1
|
Medica S, Denton M, Diggins NL, Kramer-Hansen O, Crawford LB, Mayo AT, Perez WD, Daily MA, Parkins CJ, Slind LE, Pung LJ, Weber WC, Jaeger HK, Streblow ZJ, Sulgey G, Kreklywich CN, Alexander T, Rosenkilde MM, Caposio P, Hancock MH, Streblow DN. Third intracellular loop of HCMV US28 is necessary for signaling and viral reactivation. J Virol 2025; 99:e0180124. [PMID: 39655954 PMCID: PMC11784217 DOI: 10.1128/jvi.01801-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 02/01/2025] Open
Abstract
The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities. Our results indicate that specific residues within the third intracellular loop (ICL3) of US28 are major determinants of G-protein coupling and downstream signaling activity. Alanine substitutions at positions S218, K223, and R225 attenuated US28-mediated activation of MAPK and RhoA signal transduction pathways. Furthermore, we show that mutations at positions S218, K223, or R225 result in impaired coupling to multiple Gα isoforms. However, these substitutions did not affect US28 plasma membrane localization or the receptor internalization rate. Utilizing CD34+ HPC models, we demonstrate that attenuation of US28 signaling via mutation of residues within the ICL3 region results in an inability of the virus to efficiently reactivate from latency. These results were recapitulated in vivo, utilizing a humanized mouse model of HCMV infection. Together, our results provide new insights into the mechanism by which US28 manipulates host signaling networks to mediate viral latency and reactivation. The results reported here will guide the development of targeted therapies to prevent HCMV-associated disease.IMPORTANCEHuman cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34+hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation in vitro and in vivo. These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis.
Collapse
Affiliation(s)
- Samuel Medica
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Nicole L. Diggins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Olivia Kramer-Hansen
- Department of Biomedical Sciences Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Lindsey B. Crawford
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Adam T. Mayo
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Wilma D. Perez
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael A. Daily
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Christopher J. Parkins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Luke E. Slind
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lydia J. Pung
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Whitney C. Weber
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Hannah K. Jaeger
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Zachary J. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Gauthami Sulgey
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Timothy Alexander
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA
| |
Collapse
|
2
|
Jeanne F, Pilet S, Klett D, Combarnous Y, Bernay B, Dufour S, Favrel P, Sourdaine P. Characterization of gonadotropins and their receptors in a chondrichthyan, Scyliorhinus canicula, fills a gap in the understanding of their coevolution. Gen Comp Endocrinol 2024; 358:114614. [PMID: 39326529 DOI: 10.1016/j.ygcen.2024.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
In Gnathostomes, reproduction is mainly controlled by the hypothalamic-pituitary-gonadal (HPG) axis, with the involvement of the pituitary gonadotropic hormones (GTH), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which activate their cognate receptors, FSHR and LHR, expressed in gonads. Each GTH consists of a common α subunit and of a specific FSHβ or LHβ subunit. Chondrichthyes (holocephalans and elasmobranchs) is a sister group of bony vertebrates. This position is highly favorable for the understanding of the evolution of endocrine regulations of reproduction among gnathostomes. Surprisingly, the characterization of gonadotropins and their receptors is still limited in chondrichthyes. In the present study, GTH and GTHR sequences have been identified from several chondrichthyan genomes, and their primary structures were analyzed relative to human orthologs. 3D models of GTH/GTHR interaction were built, highlighting the importance of the receptor hinge region for ligand recognition. Functional hormone-receptor interactions have been studied in HEK cells using the small-spotted catshark (Scyliorhinus canicula) recombinant proteins and showed that LHR was specifically activated by LH whereas FSHR was activated by both FSH and LH. Expression profiles of GTHs and their receptors were explored by real-time PCR, in situ hybridization and immunohistochemistry during spermatogenesis, along the male genital tract and other tissues, as well as in some female tissues for comparison. Tissue-expression analyses showed that the highest levels were observed for fshr transcripts in testis and ovary and for lhr in specific extragonadal tissues. The two receptors were expressed at all stages of spermatogenesis by both germ cells and somatic cells, including undifferentiated spermatogonia, spermatocytes, spermatids, somatic precursors and Sertoli cells; differentiated Leydig cells being absent in the testis of S. canicula. Receptors were also expressed by the lymphomyeloid epigonal tissue and the testicular tubules. These results, suggest a wide range of gonadotropin-regulated functions in Elasmobranchs, as well as functional redundancy during spermatogenesis. These extended functions are discussed in an evolutionary context in which the specificity of gonadotropin signaling must have contributed to the evolution of gonadal cells' morphology and function.
Collapse
Affiliation(s)
- Fabian Jeanne
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Stanislas Pilet
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Danièle Klett
- INRAE, CNRS, UMR Physiologie de la Reproduction & des Comportements, 37380 Nouzilly, France
| | - Yves Combarnous
- INRAE, CNRS, UMR Physiologie de la Reproduction & des Comportements, 37380 Nouzilly, France
| | - Benoît Bernay
- Université de Caen Normandie - Plateforme PROTEOGEN, US EMerode, 14032 Caen cedex 5, France
| | - Sylvie Dufour
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Pascal Favrel
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Pascal Sourdaine
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France.
| |
Collapse
|
3
|
Gauthier C, Raynaud P, Jean-Alphonse F, Vallet A, Vaugrente O, Jugnarain V, Boulo T, Gauthier C, Reiter E, Bruneau G, Crépieux P. An intracellular VHH targeting the Luteinizing Hormone receptor modulates G protein-dependent signaling and steroidogenesis. Mol Cell Endocrinol 2024; 589:112235. [PMID: 38621656 DOI: 10.1016/j.mce.2024.112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
Luteinizing hormone (LH) is essential for reproduction, controlling ovulation and steroidogenesis. Its receptor (LHR) recruits various transducers leading to the activation of a complex signaling network. We recently identified iPRC1, the first variable fragment from heavy-chain-only antibody (VHH) interacting with intracellular loop 3 (ICL3) of the follicle-stimulating hormone receptor (FSHR). Because of the high sequence similarity of the human FSHR and LHR (LHCGR), here we examined the ability of the iPRC1 intra-VHH to modulate LHCGR activity. In this study, we demonstrated that iPRC1 binds LHCGR, to a greater extent when the receptor was stimulated by the hormone. In addition, it decreased LH-induced cAMP production, cAMP-responsive element-dependent transcription, progesterone and testosterone production. These impairments are not due to Gs nor β-arrestin recruitment to the LHCGR. Consequently, iPRC1 is the first intra-VHH to bind and modulate LHCGR biological activity, including steroidogenesis. It should help further understand signaling mechanisms elicited at this receptor and their outcomes on reproduction.
