the specification, differentiation and steroidogenesis of the interrenal organ, the teleostean homologue of the adrenal cortex, have been identified and characterized in zebrafish. In-depth studies of these genes have helped to delineate the morphogenetic steps of interrenal organ formation, as well as some of the molecular and cellular mechanisms that govern these processes. The co-development of interrenal tissue with the embryonic kidney (pronephros), surrounding endothelium and invading chromaffin cells has been analyzed, by virtue of the amenability of zebrafish embryos to a variety of genetic, developmental and histological approaches. Moreover, zebrafish embryos can be subject to molecular as well as biochemical assays for the unraveling of the transcriptional regulation program underlying interrenal development. To this end, the key mechanisms that control organogenesis and steroidogenesis of the zebrafish interrenal gland have been shown to resemble those in mammals, justifying the future utilization of zebrafish model for discovering novel genes associated with adrenal development and disease.
Collapse
|
44
|
Methodological approaches to cytochrome P450 profiling in embryos. Methods Mol Biol 2012. [PMID: 22669670 DOI: 10.1007/978-1-61779-867-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cytochrome P450 enzymes (CYPs) are heme thiolate proteins essential for vertebrate development and also play important roles in toxicology as well as normal metabolic function. CYP enzymes catalyze the oxidative biotransformation of many endogenous and exogenous chemicals, including steroids and eicosanoids, and drugs and other xenobiotic toxicants. Many CYPs have known for their potential roles in development, and many chemicals that cause developmental abnormalities are substrates for CYPs. The roles and regulation of most xenobiotic metabolizing CYPs during development are unknown, impeding understanding of mechanisms of developmental toxicity. The zebrafish (Danio rerio) has become one of the premier models in vertebrate developmental biology, in large part because of the logistical advantages of rapid external development, high adult maintenance density, and significant (bio)technological tool availability. The increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of CYP gene regulation and function. Here, we present methods to examine CYP expression during early development in zebrafish, with an emphasis on developmental microarrays.
Collapse
|
45
|
Diotel N, Do Rego JL, Anglade I, Vaillant C, Pellegrini E, Vaudry H, Kah O. The brain of teleost fish, a source, and a target of sexual steroids. Front Neurosci 2011; 5:137. [PMID: 22194715 PMCID: PMC3242406 DOI: 10.3389/fnins.2011.00137] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 11/30/2011] [Indexed: 11/13/2022] Open
Abstract
Neurosteroids are defined as steroids de novo synthesized in the central nervous system. While the production of neurosteroids is well documented in mammals and amphibians, there is less information about teleosts, the largest group of fish. Teleosts have long been known for their high brain aromatase and 5α-reductase activities, but recent data now document the capacity of the fish brain to produce a large variety of sex steroids. This article aims at reviewing the available information regarding expression and/or activity of the main steroidogenic enzymes in the brain of fish. In addition, the distribution of estrogen, androgen, and progesterone nuclear receptors is documented in relation with the potential sites of production of neurosteroids. Interestingly, radial glial cells acting as neuronal progenitors, appear to be a potential source of neurosteroids, but also a target for centrally and/or peripherally produced steroids.
Collapse
Affiliation(s)
- Nicolas Diotel
- Neurogenesis and Œstrogens, UMR CNRS 6026, IFR 140, Université de Rennes 1 Rennes, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Sechman A, Pawlowska K, Hrabia A. Effect of 3,3',5-triiodothyronine and 3,5-diiodothyronine on progesterone production, cAMP synthesis, and mRNA expression of STAR, CYP11A1, and HSD3B genes in granulosa layer of chicken preovulatory follicles. Domest Anim Endocrinol 2011; 41:137-49. [PMID: 21798688 DOI: 10.1016/j.domaniend.2011.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/26/2011] [Accepted: 05/26/2011] [Indexed: 11/23/2022]
Abstract