Collapse
Affiliation(s)
| | - Pauline Raynaud
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Frédéric Jean-Alphonse
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France; Inria, Inria Saclay-Ile-de-France, 91120, Palaiseau, France
| | - Amandine Vallet
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | | | - Thomas Boulo
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Eric Reiter
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France; Inria, Inria Saclay-Ile-de-France, 91120, Palaiseau, France
| | - Gilles Bruneau
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Pascale Crépieux
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France; Inria, Inria Saclay-Ile-de-France, 91120, Palaiseau, France.
| |
Collapse
|
4
|
Raynaud P, Jugnarain V, Vaugrente O, Vallet A, Boulo T, Gauthier C, Inoue A, Sibille N, Gauthier C, Jean-Alphonse F, Reiter E, Crépieux P, Bruneau G. A single-domain intrabody targeting the follicle-stimulating hormone receptor impacts FSH-induced G protein-dependent signalling. FEBS Lett 2024; 598:220-232. [PMID: 37923554 DOI: 10.1002/1873-3468.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Intracellular variable fragments of heavy-chain antibody from camelids (intra-VHH) have been successfully used as chaperones to solve the 3D structure of active G protein-coupled receptors bound to their transducers. However, their effect on signalling has been poorly explored, although they may provide a better understanding of the relationships between receptor conformation and activity. Here, we isolated and characterized iPRC1, the first intra-VHH recognizing a member of the large glycoprotein hormone receptor family, the follicle-stimulating hormone receptor (FSHR). This intra-VHH recognizes the FSHR third intracellular loop and decreases cAMP production in response to FSH, without altering Gαs recruitment. Hence, iPRC1 behaves as an allosteric modulator and provides a new tool to complete structure/activity studies performed thus far on this receptor.
Collapse
Affiliation(s)
- Pauline Raynaud
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Vinesh Jugnarain
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Océane Vaugrente
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Amandine Vallet
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Thomas Boulo
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Camille Gauthier
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, France
| | - Christophe Gauthier
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Frédéric Jean-Alphonse
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
- Inria, Inria Saclay-Ile-de-France, Palaiseau, France
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
- Inria, Inria Saclay-Ile-de-France, Palaiseau, France
| | - Pascale Crépieux
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
- Inria, Inria Saclay-Ile-de-France, Palaiseau, France
| | - Gilles Bruneau
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| |
Collapse
|
5
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E. Misfolded G Protein-Coupled Receptors and Endocrine Disease. Molecular Mechanisms and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms222212329. [PMID: 34830210 PMCID: PMC8622668 DOI: 10.3390/ijms222212329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Misfolding of G protein-coupled receptors (GPCRs) caused by mutations frequently leads to disease due to intracellular trapping of the conformationally abnormal receptor. Several endocrine diseases due to inactivating mutations in GPCRs have been described, including X-linked nephrogenic diabetes insipidus, thyroid disorders, familial hypocalciuric hypercalcemia, obesity, familial glucocorticoid deficiency [melanocortin-2 receptor, MC2R (also known as adrenocorticotropin receptor, ACTHR), and reproductive disorders. In these mutant receptors, misfolding leads to endoplasmic reticulum retention, increased intracellular degradation, and deficient trafficking of the abnormal receptor to the cell surface plasma membrane, causing inability of the receptor to interact with agonists and trigger intracellular signaling. In this review, we discuss the mechanisms whereby mutations in GPCRs involved in endocrine function in humans lead to misfolding, decreased plasma membrane expression of the receptor protein, and loss-of-function diseases, and also describe several experimental approaches employed to rescue trafficking and function of the misfolded receptors. Special attention is given to misfolded GPCRs that regulate reproductive function, given the key role played by these particular membrane receptors in sexual development and fertility, and recent reports on promising therapeutic interventions targeting trafficking of these defective proteins to rescue completely or partially their normal function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
- Correspondence:
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
| | - Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada 52005, Estado de México, Mexico;
| |
Collapse
|
6
|
Banerjee AA, Joseph S, Mahale SD. From cell surface to signalling and back: the life of the mammalian FSH receptor. FEBS J 2020; 288:2673-2696. [DOI: 10.1111/febs.15649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Antara A. Banerjee
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Shaini Joseph
- Genetic Research Center National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Smita D. Mahale
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
- ICMR Biomedical Informatics Centre National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| |
Collapse
|
7
|
Ulloa-Aguirre A, Zariñán T, Gutiérrez-Sagal R, Dias JA. Intracellular Trafficking of Gonadotropin Receptors in Health and Disease. Handb Exp Pharmacol 2018; 245:1-39. [PMID: 29063275 DOI: 10.1007/164_2017_49] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gonadotropin receptors belong to the highly conserved subfamily of the G protein-coupled receptor (GPCR) superfamily, the so-called Rhodopsin-like family (class A), which is the largest class of GPCRs and currently a major drug target. Both the follicle-stimulating hormone receptor (FSHR) and the luteinizing hormone/chorionic gonadotropin hormone receptor (LHCGR) are mainly located in the gonads where they play key functions associated to essential reproductive functions. As any other protein, gonadotropin receptors must be properly folded into a mature tertiary conformation compatible with quaternary assembly and endoplasmic reticulum export to the cell surface plasma membrane. Several primary and secondary structural features, including presence of particular amino acid residues and short motifs and in addition, posttranslational modifications, regulate intracellular trafficking of gonadotropin receptors to the plasma membrane as well as internalization and recycling of the receptor back to the cell surface after activation by agonist. Inactivating mutations of gonadotropin receptors may derive from receptor misfolding and lead to absent or reduced plasma membrane expression of the altered receptor, thereby manifesting an array of phenotypical abnormalities mostly characterized by reproductive failure and/or abnormal or absence of development of secondary sex characteristics. In this chapter we review the structural requirements necessary for intracellular trafficking of the gonadotropin receptors, and describe how mutations in these receptors may lead to receptor misfolding and disease in humans.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico.
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico
| | - James A Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| |
Collapse
|
8
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E, Gutiérrez-Sagal R, Dias JA. Structure-Function Relationships of the Follicle-Stimulating Hormone Receptor. Front Endocrinol (Lausanne) 2018; 9:707. [PMID: 30555414 PMCID: PMC6281744 DOI: 10.3389/fendo.2018.00707] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022] Open
Abstract
The follicle-stimulating hormone receptor (FSHR) plays a crucial role in reproduction. This structurally complex receptor is a member of the G-protein coupled receptor (GPCR) superfamily of membrane receptors. As with the other structurally similar glycoprotein hormone receptors (the thyroid-stimulating hormone and luteinizing hormone-chorionic gonadotropin hormone receptors), the FSHR is characterized by an extensive extracellular domain, where binding to FSH occurs, linked to the signal specificity subdomain or hinge region. This region is involved in ligand-stimulated receptor activation whereas the seven transmembrane domain is associated with receptor activation and transmission of the activation process to the intracellular loops comprised of amino acid sequences, which predicate coupling to effectors, interaction with adapter proteins, and triggering of downstream intracellular signaling. In this review, we describe the most important structural features of the FSHR intimately involved in regulation of FSHR function, including trafficking, dimerization, and oligomerization, ligand binding, agonist-stimulated activation, and signal transduction.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eduardo Jardón-Valadez
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana Unidad Lerma, Lerma, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - James A. Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
| |
Collapse
|
9
|
Abstract
The gonadotropin receptors (luteinising hormone receptor; LHR and follicle-stimulating hormone receptor; FSHR) are G protein-coupled receptors (GPCRs) that play an important role in the endocrine control of reproduction. Thus genetic mutations that cause impaired function of these receptors have been implicated in a number of reproductive disorders. Disease-causing genetic mutations in GPCRs frequently result in intracellular retention and degradation of the nascent protein through misfolding and subsequent recognition by cellular quality control machinery. The discovery and development of novel compounds termed pharmacological chaperones (pharmacoperones) that can stabilise misfolded receptors and restore trafficking and plasma membrane expression are therefore of great interest clinically, and promising in vitro data describing the pharmacoperone rescue of a number of intracellularly retained mutant GPCRs has provided a platform for taking these compounds into in vivo trials. Thienopyrimidine small molecule allosteric gonadotropin receptor agonists (Org 42599 and Org 41841) have been demonstrated to have pharmacoperone activity. These compounds can rescue cell surface expression and in many cases, hormone responsiveness, of a range of retained mutant gonadotropin receptors. Should gonadotropin receptor selectivity of these compounds be improved, they could offer therapeutic benefit to subsets of patients suffering from reproductive disorders attributed to defective gonadotropin receptor trafficking.
Collapse
Affiliation(s)
- Claire L Newton
- Centre for Neuroendocrinology and Department of Immunology, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa.
| | - Ross C Anderson
- Centre for Neuroendocrinology and Department of Immunology, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa
| |
Collapse
|
10
|
Montagna E, Dorostkar MM, Herms J. The Role of APP in Structural Spine Plasticity. Front Mol Neurosci 2017; 10:136. [PMID: 28539872 PMCID: PMC5423954 DOI: 10.3389/fnmol.2017.00136] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/21/2017] [Indexed: 11/15/2022] Open
Abstract
Amyloid precursor protein (APP) is a transmembrane protein highly expressed in neurons. The full-length protein has cell-adhesion and receptor-like properties, which play roles in synapse formation and stability. Furthermore, APP can be cleaved by several proteases into numerous fragments, many of which affect synaptic function and stability. This review article focuses on the mechanisms of APP in structural spine plasticity, which encompasses the morphological alterations at excitatory synapses. These occur as changes in the number and morphology of dendritic spines, which correspond to the postsynaptic compartment of excitatory synapses. Both overexpression and knockout (KO) of APP lead to impaired synaptic plasticity. Recent data also suggest a role of APP in the regulation of astrocytic D-serine homeostasis, which in turn regulates synaptic plasticity.
Collapse
Affiliation(s)
- Elena Montagna
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Maximilian-University MunichMunich, Germany
| | - Mario M Dorostkar
- Center for Neuropathology and Prion Research, Ludwig-Maximilian-University MunichMunich, Germany
| | - Jochen Herms
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Maximilian-University MunichMunich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilian-University MunichMunich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilian-University MunichMunich, Germany
| |
Collapse
|
11
|
First mutation in the FSHR cytoplasmic tail identified in a non-pregnant woman with spontaneous ovarian hyperstimulation syndrome. BMC MEDICAL GENETICS 2017; 18:44. [PMID: 28446136 PMCID: PMC5405471 DOI: 10.1186/s12881-017-0407-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
Background Spontaneous ovarian hyperstimulation syndrome (sOHSS) is a rare event occurring mostly during natural pregnancy. Among described etiologies, some activating mutations of FSH receptor (FSHR) have been identified. Case presentation We report hereby the case of a non-pregnant women with three episodes of sOHSS. Hormonal evaluation was normal and no pituitary adenoma was detected. However, genetic analysis identified a novel heterozygous FSHR mutation (c.1901 G > A). This R634H mutation is the first described in the cytoplasmic tail of the receptor. Functional analysis failed to reveal constitutive activity of the mutant but a decreased cAMP production in response to FSH. The weak activity of this mutant is correlated with a markedly reduced cell surface expression. Conclusion Pathophysiology of non gestationnal sOHSS is still ill established. The molecular characterization of this new mutant indicates that it might not be at play. Therefore, further investigations are needed to improve knowledge of the molecular mechanism of this syndrome.
Collapse
|
12
|
Melo-Nava B, Casas-González P, Pérez-Solís MA, Castillo-Badillo J, Maravillas-Montero JL, Jardón-Valadez E, Zariñán T, Aguilar-Rojas A, Gallay N, Reiter E, Ulloa-Aguirre A. Role of Cysteine Residues in the Carboxyl-Terminus of the Follicle-Stimulating Hormone Receptor in Intracellular Traffic and Postendocytic Processing. Front Cell Dev Biol 2016; 4:76. [PMID: 27489855 PMCID: PMC4951517 DOI: 10.3389/fcell.2016.00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/01/2016] [Indexed: 01/21/2023] Open
Abstract
Posttranslational modifications occurring during the biosynthesis of G protein-coupled receptors include glycosylation and palmitoylation at conserved cysteine residues located in the carboxyl-terminus of the receptor. In a number of these receptors, these modifications play an important role in receptor function and particularly, in intracellular trafficking. In the present study, the three cysteine residues present in the carboxyl-terminus of the human FSHR were replaced with glycine by site-directed mutagenesis. Wild-type and mutant (Cys627/629/655Gly) FSHRs were then transiently expressed in HEK-293 cells and analyzed for cell-surface plasma membrane expression, agonist-stimulated signaling and internalization, and postendocytic processing in the absence and presence of lysosome and/or proteasome inhibitors. Compared with the wild-type FSHR, the triple mutant FSHR exhibited ~70% reduction in plasma membrane expression as well as a profound attenuation in agonist-stimulated cAMP production and ERK1/2 phosphorylation. Incubation of HEK-293 cells expressing the wild-type FSHR with 2-bromopalmitate (palmitoylation inhibitor) for 6 h, decreased plasma membrane expression of the receptor by ~30%. The internalization kinetics and β-arrestin 1 and 2 recruitment were similar between the wild-type and triple mutant FSHR as disclosed by assays performed in non-equilibrium binding conditions and by confocal microscopy. Cells expressing the mutant FSHR recycled the internalized FSHR back to the plasma membrane less efficiently than those expressing the wild-type FSHR, an effect that was counteracted by proteasome but not by lysosome inhibition. These results indicate that replacement of the cysteine residues present in the carboxyl-terminus of the FSHR, impairs receptor trafficking from the endoplasmic reticulum/Golgi apparatus to the plasma membrane and its recycling from endosomes back to the cell surface following agonist-induced internalization. Since in the FSHR these cysteine residues are S-palmitoylated, the data presented emphasize on this posttranslational modification as an important factor for both upward and downward trafficking of this receptor.
Collapse
Affiliation(s)
- Brenda Melo-Nava
- Research Unit in Reproductive Medicine, Unidad Medica de Alta Especialidad Hospital de Ginecobstetricia "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social Mexico City, Mexico
| | - Patricia Casas-González
- Research Unit in Reproductive Medicine, Unidad Medica de Alta Especialidad Hospital de Ginecobstetricia "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social Mexico City, Mexico
| | - Marco A Pérez-Solís
- Research Unit in Reproductive Medicine, Unidad Medica de Alta Especialidad Hospital de Ginecobstetricia "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social Mexico City, Mexico
| | - Jean Castillo-Badillo
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" Mexico City, Mexico
| | - José L Maravillas-Montero
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" Mexico City, Mexico
| | | | - Teresa Zariñán
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" Mexico City, Mexico
| | - Arturo Aguilar-Rojas
- Research Unit in Reproductive Medicine, Unidad Medica de Alta Especialidad Hospital de Ginecobstetricia "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social Mexico City, Mexico
| | - Nathalie Gallay
- BIOS Group, UMR85, Unité Physiologie de la Reproduction et des Comportements, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, UMR7247, Université François Rabelais Tours, France
| | - Eric Reiter
- BIOS Group, UMR85, Unité Physiologie de la Reproduction et des Comportements, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, UMR7247, Université François Rabelais Tours, France
| | - Alfredo Ulloa-Aguirre
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" Mexico City, Mexico
| |
Collapse
|
13
|
APP Receptor? To Be or Not To Be. Trends Pharmacol Sci 2016; 37:390-411. [PMID: 26837733 DOI: 10.1016/j.tips.2016.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 11/22/2022]
Abstract
Amyloid precursor protein (APP) and its metabolites play a key role in Alzheimer's disease pathogenesis. The idea that APP may function as a receptor has gained momentum based on its structural similarities to type I transmembrane receptors and the identification of putative APP ligands. We review the recent experimental evidence in support of this notion and discuss how this concept is viewed in the field. Specifically, we focus on the structural and functional characteristics of APP as a cell surface receptor, and on its interaction with adaptors and signaling proteins. We also address the importance of APP function as a receptor in Alzheimer's disease etiology and discuss how this function might be potentially important for the development of novel therapeutic approaches.