In vitro studies were performed to assess whether stimulatory effects of triiodothyronine (T3) on progesterone (P4) production in a granulosa layer (GL) of chicken preovulatory follicles are associated with 3',5'-cyclic adenosine monophosphate (cAMP) synthesis and mRNA expression of STAR protein, CYP11A1, and HSD3B. Effects of 3,5-diiodothyronine (3,5-T2) on steroidogenic function in these follicles were also investigated. The GL of F3 to F1 follicles was incubated in medium supplemented with T3 or 3,5-T2, LH, or forskolin (F), and a combination of each iodothyronine with LH or F. Levels of P4 and cAMP in culture media were determined by RIA. Expression of genes involved in P4 synthesis (ie, STAR protein, CYP11A1, and HSD3B) in the GL of F3 to F1 follicles incubated in medium with T3 or 3,5-T2 and their combination with LH was performed by real-time PCR. Triiodothyronine increased basal and LH- and F-stimulated P4 secretion by preovulatory follicles. The 3,5-T2 elevated P4 synthesis by F3, had no effect on F2 follicles, and diminished P4 production by the GL of F1 follicles. It had no effect on LH-stimulated P4 production; however, it augmented F-stimulated P4 production by F2 and F1 follicles. Although T3 did not affect basal and F-stimulated cAMP synthesis by the GL of preovulatory follicles, it increased LH-stimulated synthesis of this nucleotide. However, 3,5-T2 elevated F-stimulated cAMP synthesis in F3 and F2 follicles; it did not change basal and LH-stimulated cAMP production. Triiodothyronine decreased basal STAR and CYP11A1 mRNAs in F3 follicles, increased them in F1 follicles, and elevated HSD3B mRNA levels in F1 follicles. Triiodothyronine augmented LH-stimulated STAR, CYP11A1, and HSD3B mRNA levels in F2 and CYP11A1 in F1 follicles. However, T3 decreased LH-stimulated STAR and HSD3B mRNA levels in F1 follicles. The 3,5-T2 did not affect basal STAR and CYP11A1 mRNA expression in all investigated follicles; however, it decreased LH-stimulated STAR expression in F2 and F1 ones. The effects of 3,5-T2 caused elevated basal but diminished LH-stimulated HSD3B mRNA levels. In conclusion, data indicate that both iodothyronines are involved in P4 production in the GL of chicken preovulatory follicles acting alone and additively with LH. Effects of iodothyronines depend on follicle maturation and are associated with modulation of cAMP synthesis and STAR, CYP11A1, and HSD3B mRNA expression. We suggest that iodothyronines participate in maturation and ovulation of chicken follicles.
Collapse
Affiliation(s)
- A Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland.
| | | | | |
Collapse
|
47
|
L Ng IS, Chin WH, P Lim EC, Tan EC. An additional case of the recurrent 15q24.1 microdeletion syndrome and review of the literature. Twin Res Hum Genet 2011; 14:333-9. [PMID: 21787116 DOI: 10.1375/twin.14.4.333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report a 9-year-old girl with 3 Mb interstitial deletion of chromosome 15q24 identified by oligonucleotide array comparative hybridization. She is of Chinese ancestry and shared some typical features of previously reported 15q24 deletion cases such as mild dysmorphism with developmental and speech delay. She also had mild hearing loss that was reported in one other case. We compared all 19 cases that are identified from array-CGH. The deletion occurred within an 8.3 Mb region from 15q23 to 15q24.3. The minimum overlapping deleted region is less than 0.5 Mb from 72.3 Mb to 72.7 Mb. The functions of the nine annotated genes within the region and how they might contribute to the microdeletion phenotype are discussed.
Collapse
Affiliation(s)
- Ivy S L Ng
- Genetics Service, KK Women's and Children's Hospital, Singapore
| | | | | | | |
Collapse
|
48
|
Zhou LH, Wang Y, Fan ZZ, Wu Q, Liu X, Ci SJ, Li Q. Tan IIA inhibits COX-2-regulated VEGF expression in human colon cancer HCT-116 cells. Shijie Huaren Xiaohua Zazhi 2011; 19:1561-1567. [DOI: 10.11569/wcjd.v19.i15.1561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of tanshinone IIA (Tan IIA), an active component of salvia miltiorrhiza, on cell proliferation and cyclooxygenase-2 (COX-2)-regulated vascular endothelial growth factor (VEGF) expression in human colon cancer HCT-116 cells.
METHODS: MTT assay was used to evaluate the effect of Tan IIA on the proliferation of HCT-116 cells. HCT-116 cells were co-transfected transiently with the recombinant plasmid pGL3-Basic-COX-2-promoter and control vector pRL-TK and randomly divided into blank group, control group, and Tan IIA group. Dual luciferase reporter assay was used to observe the activity of COX-2 promoter 48 h after treatment with Tan IIA. HCT-116 cells were transfected with the pIRESI-COX-2 plasmid and divided into three groups as above. The expression of COX-2 mRNA in transfected cells was detected by real-time PCR, and the level of VEGF in culture medium was assayed by ELISA.
RESULTS: Tan IIA had obvious inhibition on the proliferation of HCT-116 cells. The half maximal inhibitory concentrations (IC50) at 24, 48, and 72 h were 40.3 μmol/L ± 5.22 μmol/L, 12.9 μmol/L ± 3.24 μmol/L, and 8.5 μmol/L ± 1.47 μmol/L, respectively, and the maximal no-effect dose at 24 h was 10 μmol/L. At 48 h after transfection with plasmids carrying the COX-2-promoter and COX-2 cDNA, the activity of COX-2 promoter and expression of COX-2 mRNA were obviously up-regulated (both P < 0.01), and the concentration of VEGF was three times higher than that in control cells (P < 0.05). Treatment with 10 μmol/L Tan IIA significantly down-regulated the expression of COX-2 and VEGF in transfected cells (P < 0.05).