Collapse
|
14
|
Banerjee AA, Mahale SD. Role of the Extracellular and Intracellular Loops of Follicle-Stimulating Hormone Receptor in Its Function. Front Endocrinol (Lausanne) 2015; 6:110. [PMID: 26236283 PMCID: PMC4505104 DOI: 10.3389/fendo.2015.00110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/03/2015] [Indexed: 12/20/2022] Open
Abstract
Follicle-stimulating hormone receptor (FSHR) is a leucine-rich repeat containing class A G-protein coupled receptor belonging to the subfamily of glycoprotein hormone receptors (GPHRs), which includes luteinizing hormone/choriogonadotropin receptor (LH/CGR) and thyroid-stimulating hormone receptor. Its cognate ligand, follicle-stimulating hormone binds to, and activates FSHR expressed on the surface of granulosa cells of the ovary, in females, and Sertoli cells of the testis, in males, to bring about folliculogenesis and spermatogenesis, respectively. FSHR contains a large extracellular domain (ECD) consisting of leucine-rich repeats at the N-terminal end and a hinge region at the C-terminus that connects the ECD to the membrane spanning transmembrane domain (TMD). The TMD consists of seven α-helices that are connected to each other by means of three extracellular loops (ELs) and three intracellular loops (ILs) and ends in a short-cytoplasmic tail. It is well established that the ECD is the primary hormone binding domain, whereas the TMD is the signal transducing domain. However, several studies on the ELs and ILs employing site directed mutagenesis, generation of chimeric receptors and in vitro characterization of naturally occurring mutations have proven their indispensable role in FSHR function. Their role in every phase of the life cycle of the receptor like post translational modifications, cell surface trafficking, hormone binding, activation of downstream signaling, receptor phosphorylation, hormone-receptor internalization, and recycling of hormone-receptor complex have been documented. Mutations in the loops causing dysregulation of these processes lead to pathophysiological conditions. In other GPHRs as well, the loops have been convincingly shown to contribute to various aspects of receptor function. This review article attempts to summarize the extensive contributions of FSHR loops and C-terminal tail to its function.
Collapse
Affiliation(s)
- Antara A. Banerjee
- Division of Structural Biology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Smita D. Mahale
- Division of Structural Biology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
- ICMR Biomedical Informatics Centre, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
- *Correspondence: Smita D. Mahale, Division of Structural Biology, ICMR Biomedical Informatics Centre, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Jehangir Merwanji Street, Parel, Mumbai 400 012, India,
| |
Collapse
|
15
|
Murozumi N, Nakashima R, Hirai T, Kamei Y, Ishikawa-Fujiwara T, Todo T, Kitano T. Loss of follicle-stimulating hormone receptor function causes masculinization and suppression of ovarian development in genetically female medaka. Endocrinology 2014; 155:3136-45. [PMID: 24877625 DOI: 10.1210/en.2013-2060] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FSH, a glycoprotein hormone, is circulated from the pituitary and functions by binding to a specific FSH receptor (FSHR). FSHR is a G protein-coupled, seven-transmembrane receptor linked to the adenylyl cyclase or other pathways and is expressed in gonadal somatic cells. In some nonmammalian species, fshr expression is much higher in the ovary than in the testis during gonadal sex differentiation, suggesting that FSHR is involved in ovarian development in nonmammalian vertebrates. However, little is known of FSHR knockout phenotypes in these species. Here we screened for fshr mutations by a medaka (Oryzias latipes) target-induced local lesion in the genomes and identified one nonsense mutation located in the BXXBB motif, which is involved in G protein activation. Next, we used an in vitro reporter gene assay to demonstrate that this mutation prevents FSHR function. We then analyzed the phenotypes of fshr mutant medaka. The fshr mutant male medaka displayed normal testes and were fertile, whereas the mutant female fish displayed small ovaries and were infertile because vitellogenesis was inhibited. The mutant females also have suppressed expression of ovary-type aromatase (cyp19a1a), a steroidogenic enzyme responsible for the conversion of androgens to estrogens, resulting in decreased 17β-estradiol levels. Moreover, loss of FSHR function caused female-to-male sex reversal in some cases. In addition, the transgenic overexpression of fshr in fshr mutants rescued FSHR function. These findings strongly suggest that in the medaka, FSH regulates the ovarian development and the maintenance mainly by the elevation of estrogen levels. We present the first FSHR knockout phenotype in a nonmammalian species.
Collapse
Affiliation(s)
- Norikazu Murozumi
- Department of Biological Sciences (N.M., R.N., T.K.), Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; Department of Bioscience (T.H.), Teikyo University of Science, Yamanashi 409-0193, Japan; Spectrography and Bioimaging Facility (Y.K.), National Institute for Basic Biology Core Research Facilities, National Institute for Basic Biology, Okazaki 444-8585, Japan; and Department of Radiation Biology and Medical Genetics (T.I.-F., T.T.), Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Ulloa-Aguirre A, Zariñán T, Dias JA, Conn PM. Mutations in G protein-coupled receptors that impact receptor trafficking and reproductive function. Mol Cell Endocrinol 2014; 382:411-423. [PMID: 23806559 PMCID: PMC3844050 DOI: 10.1016/j.mce.2013.06.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/28/2013] [Accepted: 06/17/2013] [Indexed: 11/15/2022]
Abstract
G protein coupled receptors (GPCRs) are a large superfamily of integral cell surface plasma membrane proteins that play key roles in transducing extracellular signals, including sensory stimuli, hormones, neurotransmitters, or paracrine factors into the intracellular environment through the activation of one or more heterotrimeric G proteins. Structural alterations provoked by mutations or variations in the genes coding for GPCRs may lead to misfolding, altered plasma membrane expression of the receptor protein and frequently to disease. A number of GPCRs regulate reproductive function at different levels; these receptors include the gonadotropin-releasing hormone receptor (GnRHR) and the gonadotropin receptors (follicle-stimulating hormone receptor and luteinizing hormone receptor), which regulate the function of the pituitary-gonadal axis. Loss-of-function mutations in these receptors may lead to hypogonadotropic or hypergonadotropic hypogonadism, which encompass a broad spectrum of clinical phenotypes. In this review we describe mutations that provoke misfolding and failure of these receptors to traffick from the endoplasmic reticulum to the plasma membrane. We also discuss some aspects related to the therapeutic potential of some target-specific drugs that selectively bind to and rescue function of misfolded mutant GnRHR and gonadotropin receptors, and that represent potentially valuable strategies to treat diseases caused by inactivating mutations of these receptors.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Division of Reproductive Health, Research Center in Population Health, National Institute of Public Health, Cuernavaca, Mexico; Divisions of Reproductive Sciences and Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | - Teresa Zariñán
- Research Unit in Reproductive Medicine, UMAE Hospital de Ginecobstetricia "Luis Castelazo Ayala", Mexico, DF, Mexico
| | - James A Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - P Michael Conn
- Divisions of Reproductive Sciences and Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Department of Pharmacology and Physiology, Oregon Health and Science University, Beaverton, OR 97006, USA; Department of Cell and Developmental Biology, Oregon Health and Science University, Beaverton, OR 97006, USA; Department of Obstetrics and Gynecology, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
17
|
Amyloid precursor proteins interact with the heterotrimeric G protein Go in the control of neuronal migration. J Neurosci 2013; 33:10165-81. [PMID: 23761911 DOI: 10.1523/jneurosci.1146-13.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyloid precursor protein (APP) belongs to a family of evolutionarily conserved transmembrane glycoproteins that has been proposed to regulate multiple aspects of cell motility in the nervous system. Although APP is best known as the source of β-amyloid fragments (Aβ) that accumulate in Alzheimer's disease, perturbations affecting normal APP signaling events may also contribute to disease progression. Previous in vitro studies showed that interactions between APP and the heterotrimeric G protein Goα-regulated Goα activity and Go-dependent apoptotic responses, independent of Aβ. However, evidence for authentic APP-Go interactions within the healthy nervous system has been lacking. To address this issue, we have used a combination of in vitro and in vivo strategies to show that endogenously expressed APP family proteins colocalize with Goα in both insect and mammalian nervous systems, including human brain. Using biochemical, pharmacological, and Bimolecular Fluorescence Complementation assays, we have shown that insect APP (APPL) directly interacts with Goα in cell culture and at synaptic terminals within the insect brain, and that this interaction is regulated by Goα activity. We have also adapted a well characterized assay of neuronal migration in the hawkmoth Manduca to show that perturbations affecting APPL and Goα signaling induce the same unique pattern of ectopic, inappropriate growth and migration, analogous to defective migration patterns seen in mice lacking all APP family proteins. These results support the model that APP and its orthologs regulate conserved aspects of neuronal migration and outgrowth in the nervous system by functioning as unconventional Goα-coupled receptors.
Collapse
|
18
|
Abstract
The follitropin or follicle-stimulating hormone receptor (FSHR) belongs to a highly conserved subfamily of the G protein-coupled receptor (GPCR) superfamily and is mainly expressed in specific cells in the gonads. As any other GPCR, the newly synthesized FSHR has to be correctly folded and processed in order to traffic to the cell surface plasma membrane and interact with its cognate ligand. In this chapter, we describe in detail the conditions and procedures used to study outward trafficking of the FSHR from the endoplasmic reticulum to the plasma membrane. We also describe some methods to analyze phosphorylation, β-arrestin recruitment, internalization, and recycling of this particular receptor, which have proved useful in our hands for dissecting its downward trafficking and fate following agonist stimulation.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France
- Division of Reproductive Health, Research Center in Population Health, National Institute of Public Health, México D.F., Mexico
| | - James A. Dias
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France
- New York State Department of Health and Department of Biomedical Sciences, Wadsworth Center, School of Public Health, University at Albany, Albany, USA
| | - George Bousfield
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Ilpo Huhtaniemi
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Eric Reiter
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France
- BIOS Group, INRA, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, Nouzilly, France
- Université François Rabelais, Tours, France
| |
Collapse
|
19
|
Punn A, Chen J, Delidaki M, Tang J, Liapakis G, Lehnert H, Levine MA, Grammatopoulos DK. Mapping structural determinants within third intracellular loop that direct signaling specificity of type 1 corticotropin-releasing hormone receptor. J Biol Chem 2012; 287:8974-85. [PMID: 22247544 PMCID: PMC3308756 DOI: 10.1074/jbc.m111.272161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The type 1 corticotropin-releasing hormone receptor (CRH-R1) influences biological responses important for adaptation to stressful stimuli, through activation of multiple downstream effectors. The structural motifs within CRH-R1 that mediate G protein activation and signaling selectivity are unknown. The aim of this study was to gain insights about important structural determinants within the third intracellular loop (IC3) of the human CRH-R1α important for cAMP and ERK1/2 pathways activation and selectivity. We investigated the role of the juxtamembrane regions of IC3 by mutating amino acid cassettes or specific residues to alanine. Although simultaneous tandem alanine mutations of both juxtamembrane regions Arg292-Met295 and Lys311-Lys314 reduced ligand binding and impaired signaling, all other mutant receptors retained high affinity binding, indistinguishable from wild-type receptor. Agonist-activated receptors with tandem mutations at the proximal or distal terminal segments enhanced activation of adenylyl cyclase by 50–75% and diminished activation of inositol trisphosphate and ERK1/2 by 60–80%. Single Ala mutations identified Arg292, Lys297, Arg310, Lys311, and Lys314 as important residues for the enhanced activation of adenylyl cyclase, partly due to reduced inhibition of adenylyl cyclase activity by pertussis toxin-sensitive G proteins. In contrast, mutation of Arg299 reduced receptor signaling activity and cAMP response. Basic as well as aliphatic amino acids within both juxtamembrane regions were identified as important for ERK1/2 phosphorylation through activation of pertussis toxin-sensitive G proteins as well as Gq proteins. These data uncovered unexpected roles for key amino acids within the highly conserved hydrophobic N- and C-terminal microdomains of IC3 in the coordination of CRH-R1 signaling activity.