CONCLUSION: Tan IIA down-regulates VEGF expression and inhibits cell proliferation possibly by regulating COX-2 promoter activity and mRNA expression in HCT-116 cells.
Collapse
|
49
|
Fu GH, Yang XL, Zhang HX, Yu WJ, Hu K. Effects of cytochrome P450 1A substrate (difloxacin) on enzyme gene expression and pharmacokinetics in crucian carp (hybridized Prussian carp). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:307-313. [PMID: 21787699 DOI: 10.1016/j.etap.2010.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/09/2010] [Accepted: 11/21/2010] [Indexed: 05/31/2023]
Abstract
Cytochrome P450s (CYPs) play a prominent role in drug metabolism and biotransformation which are distributed in liver of aquatic animals. However, limited information is available about CYP genes involved in drug metabolism in fish. In the present study, we explore CYP1A characterization for DIF metabolism. Firstly, we cloned and characterized the full-length cDNA sequence of a CYP1A gene from crucian carp (hybridized Prussian carp), the predicted protein sequence for CYP1A comprise 496 amino acids. The heme-binding region of the CYP1A, encompassing the amino acid sequence GLGKRRCIG, which is identical to the same region of other homologues. Secondly, we studied the difloxacin (DIF) kinetics and the effects of DIF on their corresponding CYP1A mRNA levels in liver of crucian carp. CYP1A1 mRNA expression was analyzed by real-time PCR, and DIF concentration was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). Results showed that the concentration of DIF in liver reached its peak (67.70 mg kg(-1)) at 0.5h, while the CYP1A1 gene expression was at the lowest point. CYP1A mRNA was down-regulated by 6.5 mg ml(-1) DIF in the liver of crucian carp. Thus, our work confirmed that DIF is both the substrate and inhibitor of CYP1A. The information provided a model for the potential utility of gene expression analysis and drug metabolization in fish.
Collapse
Affiliation(s)
- Gui Hong Fu
- National Center for Aquatic Pathogen Collection, College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai 201306, China
| | | | | | | | | |
Collapse
|
50
|
Adams HA, Southey BR, Everts RE, Marjani SL, Tian XC, Lewin HA, Rodriguez-Zas SL. Transferase activity function and system development process are critical in cattle embryo development. Funct Integr Genomics 2011; 11:139-50. [PMID: 20844914 PMCID: PMC3053413 DOI: 10.1007/s10142-010-0189-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 08/19/2010] [Accepted: 08/24/2010] [Indexed: 01/04/2023]
Abstract
Microarray gene expression experiments often consider specific developmental stages, tissue sources, or reproductive technologies. This focus hinders the understanding of the cattle embryo transcriptome. To address this, four microarray experiments encompassing three developmental stages (7, 25, 280 days), two tissue sources (embryonic or extra-embryonic), and two reproductive technologies (artificial insemination or AI and somatic cell nuclear transfer or NT) were combined using two sets of meta-analyses. The first set of meta-analyses uncovered 434 genes differentially expressed between AI and NT (regardless of stage or source) that were not detected by the individual-experiment analyses. The molecular function of transferase activity was enriched among these genes that included ECE2, SLC22A1, and a gene similar to CAMK2D. Gene POLG2 was over-expressed in AI versus NT 7-day embryos and was under-expressed in AI versus NT 25-day embryos. Gene HAND2 was over-expressed in AI versus NT extra-embryonic samples at 280 days yet under-expressed in AI versus NT embryonic samples at 7 days. The second set of meta-analyses uncovered enrichment of system, organ, and anatomical structure development among the genes differentially expressed between 7- and 25-day embryos from either reproductive technology. Genes PRDX1and SLC16A1 were over-expressed in 7- versus 25-day AI embryos and under-expressed in 7- versus 25-day NT embryos. Changes in stage were associated with high number of differentially expressed genes, followed by technology and source. Genes with transferase activity may hold a clue to the differences in efficiency between reproductive technologies.
Collapse
Affiliation(s)
- H. A. Adams
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - B. R. Southey
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - R. E. Everts
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - S. L. Marjani
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - X. C. Tian
- Center for Regenerative Biology/Department of Animal Science, University of Connecticut, Storrs, Connecticut
| | - H. A. Lewin
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - S. L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois
| |
Collapse
|