Collapse
Affiliation(s)
- Anu Punn
- Department of Endocrinology and Metabolism, Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Donnellan PD, Kimbembe CC, Reid HM, Kinsella BT. Identification of a novel endoplasmic reticulum export motif within the eighth α-helical domain (α-H8) of the human prostacyclin receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1202-18. [PMID: 21223948 DOI: 10.1016/j.bbamem.2011.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/20/2010] [Accepted: 01/03/2011] [Indexed: 01/20/2023]
Abstract
The human prostacyclin receptor (hIP) undergoes agonist-dependent trafficking involving a direct interaction with Rab11a GTPase. The region of interaction was localised to a 14 residue Rab11a binding domain (RBD) within the proximal carboxyl-terminal (C)-tail domain of the hIP, consisting of Val(299)-Val(307) within the eighth helical domain (α-H8) adjacent to the palmitoylated residues at Cys(308)-Cys(311). However, the factors determining the anterograde transport of the newly synthesised hIP from the endoplasmic reticulum (ER) to the plasma membrane (PM) have not been identified. The aim of the current study was to identify the major ER export motif(s) within the hIP initially by investigating the role of Lys residues in its maturation and processing. Through site-directed and Ala-scanning mutational studies in combination with analyses of protein expression and maturation, functional analyses of ligand binding, agonist-induced intracellular signalling and confocal image analyses, it was determined that Lys(297), Arg(302) and Lys(304) located within α-H8 represent the critical determinants of a novel ER export motif of the hIP. Furthermore, while substitution of those critical residues significantly impaired maturation and processing of the hIP, replacement of the positively charged Lys with Arg residues, and vice versa, was functionally permissible. Hence, this study has identified a novel 8 residue ER export motif within the functionally important α-H8 of the hIP. This ER export motif, defined by "K/R(X)(4)K/R(X)K/R," has a strict requirement for positively charged, basic Lys/Arg residues at the 1st, 6th and 8th positions and appears to be evolutionarily conserved within IP sequences from mouse to man.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Arginine/chemistry
- Arginine/genetics
- Arginine/metabolism
- Binding Sites
- Blotting, Western
- Calcium/metabolism
- Calnexin/metabolism
- Computational Biology
- Endoplasmic Reticulum/metabolism
- HEK293 Cells
- Humans
- Lysine/chemistry
- Lysine/genetics
- Lysine/metabolism
- Microscopy, Confocal
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Transport
- Radioligand Assay
- Receptors, Epoprostenol/chemistry
- Receptors, Epoprostenol/genetics
- Receptors, Epoprostenol/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Peter D Donnellan
- School of Biomeolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
21
|
Kuwasako K, Kitamura K, Nagata S, Hikosaka T, Kato J. Structure-function analysis of helix 8 of human calcitonin receptor-like receptor within the adrenomedullin 1 receptor. Peptides 2011; 32:144-9. [PMID: 20946927 DOI: 10.1016/j.peptides.2010.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 01/12/2023]
Abstract
Adrenomedullin 1 (AM(1)) receptor is a heterodimer composed of calcitonin receptor-like receptor (CLR) - a family B G protein-coupled receptor (GPCR) - and receptor activity-modifying protein 2 (RAMP2). Both family A and family B GPCRs possess an eighth helix (helix 8) in the proximal portion of their C-terminal tails; however, little is known about the function of helix 8 in family B GPCRs. We therefore investigated the structure-function relationship of human (h)CLR helix 8, which extends from Glu430 to Trp439, by separately transfecting nine point mutants into HEK-293 cells stably expressing hRAMP2. Glu430, Val431, Arg437 and Trp439 are all conserved among family B GPCRs. Flow cytometric analysis revealed that Arg437Ala or Trp438Ala mutation significantly reduced cell surface expression of the receptor complex, leading to a ∼20% reduction in specific (125)I-AM binding but little change in their IC(50) values. Both mutants showed 6-8-fold higher EC(50) values for AM-induced cAMP production and ∼50% reductions in their maximum responses. Glu430Ala mutation also reduced AM signaling by ∼45%, but surface expression and (125)I-AM binding were nearly the same as with wild-type CLR. Surprisingly, Glu430Ala and Val431Ala mutations significantly enhanced AM-induced internalization of the mutant receptor complexes. Taken together, these findings suggest that within hCLR helix 8, Glu430 is crucial for Gs coupling, and Arg437 and Trp439 are involved in both cell surface expression of the hAM(1) receptor and Gs coupling. Moreover, the Glu430-Val431 sequence may participate in the negative regulation of hAM(1) receptor internalization, which is not dependent on Gs coupling.
Collapse
Affiliation(s)
- Kenji Kuwasako
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | | | |
Collapse
|
22
|
Zariñán T, Perez-Solís MA, Maya-Núñez G, Casas-González P, Conn PM, Dias JA, Ulloa-Aguirre A. Dominant negative effects of human follicle-stimulating hormone receptor expression-deficient mutants on wild-type receptor cell surface expression. Rescue of oligomerization-dependent defective receptor expression by using cognate decoys. Mol Cell Endocrinol 2010; 321:112-22. [PMID: 20206665 PMCID: PMC2854281 DOI: 10.1016/j.mce.2010.02.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 12/31/2022]
Abstract
Current evidence indicates that G protein-coupled receptors form dimers that may affect biogenesis and membrane targeting of the complexed receptors. We here analyzed whether expression-deficient follicle-stimulating hormone receptor (FSHR) mutants exert dominant negative actions on wild-type FSHR cell surface membrane expression. Co-transfection of constant amounts of wild-type receptor cDNA and increasing quantities of mutant (R556A or R618A) FSHR cDNAs progressively decreased agonist-stimulated cAMP accumulation, [(125)I]-FSH binding, and plasma membrane expression of the mature wild-type FSHR species. Co-transfection of wild-type FSHR fragments involving transmembrane domains 5-6, or transmembrane domain 7 and/or the carboxyl-terminus specifically rescued wild-type FSHR expression from the transdominant inhibition by the mutants. Mutant FSHRs also inhibited function of the luteinizing hormone receptor but not that of the thyrotropin receptor or non-related receptors. Defective intracellular transport and/or interference with proper maturation due to formation of misfolded mutant:wild-type receptor complexes may explain the negative effects provoked by the altered FSHRs.
Collapse
Affiliation(s)
- Teresa Zariñán
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | - Marco A. Perez-Solís
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | - Guadalupe Maya-Núñez
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | - Patricia Casas-González
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | - P. Michael Conn
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
- Oregon National Primate Research Center, Oregon Health Sciences University, Beaverton, Oregon, USA
| | - James A. Dias
- Wadsworth Center, New York State Dept of Health, Albany, NY, and Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Alfredo Ulloa-Aguirre
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
- Oregon National Primate Research Center, Oregon Health Sciences University, Beaverton, Oregon, USA
| |
Collapse
|
23
|
Kuwasako K, Kitamura K, Nagata S, Hikosaka T, Kato J. Function of the cytoplasmic tail of human calcitonin receptor-like receptor in complex with receptor activity-modifying protein 2. Biochem Biophys Res Commun 2010; 392:380-5. [PMID: 20074556 DOI: 10.1016/j.bbrc.2010.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 01/08/2023]
Abstract
Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [(125)I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2 complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser(449) to Ser(467) were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.
Collapse
Affiliation(s)
- Kenji Kuwasako
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | | | |
Collapse
|
24
|
Peverelli E, Lania AG, Mantovani G, Beck-Peccoz P, Spada A. Characterization of intracellular signaling mediated by human somatostatin receptor 5: role of the DRY motif and the third intracellular loop. Endocrinology 2009; 150:3169-76. [PMID: 19342453 PMCID: PMC2703549 DOI: 10.1210/en.2008-1785] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Somatostatin (SST) exerts inhibitory effects on hormone secretion and cell proliferation by interacting with five different receptors (SST1-SST5) linked to multiple cellular effectors. The receptor structural domains involved in these effects have been only partially elucidated. The aim of the study was to investigate the molecular determinants mediating the interaction of the human SST5 with intracellular signaling in the pituitary cell line GH3, focusing on the BBXXB domain in the third intracellular loop and the DRY motif in the second intracellular loop. We analyzed the effects of the SST5 agonist BIM23206 on cAMP accumulation, intracellular calcium, GH secretion, cell proliferation, and ERK1/2 phosphorylation in cells expressing either wild-type SST5 or mutant receptors, in particular the naturally occurring mutant R240W in the BBXXB domain and the D136A and R137A mutants in the DRY motif. We found that residues D136 and R137 were critical for SST5 signaling because their substitutions abolished all the intracellular responses. Conversely, third intracellular loop mutations resulted in receptor that inhibited intracellular cAMP levels similar to the wild-type (50 +/- 9 vs. 53 +/- 12% inhibition) but failed to mediate the other responses elicited by wild-type SST5, i.e. reduction of intracellular calcium levels as well as inhibition of ERK1/2. These events resulted in an absent inhibition of GH release and an impaired reduction of cell proliferation (38 +/- 7 vs. 76 +/- 6% inhibition in wild type, P < 0.05). These data indicate that different regions of SST5 are required for the activation of different signaling pathways.
Collapse
Affiliation(s)
- Erika Peverelli
- Department of Medical Sciences, Fondazione Ospedale Maggiore Policlinico Mangiagalli e Regina Elena IRCCS, University of Milan, 20122 Milan, Italy
| | | | | | | | | |
Collapse
|
25
|
Huynh J, Thomas WG, Aguilar MI, Pattenden LK. Role of helix 8 in G protein-coupled receptors based on structure-function studies on the type 1 angiotensin receptor. Mol Cell Endocrinol 2009; 302:118-27. [PMID: 19418628 DOI: 10.1016/j.mce.2009.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptors that convert extracellular stimuli to intracellular signals. The type 1 angiotensin II receptor is a widely studied GPCR with roles in blood pressure regulation,water and salt balance and cell growth. The complex molecular and structural changes that underpin receptor activation and signaling are the focus of intense research. Increasingly, there is an appreciation that the plasma membrane participates in receptor function via direct, physical interactions that reciprocally modulate both lipid and receptor and provide microdomains for specialized activities. Reversible protein:lipid interactions are commonly mediated by amphipathic -helices in proteins and one such motif - a short helix, referred to as helix VIII/8 (H8), located at the start of the carboxyl (C)-terminus of GPCRs - is gaining recognition for its importance to GPCR function. Here, we review the identification of H8 in GPCRs and examine its capacity to sense and interact with diverse proteins and lipid environment, most notably with acidic lipids that include phosphatidylinositol phosphates.
Collapse
MESH Headings
- Binding Sites
- Humans
- Lipids/chemistry
- Protein Binding
- Protein Structure, Secondary
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/physiology
- Signal Transduction
Collapse
Affiliation(s)
- John Huynh
- School of Biomedical Sciences, The University of Queensland, Brisbane, St Lucia, Queensland, Australia
| | | | | | | |
Collapse
|
26
|
Janovick JA, Maya-Núñez G, Ulloa-Aguirre A, Huhtaniemi IT, Dias JA, Verbost P, Conn PM. Increased plasma membrane expression of human follicle-stimulating hormone receptor by a small molecule thienopyr(im)idine. Mol Cell Endocrinol 2009; 298:84-8. [PMID: 18848862 PMCID: PMC2630403 DOI: 10.1016/j.mce.2008.09.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/05/2008] [Accepted: 09/10/2008] [Indexed: 12/12/2022]
Abstract
A thienopyr(im)idine (Org41841) activates the luteinizing hormone (LH) receptor but does not compete with the natural ligand binding site and does not show agonistic action on the follicle-stimulating hormone receptor (hFSHR) at sub-millimolar concentrations. When this drug is preincubated at sub-micromolar concentrations with host cells expressing the hFSHR, and then washed out, binding analysis and assessment of receptor-effector coupling show that it increases plasma membrane expression of the hFSHR. Real-time PCR shows that this effect did not result from increased hFSHR mRNA accumulation. It is possible that Org41841 behaves as a pharmacoperone, a drug which increases the percentage of newly synthesized receptor routing to the membrane. Like pharmacoperones for other receptors, this drug was able to rescue a particular mutant hFSHR (A(189)V) associated with misrouting and endoplasmic reticulum retention, although other mutants could not be rescued. This is potentially the first member of the pharmacoperone drug class which binds at a site that is distinctive from the ligand binding site.
Collapse
Affiliation(s)
| | - Guadalupe Maya-Núñez
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | - Alfredo Ulloa-Aguirre
- Oregon National Primate Research Center, Beaverton, OR, USA
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | - Ilpo T. Huhtaniemi
- Department of Reproductive Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 NN, UK
| | - James A. Dias
- Wadsworth Center, New York State Department of Health, David Axelrod Institute, 120 New Scotland Avenue, Albany, N.Y. 12208
| | - Pieter Verbost
- Dept. of Pharmacology, Schering-Plough Corporation, P.O. Box 20, 5340 BH Oss, The Netherlands
| | - P. Michael Conn
- Oregon National Primate Research Center, Beaverton, OR, USA
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
- Departments of Physiology and Pharmacology, and Cell and Developmental Biology, Oregon Health Sciences University, Portland, OR, USA
| |
Collapse
|
27
|
Chee MJS, Mörl K, Lindner D, Merten N, Zamponi GW, Light PE, Beck-Sickinger AG, Colmers WF. The third intracellular loop stabilizes the inactive state of the neuropeptide Y1 receptor. J Biol Chem 2008; 283:33337-46. [PMID: 18812316 PMCID: PMC2662261 DOI: 10.1074/jbc.m804671200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 09/15/2008] [Indexed: 11/06/2022] Open
Abstract
Constitutively active G-protein-coupled receptors (GPCRs) can signal even in the absence of ligand binding. Most Class I GPCRs are stabilized in the resting conformation by intramolecular interactions involving transmembrane domain (TM) 3 and TM6, particularly at loci 6.30 and 6.34 of TM6. Signaling by Gi/Go-coupled receptors such as the Neuropeptide Y1 receptor decreases already low basal metabolite levels. Thus, we examined constitutive activity using a biochemical assay mediated by a Gi/Gq chimeric protein and a more direct electrophysiological assay. Wild-type (WT-Y1) receptors express no measurable, agonist-independent activation, while mu-opioid receptors (MOR) and P2Y12 purinoceptors showed clear evidence of constitutive activation, especially in the electrophysiological assay. Neither point mutations at TM6 (T6.30A or N6.34A) nor substitution of the entire TM3 and TM6 regions from the MOR into the Y1 receptor increased basal WT-Y1 activation. By contrast, chimeric substitution of the third intracellular loop (ICL3) generated a constitutively active, Y1-ICL3-MOR chimera. Furthermore, the loss of stabilizing interactions from the native ICL3 enhanced the role of surrounding residues to permit basal receptor activation; because constitutive activity of the Y1-ICL3-MOR chimera was further increased by point mutation at locus 6.34, which did not alter WT-Y1 receptor activity. Our results indicate that the ICL3 stabilizes the Y1 receptor in the inactive state and confers structural properties critical for regulating Y receptor activation and signal transduction. These studies reveal the active participation of the ICL3 in the stabilization and activation of Class I GPCRs.
Collapse
MESH Headings
- Animals
- COS Cells
- Chlorocebus aethiops
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Humans
- Point Mutation
- Protein Structure, Secondary/physiology
- Protein Structure, Tertiary/physiology
- Receptors, Neuropeptide Y/genetics
- Receptors, Neuropeptide Y/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y12
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Melissa J S Chee
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Uribe A, Zariñán T, Pérez-Solis MA, Gutiérrez-Sagal R, Jardón-Valadez E, Piñeiro A, Dias JA, Ulloa-Aguirre A. Functional and structural roles of conserved cysteine residues in the carboxyl-terminal domain of the follicle-stimulating hormone receptor in human embryonic kidney 293 cells. Biol Reprod 2008; 78:869-82. [PMID: 18199880 DOI: 10.1095/biolreprod.107.063925] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The carboxyl-terminal segment of G protein-coupled receptors has one or more conserved cysteine residues that are potential sites for palmitoylation. This posttranslational modification contributes to membrane association, internalization, and membrane targeting of proteins. In contrast to other members of the glycoprotein hormone receptor family (the LH and thyroid-stimulating hormone receptors), it is not known whether the follicle-stimulating hormone receptor (FSHR) is palmitoylated and what are the effects of abolishing its potential palmitoylation sites. In the present study, a functional analysis of the FSHR carboxyl-terminal segment cysteine residues was carried out. We constructed a series of mutant FSHRs by substituting cysteine residues with alanine, serine, or threonine individually and together at positions 629 and 655 (conserved cysteines) and 627 (nonconserved). The results showed that all three cysteine residues are palmitoylated but that only modification at Cys629 is functionally relevant. The lack of palmitoylation does not appear to greatly impair coupling to G(s) but, when absent at position 629, does significantly impair cell surface membrane expression of the partially palmitoylated receptor. All FSHR Cys mutants were capable of binding agonist with the same affinity as the wild-type receptor and internalizing on agonist stimulation. Molecular dynamics simulations at a time scale of approximately 100 nsec revealed that replacement of Cys629 resulted in structures that differed significantly from that of the wild-type receptor. Thus, deviations from wild-type conformation may potentially contribute to the severe impairment in plasma membrane expression and the modest effects on signaling exhibited by the receptors modified in this particular position.
Collapse
Affiliation(s)
- Aída Uribe
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia "Luis Castelazo Ayala," Instituto Mexicano del Seguro Social, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ulloa-Aguirre A, Zariñán T, Pasapera AM, Casas-González P, Dias JA. Multiple facets of follicle-stimulating hormone receptor function. Endocrine 2007; 32:251-63. [PMID: 18246451 DOI: 10.1007/s12020-008-9041-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/04/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
Follicle-stimulating hormone (FSH) is a glycoprotein hormone produced by the anterior pituitary gland. This gonadotropin plays an essential role in reproduction. Its receptor (FSHR) belongs to the superfamily of G protein-coupled receptors (GPCR), specifically the family of rhodopsin-like receptors. Agonist binding to the FSHR triggers the rapid activation of multiple signaling cascades, mainly the cAMP-adenylyl cyclase-protein kinase A cascade, that impact diverse biological effects of FSH in the gonads. As in other G protein-coupled receptors, the several cytoplasmic domains of the FSHR are involved in signal transduction and termination of the FSH signal. Here we summarize some recent information on the signaling cascades activated by FSH as well as on the role of the intracytoplasmic domains of the FSHR in coupling to membrane and cytosolic proteins linked to key biological functions regulated by the FSH-FSHR system.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social, Apartado Postal 99-065, Unidad Independencia, C.P. 10101 Mexico, D.F., Mexico.
| | | | | | | | | |
Collapse
|
30
|
Ulloa-Aguirre A, Uribe A, Zariñán T, Bustos-Jaimes I, Pérez-Solis MA, Dias JA. Role of the intracellular domains of the human FSH receptor in G(alphaS) protein coupling and receptor expression. Mol Cell Endocrinol 2007; 260-262:153-62. [PMID: 17045734 PMCID: PMC1782136 DOI: 10.1016/j.mce.2005.11.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 11/15/2005] [Indexed: 11/18/2022]
Abstract
The human (h) follicle-stimulating hormone receptor (FSHR) belongs to the superfamily of G protein-coupled receptors (GPCRs). This receptor consists of 695 amino acid residues and is preferentially coupled to the G(s) protein. This receptor is highly conserved among species (overall homology, 85%), with a 25-69% homology drop when compared to the human LH and TSH receptors. Although studies in prototypical rhodopsin/beta-adrenergic receptors suggest that multiple domains in the intracellular loops (iL) and the carboxyl-terminus (Ctail) of these receptors contribute to G protein coupling and receptor expression, there is a paucity of structure/function data on the role of these domains in FSHR function. Employing point mutations we have found that several residues present in the iL2 of the hFSHR are important for both coupling the receptor to the G(s) protein and maintaining the receptor molecule in an inactive conformation. In fact, HEK-293 cells expressing several hFSHR mutants with substitutions at R(450) (central to the highly conserved ERW triplet motif) and T(453) (a potential target for phosphorylation) failed to mediate ligand-provoked G(s) protein activation but not agonist binding, whereas substitutions at the hydrophobic L(460) (a conserved residue present in all glycoprotein hormone receptors) conferred elevated basal cAMP to the transfected cells. Thus, this particular loop apparently acts as a conformational switch for allowing the receptor to adopt an active conformation upon agonist stimulation. Residues in both ends of the iL3 are important for signal transduction in a number of GPCRs, including the FSHR. We have recently explored the importance of the reversed BBXXB motif (BXXBB; where B represents a basic residue and X a non-basic residue) present in the juxtamembrane region of the hFSHR iL3. A hFSHR mutant with all basic amino acids present in the iL3 BXXBB motif replaced by alanine failed to bind agonist and activate effector, and was expressed as an immature < or =62kDa form of the receptor. Individual substitutions of basic residues resulted in mutants that bound agonist normally but failed to activate effector when replaced at R(552) or R(556). Triple mutations in the same motif located in the NH(2)-end of the Ctail resulted in a complete inability of the receptor to bind agonist and activate effector, whereas individual substitutions resulted in decreased or virtually abolished agonist binding and cAMP accumulation, with both functions correlating with the detected levels of mature (80kDa) forms of the receptor. Thus, the BXXBB motif at the iL3 of the FSHR is essential for coupling the activated receptor to the G(s) protein, whereas the same motif in the Ctail is apparently more important for membrane expression. The role of cysteine residues present in the Ctail of the FSHR is an enigma since there are no conserved cysteines amongst LHR, FSHR and TSHR. C(629) and C(655) are conserved in the gonadotropin receptors but not in the TSHR. Alanine replacement of C(627) had no effect on hFSHR expression and function, whereas the same mutation at C(629) altered membrane expression and signal transduction. Serine or threonine substitutions of C(655) did not modify any of the parameters analyzed. In the hFSHR, C(629) may be a target for palmitoylation, and apparently it is the only cysteine residue in the Ctail domain that might play an important role in receptor function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, Apartado Postal 99-065, Unidad Independencia, México 10101 D.F., Mexico.
| | | | | | | | | | | |
Collapse
|
31
|
Conner AC, Simms J, Conner MT, Wootten DL, Wheatley M, Poyner DR. Diverse functional motifs within the three intracellular loops of the CGRP1 receptor. Biochemistry 2006; 45:12976-85. [PMID: 17059214 DOI: 10.1021/bi0615801] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The CGRP(1) receptor exists as a heterodimeric complex between a single-pass transmembrane accessory protein (RAMP1) and a family B G-protein-coupled receptor (GPCR) called the calcitonin receptor-like receptor (CLR). This study investigated the structural motifs found in the intracellular loops (ICLs) of this receptor. Molecular modeling was used to predict active and inactive conformations of each ICL. Conserved residues were altered to alanine by site-directed mutagenesis. cAMP accumulation, cell-surface expression, agonist affinity, and CGRP-stimulated receptor internalization were characterized. Within ICL1, L147 and particularly R151 were important for coupling to G(s). R151 may interact directly with the G-protein, accessing it following conformational changes involving ICL2 and ICL3. At the proximal end of ICL3, I290 and L294, probably lying on the same face of an alpha helix, formed a G-protein coupling motif. The largest effects on coupling were observed with I290A; additionally, it reduced CGRP affinity and impaired internalization. I290 may interact with TM6 to stabilize the conformation of ICL3, but it could also interact directly with Gs. R314, at the distal end of ICL3, impaired G-protein coupling and to a lesser extent reduced CGRP affinity; it may stabilize the TM6-ICL3 junction by interacting with the polar headgroups of membrane phospholipids. Y215 and L214 in ICL2 are required for cell-surface expression; they form a microdomain with H216 which has the same function. This study reveals similarities between the activation of CLR and other GPCRs in the role of TM6 and ICL3 but shows that other conserved motifs differ in their function.
Collapse
Affiliation(s)
- Alex C Conner
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | | | | | | | | | |
Collapse
|